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SQL machine learning documentation
Learn how to use machine learning on SQL to run Python and R on relational data, both
on-premises and in the cloud. Tutorials, code examples, installation guides, and other
documentation show you how to use SQL machine learning.
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Build a machine learning app with Apache Spark MLlib and Azure Synapse Analytics

https://learn.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-machine-learning-mllib-notebook
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Getting started

ｆ Connect & query (Azure Data Studio)

ｆ Connect & query (SSMS)

ｆ Writing Transact-SQL

ｆ SQL Server in a Linux container

ｂ SQL Docs navigation tips

ｄ Educational SQL resources

What's new

ｈ SQL Server 2022

ｈ Azure SQL Database

ｈ Azure SQL Managed Instance

ｈ SQL Server on Azure VMs

ｈ Azure Data Studio

ｈ SQL Server Machine Learning Services

Microsoft SQL documentation
Learn how to use SQL Server and Azure SQL, both on-premises and in the cloud.
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ｈ Azure Arc-enabled SQL Server

Install

｀ SQL Server

｀ SQL Server Management Studio (SSMS)

｀ Azure Data Studio
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｀ Integration Services (SSIS)

｀ Reporting Services (SSRS)

Migrate

ｅ Data Migration Guide

ｅ Database Compatibility Certification

ｅ Azure Database Migration Service (DMS)

ｅ Database Migration Assistant (DMA)

ｅ Database Experimentation Assistant (DEA)

ｅ SQL Server Migration Assistant (SSMA)

See more Ｔ
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What is SQL Server Machine Learning
Services with Python and R?
Article • 08/01/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

Machine Learning Services is a feature in SQL Server that gives the ability to run Python
and R scripts with relational data. You can use open-source packages and frameworks,
and the Microsoft Python and R packages, for predictive analytics and machine learning.
The scripts are executed in-database without moving data outside SQL Server or over
the network. This article explains the basics of SQL Server Machine Learning Services
and how to get started.

SQL Server Machine Learning Services lets you execute Python and R scripts in-
database. You can use it to prepare and clean data, do feature engineering, and train,
evaluate, and deploy machine learning models within a database. The feature runs your
scripts where the data resides and eliminates transfer of the data across the network to
another server.

You can execute Python and R scripts on a SQL Server instance with the stored
procedure sp_execute_external_script.

Base distributions of Python and R are included in Machine Learning Services. You can
install and use open-source packages and frameworks, such as PyTorch, TensorFlow, and
scikit-learn, in addition to the Microsoft packages.

Machine Learning Services uses an extensibility framework to run Python and R scripts
in SQL Server. Learn more about how this works:

Extensibility framework
Python extension
R extension

７ Note

Machine Learning Services is also available in Azure SQL Managed Instance. For
machine learning on other SQL platforms, see the SQL machine learning
documentation.

Execute Python and R scripts in SQL Server

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/machine-learning-services-overview


1. Install SQL Server Machine Learning Services on Windows.

2. Configure your development tools. You can use run Python and R scripts in Azure
Data Studio notebooks. You can also use T-SQL in Azure Data Studio.

3. Write your first Python or R script.

Python tutorials for SQL machine learning
R tutorials for SQL machine learning

The following lists the versions of Python and R that are included in Machine Learning
Services.

SQL Server version Cumulative Update Python runtime version R runtime versions

SQL Server 2022* RTM and later 3.10.2 4.2.0

SQL Server 2019 RTM and later 3.7.1 3.5.2

SQL Server 2017 CU22 and later 3.5.2 and 3.7.2 3.3.3 and 3.5.2

SQL Server 2017 RTM - CU21 3.5.2 3.3.3

SQL Server 2016 See the R version

* For supported versions of R and Python and the RevoScaleR and revoscalepy
packages, see Install SQL Server 2022 Machine Learning Services (Python and R) on
Windows or Install SQL Server Machine Learning Services (Python and R) on Linux.

You can use open-source packages and frameworks, in addition to Microsoft's
enterprise packages. Most common open-source Python and R packages are pre-
installed in Machine Learning Services.

Get started with Machine Learning Services

Python and R versions

Python and R packages

７ Note

Beginning with SQL Server 2022 (16.x), runtimes for R, Python, and Java, are no
longer installed with SQL Setup. Instead, install your desired R and/or Python
custom runtime(s) and packages. For more information, see Install SQL Server

https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2016&preserve-view=true#version
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017


The following Python and R packages from Microsoft are also included at installation:

Language Package Description

Python revoscalepy The primary package for scalable Python. Data transformations
and manipulation, statistical summarization, visualization, and
many forms of modeling. Additionally, functions in this package
automatically distribute workloads across available cores for
parallel processing.

Python microsoftml Applies only to SQL Server 2016, SQL Server 2017, and SQL
Server 2019. Adds machine learning algorithms to create custom
models for text analysis, image analysis, and sentiment analysis.

R RevoScaleR The primary package for scalable R. Data transformations and
manipulation, statistical summarization, visualization, and many
forms of modeling. Additionally, functions in this package
automatically distribute workloads across available cores for
parallel processing.

R MicrosoftML
(R)

Applies only to SQL Server 2016, SQL Server 2017, and SQL
Server 2019. Adds machine learning algorithms to create custom
models for text analysis, image analysis, and sentiment analysis.

R olapR Applies only to SQL Server 2016, SQL Server 2017, and SQL
Server 2019. R functions used for MDX queries against a SQL
Server Analysis Services OLAP cube.

R sqlrutils Applies only to SQL Server 2016, SQL Server 2017, and SQL
Server 2019. A mechanism to use R scripts in a T-SQL stored
procedure, register that stored procedure with a database, and run
the stored procedure from an R development environment.

R Microsoft R
Open
(retired )

Applies to: SQL Server 2016, SQL Server 2017, and SQL Server
2019.

Microsoft R Open (MRO) was the enhanced distribution of R from
Microsoft.

For more information on which packages are installed with Machine Learning Services
and how to install other packages, see:

Get Python package information
Install packages with Python tools on SQL Server
Get R package information

2022 Machine Learning Services on Windows or Install SQL Server Machine
Learning Services (Python and R) on Linux.

https://techcommunity.microsoft.com/t5/azure-sql-blog/microsoft-r-application-network-retirement/ba-p/3707161
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017


Use T-SQL (CREATE EXTERNAL LIBRARY) to install R packages on SQL Server.

Install SQL Server Machine Learning Services on Windows or on Linux
Python tutorials for SQL machine learning
R tutorials for SQL machine learning

Next steps

https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?toc=%2Fsql%2Fmachine-learning%2Ftoc.json&view=sql-server-2017


What are standalone Machine Learning
Server or R Server in SQL Server?
Article • 08/01/2023

Applies to:  SQL Server 2016 (13.x) and later versions

SQL Server provides installation support for a standalone R Server or Machine Learning
Server that runs independently of SQL Server. Depending on your SQL Server version, a
standalone server has a foundation of open-source R and possibly Python, overlaid with
high-performance libraries from Microsoft that add statistical and predictive analytics at
scale. Libraries also enable machine learning tasks scripted in R or Python.

In SQL Server 2016, this feature is called R Server (Standalone) and is R-only. In SQL
Server 2017, it's called Machine Learning Server (Standalone) and includes both R and
Python.

SQL Server 2016 is R only. SQL Server 2017 supports R and Python. The following table
describes the features in each version.

Component Description

R packages RevoScaleR is the primary library for scalable R with functions for data
manipulation, transformation, visualization, and analysis.
MicrosoftML adds machine learning algorithms to create custom models for text

） Important

The support for Machine Learning Server (previously known as R Server) ended on
July 1, 2022. For more information, see What's happening to Machine Learning
Server?

７ Note

As installed by SQL Server Setup, a standalone server is functionally equivalent to
the non-SQL-branded versions of Microsoft Machine Learning Server, supporting
the same user scenarios, including remote execution, operationalization and web
services, and the complete collection of R and Python libraries.

Components

https://learn.microsoft.com/en-us/machine-learning-server/what-is-happening-to-machine-learning-server
https://learn.microsoft.com/en-us/machine-learning-server/what-is-machine-learning-server


Component Description

analysis, image analysis, and sentiment analysis.
sqlRUtils provides helper functions for putting R scripts into a T-SQL stored
procedure, registering a stored procedure with a database, and running the
stored procedure from an R development environment.
olapR is for specifying MDX queries in R.

Microsoft R
Open (MRO)

Microsoft R Open (retired ) was Microsoft's open-source distribution of R.

R tools R console windows and command prompts are standard tools in an R
distribution. Find them at \Program files\Microsoft SQL
Server\140\R_SERVER\bin\x64.

R Samples
and scripts

Open-source R and RevoScaleR packages include built-in data sets so that you
can create and run script using pre-installed data. Look for them at \Program
files\Microsoft SQL Server\140\R_SERVER\library\datasets and
\library\RevoScaleR.

Python
packages

revoscalepy is the primary library for scalable Python with functions for data
manipulation, transformation, visualization, and analysis.
microsoftml adds machine learning algorithms to create custom models for text
analysis, image analysis, and sentiment analysis.

Python tools The built-in Python command-line tool is useful for ad hoc testing and tasks.
Find the tool at \Program files\Microsoft SQL
Server\140\PYTHON_SERVER\python.exe.

Anaconda Anaconda is an open-source distribution of Python and essential packages.

Python
samples and
scripts

As with R, Python includes built-in data sets and scripts. Find the revoscalepy
data at \Program files\Microsoft SQL Server\140\PYTHON_SERVER\lib\site-
packages\revoscalepy\data\sample-data.

Pre-trained
models in R
and Python

Pre-trained models are created for specific use cases and maintained by the data
science engineering team at Microsoft. You can use the pre-trained models as-is
to score positive-negative sentiment in text, or detect features in images, using
new data inputs that you provide. Pre-trained models are supported and usable
on a standalone server, but you cannot install them through SQL Server Setup.
For more information, see Install pretrained machine learning models on SQL
Server.

R and Python developers typically choose a standalone server to move beyond the
memory and processing constraints of open-source R and Python. R and Python
libraries executing on a standalone server can load and process large amounts of data
on multiple cores and aggregate the results into a single consolidated output. High-

Using a standalone server

https://techcommunity.microsoft.com/t5/azure-sql-blog/microsoft-r-application-network-retirement/ba-p/3707161


performance functions are engineered for both scale and utility: delivering predictive
analytics, statistical modeling, data visualizations, and leading-edge machine learning
algorithms in a commercial server product engineered and supported by Microsoft.

As an independent server decoupled from SQL Server, the R and Python environment is
configured, secured, and accessed using the underlying operating system and standard
tools provided in the standalone server, not SQL Server. There is no built-in support for
SQL Server relational data. If you want to use SQL Server data, you can create data
source objects and connections as you would from any client.

As an adjunct to SQL Server, a standalone server is also useful as a powerful
development environment if you need both local and remote computing. The R and
Python packages on a standalone server are the same as those provided with a database
engine installation, allowing for code portability and compute-context switching.

Start with setup, attach the binaries to your favorite development tool, and write your
first script.

Install either one of these versions:

SQL Server 2017 Machine Learning Server (standalone)
SQL Server 2016 R Server (Standalone) - R only

On a standalone server, it's common to work locally using a development installed on
the same computer.

Set up R tools
Set up Python tools

Write R or Python script using functions from RevoScaleR, revoscalepy, and the machine
learning algorithms.

Explore R and RevoScaleR in 25 Functions: Start with basic R commands and then
progress to the RevoScaleR distributable analytical functions that provide high

How to get started

Step 1: Install the software

Step 2: Configure a development tool

Step 3: Write your first script

https://learn.microsoft.com/en-us/machine-learning-server/r/concept-what-is-compute-context
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-standalone-windows-install?view=sql-server-2016&preserve-view=true
https://learn.microsoft.com/en-us/machine-learning-server/r/tutorial-r-to-revoscaler


performance and scaling to R solutions. Includes parallelizable versions of many of
the most popular R modeling packages, such as k-means clustering, decision trees,
and decision forests, and tools for data manipulation.

Quickstart: An example of binary classification with the microsoftml Python
package: Create a binary classification model using the functions from microsoftml
and the well-known breast cancer dataset.

Choose the best language for the task. R is best for statistical computations that are
difficult to implement using SQL. For set-based operations over data, leverage the
power of SQL Server to achieve maximum performance. Use the in-memory database
engine for very fast computations over columns.

Standalone servers can use the operationalization functionality of the non-SQL-branded
Microsoft Machine Learning Server. You can configure a standalone server for
operationalization, which gives you these benefits: deploy and host your code as web
services, run diagnostics, test web service capacity.

SQL Server releases cumulative updates on a regular basis. Applying the cumulative
updates adds security and functional enhancements to an existing installation.

Descriptions of new or changed functionality can be found in the CAB Downloads article
and on the web pages for SQL Server 2016 cumulative updates  and SQL Server 2017
cumulative updates .

For more information on how to apply updates to an existing instance, see Apply
updates in the installation instructions.

Install R Server (Standalone) or Machine Learning Server (Standalone)

Step 4: Operationalize your solution

Step 5: Maintain your server

See also

https://learn.microsoft.com/en-us/machine-learning-server/python/quickstart-binary-classification-with-microsoftml
https://learn.microsoft.com/en-us/machine-learning-server/what-is-operationalization
https://learn.microsoft.com/en-us/machine-learning-server/what-is-machine-learning-server
https://support.microsoft.com/help/3177312/sql-server-2016-build-versions
https://support.microsoft.com/help/4047329


What's new in SQL Server Machine
Learning Services?
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This articles describes what new capabilities and features are included in each version of
SQL Server Machine Learning Services. Machine learning capabilities are added to SQL
Server in each release as we continue to expand, extend, and deepen the integration
between the data platform, advanced analytics, and data science.

This release adds Python support and industry-leading machine learning algorithms .
Renamed to reflect the new scope, SQL Server 2017 marks the introduction of SQL
Server Machine Learning Services (In-Database), with language support for both Python
and R.

For feature announcements all-up, see What's New in SQL Server 2017.

The R component of SQL Server Machine Learning Services is the next generation of
SQL Server 2016 R Services, with updated versions of base R, RevoScaler, and other
packages.

New capabilities for R include package management, with the following highlights:

Database roles help DBAs manage packages and assign permissions for package
installation.
CREATE EXTERNAL LIBRARY helps DBAs manage packages in the familiar T-SQL
language.

７ Note

Feature capabilities and installation options vary between versions of SQL Server.
Use the version selector dropdown to choose the appropriate version of SQL
Server.

New in SQL Server 2017

R enhancements

https://cloudblogs.microsoft.com/sqlserver/2017/04/19/python-in-sql-server-2017-enhanced-in-database-machine-learning/
https://learn.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2017?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql?view=sql-server-2017


RevoScaleR functions help install, remove, or list packages owned by users. For
more information, see How to use RevoScaleR functions to find or install R
packages on SQL Server.

Package Description

MicrosoftML In this release, MicrosoftML is included in a default R installation, eliminating the
upgrade step required in the previous SQL Server 2016 R Services. MicrosoftML
provides state-of-the-art machine learning algorithms and data transformations
that can be scaled or run in remote compute contexts. Algorithms include
customizable deep neural networks, fast decision trees and decision forests, linear
regression, and logistic regression.

Python is a language that offers great flexibility and power for a variety of machine
learning tasks. Open-source libraries for Python include several platforms for
customizable neural networks, as well as popular libraries for natural language
processing.

Because Python is integrated with the database engine, you can keep analytics close to
the data and eliminate the costs and security risks associated with data movement. You
can deploy machine learning solutions based on Python using tools like Visual Studio.
Your production applications can get predictions, models, or visuals from the Python 3.5
runtime using SQL Server data access methods.

T-SQL and Python integration is supported through the sp_execute_external_script
system stored procedure. You can call any Python code using this stored procedure.
Code runs in a secure, dual architecture that enables enterprise-grade deployment of
Python models and scripts, callable from an application using a simple stored
procedure. Additional performance gains are achieved by streaming data from SQL to
Python processes and MPI ring parallelization.

You can use the T-SQL PREDICT function to perform native scoring on a pre-trained
model that has been previously saved in the required binary format.

Package Description

R libraries

Python integration for in-database analytics

Python libraries

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017


Package Description

revoscalepy Python-equivalent of RevoScaleR. You can create Python models for linear and
logistic regressions, decision trees, boosted trees, and random forests, all
parallelizable, and capable of being run in remote compute contexts. This package
supports use of multiple data sources and remote compute contexts. The data
scientist or developer can execute Python code on a remote SQL Server, to explore
data or build models without moving data.

microsoftml Python-equivalent of the MicrosoftML R package.

Pre-trained models are available for both Python and R. Use these models for image
recognition and positive-negative sentiment analysis, to generate predictions on your
own data.

This release also adds SQL Server Machine Learning Server (Standalone), a fully
independent data science server, supporting statistical and predictive analytics in R and
Python. As with R Services, this server is the next version of SQL Server 2016 R Server
(Standalone). With the standalone server, you can distribute and scale R or Python
solutions with no dependencies on SQL Server.

This release introduced machine learning capabilities into SQL Server through SQL
Server 2016 R Services, an in-database analytics engine for processing R script on
resident data within a database engine instance.

Additionally, SQL Server 2016 R Server (Standalone) was released as a way to install R
Server on a Windows server. Initially, SQL Server Setup provided the only way to install R
Server for Windows. In later releases, developers and data scientists who wanted R
Server on Windows could use another standalone installer to achieve the same goal. The
standalone server in SQL Server is functionally equivalent to the standalone server
product, Microsoft R Server for Windows.

For feature announcements all-up, see What's New in SQL Server 2016.

Release Feature update

Pre-trained models

Standalone Server as a shared feature in SQL Server
Setup

New in SQL Server 2016

https://learn.microsoft.com/en-us/machine-learning-server/install/r-server-install-windows
https://learn.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2016?view=sql-server-2017


Release Feature update

CU
additions

Real-time scoring relies on native C++ libraries to read a model stored in an
optimized binary format, and then generate predictions without having to call the R
runtime. This makes scoring operations much faster. With real-time scoring, you can
run a stored procedure or perform real-time scoring from R code. Real-time scoring is
also available for SQL Server 2016, if the instance is upgraded to the latest release of
Microsoft R Server.

Initial
release

R integration for in-database analytics.  

R packages for calling R functions in T-SQL, and vice versa. RevoScaleR functions
provide R analytics at scale by chunking data into component parts, coordinating and
managing distributed processing, and aggregating results. In SQL Server 2016 R
Services (In-Database), the RevoScaleR engine is integrated with a database engine
instance, brining data and analytics together in the same processing context.  

T-SQL and R integration through sp_execute_external_script. You can call any R code
using this stored procedure. This secure infrastructure enables enterprise-grade
deployment of Rn models and scripts that can be called from an application using a
simple stored procedure. Additional performance gains are achieved by streaming
data from SQL to R processes and MPI ring parallelization.  

You can use the T-SQL PREDICT function to perform native scoring on a pre-trained
model that has been previously saved in the required binary format.

SQL Server 2019 adds Linux support for R and Python when you install the machine
learning packages with a database engine instance. For more information, see Install
SQL Server Machine Learning Services on Linux.

On Linux, SQL Server 2017 does not have R or Python integration, but you can use
Native scoring on Linux because that functionality is available through T-SQL PREDICT,
which runs on Linux. Native scoring enables high-performance scoring from a pretrained
model, without calling or even requiring an R runtime.

Install SQL Server Machine Learning Services (In-Database)

Linux support

Next steps

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017


Install SQL Server Machine Learning
Services (Python and R) on Windows
Article • 03/17/2023

Applies to:  SQL Server 2016 (13.x),  SQL Server 2017 (14.x), and  SQL Server
2019 (15.x)

This article shows you how to install SQL Server Machine Learning Services on Windows.
You can use Machine Learning Services to run Python and R scripts in-database.

A database engine instance is required. You can't install just Python or R features,
although you can add them incrementally to an existing instance.

For business continuity, Always On availability groups are supported for Machine
Learning Services. Install Machine Learning Services, and configure packages, on
each node.

Installing Machine Learning Services is not supported on an Always On failover
cluster instance in SQL Server 2017. It's supported with SQL Server 2019 and later.

Don't install Machine Learning Services on a domain controller. The Machine
Learning Services portion of setup will fail.

Don't install Shared Features > Machine Learning Server (Standalone) on the
same computer that's running a database instance. A standalone server will
compete for the same resources and diminish the performance of both
installations.

Side-by-side installation with other versions of Python and R is supported, but we
don't recommend it. It's supported because the SQL Server instance uses its own
copies of the open-source R and Anaconda distributions. We don't recommend it

） Important

These instructions apply to SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL
Server 2019 (15.x). For SQL Server 2022 (16.x), refer to Install SQL Server 2022
Machine Learning Services on Windows.

Pre-installation checklist

https://learn.microsoft.com/en-us/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017


because running code that uses Python and R on a computer outside SQL Server
can lead to problems:

Using a different library and different executable files will create results that are
inconsistent with what you're running in SQL Server.
SQL Server can't manage R and Python scripts that run in external libraries,
leading to resource contention.

The download location for SQL Server depends on the edition:

SQL Server Enterprise, Standard, and Express editions. These editions are licensed
for production use. For the Enterprise and Standard editions, contact your software
vendor for the installation media. You can find purchasing information and a
directory of Microsoft partners on the Microsoft purchasing website .
The latest free edition .

For more information on which SQL Server editions support Python and R integration
with Machine Learning Services, see Editions and supported features of SQL Server 2017.

For local installations, you must run the setup as an administrator. If you install SQL
Server from a remote share, you must use a domain account that has read and execute
permissions on the remote share.

1. Start the setup wizard for SQL Server.

2. On the Installation tab, select New SQL Server stand-alone installation or add
features to an existing installation.

） Important

After you finish setup, be sure to complete the post-configuration steps described
in this article. These steps include enabling SQL Server to use external scripts and
adding accounts that are required for SQL Server to run R and Python jobs on your
behalf. Configuration changes generally require a restart of the instance or a restart
of the Launchpad service.

Get the installation media

Run setup

https://www.microsoft.com/sql-server/
https://www.microsoft.com/sql-server/sql-server-downloads
https://learn.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017?view=sql-server-2017


3. On the Feature Selection page, select these options:

Database Engine Services

To use R and Python with SQL Server, you must install an instance of the
database engine. You can use either a default instance or a named instance.

Machine Learning Services (In-Database)

This option installs the database services that support R and Python script
execution.

R

Select this option to add the Microsoft R packages, interpreter, and open-
source R.

Python

Select this option to add the Microsoft Python packages, the Python 3.5
executable, and select libraries from the Anaconda distribution.



4. On the Consent to Install Microsoft R Open page, select Accept > Next.

The license agreement covers:

Microsoft R Open.
Open-source R base packages and tools.
Enhanced R packages and connectivity providers from the Microsoft
development team.

5. On the Consent to Install Python page, select Accept > Next. The Python open-
source license agreement also covers Anaconda and related tools, plus some new
Python libraries from the Microsoft development team.

７ Note

Don't select the Machine Learning Server (Standalone) option under Shared
Features. That option is intended for use on a separate computer.

７ Note



6. On the Ready to Install page, verify that these selections are included, and then
select Install:

Database Engine Services
Machine Learning Services (in-database)
R, Python, or both

Note the location of the folder under the path ..\Setup Bootstrap\Log  where the
configuration files are stored. When setup is complete, you can review the installed
components in the summary file.

7. After setup is complete, if you're instructed to restart the computer, do so. It's
important to read the message from the Installation Wizard when you finish setup.
For more information, see View and read SQL Server Setup log files.

For R feature integration only, you should set the MKL_CBWR  environment variable to
ensure consistent output  from Intel Math Kernel Library (MKL) calculations:

1. In Control Panel, select System and Security > System > Advanced System
Settings > Environment Variables.

2. Create a new user or system variable:

Set the variable name to MKL_CBWR .
Set the variable value to AUTO .

This step requires a server restart. If you're about to enable script execution, you can
hold off on the restart until all of the configuration work is done.

1. Use SQL Server Management Studio (SSMS) or Azure Data Studio to connect to
the instance where you installed SQL Server Machine Learning Services.

2. Select New Query to open a query window, and then run the following command:

If the computer that you're using doesn't have internet access, you can pause
setup at this point to download the installers separately. For more
information, see Install machine learning components without internet
access.

Set environment variables

Enable script execution

https://learn.microsoft.com/en-us/sql/database-engine/install-windows/view-and-read-sql-server-setup-log-files?view=sql-server-2017
https://software.intel.com/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017


SQL

3. The value for the property external scripts enabled  should be 0  at this point.
The feature is turned off by default. To turn it on so you can run R or Python
scripts, run the following statement:

SQL

If you've already enabled the feature for the R language, you don't need to run
RECONFIGURE  a second time for Python. The underlying extensibility platform
supports both languages.

When the installation is complete, restart the database engine. Restarting the service
also automatically restarts the related SQL Server Launchpad service.

You can restart the service by using any of these methods:

The right-click Restart command for the instance in Object Explorer in SSMS
The Services Microsoft Management Console (MMC) item in Control Panel
SQL Server Configuration Manager

Use the following steps to verify that all components used to launch external scripts are
running:

1. In SQL Server Management Studio, open a new query window and run the
following command:

SQL

Then, run_value  is set to 1 .

EXEC sp_configure 

EXEC sp_configure  'external scripts enabled', 1 
RECONFIGURE WITH OVERRIDE 

Restart the service

Verify installation

EXECUTE sp_configure  'external scripts enabled' 

https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-configuration-manager?view=sql-server-2017


2. Open the Services control panel item or SQL Server Configuration Manager, and
verify that SQL Server Launchpad service is running. You should have one service
for every database engine instance that has R or Python installed. For more
information about the service, see Extensibility architecture in SQL Server Machine
Learning Services.

3. If Launchpad is running, you can run simple Python and R scripts to verify that
external scripting runtimes can communicate with SQL Server.

Open a new Query window in SQL Server Management Studio, and then run a
script such as:

For R:

SQL

For Python:

SQL

The first time that the external script runtime is loaded, the script can take a little
while to run. The results should be something like this:

hello

1

EXEC sp_execute_external_script  @language =N'R', 
@script=N' 
OutputDataSet <- InputDataSet; 
', 
@input_data_1 =N'SELECT 1 AS hello' 
WITH RESULT SETS (([hello] int not null)); 
GO 

EXEC sp_execute_external_script  @language =N'Python', 
@script=N' 
OutputDataSet = InputDataSet; 
', 
@input_data_1 =N'SELECT 1 AS hello' 
WITH RESULT SETS (([hello] int not null)); 
GO 

７ Note



If you've added Machine Learning Services to an existing SQL Server instance and have
previously applied a cumulative update (CU), the versions of your database engine and
the Machine Learning Services feature might be different. This difference might result in
unexpected behavior or errors because launchpad.exe  and sqlservr.exe  have different
versions.

Follow these steps to bring Machine Learning Services to the same version as your
database engine:

1. Determine the cumulative update that you have for the database engine. Run this
T-SQL statement:

SQL

Here's an example output from SQL Server 2019 CU 8:

For more information, see Determine the version, edition, and update level of SQL
Server and its components.

2. If necessary, download the cumulative update that you installed for the database
engine.

Columns or headings used in the Python script aren't returned automatically. To
add column names for your output, you must specify the schema for the return
data set. Do this by using the WITH RESULTS  parameter of the stored procedure,
naming the columns, and specifying the SQL data type.

For example, you can add the following line to generate an arbitrary column name:
WITH RESULT SETS ((Col1 AS int)) .

Apply updates

Existing installation

SELECT @@VERSION 

Microsoft SQL Server 2019 (RTM-CU8-GDR) (KB4583459) - 15.0.4083.2 (X64)   
Nov  2 2020 18:35:09   Copyright (C) 2019 Microsoft Corporation  
Developer Edition (64-bit) on Windows 10 Enterprise 10.0 (X64) (Build 
19042: ) (Hypervisor) 

https://learn.microsoft.com/en-us/troubleshoot/sql/general/determine-version-edition-update-level#machine-learning-services
https://learn.microsoft.com/en-us/troubleshoot/sql/releases/download-and-install-latest-updates?bc=%2fsql%2fbreadcrumb%2ftoc.json&toc=%2fsql%2ftoc.json


3. Run the installation of the cumulative update, and follow the instructions to install
it for Machine Learning Services again. Select the existing instance where Machine
Learning Services is installed. The upgrade status shows Incompletely Installed on
the Feature Selection page.

4. Select Next and continue with installation.

If you install Machine Learning Services with a new installation of the SQL Server
database engine, we recommend that you apply the latest cumulative update to both
the database engine and machine learning components.

On internet-connected devices, cumulative updates are typically applied through
Windows Update. But you can also use the following steps for controlled updates. When
you apply the update for the database engine, setup pulls cumulative updates for any
Python or R features that you installed on the same instance.

Disconnected servers require extra steps. For more information, see Install on computers
with no internet access > Apply cumulative updates.

1. Start with a baseline instance already installed: SQL Server initial release.

2. Go to the list of updates for Microsoft SQL Server.

3. Select the latest cumulative update. An executable is downloaded and extracted
automatically.

4. Run Setup and accept the license terms.

5. On the Feature selection page, review the features for which cumulative updates
are applied. You should see every feature installed for the current instance,
including machine learning features. Setup downloads the CAB files that are
necessary to update all features.

New installation

https://learn.microsoft.com/en-us/troubleshoot/sql/releases/download-and-install-latest-updates?bc=%2fsql%2fbreadcrumb%2ftoc.json&toc=%2fsql%2ftoc.json


6. Continue through the wizard. Accept the license terms for R and Python
distributions.

If the external script verification step was successful, you can run R or Python commands
from SQL Server Management Studio, Visual Studio Code, or any other client that can
send T-SQL statements to the server.

If you got an error when you ran the command, you might need to make additional
configurations to the service or database. At the instance level, additional configurations
might include:

Configure a firewall for SQL Server Machine Learning Services
Enable additional network protocols
Enable remote connections
Create a login for SQLRUserGroup
Manage disk quotas to prevent external scripts from running tasks that exhaust
disk space

On the database, you might need configuration updates. For more information, see Give
users permission to SQL Server Machine Learning Services.

Additional configuration

７ Note

Whether the additional configuration is required depends on your security schema,
where you installed SQL Server, and how you expect users to connect to the
database and run external scripts.

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/enable-or-disable-a-server-network-protocol?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-the-remote-access-server-configuration-option?view=sql-server-2017
https://learn.microsoft.com/en-us/windows/desktop/fileio/managing-disk-quotas


Now that you have everything working, you might also want to optimize the server to
support machine learning or install a pre-trained machine learning model.

If you expect many users to run scripts concurrently, you can increase the number of
worker accounts that are assigned to the Launchpad service. For more information, see
Scale concurrent execution of external scripts in SQL Server Machine Learning Services.

The default settings for SQL Server setup are intended to optimize the balance of the
server for a variety of other services and applications.

Under the default settings, resources for machine learning are sometimes restricted or
throttled, particularly in memory-intensive operations.

To ensure that machine learning jobs are prioritized and resourced appropriately, we
recommend that you use SQL Server Resource Governor to configure an external
resource pool. You might also want to change the amount of memory that's allocated to
the SQL Server database engine, or increase the number of accounts that run under the
SQL Server Launchpad service.

To configure a resource pool for managing external resources, see Create an
external resource pool.

To change the amount of memory reserved for the database, see Server memory
configuration options.

To change the number of R accounts that SQL Server Launchpad can start, see
Scale concurrent execution of external scripts in SQL Server Machine Learning
Services.

If you're using Standard Edition and don't have Resource Governor, you can use
dynamic management views, SQL Server Extended Events, and Windows event
monitoring to help manage the server resources.

The Python and R solutions that you create for SQL Server can call:

Suggested optimizations

Add more worker accounts

Optimize the server for script execution

Install additional Python and R packages

https://learn.microsoft.com/en-us/sql/t-sql/statements/create-external-resource-pool-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/server-memory-server-configuration-options?view=sql-server-2017


Basic functions.
Functions from the proprietary packages installed with SQL Server.
Third-party packages that are compatible with the version of open-source Python
and R that SQL Server installs.

Packages that you want to use from SQL Server must be installed in the default library
that the instance uses. If you have a separate installation of Python or R on the
computer, or if you installed packages to user libraries, you can't use those packages
from T-SQL.

To install and manage additional packages, you can set up user groups to share
packages on a per-database level, or you can configure database roles to enable users
to install their own packages. For more information, see Install Python packages and
Install new R packages.

Python developers can learn how to use Python with SQL Server by following these
tutorials:

Python tutorial: Predict ski rental with linear regression in SQL Server Machine
Learning Services
Python tutorial: Build a model to categorize customers with SQL machine learning

R developers can get started with some simple examples and learn the basics of how R
works with SQL Server. For your next step, see the following links:

Quickstart: Run R in T-SQL
Tutorial: In-database analytics for R developers

Next steps

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-python-packages-on-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017


Offline install SQL Server Machine
Learning Services on Windows
computers with no internet access
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article describes how to install SQL Server Machine Learning Services on Windows
offline on computers with no internet access isolated behind a network firewall.

By default, installers connect to Microsoft download sites to get required and updated
components for machine learning on SQL Server. If firewall constraints prevent the
installer from reaching these sites, you can use an internet-connected device to
download files, transfer files to an offline server, and then run setup.

In-database analytics consist of database engine instance, plus additional components
for R and Python integration, depending on the version of SQL Server.

Beginning with SQL Server 2022 (16.x), runtimes for R, Python, and Java, are no
longer installed with SQL Setup. Instead, install your desired R and/or Python
custom runtime(s) and packages. The offline installation process is therefore similar
to the online process. For more information, see Install SQL Server 2022 Machine
Learning Services on Windows or Install SQL Server 2022 Machine Learning
Services on Linux.
SQL Server 2019 includes R, Python, and Java.
SQL Server 2017 includes R and Python.
SQL Server 2016 is R-only.

On an isolated server, machine learning and R/Python language-specific features are
added through CAB files.

７ Note

Feature capabilities and installation options vary between versions of SQL Server.
Use the version selector dropdown to choose the appropriate version of SQL
Server.

SQL Server 2017 offline install

https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning-sql-2022?view=sql-server-2017


To install SQL Server Machine Learning Services (R and Python) on an isolated server,
start by downloading the initial release of SQL Server and the corresponding CAB files
for R and Python support. Even if you plan to immediately update your server to use the
latest cumulative update, an initial release must be installed first.

On a computer having an internet connection, download the CAB files providing R and
Python features for the initial release and the installation media for SQL Server 2017.

Release Download link

Microsoft R Open SRO_3.3.3.24_1033.cab

Microsoft R Server SRS_9.2.0.24_1033.cab

Microsoft Python Open SPO_9.2.0.24_1033.cab

Microsoft Python Server SPS_9.2.0.24_1033.cab

1. On a computer having an internet connection, launch SQL Server 2017 Setup from
your installation media.

2. Double-click setup and choose the Download Media installation type. With this
option, setup creates a local .iso (or .cab) file containing the installation media.

７ Note

SQL Server 2017 does not have service packs. It's the first release of SQL Server to
use the initial release as the only base line, with servicing through cumulative
updates only.

1 - Download 2017 CABs

2 - Get SQL Server 2017 installation media

https://go.microsoft.com/fwlink/?LinkId=851496
https://go.microsoft.com/fwlink/?LinkId=851507
https://go.microsoft.com/fwlink/?LinkId=851502
https://go.microsoft.com/fwlink/?LinkId=851508


Copy the SQL Server installation media (.iso or .cab) and in-database analytics CAB files
to the target computer. Place the CAB files and installation media file in the same folder
on the target machine, such as the setup user's %TEMP% folder.

The %TEMP% folder is required for Python CAB files. For R, you can use %TEMP% or set
the myrcachedirectory  parameter to the CAB path.

When you run SQL Server Setup on a computer disconnected from the internet, Setup
adds an Offline installation page to the wizard so that you can specify the location of
the CAB files you copied in the previous step.

1. To begin installation, double-click the .iso or .cab file to access the installation
media. You should see the setup.exe file.

2. Right-click setup.exe and run as administrator.

3. When the setup wizard displays the licensing page for open-source R or Python
components, click Accept. Acceptance of licensing terms allows you to proceed to
the next step.

Transfer files

Run Setup



4. When you get to the Offline installation page, in Install Path, specify the folder
containing the CAB files you copied earlier.

5. Continue following the on-screen prompts to complete the installation.

We recommend that you apply the latest cumulative update to both the database
engine and machine learning components.

Cumulative updates are installed through the Setup program.

1. Start with a baseline instance. You can only apply cumulative updates to existing
installations of the initial release of SQL Server.

2. On an internet connected device, go to the cumulative update list for your version
of SQL Server. See Determine the version, edition, and update level of SQL Server
and its components.

3. Select the latest cumulative update to download the executable.

4. Get corresponding CAB files for R and Python. For download links, see CAB
downloads for cumulative updates on SQL Server in-database analytics instances.

5. Transfer all files, executable and CAB files, to the same folder on the offline
computer.

6. Run Setup. Accept the licensing terms, and on the Feature selection page, review
the features for which cumulative updates are applied. You should see every
feature installed for the current instance, including machine learning features.

Apply cumulative updates

https://learn.microsoft.com/en-us/troubleshoot/sql/general/determine-version-edition-update-level


7. Continue through the wizard, accepting the licensing terms for R and Python
distributions. During installation, you are prompted to choose the folder location
containing the updated CAB files.

For R feature integration only, you should set the MKL_CBWR environment variable to
ensure consistent output  from Intel Math Kernel Library (MKL) calculations.

1. In Control Panel, click System and Security > System > Advanced System Settings
> Environment Variables.

2. Create a new User or System variable.

Set variable name to MKL_CBWR
Set the variable value to AUTO

This step requires a server restart. If you are about to enable script execution, you can
hold off on the restart until all of the configuration work is done.

After installation is finished, restart the service and then configure the server to enable
script execution:

Enable external script execution

An initial offline installation of SQL Server Machine Learning Services requires the same
configuration as an online installation:

Verify installation
Additional configuration as needed

To use Machine Learning Services to execute Python and R scripts in-database, see:

SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server 2019 (15.x): Install
SQL Server Machine Learning Services
SQL Server 2022 (16.x): Install SQL Server 2022 Machine Learning Services (Python
and R) on Windows or Install SQL Server Machine Learning Services (Python and R)
on Linux

Set environment variables

Post-install configuration

Next steps

https://software.intel.com/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017


CAB downloads for offline installation of
cumulative updates for SQL Server Machine
Learning Services
Article • 06/28/2023

Applies to:  SQL Server 2016 (13.x),  SQL Server 2017 (14.x), and  SQL Server 2019 (15.x)

Download Python and R CAB files for SQL Server Machine Learning Services. These CAB files
contain updates to the Machine Learning Services (Python and R) feature and are used when
installing SQL Server on a server without internet access.

This article lists download links to CAB files for each cumulative update. For more information
about offline installs, see Install SQL Server machine learning components without internet access.

This article applies to SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server 2019 (15.x).

Start with a baseline installation. On SQL Server Machine Learning Services, the initial release is the
baseline installation. You can also apply cumulative updates.

CAB files are listed in reverse chronological order. When you download the CAB files and transfer
them to the target computer, place them in a convenient folder such as Downloads or the setup
user's %temp% folder.

Release Component Download link Issues addressed

SQL Server 2017 CU29 -CU31

Microsoft R
Open

SRO_3.5.2.777_1033.cab

R Server SRS_9.4.7.1162_1033.cab

Microsoft
Python
Open

SPO_4.5.12.479_1033.cab

Python
Server

SPS_9.4.7.1226_1033.cab Fixes
sp_execute_external_script

execution failures for
Python by removing
breaking numpy package
version mismatch.

Prerequisites

SQL Server 2017 CABs

https://support.microsoft.com//help/5010786/
https://support.microsoft.com//help/5016884/
https://go.microsoft.com/fwlink/?linkid=2134897
https://go.microsoft.com/fwlink/?linkid=2174362
https://go.microsoft.com/fwlink/?LinkId=2118341
https://go.microsoft.com/fwlink/?linkid=2189383


Release Component Download link Issues addressed

SQL Server 2017 CU27 -CU28

Microsoft R
Open

SRO_3.5.2.777_1033.cab

R Server SRS_9.4.7.1162_1033.cab

Microsoft
Python
Open

SPO_4.5.12.479_1033.cab

Python
Server

SPS_9.4.7.1162_1033.cab

SQL Server 2017 CU22 -CU26

Microsoft R
Open

SRO_3.5.2.777_1033.cab

R Server SRS_9.4.7.958_1033.cab

Microsoft
Python
Open

SPO_4.5.12.479_1033.cab

Python
Server

SPS_9.4.7.958_1033.cab

SQL Server 2017 CU19 -CU20

Microsoft R
Open

SRO_3.3.3.1900_1033.cab Fixes the bug where
sp_execute_external_script

executing an R script shows
warning message

R Server SRS_9.2.0.1900_1033.cab No change from previous
versions.

Microsoft
Python
Open

SPO_9.2.0.1400_1033.cab No change from previous
versions.

Python
Server

SPS_9.2.0.1900_1033.cab Fixes the bug where
sp_execute_external_script

executing a python script
sometimes loses data when
returning varbinary or
binary data type back to
SQL Server in the form of an
OutputDataSet.

SQL Server 2017 CU14 -CU15 -
CU16 -CU17 -CU18

https://support.microsoft.com//help/5006944/
https://support.microsoft.com//help/5008084/
https://go.microsoft.com/fwlink/?linkid=2134897
https://go.microsoft.com/fwlink/?linkid=2174362
https://go.microsoft.com/fwlink/?LinkId=2118341
https://go.microsoft.com/fwlink/?linkid=2174361
https://support.microsoft.com/help/4577467/
https://support.microsoft.com/help/5005226/
https://go.microsoft.com/fwlink/?linkid=2134897
https://go.microsoft.com/fwlink/?linkid=2136942
https://go.microsoft.com/fwlink/?LinkId=2118341
https://go.microsoft.com/fwlink/?linkid=2136731
https://support.microsoft.com/help/4535007/
https://support.microsoft.com/help/4541283/
https://go.microsoft.com/fwlink/?LinkId=2106367&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2106460&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2073897&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2106459&clcid=1033
https://support.microsoft.com/help/4484710/
https://support.microsoft.com/help/4498951/
https://support.microsoft.com/help/4508218/
https://support.microsoft.com/help/4515579/
https://support.microsoft.com/help/4527377/


Release Component Download link Issues addressed

Microsoft R
Open

SRO_3.3.3.1400_1033.cab Binaries within the package
are now signed.

R Server SRS_9.2.0.1400_1033.cab Binaries within the package
are now signed.

Microsoft
Python
Open

SPO_9.2.0.1400_1033.cab Binaries within the package
are now signed.

Python
Server

SPS_9.2.0.1400_1033.cab Binaries within the package
are now signed.

SQL Server 2017 CU13

Microsoft R
Open

SRO_3.3.3.1300_1033.cab No change from previous
versions.

R Server SRS_9.2.0.1300_1033.cab Contains a fix for upgrading
an operationalized
standalone R Server, as
installed through SQL
Server Setup. Use the CU13
CABs and follow these
instructions to apply the
update.

Microsoft
Python
Open

SPO_9.2.0.24_1033.cab No change from previous
versions.

Python
Server

SPS_9.2.0.1300_1033.cab Contains a fix for upgrading
an operationalized
standalone Python Server,
as installed through SQL
Server Setup. Use the CU13
CABs and follow these
instructions to apply the
update.

SQL Server 2017 CU10 -CU11 -CU12

Microsoft R
Open

SRO_3.3.3.300_1033.cab No change from previous
versions.

R Server SRS_9.2.0.1000_1033.cab Minor fixes.

Microsoft
Python
Open

SPO_9.2.0.24_1033.cab No change from previous
versions.

https://go.microsoft.com/fwlink/?LinkId=2073898&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2069739&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2073897&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2071421&clcid=1033
https://support.microsoft.com/help/4466404
https://go.microsoft.com/fwlink/?LinkId=863894
https://go.microsoft.com/fwlink/?LinkId=2038263&clcid=1033
https://learn.microsoft.com/en-us/machine-learning-server/what-is-operationalization
https://go.microsoft.com/fwlink/?LinkId=851502
https://go.microsoft.com/fwlink/?LinkId=2038197&clcid=1033
https://learn.microsoft.com/en-us/machine-learning-server/what-is-operationalization
https://support.microsoft.com/help/4342123
https://support.microsoft.com/help/4462262
https://support.microsoft.com/help/4464082
https://go.microsoft.com/fwlink/?LinkId=863894
https://go.microsoft.com/fwlink/?LinkId=2006287&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=851502


Release Component Download link Issues addressed

Python
Server

SPS_9.2.0.1000_1033.cab Python rx_data_step loses
row order when duplicates
are removed.  
SPEE fails datatype
detection on clustered
columnstore index.  
Returns an empty table
when columns contain all
null values.

SQL Server 2017 CU8 -CU9

Microsoft R
Open

SRO_3.3.3.300_1033.cab No change from previous
versions.

R Server SRS_9.2.0.800_1033.cab

Microsoft
Python
Open

SPO_9.2.0.24_1033.cab No change from previous
versions.

Python
Server

SPS_9.2.0.800_1033.cab

SQL Server 2017 CU6 -CU7

Microsoft R
Open

SRO_3.3.3.300_1033.cab No change from previous
versions.

R Server SRS_9.2.0.600_1033.cab

Microsoft
Python
Open

SPO_9.2.0.24_1033.cab No change from previous
versions.

Python
Server

SPS_9.2.0.600_1033.cab DateTime data types in
SPEES query. 
improved error messages in
microsoftml when pre-
trained models are missing. 
Fixes to revoscalepy
transform functions and
variables.

SQL Server 2017 CU5

Microsoft R
Open

SRO_3.3.3.300_1033.cab No change from previous
versions.

R Server SRS_9.2.0.500_1033.cab Long path-related errors in
rxInstallPackages. 
Connections in a loopback
for RxExec.

https://go.microsoft.com/fwlink/?LinkId=2006805&clcid=1033
https://support.microsoft.com/help/4338363
https://support.microsoft.com/help/4341265
https://go.microsoft.com/fwlink/?LinkId=863894
https://go.microsoft.com/fwlink/?LinkId=874708&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=851502
https://go.microsoft.com/fwlink/?LinkId=874707&clcid=1033
https://support.microsoft.com/help/4101464
https://support.microsoft.com/help/4229789
https://go.microsoft.com/fwlink/?LinkId=863894
https://go.microsoft.com/fwlink/?LinkId=871074&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=851502
https://go.microsoft.com/fwlink/?LinkId=871073&clcid=1033
https://support.microsoft.com/help/4092643
https://go.microsoft.com/fwlink/?LinkId=863894
https://go.microsoft.com/fwlink/?LinkId=869052&clcid=1033


Release Component Download link Issues addressed

Microsoft
Python
Open

No change from previous
versions.

Python
Server

SPS_9.2.0.500_1033.cab
Connections in a loopback
for rx_exec.

SQL Server 2017 CU4

Microsoft R
Open

SRO_3.3.3.300_1033.cab No change from previous
versions.

R Server SRS_9.2.0.400_1033.cab

Microsoft
Python
Open

SPO_9.2.0.24_1033.cab No change from previous
versions.

Python
Server

SPS_9.2.0.400_1033.cab

SQL Server 2017 CU3

Microsoft R
Open

SRO_3.3.3.300_1033.cab

R Server SRS_9.2.0.300_1033.cab

Microsoft
Python
Open

SPO_9.2.0.24_1033.cab No change from previous
versions.

Python
Server

SPS_9.2.0.300_1033.cab Python model serialization
in revoscalepy, using the
rx_serialize_model function. 
Native scoring support, plus
enhancements to real-time
scoring.

SQL Server 2017 CU1 -CU2

Microsoft R
Open

SRO_3.3.3.24_1033.cab No change from previous
versions.

R Server SRS_9.2.0.100_1033.cab

Microsoft
Python
Open

SPO_9.2.0.24_1033.cab No change from previous
versions.

https://go.microsoft.com/fwlink/?LinkId=869053&clcid=1033
https://support.microsoft.com/help/4056498
https://go.microsoft.com/fwlink/?LinkId=863894
https://go.microsoft.com/fwlink/?LinkId=866212&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=851502
https://go.microsoft.com/fwlink/?LinkId=866213&clcid=1033
https://support.microsoft.com/help/4052987
https://go.microsoft.com/fwlink/?LinkId=863894
https://go.microsoft.com/fwlink/?LinkId=863893
https://go.microsoft.com/fwlink/?LinkId=851502
https://go.microsoft.com/fwlink/?LinkId=863892
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-serialize-model
https://support.microsoft.com/help/4038634
https://support.microsoft.com/help/4052574
https://go.microsoft.com/fwlink/?LinkId=851496
https://go.microsoft.com/fwlink/?LinkId=851501
https://go.microsoft.com/fwlink/?LinkId=851502


Release Component Download link Issues addressed

Python
Server

SPS_9.2.0.100_1033.cab Adds rx_create_col_info for
returning schema
information.  
Enhancements to rx_exec to
support parallel scenarios
using the RxLocalParallel
compute context.

Initial release

Microsoft R
Open

SRO_3.3.3.24_1033.cab

R Server SRS_9.2.0.24_1033.cab

Microsoft
Python
Open

SPO_9.2.0.24_1033.cab

Python
Server

SPS_9.2.0.24_1033.cab

GDR releases of SQL Server will require the same component .cab file versions as the next earlier
non-GDR release, such as a CU.

Release Component Download link

SQL 2017 GDR

Microsoft R Open SRO_3.3.3.1400_1033.cab

R Server SRS_9.2.0.1400_1033.cab

Microsoft Python Open SPO_9.2.0.1400_1033.cab

Python Server SPS_9.2.0.1400_1033.cab

Apply cumulative updates on computers without internet access
Apply cumulative updates on computers having internet connectivity
Apply cumulative updates to a standalone server

Next steps

https://go.microsoft.com/fwlink/?LinkId=851500
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-exec
https://go.microsoft.com/fwlink/?LinkId=851496
https://go.microsoft.com/fwlink/?LinkId=851507
https://go.microsoft.com/fwlink/?LinkId=851502
https://go.microsoft.com/fwlink/?LinkId=851508
https://go.microsoft.com/fwlink/?LinkId=2073898&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2069739&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2073897&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=2071421&clcid=1033


Install SQL Server Machine Learning
Services with R and Python from the
command line
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article provides instructions for installing SQL Server Machine Learning Services
with Python and R from a command line.

You can specify silent, basic, or full interaction with the Setup user interface. This article
supplements Install SQL Server from the Command Prompt, covering the parameters
unique to R and Python machine learning components.

Run commands from an elevated command prompt.

A database engine instance is required for in-database installations. You cannot
install just R or Python features, although you can add them incrementally to an
existing instance. If you want just R and Python without the database engine,
install the standalone server.

Do not install on a failover cluster. The security mechanism used for isolating R and
Python processes is not compatible with a Windows Server failover cluster
environment.

Do not install on a domain controller. The Machine Learning Services portion of
setup will fail.

Avoid installing standalone and in-database instances on the same computer. A
standalone server will compete for the same resources, undermining the
performance of both installations.

７ Note

Feature capabilities and installation options vary between versions of SQL Server.
Use the version selector dropdown to choose the appropriate version of SQL
Server.

Pre-install checklist

https://learn.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server-from-the-command-prompt?view=sql-server-2017


The /FEATURES argument is required, as are licensing term agreements.

When installing through the command prompt, SQL Server supports full quiet mode by
using the /Q parameter, or Quiet Simple mode by using the /QS parameter. The /QS
switch only shows progress, does not accept any input, and displays no error messages
if encountered. The /QS parameter is only supported when /Action=install is specified.

Arguments Description

/FEATURES = AdvancedAnalytics Installs the in-database version: SQL Server Machine
Learning Services (In-Database).

/FEATURES = SQL_INST_MR Pair this with AdvancedAnalytics. Installs the (In-Database)
R feature, including Microsoft R Open and the proprietary
R packages.

/FEATURES = SQL_INST_MPY Pair this with AdvancedAnalytics. Installs the (In-Database)
Python feature, including Anaconda and the proprietary
Python packages.

/FEATURES = SQL_SHARED_MR Installs the R feature for the standalone version: SQL Server
Machine Learning Server (Standalone). A standalone server
is a "shared feature" not bound to a database engine
instance.

/FEATURES = SQL_SHARED_MPY Installs the Python feature for the standalone version: SQL
Server Machine Learning Server (Standalone). A standalone
server is a "shared feature" not bound to a database
engine instance.

/IACCEPTROPENLICENSETERMS Indicates you have accepted the license terms for using the
open source R components.

/IACCEPTPYTHONLICENSETERMS Indicates you have accepted the license terms for using the
Python components.

/IACCEPTSQLSERVERLICENSETERMS Indicates you have accepted the license terms for using
SQL Server.

/MRCACHEDIRECTORY For offline setup, sets the folder containing the R
component CAB files.

Command line arguments

Command line arguments for SQL Server 2017



Arguments Description

/MPYCACHEDIRECTORY Reserved for future use. Use %TEMP% to store Python
component CAB files for installation on computers that do
not have an internet connection.

In-database analytics are available for database engine instances, required for adding
the AdvancedAnalytics feature to your installation. You can install a database engine
instance with advanced analytics, or add it to an existing instance.

To view progress information without the interactive on-screen prompts, use the /qs
argument.

For a concurrent installation of the database engine instance, provide the instance name
and an administrator (Windows) login. Include features for installing core and language
components, as well as acceptance of all licensing terms.

Windows Command Prompt

This the same command, but with a SQL Server login on a database engine using mixed
authentication.

Windows Command Prompt

In-database instance installations

） Important

After installation, two additional configuration steps remain. Integration is not
complete until these tasks are performed. See Post-installation configuration for
instructions.

SQL Server Machine Learning Services: database engine,
advanced analytics with Python and R

Setup.exe /qs /ACTION=Install 
/FEATURES=SQLEngine,ADVANCEDANALYTICS,SQL_INST_MR,SQL_INST_MPY 
/INSTANCENAME=MSSQLSERVER /SQLSYSADMINACCOUNTS="<Windows-username>"  
/IACCEPTSQLSERVERLICENSETERMS /IACCEPTROPENLICENSETERMS 
/IACCEPTPYTHONLICENSETERMS 



This example is Python only, showing that you can add one language by omitting a
feature.

Windows Command Prompt

Applies to in-database installations only.

When SQL Setup for SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server
2019 (15.x) is finished, you have a database engine instance with R and Python, the
Microsoft R and Python packages, Microsoft R Open, Anaconda, tools, samples, and
scripts that are part of the distribution.

Beginning with SQL Server 2022 (16.x), runtimes for R, Python, and Java, are no longer
installed with SQL Setup. Instead, install your desired R and/or Python custom runtime(s)
and packages. For more information, see Install SQL Server 2022 Machine Learning
Services on Windows or Install SQL Server Machine Learning Services (Python and R) on
Linux.

Two more tasks are required to complete the installation:

1. Restart the database engine service.

2. SQL Server Machine Learning Services: Enable external scripts before you can use
the feature. Follow the instructions in Install SQL Server Machine Learning Services
(In-Database) as your next step.

Setup.exe /q /ACTION=Install 
/FEATURES=SQLEngine,ADVANCEDANALYTICS,SQL_INST_MR,SQL_INST_MPY 
/INSTANCENAME=MSSQLSERVER /SECURITYMODE=SQL /SAPWD="%password%" 
/SQLSYSADMINACCOUNTS="<sql-username>"  
/IACCEPTSQLSERVERLICENSETERMS /IACCEPTROPENLICENSETERMS 
/IACCEPTPYTHONLICENSETERMS 

Setup.exe /qs /ACTION=Install 
/FEATURES=SQLEngine,ADVANCEDANALYTICS,SQL_INST_MPY  
/INSTANCENAME=MSSQLSERVER /SQLSYSADMINACCOUNTS="<username>"  
/IACCEPTSQLSERVERLICENSETERMS  /IACCEPTPYTHONLICENSETERMS 

Post-installation configuration (required)

Add advanced analytics to an existing database
engine instance

https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017


When adding in-database advanced analytics to an existing database engine instance,
provide the instance name. For example, if you previously installed a SQL Server 2017 or
later database engine and Python, you could use this command to add R.

Windows Command Prompt

A silent installation suppresses the check for .cab file locations. For this reason, you must
specify the location where .cab files are to be unpacked. For Python, CAB files must be
located in %TEMP*. For R, you can set the folder path using you can the temp directory
for this.

Windows Command Prompt

Applies to: SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server 2019 (15.x)
only.

A standalone server is a "shared feature" not bound to a database engine instance. The
following examples show valid syntax for installation of the standalone server.

SQL Server Machine Learning Server supports Python and R on a standalone server:

Setup.exe /qs /ACTION=Install /FEATURES=SQL_INST_MR 
/INSTANCENAME=MSSQLSERVER  
/IACCEPTSQLSERVERLICENSETERMS  /IACCEPTROPENLICENSETERMS 

Silent install

Setup.exe /q /ACTION=Install 
/FEATURES=SQLEngine,ADVANCEDANALYTICS,SQL_INST_MR,SQL_INST_MPY  
/INSTANCENAME=MSSQLSERVER /SQLSYSADMINACCOUNTS="<username>"  
/IACCEPTSQLSERVERLICENSETERMS /IACCEPTROPENLICENSETERMS 
/IACCEPTPYTHONLICENSETERMS  
/MRCACHEDIRECTORY=%temp%  

Standalone server installations

） Important

The support for Machine Learning Server (previously known as R Server) ended on
July 1, 2022. For more information, see What's happening to Machine Learning
Server?

https://learn.microsoft.com/en-us/machine-learning-server/what-is-happening-to-machine-learning-server


Windows Command Prompt

When SQL Setup for SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server
2019 (15.x) is finished, you have a server, Microsoft packages, open-source distributions
of R and Python, tools, samples, and scripts that are part of the distribution.

Beginning with SQL Server 2022 (16.x), runtimes for R, Python, and Java, are no longer
installed with SQL Setup. Instead, install your desired R and/or Python custom runtime(s)
and packages. For more information, see Install SQL Server 2022 Machine Learning
Services on Windows or Install SQL Server Machine Learning Services (Python and R) on
Linux.

To open an R console window, go to \Program files\Microsoft SQL Server\150(or
140,130)\R_SERVER\bin\x64  and double-click RGui.exe. New to R? Try this tutorial: Basic
R commands and RevoScaleR functions: 25 common examples.

To open a Python command, go to \Program files\Microsoft SQL Server\150 (or
140)\PYTHON_SERVER\bin\x64  and double-click python.exe.

Python developers can learn how to use Python with SQL Server by following these
tutorials:

Python tutorial: Predict ski rental with linear regression in SQL Server Machine
Learning Services
Python tutorial: Categorizing customers using k-means clustering with SQL Server
Machine Learning Services

R developers can get started with some simple examples, and learn the basics of how R
works with SQL Server. For your next step, see the following links:

Quickstart: Run R in T-SQL
Tutorial: In-database analytics for R developers

Setup.exe /q /ACTION=Install /FEATURES=SQL_SHARED_MR,SQL_SHARED_MPY   
/IACCEPTROPENLICENSETERMS /IACCEPTPYTHONLICENSETERMS 
/IACCEPTSQLSERVERLICENSETERMS 

Next steps

https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/r/tutorial-r-to-revoscaler


Install pre-trained machine learning
models on SQL Server
Article • 03/17/2023

Applies to:  SQL Server 2016 (13.x),  SQL Server 2017 (14.x), and  SQL Server
2019 (15.x)

This article applies to SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server
2019 (15.x).

This article explains how to use PowerShell to add free pre-trained machine learning
models for sentiment analysis and image featurization to a SQL Server instance having R
or Python integration. The pre-trained models are built by Microsoft and ready-to-use,
added to an instance as a post-install task. For more information about these models,
see the Resources section of this article.

Beginning with SQL Server 2022 (16.x), runtimes for R, Python, and Java, are no longer
installed with SQL Setup. Instead, install your desired R and/or Python custom runtime(s)
and packages. For more information, see Install SQL Server 2022 Machine Learning
Services (Python and R) on Windows.

Once installed, the pre-trained models are considered an implementation detail that
power specific functions in the MicrosoftML (R) and microsoftml (Python) libraries. You
should not (and cannot) view, customize, or retrain the models, nor can you treat them
as an independent resource in custom code or paired other functions.

To use the pretrained models, call the functions listed in the following table.

R function
(MicrosoftML)

Python function
(microsoftml)

Usage

getSentiment get_sentiment Generates positive-negative sentiment score
over text inputs.

featurizeImage featurize_image Extracts text information from image file
inputs.

Machine learning algorithms are computationally intensive. We recommend 16 GB RAM
for low-to-moderate workloads, including completion of the tutorial walkthroughs using
all of the sample data.

Prerequisites

https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022?view=sql-server-2017


You must have administrator rights on the computer and SQL Server to add pre-trained
models.

External scripts must be enabled and SQL Server LaunchPad service must be running.
Installation instructions provide the steps for enabling and verifying these capabilities.

Download and install the latest cumulative update for your version of SQL Server. See
the Latest updates for Microsoft SQL Server.

MicrosoftML R package or microsoftml Python package contain the pre-trained models.

SQL Server Machine Learning Services includes both language versions of the machine
learning library, so this prerequisite is met with no further action on your part. Because
the libraries are present, you can use the PowerShell script described in this article to
add the pre-trained models to these libraries.

The install paths for R and Python models are as follows:

For R: C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES\library\MicrosoftML\mxLibs\x64

For Python: C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\Lib\site-

packages\microsoftml\mxLibs

Model file names are listed below:

AlexNet_Updated.model
ImageNet1K_mean.xml
pretrained.model
ResNet_101_Updated.model
ResNet_18_Updated.model
ResNet_50_Updated.model

If the models are already installed, skip ahead to the validation step to confirm
availability.

Visit https://aka.ms/mlm4sql  to download the file Install-MLModels.ps1.

Check whether pre-trained models are installed

Download the installation script

https://learn.microsoft.com/en-us/troubleshoot/sql/releases/download-and-install-latest-updates?bc=%2fsql%2fbreadcrumb%2ftoc.json&toc=%2fsql%2ftoc.json
https://aka.ms/mlm4sql


1. Start PowerShell. On the task bar, right-click the PowerShell program icon and
select Run as administrator.

2. The recommended execution policy during installation is "RemoteSigned". For
more information on setting the PowerShell execution policy, see Set-
ExecutionPolicy. For example:

PowerShell

3. Enter a fully-qualified path to the installation script file and include the instance
name. Assuming the Downloads folder and a default instance, the command might
look like this:

PowerShell

Output

On an internet-connected SQL Server Machine Learning Services default instance with R
and Python, you should see messages similar to the following.

PowerShell

First, check for the new files in the mxlibs folder. Next, run demo code to confirm the
models are installed and functional.

Execute with elevated privileges

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser 

PS C:\WINDOWS\system32> C:\Users\<user-name>\Downloads\Install-
MLModels.ps1 MSSQLSERVER 

MSSQL14.MSSQLSERVER 
     Verifying R models [9.2.0.24] 
     Downloading R models [C:\Users\<user-name>\AppData\Local\Temp] 
     Installing R models [C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\R_SERVICES\] 
     Verifying Python models [9.2.0.24] 
     Installing Python models [C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\] 
PS C:\WINDOWS\system32> 

Verify installation

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy


1. Start RGUI.EXE at C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES\bin\x64.

2. Paste in the following R script at the command prompt.

R

3. Press Enter to view the sentiment scores. Output should be as follows:

R

1. Start Python.exe at C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES.

R verification steps

# Create the data 
CustomerReviews <- data.frame(Review = c( 
"I really did not like the taste of it", 
"It was surprisingly quite good!", 
"I will never ever ever go to that place again!!"), 
stringsAsFactors = FALSE) 

# Get the sentiment scores 
sentimentScores <- rxFeaturize(data = CustomerReviews,  
                                mlTransforms = getSentiment(vars = 
list(SentimentScore = "Review"))) 

# Let's translate the score to something more meaningful 
sentimentScores$PredictedRating <- 
ifelse(sentimentScores$SentimentScore > 0.6,  
                                        "AWESOMENESS", "BLAH") 

# Let's look at the results 
sentimentScores 

> sentimentScores 
                                        Review SentimentScore 
1           I really did not like the taste of it      0.4617899 
2                 It was surprisingly quite good!      0.9601924 
3 I will never ever ever go to that place again!!      0.3103435 
PredictedRating 
1            BLAH 
2     AWESOMENESS 
3            BLAH 

Python verification steps



2. Paste in the following Python script at the command prompt

Python

3. Press Enter to print the scores. Output should be as follows:

Python

import numpy 
import pandas 
from microsoftml import rx_logistic_regression, rx_featurize, 
rx_predict, get_sentiment 

# Create the data 
customer_reviews = pandas.DataFrame(data=dict(review=[ 
            "I really did not like the taste of it", 
            "It was surprisingly quite good!", 
            "I will never ever ever go to that place again!!"])) 

# Get the sentiment scores 
sentiment_scores = rx_featurize( 
    data=customer_reviews, 
    ml_transforms=[get_sentiment(cols=dict(scores="review"))]) 

# Let's translate the score to something more meaningful 
sentiment_scores["eval"] = sentiment_scores.scores.apply( 
            lambda score: "AWESOMENESS" if score > 0.6 else "BLAH") 
print(sentiment_scores) 

>>> print(sentiment_scores) 
                                            review    scores         
eval 
0            I really did not like the taste of it  0.461790         
BLAH 
1                  It was surprisingly quite good!  0.960192  
AWESOMENESS 
2  I will never ever ever go to that place again!!  0.310344         
BLAH 
>>> 

７ Note

If demo scripts fail, check the file location first. On systems having multiple
instances of SQL Server, or for instances that run side-by-side with standalone
versions, it's possible for the installation script to mis-read the environment and
place the files in the wrong location. Usually, manually copying the files to the
correct mxlib folder fixes the problem.



The following link include example code invoking the pretrained models.

Code sample: Sentiment Analysis using Text Featurizer

Currently the models that are available are deep neural network (DNN) models for
sentiment analysis and image classification. All pre-trained models were trained by using
Microsoft's Computation Network Toolkit , or CNTK.

The configuration of each network was based on the following reference
implementations:

ResNet-18
ResNet-50
ResNet-101
AlexNet

For more information about the algorithms used in these deep learning models, and
how they are implemented and trained using CNTK, see these articles:

Microsoft Researchers' Algorithm Sets ImageNet Challenge Milestone

Microsoft Computational Network Toolkit offers most efficient distributed deep
learning computational performance

SQL Server Machine Learning Services
Upgrade R and Python components in SQL Server instances
MicrosoftML package for R
microsoftml package for Python

Examples using pre-trained models

Research and resources

See also

https://github.com/Microsoft/microsoft-r/tree/master/microsoft-ml/Samples/101/BinaryClassification/SimpleSentimentAnalysis
https://cntk.ai/Features/Index.html
https://www.microsoft.com/research/blog/microsoft-researchers-algorithm-sets-imagenet-challenge-milestone/
https://www.microsoft.com/research/blog/microsoft-computational-network-toolkit-offers-most-efficient-distributed-deep-learning-computational-performance/


Change the default R or Python
language runtime version
Article • 03/17/2023

Applies to:  SQL Server 2016 (13.x)  SQL Server 2017 (14.x)

This article describes how to change the default version of R or Python used in SQL
Server 2016 R Services or SQL Server 2017 Machine Learning Services.

The following lists the versions of the R and Python runtime that are included in the
different SQL Server versions.

SQL Server
version

Service Cumulative
Update

R runtime
versions

Python runtime
version

SQL Server
2016

R Services RTM - SP2
CU13

3.2.2 Not available

SQL Server
2016

R Services SP2 CU14 and
later

3.2.2 and 3.5.2 Not available

SQL Server
2017

Machine Learning
Services

RTM - CU21 3.3.3 3.5.2

SQL Server
2017

Machine Learning
Services

CU22 and later 3.3.3 and 3.5.2 3.5.2 and 3.7.2

You need to install a Cumulative Update (CU) to change the default R or Python
language runtime version:

SQL Server 2016: Services Pack (SP) 2 Cumulative Update (CU) 14 or later
SQL Server 2017: Cumulative Update (CU) 22 or later

To download the latest Cumulative Update, see the Latest updates for Microsoft SQL
Server.

Prerequisites

７ Note

If you slipstream the Cumulative Update with a new installation of SQL Server, only
the newest versions of the R and Python runtime will be installed.

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017
https://learn.microsoft.com/en-us/troubleshoot/sql/releases/download-and-install-latest-updates?bc=%2fsql%2fbreadcrumb%2ftoc.json&toc=%2fsql%2ftoc.json


If you have installed one of the above Cumulative Updates for SQL Server 2016 or 2017,
you may have multiple versions of R in a SQL instance. Each version is contained in a
subfolder of the instance folder with the name R_SERVICES.<major>.<minor> (the
folder from the original installation may not have a version number appended to the
folder name).

If you install a CU containing R 3.5, the new R_SERVICES  folder is:

SQL Server 2016: C:\Program Files\Microsoft SQL Server\MSSQL13.
<INSTANCE_NAME>\R_SERVICES.3.5

SQL Server 2017: C:\Program Files\Microsoft SQL Server\MSSQL14.
<INSTANCE_NAME>\R_SERVICES.3.5

Each SQL instance uses one of these versions as the default version of R. You can change
the default version by using the RegisterRext.exe command-line utility. The utility is
located under the R folder in each SQL instance:

<SQL instance path>\R_SERVICES.n.n\library\RevoScaleR\rxLibs\x64\RegisterRext.exe

To change the R runtime version, pass the following command line arguments to
RegisterRext.exe:

/configure  - Required, specifies that you're configuring the default R version.

/instance:<instance name> - Optional, the instance you want to configure. If not
specified, the default instance is configured.

/rhome:<path to the R_SERVICES[n.n] folder> - Optional, path to the runtime
version folder you want to set as the default R version.

If you don't specify /rhome, the path configured is the path under which
RegisterRext.exe is located.

Change R runtime version

７ Note

The functionality described in this article is available only with the copy of
RegisterRext.exe included in SQL CUs. Don't use the copy that came with the
original SQL installation.

Examples



Below are examples on how to change the R runtime version in SQL Server 2016 and
2017.

For example, to configure R 3.5 as the default version of R for the instance
MSSQLSERVER01 on SQL Server 2016:

Windows Command Prompt

For example, to configure R 3.5 as the default version of R for the instance
MSSQLSERVER01 on SQL Server 2017:

Windows Command Prompt

In these examples, you don't need to include the /rhome  argument since you're
specifying the same folder where RegisterRext.exe is located.

If you have installed CU22 or later for SQL Server 2017, you may have multiple versions
of Python in a SQL instance. Each version is contained in a subfolder of the instance
folder with the name PYTHON_SERVICES.<major>.<minor> (the folder from the original
installation may not have a version number appended to the folder name).

For example, if you install a CU containing Python 3.7, a new PYTHON_SERVICES  folder is
created:

C:\Program Files\Microsoft SQL Server\MSSQL14.<INSTANCE_NAME>\PYTHON_SERVICES.3.7

Change R runtime version in SQL Server 2016

cd "C:\Program Files\Microsoft SQL 
Server\MSSQL13.MSSQLSERVER01\R_SERVICES.3.5\library\RevoScaleR\rxLibs\x64" 

.\RegisterRext.exe /configure /rhome:"C:\Program Files\Microsoft SQL 
Server\MSSQL13.MSSQLSERVER01\R_SERVICES.3.5" /instance:MSSQLSERVER01 

Change R runtime version in SQL Server 2017

cd "C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER01\R_SERVICES.3.5\library\RevoScaleR\rxLibs\x64" 

.\RegisterRext.exe /configure /rhome:"C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER01\R_SERVICES.3.5" /instance:MSSQLSERVER01 

Change Python runtime version



Each SQL instance uses one of these versions as the default version of Python. You can
change the default version by using the RegisterRExt.exe command-line utility. The
utility is located under the Python folders in each SQL instance:

<SQL instance path>\PYTHON_SERVICES.n.n\Lib\site-

packages\revoscalepy\rxLibs\RegisterRExt.exe

To change the Python runtime version, pass the following command line arguments to
RegisterRext.exe:

/configure  - Required, specifies that you're configuring the default Python version.

/python  - Specifies that you're configuring the default Python version. Optional if
you specify /pythonhome .

/instance:<instance name> - Optional, the instance you want to configure. If not
specified, the default instance is configured.

/pythonhome:<path to the PYTHON_SERVICES[n.n] folder> - Optional, path to the
runtime version folder you want to set as the default Python version.

If you don't specify /pythonhome, the path configured is the path under which
RegisterRExt.exe is located.

For example, to configure Python 3.7 as the default version of Python for the instance
MSSQLSERVER01 on SQL Server 2017:

Windows Command Prompt

７ Note

The functionality described in this article is available only with the copy of
RegisterRExt.exe included in SQL CUs. Don't use the copy that came with the
original SQL installation.

Example

cd "C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER01\PYTHON_SERVICES.3.7\Lib\site-
packages\revoscalepy\rxLibs" 

.\RegisterRext.exe /configure /pythonhome:"C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES.3.7" /instance:MSSQLSERVER01 



In this example, you don't need to include the /pythonhome  argument since you're
specifying the same folder where RegisterRext.exe is located.

To remove a version of R or Python, use RegisterRExt.exe with the /cleanup  command-
line argument, using the same /rhome , /pythonhome , and /instance  arguments
described previously.

For example, to remove the R 3.2 folder from the instance MSSQLSERVER01:

Windows Command Prompt

For example, to remove the Python 3.7 folder from the instance MSSQLSERVER01:

Windows Command Prompt

RegisterRext.exe will ask you to confirm the clean up of the specified R runtime:

Are you sure you want to permanently delete the given runtime along with all the
packages installed on it? [Yes(Y)/No(N)/Default(Yes)]:

To confirm, answer Y  or press enter. Alternatively, you can skip this prompt by passing
in /y  or /Yes  along the /cleanup  option.

Get R package information
Get Python package information

Remove a runtime version

.\RegisterRext.exe /cleanup /rhome:"C:\Program Files\Microsoft SQL 
Server\MSSQL13.MSSQLSERVER01\R_SERVICES" /instance:MSSQLSERVER01 

.\RegisterRExt.exe /cleanup /python /pythonhome:"C:\Program Files\Microsoft 
SQL Server\MSSQL14.MSSQLSERVER01\PYTHON_SERVICES.3.7" 
/instance:MSSQLSERVER01 

７ Note

You can remove a version only if it's not configured as the default and it's not
currently being used to run RegisterRext.exe.

Next steps



Install packages with R tools
Install packages with Python tools



Upgrade Python and R runtime with
binding in SQL Server Machine Learning
Services
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x)  SQL Server 2017 (14.x)

This article describes how to use am installation process called binding to upgrade the R
or Python runtimes in SQL Server 2016 R Services or SQL Server 2017 Machine Learning
Services. You can get newer versions of Python and R by binding to Microsoft Machine
Learning Server.

Binding is an installation process that replaces the contents of your R_SERVICES and
PYTHON_SERVICES folders with newer executables, libraries, and tools from Microsoft
Machine Learning Server.

The uploaded components included with the servicing model has changed. The service
updates match the support Timeline for Microsoft R Server & Machine Learning Server
on the Modern Lifecycle .

Except for component versions and service updates, binding doesn't change the basics
of your installation:

） Important

The support for Machine Learning Server (previously known as R Server) ended on
July 1, 2022. For more information, see What's happening to Machine Learning
Server?

） Important

This article describes an old method for upgrading the R and Python runtimes,
called binding. If you have installed Cumulative Update (CU) 14 or later for SQL
Server 2016 Services Pack (SP) 2 or Cumulative Update (CU) 22 or later for SQL
Server 2017, see how to change the default R or Python language runtime to a
later version instead.

What is binding?

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server
https://learn.microsoft.com/en-us/machine-learning-server
https://learn.microsoft.com/en-us/machine-learning-server/resources-servicing-support
https://support.microsoft.com/help/30881/modern-lifecycle-policy
https://learn.microsoft.com/en-us/machine-learning-server/what-is-happening-to-machine-learning-server


Python and R integration is still part of a database engine instance.
Licensing is unchanged (no additional costs associated with binding).
SQL Server support policies still hold for the database engine.

The rest of this article explains the binding mechanism and how it works for each
version of SQL Server.

The following tables are version maps. Each map shows package versions across
releases. You can review upgrade paths when you bind to Microsoft Machine Learning
Server (previously known as R Server, before the addition of Python support starting in
Machine Learning Server 9.2.1).

The binding doesn't guarantee the latest version of R or Anaconda. When you bind to
Microsoft Machine Learning Server, you get the R or Python version installed through
Setup, which may not be the latest version available on the web.

SQL Server 2017 Machine Learning Services

Component Initial
Release

Machine Learning
Server 9.3

Machine Learning Server
9.4.7

Microsoft R Open (MRO)
over R

R 3.3.3 R 3.4.3 R 3.5.2

RevoScaleR 9.2 9.3 9.4.7

MicrosoftML 9.2 9.3 9.4.7

sqlrutils 1.0 1.0 1.0

olapR 1.0 1.0 1.0

Anaconda 4.2 over
Python 3.5

4.2/3.5.2 4.2/3.5.2

revoscalepy 9.2 9.3 9.4.7

microsoftml 9.2 9.3 9.4.7

７ Note

Binding applies to in-database instances only that are bound to SQL Server
instances. In this case binding is not necessary for a Standalone installation.

Version map

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


Component Initial
Release

Machine Learning
Server 9.3

Machine Learning Server
9.4.7

pretrained models 9.2 9.3 9.4.7

Executable files, Python, and R libraries are upgraded when you bind an existing
installation of Python and R to Machine Learning Server.

Binding is executed by the Microsoft Machine Learning Server installer when you run
Setup on an existing SQL Server database engine instance having Python or R
integration.

Setup detects the existing features and prompts you to rebind to Machine Learning
Server.

During binding, the contents of C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES  and \PYTHON_SERVICES  is overwritten with the
newer executable files and libraries of C:\Program Files\Microsoft\ML Server\R_SERVER
and \PYTHON_SERVER .

Binding applies to Python and R features only. Open-source packages for Python and R
consists of:

Anaconda
Microsoft R Open
Proprietary packages RevoScaleR
Revoscalepy

The binding doesn't change the support model for the database engine instance or the
version of SQL Server.

Binding is reversible. You can revert to SQL Server servicing by unbinding the instance
and reparing your SQL Server database engine instance.

Follow the steps to bind SQL Server to Microsoft Machine Learning Server using setup.

1. In SSMS, run SELECT @@version  to verify the server meets minimum build
requirements.

How component upgrade works

Bind to Machine Learning Server using Setup

https://learn.microsoft.com/en-us/machine-learning-server/install/microsoftml-install-pretrained-models
https://learn.microsoft.com/en-us/machine-learning-server/install/machine-learning-server-windows-install


For SQL Server 2016 R Services, the minimum is Service Pack 1  and CU3 .

2. Check the version of R base and RevoScaleR packages to confirm the existing
versions are lower than what you plan to replace them with.

SQL

3. Close SSMS and any other tools having an open connection to SQL Server. Binding
overwrites program files. If SQL Server has open sessions, binding will fail with bind
error code 6.

4. Download Microsoft Machine Learning Server onto the computer that has the
instance you want to upgrade. We recommend the latest version.

5. Unzip the folder and start ServerSetup.exe, located under MLSWIN93.

6. On Configure the installation, confirm the components to upgrade, and review the
list of compatible instances.

7. On the License agreement page, select I accept these terms to accept the
licensing terms for Machine Learning Server.

8. On successive pages, provide consent to additional licensing conditions for any
open-source components you selected, such as Microsoft R Open or the Python
Anaconda distribution.

9. On the Almost there page, make a note of the installation folder. The default
folder is \Program Files\Microsoft\ML Server.

If you want to change the installation folder, select Advanced to return to the first
page of the wizard. However, you must repeat all previous selections.

If upgrade fails, check SqlBindR error codes for more information.

EXECUTE sp_execute_external_script 
@language=N'R' 
,@script = N'str(OutputDataSet); 
packagematrix <- installed.packages(); 
Name <- packagematrix[,1]; 
Version <- packagematrix[,3]; 
OutputDataSet <- data.frame(Name, Version);' 
, @input_data_1 = N'' 
WITH RESULT SETS ((PackageName nvarchar(250), PackageVersion 
nvarchar(max) )) 

Offline binding (no internet access)

https://www.microsoft.com/download/details.aspx?id=54276
https://support.microsoft.com/help/4019916/cumulative-update-3-for-sql-server-2016-sp1
https://learn.microsoft.com/en-us/machine-learning-server/install/machine-learning-server-windows-install#download-machine-learning-server-installer


For systems with no internet connectivity, you can download the installer and .cab files
to an internet-connected machine, and then transfer files to the isolated server.

The installer (ServerSetup.exe) includes the Microsoft packages (RevoScaleR,
MicrosoftML, olapR, sqlRUtils). The .cab files provide other core components. For
example, the "SRO" cab provides R Open, Microsoft's distribution of open-source R.

The following instructions explain how to place the files for an offline installation.

1. Download the MLSWIN93 Installer. It downloads as a single zipped file. We
recommend the latest version, but you can also install earlier versions.

2. Download .cab files. The following links are for the 9.3 release. If you require earlier
versions, additional links can be found in R Server 9.1. Recall that
Python/Anaconda can only be added to a SQL Server Machine Learning Services
instance. Pre-trained models exist for both Python and R; the .cab provides models
in the languages you're using.

Feature Download

R SRO_3.4.3.0_1033.cab

Python SPO_9.3.0.0_1033.cab

Pre-trained models MLM_9.3.0.0_1033.cab

3. Transfer .zip and .cab files to the target server.

4. On the server, type %temp%  in the Run command to get the physical location of the
temp directory. The physical path varies by machine, but it's usually C:\Users\
<your-user-name>\AppData\Local\Temp .

5. Place the .cab files in the %temp% folder.

6. Unzip the Installer.

7. Run ServerSetup.exe and follow the on-screen prompts to complete the
installation.

Command-line operations

 Tip

https://learn.microsoft.com/en-us/machine-learning-server/install/machine-learning-server-windows-install#download-machine-learning-server-installer
https://learn.microsoft.com/en-us/machine-learning-server/install/r-server-install-windows-offline#download-required-components
https://learn.microsoft.com/en-us/machine-learning-server/install/r-server-install-windows-offline#download-required-components
https://go.microsoft.com/fwlink/?LinkId=867186&clcid=1033
https://go.microsoft.com/fwlink/?LinkId=859054
https://go.microsoft.com/fwlink/?LinkId=859053


1. Open a command prompt as administrator and navigate to the folder containing
sqlbindr.exe. The default location is C:\Program Files\Microsoft\MLServer\Setup

2. Type the following command to view a list of available instances: SqlBindR.exe
/list

Make a note of the full instance name as listed. For example, the instance name
might be MSSQL14.MSSQLSERVER for a default instance, or something like
SERVERNAME.MYNAMEDINSTANCE.

3. Run SqlBindR.exe command with the /bind argument. Specify the name of the
instance to upgrade, using the instance name that was returned in the previous
step.

For example, to upgrade the default instance, type: SqlBindR.exe /bind
MSSQL14.MSSQLSERVER

4. When the upgrade has completed, restart the Launchpad service associated with
any instance that has been modified.

You can restore a bound instance to an initial installation of the Python and R
components, established by SQL Server Setup. There are three parts to reverting back to
the SQL Server servicing.

Step 1: Unbind from Microsoft Machine Learning Server
Step 2: Restore the instance to original status
Step 3: Reinstall any packages you added to the installation

You have two options for rolling back the binding: re-rerun setup or use SqlBindR
command-line utility.

1. Locate the installer for Machine Learning Server. If you have removed the installer,
you may need to download it again, or copy it from another computer.

Can't find SqlBindR? You probably have not run Setup. SqlBindR is available only
after running Machine Learning Server Setup.

Revert or unbind an instance

Step 1: Unbind

Unbind using Setup



2. Be sure to run the installer on the computer that has the instance you want to
unbind.

3. The installer identifies local instances that are candidates for unbinding.
4. Deselect the check box next to the instance that you want to revert to the original

configuration.
5. Accept all licensing agreements.
6. Select Finish. The process takes a while.

1. Open a command prompt and navigate to the folder that contains sqlbindr.exe, as
described in the previous section.

2. Run the SqlBindR.exe command with the /unbind argument, and specify the
instance.

For example, the following command reverts the default instance:

SqlBindR.exe /unbind MSSQL14.MSSQLSERVER

Run SQL Server Setup to repair the database engine instance having the Python and R
features. Pre-existing updates are preserved. The next step applies if an update was
missed for the servicing updates to Python and R packages.

Alternate solution: Fully uninstall and reinstall the database engine instance, and then
apply all service updates.

You might have added other open-source or third-party packages to your package
library. Since reversing the binding switches the location of the default package library,
you must reinstall the packages to the library that Python and R are now using. For more
information, see R package information and installation, and Python package
information and installation.

Unbind using the command line

Step 2: Repair the SQL Server instance

Step 3: Add any third-party packages

SqlBindR.exe command syntax

Usage

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-python-packages-on-sql-server?view=sql-server-2017


sqlbindr [/list] [/bind <SQL_instance_ID>] [/unbind <SQL_instance_ID>]

Name Description

list Displays a list of all SQL Server instance IDs on the current computer

bind Upgrades the specified SQL Server instance to the latest version of R Server and ensures
the instance automatically gets future upgrades of R Server

unbind Uninstalls the latest version of R Server from the specified SQL Server instance and
prevents future R Server upgrades from affecting the instance

Machine Learning Server Installer and SqlBindR both return the following error codes
and messages.

Error
code

Message Details

Bind
error
0

Ok
(success)

Binding passed with no errors.

Bind
error
1

Invalid
arguments

Syntax error.

Bind
error
2

Invalid
action

Syntax error.

Bind
error
3

Invalid
instance

An instance exists, but isn't valid for binding.

Bind
error
4

Not
bindable

Bind
error
5

Already
bound

You ran the bind command, but the specified instance is already bound.

Parameters

Binding errors



Error
code

Message Details

Bind
error
6

Bind failed An error occurred while unbinding the instance. This error can occur if you
run the Machine Learning Server installer without selecting any features.
Binding requires that you select both an MSSQL instance and Python and R,
assuming the instance is SQL Server 2017. This error also occurs if SqlBindR
couldn't write to the Program Files folder. Open sessions or handles to SQL
Server will cause this error to occur. If you get this error, reboot the
computer and redo the binding steps before starting any new sessions.

Bind
error
7

Not
bound

The database engine instance has R Services or SQL Server Machine
Learning Services. The instance isn't bound to Microsoft Machine Learning
Server.

Bind
error
8

Unbind
failed

An error occurred while unbinding the instance.

Bind
error
9

No
instances
found

No database engine instances were found on this computer.

This section lists known issues specific to use of the SqlBindR.exe utility, or to upgrades
of Machine Learning Server that might affect SQL Server instances.

SqlBindR.exe fails to restore original packages or R components with upgrade to
Microsoft R Server 9.0.1. Use SQL Server repair on instance and apply all service releases.
Restart instance.

Later version of SqlBindR automatically restores the original R features, eliminating the
need for reinstallation of R components or repatch the server. However, you must install
any R package updates that might have been added after the initial installation.

Use R commands to synchronize installed packages to the file system using records in
the database. For more information, see R package management for SQL Server.

Scenario: This issue occurs when binding Machine Learning Server 9.4.7 to SQL Server
2017. When Python is updated and bound or when you update to a new CU, it doesn't

Known issues

Restoring packages that were previously installed

Problems with overwritten sqlbinr.ini file in SQL Server

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017


understand that Python is bound, and overwrites files. There isn't a known issue with R.

As a workaround, create a sqlbindr.ini  file in the PYTHON_SERVICES directory that
isn't empty. The contents doesn't impact how the file functions.

Create a sqlbindr.ini  file, containing 9.4.7.82, save to this location:

C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES

Scenario: Previously upgraded instance of SQL Server 2016 R Services to 9.0.1. Executed
the new installer for Microsoft R Server 9.1.0. The installer displays a list of all valid
instances. By default installer selects previously bound instances. If you continue, the
previously bound instances are unbound. The result is the earlier 9.0.1 installation is
removed and any related packages, but the new version of Microsoft R Server (9.1.0)
isn't installed.

As a workaround, you can modify the existing R Server installation as follows:

1. In Control Panel, open Add or Remove Programs.
2. Locate Microsoft R Server, and select Change/Modify.
3. When the installer starts, select the instances you want to bind to 9.1.0.

Microsoft Machine Learning Server 9.2.1 and 9.3 don't have this issue.

Remove temporary folders after installation is complete.

Change the default R or Python language runtime version
Install Machine Learning Server for Windows (Internet connected)
Install Machine Learning Server for Windows (offline)

Problems with multiple upgrades from SQL Server

Binding or unbinding leaves multiple temporary folders

７ Note

Be sure to wait until installation is complete. It can take a long time to remove R
libraries associated with one version and then add the new R libraries. When the
operation completes, temporary folders are removed.

See also

https://learn.microsoft.com/en-us/machine-learning-server/install/machine-learning-server-windows-install
https://learn.microsoft.com/en-us/machine-learning-server/install/machine-learning-server-windows-offline


Known issues in Machine Learning Server
Feature announcements from previous release of R Server
Deprecated, no longer supported, or changed features

https://learn.microsoft.com/en-us/machine-learning-server/resources-known-issues
https://learn.microsoft.com/en-us/r-server/whats-new-in-r-server
https://learn.microsoft.com/en-us/machine-learning-server/resources-deprecated-features


Run Python and R scripts in Azure Data
Studio notebooks with SQL Server
Machine Learning Services
Article • 02/28/2023

Applies to:  SQL Server 2017 (14.x) and later

Learn how to run Python and R scripts in Azure Data Studio notebooks with SQL Server
Machine Learning Services. Azure Data Studio is a cross-platform database tool.

Download and install Azure Data Studio on your workstation computer. Azure Data
Studio is cross-platform, and runs on Windows, macOS, and Linux.

A server with SQL Server Machine Learning Services installed and enabled. You can
use Machine Learning Services on Windows, Linux, or Big Data Clusters:

Install SQL Server Machine Learning Services on Windows.
Install SQL Server Machine Learning Services on Linux.
Run Python and R scripts with Machine Learning Services on SQL Server Big
Data Clusters.

You can use Machine Learning Services in Azure Data Studio with a SQL notebook. To
create a new notebook, follow these steps:

1. Click File and New Notebook to create a new notebook. The notebook will by
default use the SQL kernel.

2. Click Attach To and Change Connection.

Prerequisites

Create a SQL notebook

） Important

Machine Learning Services runs as part of SQL Server. Therefore, you need to use a
SQL kernel and not a Python kernel.

https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/big-data-cluster/machine-learning-services?view=sql-server-2017


3. Connect to an existing or new SQL Server. You can either:

a. Choose an existing connection under Recent Connections or Saved
Connections.

b. Create a new connection under Connection Details. Fill out the connection
details to your SQL Server and database.



SQL Notebooks consist of code and text cells. Code cells are used to run Python or R
scripts via the stored procedure sp_execute_external_scripts. Text cells can be used to
document your code in the notebook.

Follow these steps to run a Python script:

1. Click + Code to add a code cell.

2. Enter the following script in the code cell:

SQL

3. Click Run cell (the round black arrow) or press F5 to run the single cell.

4. The result will be shown under the code cell.

Run Python or R scripts

Run a Python script

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
a = 1 
b = 2 
c = a/b 
d = a*b 
print(c, d) 
' 

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


Follow these steps to run an R script:

1. Click + Code to add a code cell.

2. Enter the following script in the code cell:

SQL

3. Click Run cell (the round black arrow) or press F5 to run the single cell.

4. The result will be shown under the code cell.

Run an R script

EXECUTE sp_execute_external_script @language = N'R' 
    , @script = N' 
a <- 1 
b <- 2 
c <- a/b 
d <- a*b 
print(c(c, d)) 
' 



How to use notebooks in Azure Data Studio
Create and run a SQL Server notebook
Quickstart: Run simple Python scripts with SQL Server Machine Learning Services
Quickstart: Run simple R scripts with SQL Server Machine Learning Services

Next steps

https://learn.microsoft.com/en-us/sql/azure-data-studio/notebooks/notebooks-guidance?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/notebooks/notebooks-sql-kernel?view=sql-server-2017


Set up a data science client for Python
development on SQL Server Machine
Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x),  SQL Server 2017 (14.x), and  SQL Server
2019 (15.x),  SQL Server 2019 (15.x) - Linux

Python integration is available in SQL Server 2017 and later, when you include the
Python option in a Machine Learning Services (In-Database) installation.

To develop and deploy Python solutions for SQL Server, install Microsoft's revoscalepy
and other Python libraries your development workstation. The revoscalepy library, which
is also on the remote SQL Server instance, coordinates computing requests between
both systems.

In this article, learn how to configure a Python development workstation so that you can
interact with a remote SQL Server enabled for machine learning and Python integration.
After completing the steps in this article, you will have the same Python libraries as
those on SQL Server. You will also know how to push computations from a local Python
session to a remote Python session on SQL Server.

７ Note

Currently this article applies to SQL Server 2016 (13.x), SQL Server 2017 (14.x), SQL
Server 2019 (15.x), and SQL Server 2019 (15.x) for Linux only.

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


To validate the installation, you can use built-in Jupyter Notebooks as described in this
article, or link the libraries to PyCharm or any another IDE that you normally use.

Whether you are a Python developer new to SQL, or a SQL developer new to Python
and in-database analytics, you will need both a Python development tool and a T-SQL
query editor such as SQL Server Management Studio (SSMS) to exercise all of the
capabilities of in-database analytics.

For Python development, you can use Jupyter Notebooks, which come bundled in the
Anaconda distribution installed by SQL Server. This article explains how to start Jupyter
Notebooks so that you can run Python code locally and remotely on SQL Server.

SSMS is a separate download, useful for creating and running stored procedures on SQL
Server, including those containing Python code. Almost any Python code that you write
in Jupyter Notebooks can be embedded in a stored procedure. You can step through
other quickstarts to learn about SSMS and embedded Python.

Local workstations must have the same Python package versions as those on SQL
Server, including the base Anaconda 4.2.0  with Python 3.5.2 distribution , and
Microsoft-specific packages.

An installation script adds three Microsoft-specific libraries to the Python client. The
script installs:

revoscalepy, used for defining data source objects and the compute context.
microsoftml providing machine learning algorithms.
azureml which applies to operationalization tasks associated with a standalone
server context and might be of limited use for in-database analytics.

1. Download an installation script.

 Tip

For a video demonstration of these exercises, see Run R and Python remotely in
SQL Server from Jupyter Notebooks .

Commonly used tools

1 - Install Python packages

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://anaconda.org/conda-forge/opencv/files?version=4.2.0
https://www.python.org/downloads/release/python-352/
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/azureml-model-management-sdk/azureml-model-management-sdk
https://youtu.be/D5erljpJDjE


https://aka.ms/mls-py  installs version 9.2.1 of the Microsoft Python
packages. This version corresponds to a default SQL Server instance.

https://aka.ms/mls93-py  installs version 9.3 of the Microsoft Python
packages.

2. Open a PowerShell window with elevated administrator permissions (right-click
Run as administrator).

3. Go to the folder in which you downloaded the installer and run the script. Add the
-InstallFolder  command-line argument to specify a folder location for the
libraries. For example:

Python

If you omit the install folder, the default is %ProgramFiles%\Microsoft\PyForMLS .

Installation takes some time to complete. You can monitor progress in the PowerShell
window. When setup is finished, you have a complete set of packages.

Still in PowerShell, list the contents of the installation folder to confirm that Python.exe,
scripts, and other packages are installed.

1. Enter cd \  to go to the root drive, and then enter the path you specified for -
InstallFolder  in the previous step. If you omitted this parameter during
installation, the default is cd %ProgramFiles%\Microsoft\PyForMLS .

2. Enter dir *.exe  to list the executables. You should see python.exe, pythonw.exe,
and uninstall-anaconda.exe.

cd {{download-directory}} 
.\Install-PyForMLS.ps1 -InstallFolder "C:\path-to-python-for-mls" 

 Tip

We recommend the Python for Windows FAQ  for general purpose information
on running Python programs on Windows.

2 - Locate executables

https://aka.ms/mls-py
https://aka.ms/mls93-py
https://docs.python.org/3/faq/windows.html


On systems having multiple versions of Python, remember to use this particular
Python.exe if you want to load revoscalepy and other Microsoft packages.

Anaconda includes Jupyter Notebooks. As a next step, create a notebook and run some
Python code containing the libraries you just installed.

1. At the PowerShell prompt, still in the %ProgramFiles%\Microsoft\PyForMLS  directory,
open Jupyter Notebooks from the Scripts folder:

PowerShell

A notebook should open in your default browser at https://localhost:8889/tree .

Another way to start is double-click jupyter-notebook.exe.

2. Select New and then select Python 3.

７ Note

The installation script does not modify the PATH environment variable on your
computer, which means that the new python interpreter and modules you just
installed are not automatically available to other tools you might have. For help on
linking the Python interpreter and libraries to tools, see Install an IDE.

3 - Open Jupyter Notebooks

.\Scripts\jupyter-notebook 



3. Enter import revoscalepy  and run the command to load one of the Microsoft-
specific libraries.

4. Enter and run print(revoscalepy.__version__)  to return the version information.
You should see 9.2.1 or 9.3.0. You can use either of these versions with revoscalepy
on the server.

5. Enter a more complex series of statements. This example generates summary
statistics using rx_summary over a local data set. Other functions get the location
of the sample data and create a data source object for a local .xdf file.

Python

The following screenshot shows the input and a portion of the output, trimmed for
brevity.

import os 
from revoscalepy import rx_summary 
from revoscalepy import RxXdfData 
from revoscalepy import RxOptions 
sample_data_path = RxOptions.get_option("sampleDataDir") 
print(sample_data_path) 
ds = RxXdfData(os.path.join(sample_data_path, "AirlineDemoSmall.xdf")) 
summary = rx_summary("ArrDelay+DayOfWeek", ds) 
print(summary) 

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-summary


To connect to an instance of SQL Server to run scripts and upload data, you must have a
valid login on the database server. You can use either a SQL login or integrated
Windows authentication. We generally recommend that you use Windows integrated
authentication, but using the SQL login is simpler for some scenarios, particularly when
your script contains connection strings to external data.

At a minimum, the account used to run code must have permission to read from the
databases you are working with, plus the special permission EXECUTE ANY EXTERNAL
SCRIPT. Most developers also require permissions to create stored procedures, and to
write data into tables containing training data or scored data.

Ask the database administrator to configure the following permissions for your account,
in the database where you use Python:

EXECUTE ANY EXTERNAL SCRIPT to run Python on the server.
db_datareader privileges to run the queries used for training the model.
db_datawriter to write training data or scored data.
db_owner to create objects such as stored procedures, tables, functions. You also
need db_owner to create sample and test databases.

If your code requires packages that are not installed by default with SQL Server, arrange
with the database administrator to have the packages installed with the instance. SQL
Server is a secured environment and there are restrictions on where packages can be
installed. Ad hoc installation of packages as part of your code is not recommended,
even if you have rights. Also, always carefully consider the security implications before
installing new packages in the server library.

4 - Get SQL permissions



If you have permissions to create a database on the remote server, you can run the
following code to create the Iris demo database used for the remaining steps in this
article.

Python

Python

Python

5 - Create test data

5-1 - Create the irissql database remotely

import pyodbc 

# creating a new db to load Iris sample in 
new_db_name = "irissql" 
connection_string = "Driver=SQL Server;Server=localhost;Database=
{0};Trusted_Connection=Yes;"  
                        # you can also swap Trusted_Connection for UID={your 
username};PWD={your password} 
cnxn = pyodbc.connect(connection_string.format("master"), autocommit=True) 
cnxn.cursor().execute("IF EXISTS(SELECT * FROM sys.databases WHERE [name] = 
'{0}') DROP DATABASE {0}".format(new_db_name)) 
cnxn.cursor().execute("CREATE DATABASE " + new_db_name) 
cnxn.close() 

print("Database created") 

5-2 - Import Iris sample from SkLearn

from sklearn import datasets 
import pandas as pd 

# SkLearn has the Iris sample dataset built in to the package 
iris = datasets.load_iris() 
df = pd.DataFrame(iris.data, columns=iris.feature_names) 

5-3 - Use Revoscalepy APIs to create a table and load the
Iris data

from revoscalepy import RxSqlServerData, rx_data_step 

# Example of using RX APIs to load data into SQL table. You can also do this 



Before trying this next step, make sure you have permissions on the SQL Server instance
and a connection string to the Iris sample database. If the database doesn't exist and
you have sufficient permissions, you can create a database using these inline
instructions.

Replace the connection string with valid values. The sample code uses "Driver=SQL
Server;Server=localhost;Database=irissql;Trusted_Connection=Yes;"  but your code
should specify a remote server, possibly with an instance name, and a credential option
that maps to a database login.

The following code defines a function that you will send to SQL Server in a later step.
When executed, it uses data and libraries (revoscalepy, pandas, matplotlib) on the
remote server to create scatter plots of the iris data set. It returns the bytestream of the
.png back to Jupyter Notebooks to render in the browser.

Python

with pyodbc 
table_ref = 
RxSqlServerData(connection_string=connection_string.format(new_db_name), 
table="iris_data") 
rx_data_step(input_data = df, output_file = table_ref, overwrite = True) 

print("New Table Created: Iris") 
print("Sklearn Iris sample loaded into Iris table") 

6 - Test remote connection

6-1 Define a function

def send_this_func_to_sql(): 
    from revoscalepy import RxSqlServerData, rx_import 
    from pandas.tools.plotting import scatter_matrix 
    import matplotlib.pyplot as plt 
    import io 
     
    # remember the scope of the variables in this func are within our SQL 
Server Python Runtime 
    connection_string = "Driver=SQL 
Server;Server=localhost;Database=irissql;Trusted_Connection=Yes;" 
     
    # specify a query and load into pandas dataframe df 
    sql_query = RxSqlServerData(connection_string=connection_string, 
sql_query = "select * from iris_data") 
    df = rx_import(sql_query) 
     



In this example, create the remote compute context and then send the execution of the
function to SQL Server with rx_exec. The rx_exec function is useful because it accepts a
compute context as an argument. Any function that you want to execute remotely must
have a compute context argument. Some functions, such as rx_lin_mod support this
argument directly. For operations that don't, you can use rx_exec to deliver your code in
a remote compute context.

In this example, no raw data had to be transferred from SQL Server to the Jupyter
Notebook. All computations occur within the Iris database and only the image file is
returned to the client.

Python

The following screenshot shows the input and scatter plot output.

    scatter_matrix(df) 
     
    # return bytestream of image created by scatter_matrix 
    buf = io.BytesIO() 
    plt.savefig(buf, format="png") 
    buf.seek(0) 
     
    return buf.getvalue() 

6-2 Send the function to SQL Server

from IPython import display 
import matplotlib.pyplot as plt  
from revoscalepy import RxInSqlServer, rx_exec 

# create a remote compute context with connection to SQL Server 
sql_compute_context = 
RxInSqlServer(connection_string=connection_string.format(new_db_name)) 

# use rx_exec to send the function execution to SQL Server 
image = rx_exec(send_this_func_to_sql, compute_context=sql_compute_context)
[0] 

# only an image was returned to my jupyter client. All data remained secure 
and was manipulated in my db. 
display.Image(data=image) 

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-exec
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-lin-mod


Because developers frequently work with multiple versions of Python, setup does not
add Python to your PATH. To use the Python executable and libraries installed by setup,
link your IDE to Python.exe at the path that also provides revoscalepy and microsoftml.

When you run Python.exe from %ProgramFiles%\Microsoft\PyForMLS  (or whatever
location you specified for the Python client library installation), you have access to the
full Anaconda distribution plus the Microsoft Python modules, revoscalepy and
microsoftml.

1. Go to %ProgramFiles%\Microsoft\PyForMLS  and execute Python.exe.
2. Open interactive help: help() .
3. Type the name of a module at the help prompt: help> revoscalepy . Help returns

the name, package contents, version, and file location.
4. Return version and package information at the help> prompt: revoscalepy . Press

Enter a few times to exit help.
5. Import a module: import revoscalepy .

7 - Start Python from tools

Command line

Jupyter Notebooks



This article uses built-in Jupyter Notebooks to demonstrate function calls to
revoscalepy. If you are new to this tool, the following screenshot illustrates how the
pieces fit together and why it all "just works".

The parent folder %ProgramFiles%\Microsoft\PyForMLS  contains Anaconda plus the
Microsoft packages. Jupyter Notebooks is included in Anaconda, under the Scripts
folder, and the Python executables are auto-registered with Jupyter Notebooks.
Packages found under site-packages can be imported into a notebook, including the
three Microsoft packages used for data science and machine learning.

If you are using another IDE, you will need to link the Python executables and function
libraries to your tool. The following sections provide instructions for commonly used
tools.

If you have Python in Visual Studio , use the following configuration options to create
a Python environment that includes the Microsoft Python packages.

Configuration setting value

Prefix path %ProgramFiles%\Microsoft\PyForMLS

Interpreter path %ProgramFiles%\Microsoft\PyForMLS\python.exe

Windowed interpreter %ProgramFiles%\Microsoft\PyForMLS\pythonw.exe

For help with configuring a Python environment, see Managing Python environments in
Visual Studio.

Visual Studio

https://code.visualstudio.com/docs/languages/python
https://learn.microsoft.com/en-us/visualstudio/python/managing-python-environments-in-visual-studio


In PyCharm, set the interpreter to the Python executable installed.

1. In a new project, in Settings, select Add Local.

2. Enter %ProgramFiles%\Microsoft\PyForMLS\ .

You can now import revoscalepy, microsoftml, or azureml modules. You can also
choose Tools > Python Console to open an interactive window.

Now that you have tools and a working connection to SQL Server, expand your skills by
running through the Python quickstarts using SQL Server Management Studio (SSMS).

PyCharm

Next steps

Quickstart: Create and run simple Python scripts with SQL Server Machine
Learning Services

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


Set up a data science client for R
development on SQL Server
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x),  SQL Server 2017 (14.x), and  SQL Server
2019 (15.x),  SQL Server 2019 (15.x) - Linux

R integration is available in SQL Server 2016 or later when you include the R language
option in an SQL Server 2016 R Services or SQL Server Machine Learning Services (In-
Database) installation.

To develop and deploy R solutions for SQL Server, install Microsoft R Client on your
development workstation to get RevoScaleR and other R libraries. The RevoScaleR
library, which is also required on the remote SQL Server instance, coordinates
computing requests between both systems.

In this article, learn how to configure an R client development workstation so that you
can interact with a remote SQL Server enabled for machine learning and R integration.
After completing the steps in this article, you will have the same R libraries as those on
SQL Server. You will also know how to push computations from a local R session to a
remote R session on SQL Server.

To validate the installation, you can use built-in RGUI tool as described in this article, or
link the libraries to RStudio or any another IDE that you normally use.

７ Note

Currently this article applies to SQL Server 2016 (13.x), SQL Server 2017 (14.x), SQL
Server 2019 (15.x), and SQL Server 2019 (15.x) for Linux only.

https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-r-services-windows-install?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/r-client/what-is-microsoft-r-client
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler


Whether you are an R developer new to SQL, or a SQL developer new to R and in-
database analytics, you will need both an R development tool and a T-SQL query editor
such as SQL Server Management Studio (SSMS) to exercise all of the capabilities of in-
database analytics.

For simple R development scenarios, you can use the RGUI executable, bundled in the
base R distribution in MRO and SQL Server. This article explains how to use RGUI for
both local and remote R sessions. For improved productivity, you should use a full-
featured IDE such as RStudio or Visual Studio.

SSMS is a separate download, useful for creating and running stored procedures on SQL
Server, including those containing R code. Almost any R code that you write in a
development environment can be embedded in a stored procedure. You can step
through other tutorials to learn about SSMS and embedded R.

Microsoft's R packages are available in multiple products and services. On a local
workstation, we recommend installing Microsoft R Client. R Client provides RevoScaleR,
MicrosoftML, SQLRUtils, and other R packages.

1. Download Microsoft R Client .

2. In the installation wizard, accept or change default installation path, accept or
change the components list, and accept the Microsoft R Client license terms.

When installation is finished, a welcome screen introduces you to the product and
documentation.

3. Create an MKL_CBWR system environment variable to ensure consistent output on
Intel Math Kernel Library (MKL) calculations.

In Control Panel, select System and Security > System > Advanced System
Settings > Environment Variables.
Create a new System variable named MKL_CBWR, with a value set to AUTO.

Locate and list the contents of the installation folder to confirm that R.exe, RGUI, and
other packages are installed.

Commonly used tools

1 - Install R packages

2 - Locate executables

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://aka.ms/rclient/download


1. In File Explorer, open the %ProgramFiles%\Microsoft\R Client\R_SERVER\bin  folder
to confirm the location of R.exe .

2. Open the x64 subfolder to confirm RGUI. You will use this tool in the next step.

3. Open %ProgramFiles%\Microsoft\R Client\R_SERVER\library  to review the list of
packages installed with R Client, including RevoScaleR, MicrosoftML, and others.

When you install R with SQL Server, you get the same R tools that are standard to any
base installation of R, such as RGui, Rterm, and so forth. These tools are lightweight,
useful for checking package and library information, running ad hoc commands or
script, or stepping through tutorials. You can use these tools to get R version
information and confirm connectivity.

1. Open %ProgramFiles%\Microsoft\R Client\R_SERVER\bin\x64  and double-click RGui
to start an R session with an R command prompt.

When you start an R session from a Microsoft program folder, several packages,
including RevoScaleR, load automatically.

2. Enter print(Revo.version)  at the command prompt to return RevoScaleR package
version information. You should have version 9.2.1 or 9.3.0 for RevoScaleR.

3. Enter search() at the R prompt for a list of installed packages.

3 - Start RGUI



In R Client, R processing is capped at two threads and in-memory data. For scalable
processing using multiple cores and large data sets, you can shift execution (referred to
as compute context) to the data sets and computational power of a remote SQL Server
instance. This is the recommended approach for client integration with a production
SQL Server instance, and you will need permissions and connection information to make
it work.

To connect to an instance of SQL Server to run scripts and upload data, you must have a
valid login on the database server. You can use either a SQL login or integrated
Windows authentication. We generally recommend that you use Windows integrated
authentication, but using the SQL login is simpler for some scenarios, particularly when
your script contains connection strings to external data.

4 - Get SQL permissions



At a minimum, the account used to run code must have permission to read from the
databases you are working with, plus the special permission EXECUTE ANY EXTERNAL
SCRIPT. Most developers also require permissions to create stored procedures, and to
write data into tables containing training data or scored data.

Ask the database administrator to configure the following permissions for your account,
in the database where you use R:

EXECUTE ANY EXTERNAL SCRIPT to run R script on the server.
db_datareader privileges to run the queries used for training the model.
db_datawriter to write training data or scored data.
db_owner to create objects such as stored procedures, tables, functions. You also
need db_owner to create sample and test databases.

If your code requires packages that are not installed by default with SQL Server, arrange
with the database administrator to have the packages installed with the instance. SQL
Server is a secured environment and there are restrictions on where packages can be
installed. For more information, see Install new R packages on SQL Server.

As a verification step, use RGUI and RevoScaleR to confirm connectivity to the remote
server. SQL Server must be enabled for remote connections and you must have
permissions, including a user login and a database to connect to.

The following steps assume the demo database, NYCTaxi_Sample, and Windows
authentication.

1. Open RGUI on the client workstation. For example, go to ~\Program
Files\Microsoft SQL Server\140\R_SERVER\bin\x64  and double-click RGui.exe to
start it.

2. RevoScaleR loads automatically. Confirm RevoScaleR is operational by running this
command: print(Revo.version)

3. Enter demo script that executes on the remote server. You must modify the
following sample script to include a valid name for a remote SQL Server instance.
This session begins as a local session, but the rxSummary function executes on the
remote SQL Server instance.

R

5 - Test connections

# Define a connection. Replace server with a valid server name. 
connStr <- "Driver=SQL Server;Server=<your-server-

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/view-or-configure-remote-server-connection-options-sql-server?view=sql-server-2017


Results:

This script connects to a database on the remote server, provides a query, creates a
compute context cc  instruction for remote code execution, then provides the
RevoScaleR function rxSummary to return a statistical summary of the query
results.

R

4. Get and set the compute context. Once you set a compute context, it remains in
effect for the duration of the session. If you aren't sure whether computation is
local or remote, run the following command to find out. Results that specify a
connection string indicate a remote compute context.

R

name>;Database=NYCTaxi_Sample;Trusted_Connection=true" 

# Specify the input data in a SQL query. 
sampleQuery <-"SELECT DISTINCT TOP(100) tip_amount FROM 
[dbo].nyctaxi_sample ORDER BY tip_amount DESC;" 

# Define a remote compute context based on the remote server. 
cc <-RxInSqlServer(connectionString=connStr) 

# Execute the function using the remote compute context. 
rxSummary(formula = ~ ., data = RxSqlServerData(sqlQuery=sampleQuery, 
connectionString=connStr), computeContext=cc) 

  Call: 
rxSummary(formula = ~., data = RxSqlServerData(sqlQuery = sampleQuery,  
    connectionString = connStr), computeContext = cc) 

Summary Statistics Results for: ~. 
Data: RxSqlServerData(sqlQuery = sampleQuery, connectionString = 
connStr) (RxSqlServerData Data Source) 
Number of valid observations: 100  

Name       Mean   StdDev   Min Max ValidObs MissingObs 
tip_amount 63.245 31.61087 36  180 100      0      

# Return the current compute context. 
rxGetComputeContext() 

# Revert to a local compute context. 
rxSetComputeContext("local") 
rxGetComputeContext() 

# Switch back to remote. 



5. Return information about variables in the data source, including name and type.

R

Results include 23 variables.

6. Generate a scatter plot to explore whether there are dependencies between two
variables.

R

The following screenshot shows the input and scatter plot output.

connStr <- "Driver=SQL Server;Server=<your-server-
name>;Database=NYCTaxi_Sample;Trusted_Connection=true" 
cc <-RxInSqlServer(connectionString=connStr) 
rxSetComputeContext(cc) 
rxGetComputeContext() 

rxGetVarInfo(data = inDataSource)

# Set the connection string. Substitute a valid server name for the 
placeholder. 
connStr <- "Driver=SQL Server;Server=<your database 
name>;Database=NYCTaxi_Sample;Trusted_Connection=true" 

# Specify a query on the nyctaxi_sample table. 
# For variables on each axis, remove nulls. Use a WHERE clause and <> 
to do this. 
sampleQuery <-"SELECT DISTINCT TOP 100 * from [dbo].[nyctaxi_sample] 
WHERE fare_amount <> '' AND  tip_amount <> ''" 
cc <-RxInSqlServer(connectionString=connStr) 

# Generate a scatter plot. 
rxLinePlot(fare_amount ~ tip_amount, data = 
RxSqlServerData(sqlQuery=sampleQuery, connectionString=connStr, 
computeContext=cc), type="p") 



For sustained and serious development projects, you should install an integrated
development environment (IDE). SQL Server tools and the built-in R tools are not
equipped for heavy R development. Once you have working code, you can deploy it as a
stored procedure for execution on SQL Server.

Point your IDE to the local R libraries: base R, RevoScaleR, and so forth. Running
workloads on a remote SQL Server occurs during script execution, when your script
invokes a remote compute context on SQL Server, accessing data and operations on
that server.

When using RStudio , you can configure the environment to use the R libraries and
executables that correspond to those on a remote SQL Server.

1. Check R package versions installed on SQL Server. For more information, see Get R
package information.

6 - Link tools to R.exe

RStudio

https://www.rstudio.com/


2. Install Microsoft R Client to add RevoScaleR and other R packages, including the
base R distribution used by your SQL Server instance. Choose a version at the
same level or lower (packages are backward compatible) that provides the same
package versions as on the server. To view the package versions installed on the
server, see List all installed R packages.

3. In RStudio, update your R path  to point to the R environment providing
RevoScaleR, Microsoft R Open, and other Microsoft packages. Look for
%ProgramFiles%\Microsoft\R Client\R_SERVER\bin\x64 .

4. Close and then open RStudio.

When you reopen RStudio, the R executable from R Client is the default R engine.

If you don't already have a preferred IDE for R, we recommend R Tools for Visual
Studio.

Download R Tools for Visual Studio (RTVS)
Installation instructions - RTVS is available in several versions of Visual Studio.
Get started with R Tools for Visual Studio

This example uses Visual Studio 2017 Community Edition, with the data science
workload installed.

1. From the File menu, select New and then select Project.

2. The left-hand pane contains a list of preinstalled templates. Select R, and select R
Project. In the Name box, type dbtest  and select OK.

Visual Studio creates a new project folder and a default script file, Script.R .

3. Type .libPaths()  on the first line of the script file, and then press CTRL + ENTER.

The current R library path should be displayed in the R Interactive window.

4. Select the R Tools menu and select Windows to see a list of other R-specific
windows that you can display in your workspace.

View help on packages in the current library by pressing CTRL + 3.
See R variables in the Variable Explorer, by pressing CTRL + 8.

R Tools for Visual Studio (RTVS)

Connect to SQL Server from RTVS

https://support.rstudio.com/hc/articles/200486138-Using-Different-Versions-of-R
https://marketplace.visualstudio.com/items?itemName=MikhailArkhipov007.RTVS2019
https://learn.microsoft.com/en-us/visualstudio/rtvs/installing-r-tools-for-visual-studio
https://learn.microsoft.com/en-us/visualstudio/rtvs/getting-started-with-r


Two different tutorials include exercises so that you can practice switching the compute
context from local to a remote SQL Server instance.

Tutorial: Use RevoScaleR R functions with SQL Server data
Data Science End-to-End Walkthrough

Next steps



Install SQL Server Machine Learning
Services with Python and R on an Azure
virtual machine
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later

Learn how to install Python and R with SQL Server Machine Learning Services on a
virtual machine in Azure. This eliminates the installation and configuration tasks for
Machine Learning Services.

Follow these steps:

1. Provision SQL Server virtual machine in Azure
2. Unblock the firewall
3. Enable ODBC callbacks for remote clients
4. Add network protocols

For step by step instructions, see How to provision a Windows SQL Server virtual
machine in the Azure portal.

The Configure SQL server settings step is where you add Machine Learning Services to
your instance.

By default, the firewall on the Azure virtual machine includes a rule that blocks network
access for local user accounts.

You must disable this rule to ensure that you can access the SQL Server instance from a
remote data science client. Otherwise, your machine learning code cannot execute in
compute contexts that use the virtual machine's workspace.

To enable access from remote data science clients:

1. On the virtual machine, open Windows Firewall with Advanced Security.

2. Select Outbound Rules

Provision SQL Server virtual machine in Azure

Unblock the firewall

https://learn.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/create-sql-vm-portal
https://learn.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/create-sql-vm-portal#3-configure-sql-server-settings


3. Disable the following rule:

Block network access for R local user accounts in SQL Server instance

MSSQLSERVER

If you expect that clients calling the server will need to issue ODBC queries as part of
their machine learning solutions, you must ensure that the Launchpad can make ODBC
calls on behalf of the remote client.

To do this, you must allow the SQL worker accounts that are used by Launchpad to log
into the instance. For more information, see Add SQLRUserGroup as a database user.

Enable Named Pipes

R Services (In-Database) uses the Named Pipes protocol for connections between
the client and server computers, and for some internal connections. If Named
Pipes is not enabled, you must install and enable it on both the Azure virtual
machine, and on any data science clients that connect to the server.

Enable TCP/IP

TCP/IP is required for loopback connections. If you get the error "DBNETLIB; SQL
Server does not exist or access denied", enable TCP/IP on the virtual machine that
supports the instance.

Enable ODBC callbacks for remote clients

Add network protocols



Install Machine Learning Server
(Standalone) or R Server (Standalone)
using SQL Server Setup
Article • 03/17/2023

Applies to:  SQL Server 2016 (13.x),  SQL Server 2017 (14.x), and  SQL Server
2019 (15.x)

SQL Server Setup includes a shared feature option for installing a standalone machine
learning server that runs outside of SQL Server. It's called Machine Learning Server
(Standalone) and includes Python and R.

A standalone server as installed by SQL Server Setup supports use cases and scenarios
such as the following:

Remote execution, switching between local and remote sessions in the same
console
Operationalization with web nodes and compute nodes
Web service deployment: the ability to package R and Python script into web
services
Complete collection of R and Python function libraries

As an independent server decoupled from SQL Server, the R and Python environment is
configured, secured, and accessed using the underlying operating system and tools
provided in the standalone server, not SQL Server.

） Important

The support for Machine Learning Server (previously known as R Server) ended on
July 1, 2022. For more information, see What's happening to Machine Learning
Server?

） Important

Machine Learning Server (Standalone) is not shipped with SQL Server 2022 (16.x).
This article refers to a retired feature of SQL Server 2016 (13.x), SQL Server 2017
(14.x), and SQL Server 2019 (15.x).

https://learn.microsoft.com/en-us/machine-learning-server/what-is-happening-to-machine-learning-server


As an adjunct to SQL Server, a standalone server is useful if you need to develop high-
performance machine learning solutions that can use remote compute contexts to the
full range of supported data platforms. You can shift execution from the local server to a
remote Machine Learning Server on a Spark cluster or on another SQL Server instance.

If you installed a previous version, such as SQL Server 2016 R Server (Standalone) or
Microsoft R Server, uninstall the existing installation before continuing.

As a general rule, we recommend that you treat standalone server and database engine
instance-aware installations as mutually exclusive to avoid resource contention, but if
you have sufficient resources, there is no prohibition against installing them both on the
same physical computer.

You can only have one standalone server on the computer: either SQL Server Machine
Learning Server (Standalone) or SQL Server R Server (Standalone). Be sure to uninstall
one version before adding a new one.

The download location for SQL Server depends on the edition:

SQL Server Enterprise, Standard, and Express editions. These editions are licensed
for production use. For the Enterprise and Standard editions, contact your software
vendor for the installation media. You can find purchasing information and a
directory of Microsoft partners on the Microsoft purchasing website .
The latest free edition .

For local installations, you must run Setup as an administrator. If you install SQL Server
from a remote share, you must use a domain account that has read and execute
permissions on the remote share.

1. Start the installation wizard.

2. Click the Installation tab, and select New Machine Learning Server (Standalone)
installation.

Pre-install checklist

Get the installation media

Run Setup

https://www.microsoft.com/sql-server/
https://www.microsoft.com/sql-server/sql-server-downloads


3. After the rules check is complete, accept SQL Server licensing terms, and select a
new installation.

4. On the Feature Selection page, the following options should already be selected:

Microsoft Machine Learning Server (Standalone)

R and Python are both selected by default. You can deselect either language,
but we recommend that you install at least one of the supported languages.



All other options should be ignored.

5. Accept the license terms for downloading and installing base language
distributions. When the Accept button becomes unavailable, you can click Next.

７ Note

Avoid installing the Shared Features if the computer already has Machine Learning
Services installed for SQL Server in-database analytics. This creates duplicate
libraries.

Also, whereas R or Python scripts running in SQL Server are managed by SQL
Server so as not to conflict with memory used by other database engine services,
the standalone machine learning server has no such constraints, and can interfere
with other database operations. Finally, remote access via RDP session, which is
often used for operationalization, is typically blocked by database administrators.

For these reasons, we generally recommend that you install Machine Learning
Server (Standalone) on a separate computer from SQL Server Machine Learning
Services.



6. On the Ready to Install page, verify your selections, and click Install.

For R feature integration only, you should set the MKL_CBWR environment variable to
ensure consistent output  from Intel Math Kernel Library (MKL) calculations.

1. In Control Panel, click System and Security > System > Advanced System Settings
> Environment Variables.

2. Create a new User or System variable.

Set variable name to MKL_CBWR
Set the variable value to AUTO

3. Restart the server.

For R and Python development, it's common to have multiple versions on the same
computer. As installed by SQL Server setup, the base distribution is installed in a folder
associated with the SQL Server version that you used for setup.

The following table lists the paths for R and Python distributions created by Microsoft
installers. For completeness, the table includes paths generated by SQL Server setup as
well as the standalone installer for Microsoft Machine Learning Server.

Version Installation method Default folder

SQL Server 2019 Machine
Learning Server
(Standalone)

SQL Server 2019 setup
wizard

C:\Program Files\Microsoft SQL

Server\150\R_SERVER   
C:\Program Files\Microsoft SQL

Server\150\PYTHON_SERVER

SQL Server 2017 Machine
Learning Server
(Standalone)

SQL Server 2017 setup
wizard

C:\Program Files\Microsoft SQL

Server\140\R_SERVER   
C:\Program Files\Microsoft SQL

Server\140\PYTHON_SERVER

Microsoft Machine
Learning Server
(Standalone)

Windows standalone
installer

C:\Program Files\Microsoft\ML

Server\R_SERVER  
C:\Program Files\Microsoft\ML

Server\PYTHON_SERVER

Set environment variables

Default installation folders

https://software.intel.com/articles/introduction-to-the-conditional-numerical-reproducibility-cnr


Version Installation method Default folder

SQL Server Machine
Learning Services (In-
Database)

SQL Server 2019 setup
wizard, with R language
option

C:\Program Files\Microsoft SQL

Server\MSSQL15.

<instance_name>\R_SERVICES  
C:\Program Files\Microsoft SQL

Server\MSSQL15.

<instance_name>\PYTHON_SERVICES

SQL Server Machine
Learning Services (In-
Database)

SQL Server 2017 setup
wizard, with R language
option

C:\Program Files\Microsoft SQL

Server\MSSQL14.

<instance_name>\R_SERVICES  
C:\Program Files\Microsoft SQL

Server\MSSQL14.

<instance_name>\PYTHON_SERVICES

SQL Server 2016 R Server
(Standalone)

SQL Server 2016 setup
wizard

C:\Program Files\Microsoft SQL

Server\130\R_SERVER

SQL Server 2016 R
Services (In-Database)

SQL Server 2016 setup
wizard

C:\Program Files\Microsoft SQL

Server\MSSQL13.

<instance_name>\R_SERVICES

We recommend that you apply the latest cumulative update to both the database
engine and machine learning components. Cumulative updates are installed through the
Setup program.

On internet-connected devices, you can download a self-extracting executable. Applying
an update for the database engine automatically pulls in cumulative updates for existing
R and Python features.

On disconnected servers, extra steps are required. You must obtain the cumulative
update for the database engine as well as the CAB files for machine learning features. All
files must be transferred to the isolated server and applied manually.

1. Start with a baseline instance. You can only apply cumulative updates to existing
installations:

Machine Learning Server (Standalone) from SQL Server 2019 initial release
Machine Learning Server (Standalone) from SQL Server 2017 initial release
R Server (Standalone) from SQL Server 2016 initial release, SQL Server 2016 SP 1, or
SQL Server 2016 SP 2

Apply updates



2. Close any open R or Python sessions and stop any processes still running on the
system.

3. If you enabled operationalization to run as web nodes and compute nodes for web
service deployments, back up the AppSettings.json file as a precaution. Applying
SQL Server 2017 CU13 or later revises this file, so you might want a backup copy to
preserve the original version.

4. On an internet connected machine, download the latest cumulative update for
your version from the Latest updates for Microsoft SQL Server.

5. Download the latest cumulative update. It is an executable file.

6. On an internet-connected device, double-click the .exe to run Setup and step
through the wizard to accept licensing terms, review affected features, and monitor
progress until completion.

7. On a server with no internet connectivity:

Get corresponding CAB files for R and Python. For download links, see CAB
downloads for cumulative updates on SQL Server in-database analytics
instances.

Transfer all files, the main executable and CAB files, to a folder on the offline
computer.

Double-click the .exe to run Setup. When installing a cumulate update on a
server with no internet connectivity, you are prompted to select the location
of the .cab files for R and Python.

8. Post-install, on a server for which you have enabled deployment with web nodes
and compute nodes, edit AppSettings.json, adding an "MMLResourcePath" entry,
directly under "MMLNativePath". For example:

JSON

9. Run the admin CLI utility to restart the web and compute nodes. For steps and
syntax, see Monitor, start, and stop web and compute nodes.

"ScorerParameters": { 
    "MMLNativePath": "C:\Program Files\Microsoft SQL 
Server\140\R_SERVER\library\MicrosoftML\mxLibs\x64\", 
    "MMLResourcePath": "C:\Program Files\Microsoft SQL 
Server\140\R_SERVER\library\MicrosoftML\mxLibs\x64\" 
} 

https://learn.microsoft.com/en-us/troubleshoot/sql/releases/download-and-install-latest-updates?bc=%2fsql%2fbreadcrumb%2ftoc.json&toc=%2fsql%2ftoc.json
https://learn.microsoft.com/en-us/machine-learning-server/operationalize/configure-admin-cli-launch
https://learn.microsoft.com/en-us/machine-learning-server/operationalize/configure-admin-cli-stop-start


A development IDE is not installed as part of setup. For more information about
configuring a development environment, see Set up R tools and Set up Python tools.

R developers can get started with some simple examples, and learn the basics of how R
works with SQL Server. For your next step, see the following links:

Quickstart: Run R in T-SQL
Tutorial: In-database analytics for R developers

Python developers can learn how to use Python with SQL Server by following these
tutorials:

Python tutorial: Predict ski rental with linear regression in SQL Server Machine
Learning Services
Python tutorial: Categorizing customers using k-means clustering with SQL Server
Machine Learning Services

Development tools

Next steps



Quickstart: Run simple Python scripts
with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In this quickstart, you'll run a set of simple Python scripts using SQL Server Machine
Learning Services, Azure SQL Managed Instance Machine Learning Services, or SQL
Server Big Data Clusters. You'll learn how to use the stored procedure
sp_execute_external_script to execute the script in a SQL Server instance.

You need the following prerequisites to run this quickstart.

A SQL database on one of these platforms:
SQL Server Machine Learning Services. To install, see the Windows installation
guide or the Linux installation guide.
SQL Server 2019 Big Data Clusters. See how to enable Machine Learning
Services on SQL Server 2019 Big Data Clusters.
Azure SQL Managed Instance Machine Learning Services. For information, see
the Azure SQL Managed Instance Machine Learning Services overview.

A tool for running SQL queries that contain Python scripts. This quickstart uses
Azure Data Studio.

To run a Python script, you'll pass it as an argument to the system stored procedure,
sp_execute_external_script. This system stored procedure starts the Python runtime in
the context of SQL machine learning, passes data to Python, manages Python user
sessions securely, and returns any results to the client.

In the following steps, you'll run this example Python script in your database:

Python

Prerequisites

Run a simple script

a = 1 
b = 2 
c = a/b 

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/machine-learning-services-overview
https://learn.microsoft.com/en-us/sql/big-data-cluster/machine-learning-services?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?toc=%2Fsql%2Fmachine-learning%2Ftoc.json&view=sql-server-2017
https://learn.microsoft.com/en-us/sql/big-data-cluster/machine-learning-services?view=sql-server-2017
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/machine-learning-services-overview
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


1. Open a new query window in Azure Data Studio connected to your SQL instance.

2. Pass the complete Python script to the sp_execute_external_script  stored
procedure.

The script is passed through the @script  argument. Everything inside the @script
argument must be valid Python code.

SQL

3. The correct result is calculated and the Python print  function returns the result to
the Messages window.

It should look something like this.

Results

text

A typical example script is one that just outputs the string "Hello World". Run the
following command.

SQL

d = a*b 
print(c, d) 

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
a = 1 
b = 2 
c = a/b 
d = a*b 
print(c, d) 
' 

STDOUT message(s) from external script: 
0.5 2 

Run a Hello World script

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N'OutputDataSet = InputDataSet' 
    , @input_data_1 = N'SELECT 1 AS hello' 
WITH RESULT SETS(([Hello World] INT)); 
GO 



Inputs to the sp_execute_external_script  stored procedure include:

Input Description

@language defines the language extension to call, in this case Python

@script defines the commands passed to the Python runtime. Your entire Python script
must be enclosed in this argument, as Unicode text. You could also add the text
to a variable of type nvarchar and then call the variable

@input_data_1 data returned by the query, passed to the Python runtime, which returns the
data as a data frame

WITH RESULT
SETS

clause defines the schema of the returned data table for SQL machine learning,
adding "Hello World" as the column name, int for the data type

The command outputs the following text:

Hello World

1

By default, sp_execute_external_script  accepts a single dataset as input, which typically
you supply in the form of a valid SQL query. It then returns a single Python data frame
as output.

For now, let's use the default input and output variables of sp_execute_external_script :
InputDataSet and OutputDataSet.

1. Create a small table of test data.

SQL

Use inputs and outputs

CREATE TABLE PythonTestData (col1 INT NOT NULL) 

INSERT INTO PythonTestData 
VALUES (1); 

INSERT INTO PythonTestData 
VALUES (10); 

INSERT INTO PythonTestData 
VALUES (100); 
GO 



2. Use the SELECT  statement to query the table.

SQL

Results

3. Run the following Python script. It retrieves the data from the table using the
SELECT  statement, passes it through the Python runtime, and returns the data as a
data frame. The WITH RESULT SETS  clause defines the schema of the returned data
table for SQL, adding the column name NewColName.

SQL

Results

4. Now change the names of the input and output variables. The default input and
output variable names are InputDataSet and OutputDataSet, the following script
changes the names to SQL_in and SQL_out:

SQL

SELECT * 
FROM PythonTestData 

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N'OutputDataSet = InputDataSet;' 
    , @input_data_1 = N'SELECT * FROM PythonTestData;' 
WITH RESULT SETS(([NewColName] INT NOT NULL)); 

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N'SQL_out = SQL_in;' 
    , @input_data_1 = N'SELECT 12 as Col;' 
    , @input_data_1_name  = N'SQL_in' 
    , @output_data_1_name = N'SQL_out' 
WITH RESULT SETS(([NewColName] INT NOT NULL)); 



Note that Python is case-sensitive. The input and output variables used in the
Python script (SQL_out, SQL_in) need to match the names defined with
@input_data_1_name  and @output_data_1_name , including case.

5. You can also generate values just using the Python script with no input data
(@input_data_1  is set to blank).

The following script outputs the text "hello" and "world".

SQL

Results

@script as input" />

 Tip

Only one input dataset can be passed as a parameter, and you can return only
one dataset. However, you can call other datasets from inside your Python
code and you can return outputs of other types in addition to the dataset. You
can also add the OUTPUT keyword to any parameter to have it returned with
the results.

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
import pandas as pd 
mytextvariable = pandas.Series(["hello", " ", "world"]); 
OutputDataSet = pd.DataFrame(mytextvariable); 
' 
    , @input_data_1 = N'' 
WITH RESULT SETS(([Col1] CHAR(20) NOT NULL)); 

 Tip

Python uses leading spaces to group statements. So when the imbedded Python
script spans multiple lines, as in the preceding script, don't try to indent the Python
commands to be in line with the SQL commands. For example, this script will
produce an error:

SQL



If you would like to see which version of Python is installed in your server, run the
following script.

SQL

The Python print  function returns the version to the Messages window. In the example
output below, you can see that in this case, Python version 3.5.2 is installed.

Results

text

Microsoft provides a number of Python packages pre-installed with Machine Learning
Services in SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server 2019 (15.x). In
SQL Server 2022 (16.x), you can download and install any custom Python runtimes and
packages as desired.

To see a list of which Python packages are installed, including version, run the following
script.

EXECUTE sp_execute_external_script @language = N'Python' 
      , @script = N' 
      import pandas as pd 
      mytextvariable = pandas.Series(["hello", " ", "world"]); 
      OutputDataSet = pd.DataFrame(mytextvariable); 
      ' 
      , @input_data_1 = N'' 
WITH RESULT SETS(([Col1] CHAR(20) NOT NULL)); 

Check Python version

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
import sys 
print(sys.version) 
' 
GO 

STDOUT message(s) from external script: 
3.5.2 |Continuum Analytics, Inc.| (default, Jul  5 2016, 11:41:13) [MSC 
v.1900 64 bit (AMD64)] 

List Python packages



SQL

The list is from pkg_resources.working_set  in Python and returned to SQL as a data
frame.

To learn how to use data structures when using Python in SQL machine learning, follow
this quickstart:

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
import pkg_resources 
import pandas 
dists = [str(d) for d in pkg_resources.working_set] 
OutputDataSet = pandas.DataFrame(dists) 
' 
WITH RESULT SETS(([Package] NVARCHAR(max))) 
GO 

Next steps

Quickstart: Data structures and objects using Python



Quickstart: Data structures and objects
using Python with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In this quickstart, you'll learn how to use data structures and data types when using
Python in SQL Server Machine Learning Services, Azure SQL Managed Instance Machine
Learning Services, or on SQL Server Big Data Clusters. You'll learn about moving data
between Python and SQL Server, and the common issues that might occur.

SQL machine learning relies on the Python pandas package, which is great for working
with tabular data. However, you cannot pass a scalar from Python to your database and
expect it to just work. In this quickstart, you'll review some basic data structure
definitions, to prepare you for additional issues that you might run across when passing
tabular data between Python and the database.

Concepts to know up front include:

A data frame is a table with multiple columns.
A single column of a data frame is a list-like object called a series.
A single value of a data frame is called a cell and is accessed by index.

How would you expose the single result of a calculation as a data frame, if a data.frame
requires a tabular structure? One answer is to represent the single scalar value as a
series, which is easily converted to a data frame.

You need the following prerequisites to run this quickstart.

A SQL database on one of these platforms:
SQL Server Machine Learning Services. To install, see the Windows installation
guide or the Linux installation guide.

７ Note

When returning dates, Python in SQL uses DATETIME which has a restricted date
range of 1753-01-01(-53690) through 9999-12-31(2958463).

Prerequisites

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/machine-learning-services-overview
https://learn.microsoft.com/en-us/sql/big-data-cluster/machine-learning-services?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?toc=%2Fsql%2Fmachine-learning%2Ftoc.json&view=sql-server-2017


SQL Server Big Data Clusters. See how to enable Machine Learning Services on
SQL Server Big Data Clusters.
Azure SQL Managed Instance Machine Learning Services. For information, see
the Azure SQL Managed Instance Machine Learning Services overview.

A tool for running SQL queries that contain Python scripts. This quickstart uses
Azure Data Studio.

This example does some simple math and converts a scalar into a series.

1. A series requires an index, which you can assign manually, as shown here, or
programmatically.

SQL

Because the series hasn't been converted to a data.frame, the values are returned
in the Messages window, but you can see that the results are in a more tabular
format.

Results

text

2. To increase the length of the series, you can add new values, using an array.

SQL

Scalar value as a series

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
a = 1 
b = 2 
c = a/b 
print(c) 
s = pandas.Series(c, index =["simple math example 1"]) 
print(s) 
' 

STDOUT message(s) from external script:  
0.5 
simple math example 1    0.5 
dtype: float64 

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 

https://learn.microsoft.com/en-us/sql/big-data-cluster/machine-learning-services?view=sql-server-2017
https://learn.microsoft.com/en-us/azure/azure-sql/managed-instance/machine-learning-services-overview
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017


If you do not specify an index, an index is generated that has values starting with 0
and ending with the length of the array.

Results

text

3. If you increase the number of index values, but don't add new data values, the
data values are repeated to fill the series.

SQL

Results

text

a = 1 
b = 2 
c = a/b 
d = a*b 
s = pandas.Series([c,d]) 
print(s) 
' 

STDOUT message(s) from external script: 
0    0.5 
1    2.0 
dtype: float64 

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
a = 1 
b = 2 
c = a/b 
s = pandas.Series(c, index =["simple math example 1", "simple math 
example 2"]) 
print(s) 
' 

STDOUT message(s) from external script: 
0.5 
simple math example 1    0.5 
simple math example 2    0.5 
dtype: float64 

Convert series to data frame



Having converted the scalar math results to a tabular structure, you still need to convert
them to a format that SQL machine learning can handle.

1. To convert a series to a data.frame, call the pandas DataFrame  method.

SQL

The result is shown below. Even if you use the index to get specific values from the
data.frame, the index values aren't part of the output.

Results

ResultValue

0.5

2

Now you'll output specific values from two series of math results in a data.frame. The
first has an index of sequential values generated by Python. The second uses an
arbitrary index of string values.

1. The following example gets a value from the series using an integer index.

SQL

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
import pandas as pd 
a = 1 
b = 2 
c = a/b 
d = a*b 
s = pandas.Series([c,d]) 
print(s) 
df = pd.DataFrame(s) 
OutputDataSet = df 
' 
WITH RESULT SETS((ResultValue FLOAT)) 

Output values into data.frame

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
import pandas as pd 
a = 1 
b = 2 
c = a/b 

https://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe


Results

ResultValue

2.0

Remember that the auto-generated index starts at 0. Try using an out of range
index value and see what happens.

2. Now get a single value from the other data frame using a string index.

SQL

Results

ResultValue

0.5

If you try to use a numeric index to get a value from this series, you get an error.

To learn about writing advanced Python functions with SQL machine learning, follow this
quickstart:

d = a*b 
s = pandas.Series([c,d]) 
print(s) 
df = pd.DataFrame(s, index=[1]) 
OutputDataSet = df 
' 
WITH RESULT SETS((ResultValue FLOAT)) 

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
import pandas as pd 
a = 1 
b = 2 
c = a/b 
s = pandas.Series(c, index =["simple math example 1", "simple math 
example 2"]) 
print(s) 
df = pd.DataFrame(s, index=["simple math example 1"]) 
OutputDataSet = df 
' 
WITH RESULT SETS((ResultValue FLOAT)) 

Next steps



Write advanced Python functions



Quickstart: Python functions with SQL
machine learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In this quickstart, you'll learn how to use Python mathematical and utility functions with
SQL Server Machine Learning Services, Azure SQL Managed Instance Machine Learning
Services, or SQL Server Big Data Clusters. Statistical functions are often complicated to
implement in T-SQL, but can be done in Python with only a few lines of code.

You need the following prerequisites to run this quickstart.

A SQL database on one of these platforms:
SQL Server Machine Learning Services. To install, see the Windows installation
guide or the Linux installation guide.
SQL Server Big Data Clusters. See how to enable Machine Learning Services on
SQL Server Big Data Clusters.
Azure SQL Managed Instance Machine Learning Services. For information, see
the Azure SQL Managed Instance Machine Learning Services overview.

A tool for running SQL queries that contain Python scripts. This quickstart uses
Azure Data Studio.

For simplicity, let's use the Python numpy  package, that's installed and loaded by default.
The package contains hundreds of functions for common statistical tasks, among them
the random.normal  function, which generates a specified number of random numbers
using the normal distribution, given a standard deviation and mean.

For example, the following Python code returns 100 numbers on a mean of 50, given a
standard deviation of 3.

Python

Prerequisites

Create a stored procedure to generate random
numbers

numpy.random.normal(size=100, loc=50, scale=3) 

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
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To call this line of Python from T-SQL, add the Python function in the Python script
parameter of sp_execute_external_script . The output expects a data frame, so use
pandas  to convert it.

SQL

What if you'd like to make it easier to generate a different set of random numbers? You
define a stored procedure that gets the arguments from the user, then pass those
arguments into the Python script as variables.

SQL

The first line defines each of the SQL input parameters that are required when the
stored procedure is executed.

The line beginning with @params  defines all variables used by the Python code, and
the corresponding SQL data types.

EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
import numpy 
import pandas 
OutputDataSet = pandas.DataFrame(numpy.random.normal(size=100, loc=50, 
scale=3)); 
' 
    , @input_data_1 = N'   ;' 
WITH RESULT SETS(([Density] FLOAT NOT NULL)); 

CREATE PROCEDURE MyPyNorm ( 
      @param1 INT 
    , @param2 INT 
    , @param3 INT 
    ) 
AS 
EXECUTE sp_execute_external_script @language = N'Python' 
    , @script = N' 
import numpy 
import pandas 
OutputDataSet = pandas.DataFrame(numpy.random.normal(size=mynumbers, 
loc=mymean, scale=mysd)); 
' 
    , @input_data_1 = N'   ;' 
    , @params = N' @mynumbers int, @mymean int, @mysd int' 
    , @mynumbers = @param1 
    , @mymean = @param2 
    , @mysd = @param3 
WITH RESULT SETS(([Density] FLOAT NOT NULL)); 



The lines that immediately follow map the SQL parameter names to the
corresponding Python variable names.

Now that you've wrapped the Python function in a stored procedure, you can easily call
the function and pass in different values, like this:

SQL

Python packages provide a variety of utility functions for investigating the current
Python environment. These functions can be useful if you're finding discrepancies in the
way your Python code performs in SQL Server and in outside environments.

For example, you might use system timing functions in the time  package to measure
the amount of time used by Python processes and analyze performance issues.

SQL

To create a machine learning model using Python with SQL machine learning, follow this
quickstart:

EXECUTE MyPyNorm @param1 = 100,@param2 = 50, @param3 = 3 

Use Python utility functions for
troubleshooting

EXECUTE sp_execute_external_script 
      @language = N'Python' 
    , @script = N' 
import time 
start_time = time.time() 

# Run Python processes 

elapsed_time = time.time() - start_time 
' 
    , @input_data_1 = N' ;'; 

Next steps

Quickstart: Create and score a predictive model in Python



Quickstart: Create and score a predictive
model in Python with SQL machine
learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In this quickstart, you'll create and train a predictive model using Python. You'll save the
model to a table in your SQL Server instance, and then use the model to predict values
from new data using SQL Server Machine Learning Services, Azure SQL Managed
Instance Machine Learning Services, or SQL Server Big Data Clusters.

You'll create and execute two stored procedures running in SQL. The first one uses the
classic Iris flower data set and generates a Naïve Bayes model to predict an Iris species
based on flower characteristics. The second procedure is for scoring - it calls the model
generated in the first procedure to output a set of predictions based on new data. By
placing Python code in a SQL stored procedure, operations are contained in SQL, are
reusable, and can be called by other stored procedures and client applications.

By completing this quickstart, you'll learn:

You need the following prerequisites to run this quickstart.

A SQL database on one of these platforms:
SQL Server Machine Learning Services. To install, see the Windows installation
guide or the Linux installation guide.
SQL Server Big Data Clusters. See how to enable Machine Learning Services on
SQL Server Big Data Clusters.
Azure SQL Managed Instance Machine Learning Services. For information, see
the Azure SQL Managed Instance Machine Learning Services overview.

A tool for running SQL queries that contain Python scripts. This quickstart uses
Azure Data Studio.

How to embed Python code in a stored procedure＂

How to pass inputs to your code through inputs on the stored procedure＂

How stored procedures are used to operationalize models＂

Prerequisites
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The sample data used in this exercise is the Iris sample data. Follow the instructions
in Iris demo data to create the sample database irissql.

In this step, you'll create a stored procedure that generates a model for predicting
outcomes.

1. Open Azure Data Studio, connect to your SQL instance, and open a new query
window.

2. Connect to the irissql database.

SQL

3. Copy in the following code to create a new stored procedure.

When executed, this procedure calls sp_execute_external_script to start a Python
session.

Inputs needed by your Python code are passed as input parameters on this stored
procedure. Output will be a trained model, based on the Python scikit-learn library
for the machine learning algorithm.

This code uses pickle  to serialize the model. The model will be trained using
data from columns 0 through 4 from the iris_data table.

The parameters you see in the second part of the procedure articulate data inputs
and model outputs. As much as possible, you want the Python code running in a
stored procedure to have clearly defined inputs and outputs that map to stored
procedure inputs and outputs passed in at run time.

SQL

Create a stored procedure that generates
models

USE irissql 
GO 

CREATE PROCEDURE generate_iris_model (@trained_model VARBINARY(max) 
OUTPUT) 
AS 
BEGIN 
    EXECUTE sp_execute_external_script @language = N'Python' 
        , @script = N' 
import pickle 

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://docs.python.org/2/library/pickle.html


4. Verify the stored procedure exists.

If the T-SQL script from the previous step ran without error, a new stored
procedure called generate_iris_model is created and added to the irissql database.
You can find stored procedures in the Azure Data Studio Object Explorer, under
Programmability.

In this step, you execute the procedure to run the embedded code, creating a trained
and serialized model as an output.

Models that are stored for reuse in your database are serialized as a byte stream and
stored in a VARBINARY(MAX) column in a database table. Once the model is created,
trained, serialized, and saved to a database, it can be called by other procedures or by
the PREDICT T-SQL function in scoring workloads.

1. Run the following script to execute the procedure. The specific statement for
executing a stored procedure is EXECUTE  on the fourth line.

This particular script deletes an existing model of the same name ("Naive Bayes")
to make room for new ones created by rerunning the same procedure. Without
model deletion, an error occurs stating the object already exists. The model is
stored in a table called iris_models, provisioned when you created the irissql
database.

SQL

from sklearn.naive_bayes import GaussianNB 
GNB = GaussianNB() 
trained_model = pickle.dumps(GNB.fit(iris_data[["Sepal.Length", 
"Sepal.Width", "Petal.Length", "Petal.Width"]], 
iris_data[["SpeciesId"]].values.ravel())) 
' 
        , @input_data_1 = N'select "Sepal.Length", "Sepal.Width", 
"Petal.Length", "Petal.Width", "SpeciesId" from iris_data' 
        , @input_data_1_name = N'iris_data' 
        , @params = N'@trained_model varbinary(max) OUTPUT' 
        , @trained_model = @trained_model OUTPUT; 
END; 
GO 

Execute the procedure to create and train
models

DECLARE @model varbinary(max); 
DECLARE @new_model_name varchar(50) 

https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017


2. Verify that the model was inserted.

SQL

Results

model_name model

Naive Bayes 0x800363736B6C6561726E2E6E616976655F62617965730A...

Now that you have created, trained, and saved a model, move on to the next step:
creating a stored procedure that generates predictions. You'll do this by calling
sp_execute_external_script  to run a Python script that loads the serialized model and
gives it new data inputs to score.

1. Run the following code to create the stored procedure that performs scoring. At
run time, this procedure will load a binary model, use columns [1,2,3,4]  as inputs,
and specify columns [0,5,6]  as output.

SQL

SET @new_model_name = 'Naive Bayes' 
EXECUTE generate_iris_model @model OUTPUT; 
DELETE iris_models WHERE model_name = @new_model_name; 
INSERT INTO iris_models (model_name, model) values(@new_model_name, 
@model); 
GO 

SELECT * FROM dbo.iris_models 

Create and execute a stored procedure for
generating predictions

CREATE PROCEDURE predict_species (@model VARCHAR(100)) 
AS 
BEGIN 
    DECLARE @nb_model VARBINARY(max) = ( 
            SELECT model 
            FROM iris_models 
            WHERE model_name = @model 
            ); 

    EXECUTE sp_execute_external_script @language = N'Python' 
        , @script = N' 
import pickle 
irismodel = pickle.loads(nb_model) 



2. Execute the stored procedure, giving the model name "Naive Bayes" so that the
procedure knows which model to use.

SQL

When you run the stored procedure, it returns a Python data.frame. This line of T-
SQL specifies the schema for the returned results: WITH RESULT SETS ( ("id" int,
"SpeciesId" int, "SpeciesId.Predicted" int)); . You can insert the results into a
new table, or return them to an application.

The results are 150 predictions about species using floral characteristics as inputs.
For the majority of the observations, the predicted species matches the actual
species.

species_pred = irismodel.predict(iris_data[["Sepal.Length", 
"Sepal.Width", "Petal.Length", "Petal.Width"]]) 
iris_data["PredictedSpecies"] = species_pred 
OutputDataSet = iris_data[["id","SpeciesId","PredictedSpecies"]]  
print(OutputDataSet) 
' 
        , @input_data_1 = N'select id, "Sepal.Length", "Sepal.Width", 
"Petal.Length", "Petal.Width", "SpeciesId" from iris_data' 
        , @input_data_1_name = N'iris_data' 
        , @params = N'@nb_model varbinary(max)' 
        , @nb_model = @nb_model 
    WITH RESULT SETS(( 
                "id" INT 
              , "SpeciesId" INT 
              , "SpeciesId.Predicted" INT 
                )); 
END; 
GO 

EXECUTE predict_species 'Naive Bayes'; 
GO 



This example has been made simple by using the Python iris dataset for both
training and scoring. A more typical approach would involve running a SQL query
to get the new data, and passing that into Python as InputDataSet .

In this exercise, you learned how to create stored procedures dedicated to different
tasks, where each stored procedure used the system stored procedure
sp_execute_external_script  to start a Python process. Inputs to the Python process are
passed to sp_execute_external  as parameters. Both the Python script itself and data
variables in a database are passed as inputs.

Generally, you should only plan on using Azure Data Studio with polished Python code,
or simple Python code that returns row-based output. As a tool, Azure Data Studio
supports query languages like T-SQL and returns flattened rowsets. If your code
generates visual output like a scatterplot or histogram, you need a separate tool or end-
user application that can render the image outside of the stored procedure.

For some Python developers who are used to writing all-inclusive script handling a
range of operations, organizing tasks into separate procedures might seem unnecessary.
But training and scoring have different use cases. By separating them, you can put each
task on a different schedule and scope permissions to each operation.

A final benefit is that the processes can be modified using parameters. In this exercise,
Python code that created the model (named "Naive Bayes" in this example) was passed
as an input to a second stored procedure calling the model in a scoring process. This
exercise only uses one model, but you can imagine how parameterizing the model in a
scoring task would make that script more useful.

For more information on tutorials for Python with SQL machine learning, see:

Python tutorials

Conclusion

Next steps



Quickstart: Run simple R scripts with
SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In this quickstart, you'll run a set of simple R scripts using SQL Server Machine Learning
Services. You'll learn how to use the stored procedure sp_execute_external_script to
execute the script in a SQL Server instance.

You need the following prerequisites to run this quickstart.

SQL Server Machine Learning Services. To install Machine Learning Services, see
the Windows installation guide.

A tool for running SQL queries that contain R scripts. This quickstart uses Azure
Data Studio.

To run an R script, you'll pass it as an argument to the system stored procedure,
sp_execute_external_script. This system stored procedure starts the R runtime, passes
data to R, manages R user sessions securely, and returns any results to the client.

In the following steps, you'll run this example R script:

R

1. Open Azure Data Studio and connect to your server.

2. Pass the complete R script to the sp_execute_external_script  stored procedure.

The script is passed through the @script  argument. Everything inside the @script
argument must be valid R code.

Prerequisites

Run a simple script

a <- 1 
b <- 2 
c <- a/b 
d <- a*b 
print(c(c, d)) 
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SQL

3. The correct result is calculated and the R print  function returns the result to the
Messages window.

It should look something like this.

Results

text

A typical example script is one that just outputs the string "Hello World". Run the
following command.

SQL

Inputs to the sp_execute_external_script  stored procedure include:

Input Description

@language defines the language extension to call, in this case, R

@script defines the commands passed to the R runtime. Your entire R script must be
enclosed in this argument, as Unicode text. You could also add the text to a
variable of type nvarchar and then call the variable

EXECUTE sp_execute_external_script @language = N'R' 
    , @script = N' 
a <- 1 
b <- 2 
c <- a/b 
d <- a*b 
print(c(c, d)) 
' 

STDOUT message(s) from external script: 
0.5 2 

Run a Hello World script

EXECUTE sp_execute_external_script @language = N'R' 
    , @script = N'OutputDataSet<-InputDataSet' 
    , @input_data_1 = N'SELECT 1 AS hello' 
WITH RESULT SETS(([Hello World] INT)); 
GO 



Input Description

@input_data_1 data returned by the query, passed to the R runtime, which returns the data as a
data frame

WITH RESULT
SETS

clause defines the schema of the returned data table, adding "Hello World" as
the column name, int for the data type

The command outputs the following text:

Hello World

1

By default, sp_execute_external_script  accepts a single dataset as input, which typically
you supply in the form of a valid SQL query. It then returns a single R data frame as
output.

For now, let's use the default input and output variables of sp_execute_external_script :
InputDataSet and OutputDataSet.

1. Create a small table of test data.

SQL

2. Use the SELECT  statement to query the table.

SQL

Use inputs and outputs

CREATE TABLE RTestData (col1 INT NOT NULL) 

INSERT INTO RTestData 
VALUES (1); 

INSERT INTO RTestData 
VALUES (10); 

INSERT INTO RTestData 
VALUES (100); 
GO 

SELECT * 
FROM RTestData 



Results

3. Run the following R script. It retrieves the data from the table using the SELECT
statement, passes it through the R runtime, and returns the data as a data frame.
The WITH RESULT SETS  clause defines the schema of the returned data table for
SQL, adding the column name NewColName.

SQL

Results

4. Now let's change the names of the input and output variables. The default input
and output variable names are InputDataSet and OutputDataSet, this script
changes the names to SQL_in and SQL_out:

SQL

Note that R is case-sensitive. The input and output variables used in the R script
(SQL_out, SQL_in) need to match the names defined with @input_data_1_name  and
@output_data_1_name , including case.

EXECUTE sp_execute_external_script @language = N'R' 
    , @script = N'OutputDataSet <- InputDataSet;' 
    , @input_data_1 = N'SELECT * FROM RTestData;' 
WITH RESULT SETS(([NewColName] INT NOT NULL)); 

EXECUTE sp_execute_external_script @language = N'R' 
    , @script = N' SQL_out <- SQL_in;' 
    , @input_data_1 = N' SELECT 12 as Col;' 
    , @input_data_1_name = N'SQL_in' 
    , @output_data_1_name = N'SQL_out' 
WITH RESULT SETS(([NewColName] INT NOT NULL)); 

 Tip



5. You also can generate values just using the R script with no input data
(@input_data_1  is set to blank).

The following script outputs the text "hello" and "world".

SQL

Results

@script as input" />

If you would like to see which version of R is installed, run the following script.

SQL

The R print  function returns the version to the Messages window. In the example
output below, you can see that in this case, R version 3.4.4 is installed.

Results

text

Only one input dataset can be passed as a parameter, and you can return only
one dataset. However, you can call other datasets from inside your R code
and you can return outputs of other types in addition to the dataset. You can
also add the OUTPUT keyword to any parameter to have it returned with the
results.

EXECUTE sp_execute_external_script @language = N'R' 
    , @script = N' 
mytextvariable <- c("hello", " ", "world"); 
OutputDataSet <- as.data.frame(mytextvariable); 
' 
    , @input_data_1 = N'' 
WITH RESULT SETS(([Col1] CHAR(20) NOT NULL)); 

Check R version

EXECUTE sp_execute_external_script @language = N'R' 
    , @script = N'print(version)'; 
GO 



Microsoft provides a number of R packages pre-installed with Machine Learning
Services.

To see a list of which R packages are installed, including version, dependencies, license,
and library path information, run the following script.

SQL

The output is from installed.packages()  in R and is returned as a result set.

Results

STDOUT message(s) from external script: 
                   _ 
platform       x86_64-w64-mingw32
arch           x86_64 
os             mingw32 
system         x86_64, mingw32 
status 
major          3 
minor          4.4 
year           2018 
month          03 
day            15 
svn rev        74408 
language       R 
version.string R version 3.4.4 (2018-03-15) 
nickname       Someone to Lean On

List R packages

EXEC sp_execute_external_script @language = N'R' 
    , @script = N' 
OutputDataSet <- data.frame(installed.packages()[,c("Package", "Version", 
"Depends", "License", "LibPath")]);' 
WITH result sets(( 
            Package NVARCHAR(255) 
            , Version NVARCHAR(100) 
            , Depends NVARCHAR(4000) 
            , License NVARCHAR(1000) 
            , LibPath NVARCHAR(2000) 
            )); 



To learn how to use data structures when using R with SQL machine learning, follow this
quickstart:

Next steps

Handle data types and objects using R with SQL machine learning



Quickstart: Data structures, data types,
and objects using R with SQL machine
learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In this quickstart, you'll learn how to use data structures and data types when using R in
SQL Server Machine Learning Services. You'll learn about moving data between R and
SQL Server, and the common issues that might occur.

Common issues to know up front include:

Data types sometimes don't match
Implicit conversions might take place
Cast and convert operations are sometimes required
R and SQL use different data objects

You need the following prerequisites to run this quickstart.

SQL Server Machine Learning Services. To install Machine Learning Services, see
the Windows installation guide.

A tool for running SQL queries that contain R scripts. This quickstart uses Azure
Data Studio.

When your script returns results from R to SQL Server, it must return the data as a
data.frame. Any other type of object that you generate in your script - whether that be a
list, factor, vector, or binary data - must be converted to a data frame if you want to
output it as part of the stored procedure results. Fortunately, there are multiple R
functions to support changing other objects to a data frame. You can even serialize a
binary model and return it in a data frame, which you'll do later in this quickstart.

First, let's experiment with some R basic R objects - vectors, matrices, and lists - and see
how conversion to a data frame changes the output passed to SQL Server.

Prerequisites

Always return a data frame

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017


Compare these two "Hello World" scripts in R. The scripts look almost identical, but the
first returns a single column of three values, whereas the second returns three columns
with a single value each.

Example 1

SQL

Example 2

SQL

Why are the results so different?

The answer can usually be found by using the R str()  command. Add the function
str(object_name)  anywhere in your R script to have the data schema of the specified R
object returned as an informational message.

To figure out why Example 1 and Example 2 have such different results, insert the line
str(OutputDataSet)  at the end of the @script  variable definition in each statement, like
this:

Example 1 with str function added

SQL

EXECUTE sp_execute_external_script 
       @language = N'R' 
     , @script = N' mytextvariable <- c("hello", " ", "world"); 
       OutputDataSet <- as.data.frame(mytextvariable);' 
     , @input_data_1 = N' '; 

EXECUTE sp_execute_external_script 
        @language = N'R' 
      , @script = N' OutputDataSet<- data.frame(c("hello"), " ", 
c("world"));' 
      , @input_data_1 = N'  '; 

Identify schema and data types

EXECUTE sp_execute_external_script 
        @language = N'R' 
      , @script = N' mytextvariable <- c("hello", " ", "world"); 
      OutputDataSet <- as.data.frame(mytextvariable); 
      str(OutputDataSet);' 



Example 2 with str function added

SQL

Now, review the text in Messages to see why the output is different.

Results - Example 1

SQL

Results - Example 2

SQL

As you can see, a slight change in R syntax had a big effect on the schema of the results.
We won't go into why, but the differences in R data types are explained in details in the
Data Structures section in "Advanced R" by Hadley Wickham .

For now, just be aware that you need to check the expected results when coercing R
objects into data frames.

      , @input_data_1 = N'  ' 
; 

EXECUTE sp_execute_external_script 
  @language = N'R',  
  @script = N' OutputDataSet <- data.frame(c("hello"), " ", c("world")); 
    str(OutputDataSet);' ,  
  @input_data_1 = N'  '; 

STDOUT message(s) from external script: 
'data.frame': 3 obs. of  1 variable: 
$ mytextvariable: Factor w/ 3 levels " ","hello","world": 2 1 3 

STDOUT message(s) from external script: 
'data.frame': 1 obs. of  3 variables: 
$ c..hello..: Factor w/ 1 level "hello": 1 
$ X...      : Factor w/ 1 level " ": 1 
$ c..world..: Factor w/ 1 level "world": 1 

 Tip

You can also use R identity functions, such as is.matrix , is.vector , to return
information about the internal data structure.

http://adv-r.had.co.nz/


Each R data object has its own rules for how values are handled when combined with
other data objects if the two data objects have the same number of dimensions, or if
any data object contains heterogeneous data types.

First, create a small table of test data.

SQL

For example, assume you run the following statement to perform matrix multiplication
using R. You multiply a single-column matrix with the three values by an array with four
values, and expect a 4x3 matrix as a result.

SQL

Under the covers, the column of three values is converted to a single-column matrix.
Because a matrix is just a special case of an array in R, the array y  is implicitly coerced to
a single-column matrix to make the two arguments conform.

Results

Col1 Col2 Col3 Col4

12 13 14 15

Implicit conversion of data objects

CREATE TABLE RTestData (col1 INT NOT NULL) 

INSERT INTO RTestData 
VALUES (1); 

INSERT INTO RTestData 
VALUES (10); 

INSERT INTO RTestData 
VALUES (100); 
GO 

EXECUTE sp_execute_external_script 
    @language = N'R' 
    , @script = N' 
        x <- as.matrix(InputDataSet); 
        y <- array(12:15); 
    OutputDataSet <- as.data.frame(x %*% y);' 
    , @input_data_1 = N' SELECT [Col1]  from RTestData;' 
    WITH RESULT SETS (([Col1] int, [Col2] int, [Col3] int, Col4 int)); 



Col1 Col2 Col3 Col4

120 130 140 150

1200 1300 1400 1500

However, note what happens when you change the size of the array y .

SQL

Now R returns a single value as the result.

Results

Col1

1542

Why? In this case, because the two arguments can be handled as vectors of the same
length, R returns the inner product as a matrix. This is the expected behavior according
to the rules of linear algebra; however, it could cause problems if your downstream
application expects the output schema to never change!

R provides great flexibility for working with vectors of different sizes, and for combining
these column-like structures into data frames. Lists of vectors can look like a table, but

execute sp_execute_external_script 
   @language = N'R' 
   , @script = N' 
        x <- as.matrix(InputDataSet); 
        y <- array(12:14); 
   OutputDataSet <- as.data.frame(y %*% x);' 
   , @input_data_1 = N' SELECT [Col1]  from RTestData;' 
   WITH RESULT SETS (([Col1] int )); 

 Tip

Getting errors? Make sure that you're running the stored procedure in the context
of the database that contains the table, and not in master or another database.

Also, we suggest that you avoid using temporary tables for these examples. Some R
clients will terminate a connection between batches, deleting temporary tables.

Merge or multiply columns of different length



they don't follow all the rules that govern database tables.

For example, the following script defines a numeric array of length 6 and stores it in the
R variable df1 . The numeric array is then combined with the integers of the RTestData
table, which contains three (3) values, to make a new data frame, df2 .

SQL

To fill out the data frame, R repeats the elements retrieved from RTestData as many
times as needed to match the number of elements in the array df1 .

Results

Col2 Col3

1 1

10 2

100 3

1 4

10 5

100 6

Remember that a data frame only looks like a table, and is actually a list of vectors.

R and SQL Server don't use the same data types, so when you run a query in SQL Server
to get data and then pass that to the R runtime, some type of implicit conversion usually
takes place. Another set of conversions takes place when you return data from R to SQL
Server.

SQL Server pushes the data from the query to the R process managed by the
Launchpad service and converts it to an internal representation for greater

EXECUTE sp_execute_external_script 
    @language = N'R' 
    , @script = N' 
               df1 <- as.data.frame( array(1:6) ); 
               df2 <- as.data.frame( c( InputDataSet , df1 )); 
               OutputDataSet <- df2' 
    , @input_data_1 = N' SELECT [Col1]  from RTestData;' 
    WITH RESULT SETS (( [Col2] int not null, [Col3] int not null )); 

Cast or convert data



efficiency.
The R runtime loads the data into a data.frame variable and performs its own
operations on the data.
The database engine returns the data to SQL Server using a secured internal
connection and presents the data in terms of SQL Server data types.
You get the data by connecting to SQL Server using a client or network library that
can issue SQL queries and handle tabular data sets. This client application can
potentially affect the data in other ways.

To see how this works, run a query such as this one on the AdventureWorksDW  data
warehouse. This view returns sales data used in creating forecasts.

SQL

Now, try pasting this query as the input to the stored procedure.

SQL

USE AdventureWorksDW 
GO 

SELECT ReportingDate 
         , CAST(ModelRegion as varchar(50)) as ProductSeries 
         , Amount 
           FROM [AdventureWorksDW].[dbo].[vTimeSeries] 
           WHERE [ModelRegion] = 'M200 Europe' 
           ORDER BY ReportingDate ASC 

７ Note

You can use any version of AdventureWorks, or create a different query using a
database of your own. The point is to try to handle some data that contains text,
datetime and numeric values.

EXECUTE sp_execute_external_script 
       @language = N'R' 
      , @script = N' str(InputDataSet); 
      OutputDataSet <- InputDataSet;' 
      , @input_data_1 = N' 
           SELECT ReportingDate 
         , CAST(ModelRegion as varchar(50)) as ProductSeries 
         , Amount 
           FROM [AdventureWorksDW].[dbo].[vTimeSeries] 
           WHERE [ModelRegion] = ''M200 Europe'' 
           ORDER BY ReportingDate ASC ;' 
WITH RESULT SETS undefined; 

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks


If you get an error, you'll probably need to make some edits to the query text. For
example, the string predicate in the WHERE clause must be enclosed by two sets of
single quotation marks.

After you get the query working, review the results of the str  function to see how R
treats the input data.

Results

text

The datetime column has been processed using the R data type, POSIXct.
The text column "ProductSeries" has been identified as a factor, meaning a
categorical variable. String values are handled as factors by default. If you pass a
string to R, it is converted to an integer for internal use, and then mapped back to
the string on output.

From even these short examples, you can see the need to check the effects of data
conversion when passing SQL queries as input. Because some SQL Server data types are
not supported by R, consider these ways to avoid errors:

Test your data in advance and verify columns or values in your schema that could
be a problem when passed to R code.
Specify columns in your input data source individually, rather than using SELECT * ,
and know how each column will be handled.
Perform explicit casts as necessary when preparing your input data, to avoid
surprises.
Avoid passing columns of data (such as GUIDs or rowguids) that cause errors and
aren't useful for modeling.

For more information on supported and unsupported data types, see R libraries and
data types.

STDOUT message(s) from external script: 'data.frame':    37 obs. of  3 
variables: 
STDOUT message(s) from external script: $ ReportingDate: POSIXct, format: 
"2010-12-24 23:00:00" "2010-12-24 23:00:00" 
STDOUT message(s) from external script: $ ProductSeries: Factor w/ 1 levels 
"M200 Europe",..: 1 1 1 1 1 1 1 1 1 1 
STDOUT message(s) from external script: $ Amount       : num  3400 16925 
20350 16950 16950 

Summary



To learn about writing advanced R functions with SQL machine learning, follow this
quickstart:

Next steps

Write advanced R functions with SQL machine learning



Quickstart: R functions with SQL
machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In this quickstart, you'll learn how to use R mathematical and utility functions with SQL
Server Machine Learning Services. Statistical functions are often complicated to
implement in T-SQL, but can be done in R with only a few lines of code.

You need the following prerequisites to run this quickstart.

SQL Server Machine Learning Services. To install Machine Learning Services, see
the Windows installation guide.

A tool for running SQL queries that contain R scripts. This quickstart uses Azure
Data Studio.

For simplicity, let's use the R stats  package, that's installed and loaded by default. The
package contains hundreds of functions for common statistical tasks, among them the
rnorm  function, which generates a specified number of random numbers using the
normal distribution, given a standard deviation and mean.

For example, the following R code returns 100 numbers on a mean of 50, given a
standard deviation of 3.

R

To call this line of R from T-SQL, add the R function in the R script parameter of
sp_execute_external_script , like this:

SQL

Prerequisites

Create a stored procedure to generate random
numbers

as.data.frame(rnorm(100, mean = 50, sd = 3)); 

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017


What if you'd like to make it easier to generate a different set of random numbers?

That's easy when combined with T-SQL. You define a stored procedure that gets the
arguments from the user, then pass those arguments into the R script as variables.

SQL

The first line defines each of the SQL input parameters that are required when the
stored procedure is executed.

The line beginning with @params  defines all variables used by the R code, and the
corresponding SQL data types.

The lines that immediately follow map the SQL parameter names to the
corresponding R variable names.

Now that you've wrapped the R function in a stored procedure, you can easily call the
function and pass in different values, like this:

SQL

EXECUTE sp_execute_external_script 
      @language = N'R' 
    , @script = N' 
         OutputDataSet <- as.data.frame(rnorm(100, mean = 50, sd =3));' 
    , @input_data_1 = N'   ;' 
      WITH RESULT SETS (([Density] float NOT NULL)); 

CREATE PROCEDURE MyRNorm ( 
    @param1 INT 
    , @param2 INT 
    , @param3 INT 
    ) 
AS 
EXECUTE sp_execute_external_script @language = N'R' 
    , @script = N' 
      OutputDataSet <- as.data.frame(rnorm(mynumbers, mymean, mysd));' 
    , @input_data_1 = N'   ;' 
    , @params = N' @mynumbers int, @mymean int, @mysd int' 
    , @mynumbers = @param1 
    , @mymean = @param2 
    , @mysd = @param3 
WITH RESULT SETS(([Density] FLOAT NOT NULL)); 

EXECUTE MyRNorm @param1 = 100,@param2 = 50, @param3 = 3 



The utils package, installed by default, provides a variety of utility functions for
investigating the current R environment. These functions can be useful if you're finding
discrepancies in the way your R code performs in SQL Server and in outside
environments.

For example, you might use the system timing functions in R, such as system.time  and
proc.time , to capture the time used by R processes and analyze performance issues. For
an example, see the tutorial Create Data Features where R timing functions are
embedded in the solution.

SQL

For other useful functions, see Use R code profiling functions to improve performance.

To create a machine learning model using R with SQL machine learning, follow this
quickstart:

Use R utility functions for troubleshooting

EXECUTE sp_execute_external_script 
      @language = N'R' 
    , @script = N' 
        library(utils); 
        start.time <- proc.time(); 
         
        # Run R processes 
         
        elapsed_time <- proc.time() - start.time;' 

Next steps

Create and score a predictive model in R with SQL machine learning



Quickstart: Create and score a predictive
model in R with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In this quickstart, you'll create and train a predictive model using T. You'll save the
model to a table in your SQL Server instance, and then use the model to predict values
from new data using SQL Server Machine Learning Services.

You'll create and execute two stored procedures running in SQL. The first one uses the
mtcars dataset included with R and generates a simple generalized linear model (GLM)
that predicts the probability that a vehicle has been fitted with a manual transmission.
The second procedure is for scoring - it calls the model generated in the first procedure
to output a set of predictions based on new data. By placing R code in a SQL stored
procedure, operations are contained in SQL, are reusable, and can be called by other
stored procedures and client applications.

By completing this quickstart, you'll learn:

You need the following prerequisites to run this quickstart.

SQL Server Machine Learning Services. To install Machine Learning Services, see
the Windows installation guide.

A tool for running SQL queries that contain R scripts. This quickstart uses Azure
Data Studio.

 Tip

If you need a refresher on linear models, try this tutorial which describes the
process of fitting a model using rxLinMod: Fitting Linear Models

How to embed R code in a stored procedure＂

How to pass inputs to your code through inputs on the stored procedure＂

How stored procedures are used to operationalize models＂

Prerequisites

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/r/how-to-revoscaler-linear-model


To create the model, you'll create source data for training, create the model and train it
using the data, then store the model in a database where it can be used to generate
predictions with new data.

1. Open Azure Data Studio, connect to your instance, and open a new query window.

2. Create a table to save the training data.

SQL

3. Insert the data from the built-in dataset mtcars .

SQL

Create the model

Create the source data

CREATE TABLE dbo.MTCars( 
    mpg decimal(10, 1) NOT NULL, 
    cyl int NOT NULL, 
    disp decimal(10, 1) NOT NULL, 
    hp int NOT NULL, 
    drat decimal(10, 2) NOT NULL, 
    wt decimal(10, 3) NOT NULL, 
    qsec decimal(10, 2) NOT NULL, 
    vs int NOT NULL, 
    am int NOT NULL, 
    gear int NOT NULL, 
    carb int NOT NULL 
); 

INSERT INTO dbo.MTCars 
EXEC sp_execute_external_script @language = N'R' 
    , @script = N'MTCars <- mtcars;' 
    , @input_data_1 = N'' 
    , @output_data_1_name = N'MTCars'; 

 Tip

Many datasets, small and large, are included with the R runtime. To get a list
of datasets installed with R, type library(help="datasets")  from an R
command prompt.



The car speed data contains two columns, both numeric: horsepower (hp ) and weight
(wt ). From this data, you'll create a generalized linear model (GLM) that estimates the
probability that a vehicle has been fitted with a manual transmission.

To build the model, you define the formula inside your R code, and pass the data as an
input parameter.

SQL

The first argument to glm  is the formula parameter, which defines am  as
dependent on hp + wt .
The input data is stored in the variable MTCarsData , which is populated by the SQL
query. If you don't assign a specific name to your input data, the default variable
name would be InputDataSet.

Next, store the model in a database so you can use it for prediction or retrain it.

1. Create a table to store the model.

The output of an R package that creates a model is usually a binary object.
Therefore, the table where you store the model must provide a column of
varbinary(max) type.

SQL

Create and train the model

DROP PROCEDURE IF EXISTS generate_GLM; 
GO 
CREATE PROCEDURE generate_GLM 
AS 
BEGIN 
    EXEC sp_execute_external_script 
    @language = N'R' 
    , @script = N'carsModel <- glm(formula = am ~ hp + wt, data = 
MTCarsData, family = binomial); 
        trained_model <- data.frame(payload = as.raw(serialize(carsModel, 
connection=NULL)));' 
    , @input_data_1 = N'SELECT hp, wt, am FROM MTCars' 
    , @input_data_1_name = N'MTCarsData' 
    , @output_data_1_name = N'trained_model' 
    WITH RESULT SETS ((model VARBINARY(max))); 
END; 
GO 

Store the model in the database



2. Run the following Transact-SQL statement to call the stored procedure, generate
the model, and save it to the table you created.

SQL

SQL

Scoring is a term used in data science to mean generating predictions, probabilities, or
other values based on new data fed into a trained model. You'll use the model you
created in the previous section to score predictions against new data.

First, create a table with new data.

SQL

CREATE TABLE GLM_models ( 
    model_name varchar(30) not null default('default model') primary 
key, 
    model varbinary(max) not null 
); 

INSERT INTO GLM_models(model) 
EXEC generate_GLM; 

 Tip

If you run this code a second time, you get this error: "Violation of PRIMARY
KEY constraint...Cannot insert duplicate key in object
dbo.stopping_distance_models". One option for avoiding this error is to
update the name for each new model. For example, you could change the
name to something more descriptive, and include the model type, the day
you created it, and so forth.

UPDATE GLM_models 
SET model_name = 'GLM_' + format(getdate(), 'yyyy.MM.HH.mm', 'en-gb')
WHERE model_name = 'default model' 

Score new data using the trained model

Create a table of new data



To get predictions based on your model, write a SQL script that does the following:

1. Gets the model you want
2. Gets the new input data
3. Calls an R prediction function that is compatible with that model

Over time, the table might contain multiple R models, all built using different
parameters or algorithms, or trained on different subsets of data. In this example, we'll
use the model named default model .

SQL

CREATE TABLE dbo.NewMTCars( 
 hp INT NOT NULL 
 , wt DECIMAL(10,3) NOT NULL 
 , am INT NULL 
) 
GO 

INSERT INTO dbo.NewMTCars(hp, wt) 
VALUES (110, 2.634) 

INSERT INTO dbo.NewMTCars(hp, wt) 
VALUES (72, 3.435) 

INSERT INTO dbo.NewMTCars(hp, wt) 
VALUES (220, 5.220) 

INSERT INTO dbo.NewMTCars(hp, wt) 
VALUES (120, 2.800) 
GO 

Predict manual transmission

DECLARE @glmmodel varbinary(max) =  
    (SELECT model FROM dbo.GLM_models WHERE model_name = 'default model'); 

EXEC sp_execute_external_script 
    @language = N'R' 
    , @script = N' 
            current_model <- unserialize(as.raw(glmmodel)); 
            new <- data.frame(NewMTCars); 
            predicted.am <- predict(current_model, new, type = "response"); 
            str(predicted.am); 
            OutputDataSet <- cbind(new, predicted.am); 
            ' 
    , @input_data_1 = N'SELECT hp, wt FROM dbo.NewMTCars' 
    , @input_data_1_name = N'NewMTCars' 
    , @params = N'@glmmodel varbinary(max)' 



The script above performs the following steps:

Use a SELECT statement to get a single model from the table, and pass it as an
input parameter.

After retrieving the model from the table, call the unserialize  function on the
model.

Apply the predict  function with appropriate arguments to the model, and provide
the new input data.

Results

It's also possible to use the PREDICT (Transact-SQL) statement to generate a predicted
value or score based on a stored model.

For more information on tutorials for R with SQL machine learning, see:

R tutorials

    , @glmmodel = @glmmodel 
WITH RESULT SETS ((new_hp INT, new_wt DECIMAL(10,3), predicted_am 
DECIMAL(10,3))); 

７ Note

In the example, the str  function is added during the testing phase, to check the
schema of data being returned from R. You can remove the statement later.

The column names used in the R script are not necessarily passed to the stored
procedure output. Here the WITH RESULTS clause is used to define some new
column names.

Next steps

https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017


Python tutorials for SQL machine
learning
Article • 02/28/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

This article describes the Python tutorials and quickstarts for SQL Server Machine
Learning Services.

Tutorial Description

Predict ski rental
with linear
regression

Use Python and linear regression to predict the number of ski rentals. Use
notebooks in Azure Data Studio for preparing data and training the model,
and T-SQL for model deployment.

Categorizing
customers using
k-means
clustering

Use Python to develop and deploy a K-Means clustering model to categorize
customers. Use notebooks in Azure Data Studio for preparing data and
training the model, and T-SQL for model deployment.

Create a model
using
revoscalepy

Demonstrates how to run code from a remote Python client using SQL Server
as compute context. The tutorial creates a model using rxLinMod from the
revoscalepy library.

Python data
analytics for SQL
developers

This end-to-end walkthrough demonstrates the process of building a
complete Python solution using T-SQL.

If you are new to SQL machine learning, you can also try the Python quickstarts.

Quickstart Description

Run simple Python scripts Learn the basics of how to call Python in T-SQL using
sp_execute_external_script.

Data structures and objects
using Python

Shows how SQL uses the Python pandas package to handle
data structures.

Create and score a predictive
model in Python

Explains how to create, train, and use a Python model to make
predictions from new data.

Python tutorials

Python quickstarts

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


Python extension in SQL Server

Next steps



Python tutorial: Predict ski rental with
linear regression with SQL machine
learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In this four-part tutorial series, you will use Python and linear regression in SQL Server
Machine Learning Services to predict the number of ski rentals. The tutorial uses a
Python notebook in Azure Data Studio.

Imagine you own a ski rental business and you want to predict the number of rentals
that you'll have on a future date. This information will help you get your stock, staff, and
facilities ready.

In the first part of this series, you'll get set up with the prerequisites. In parts two and
three, you'll develop some Python scripts in a notebook to prepare your data and train a
machine learning model. Then, in part three, you'll run those Python scripts inside the
database using T-SQL stored procedures.

In this article, you'll learn how to:

In part two, you'll learn how to load the data from a database into a Python data frame,
and prepare the data in Python.

In part three, you'll learn how to train a linear regression model in Python.

In part four, you'll learn how to store the model in a database, and then create stored
procedures from the Python scripts you developed in parts two and three. The stored
procedures will run on the server to make predictions based on new data.

SQL Server Machine Learning Services - To install Machine Learning Services, see
the Windows installation guide.

Python IDE - This tutorial uses a Python notebook in Azure Data Studio. For more
information, see How to use notebooks in Azure Data Studio.

Import a sample database＂

Prerequisites

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/azure-data-studio/notebooks/notebooks-guidance?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/notebooks/notebooks-guidance?view=sql-server-2017


SQL query tool - This tutorial assumes you're using Azure Data Studio.

Additional Python packages - The examples in this tutorial series use the following
Python packages that may not be installed by default:

pandas
pyodbc
sklearn

To install these packages:

1. In your Azure Data Studio notebook, select Manage Packages.
2. In the Manage Packages pane, select the Add new tab.
3. For each of the following packages, enter the package name, select Search,

then select Install.

As an alternative, you can open a Command Prompt, change to the installation
path for the version of Python you use in Azure Data Studio (for example, cd
%LocalAppData%\Programs\Python\Python37-32 ), then run pip install  for each
package.

The sample database used in this tutorial has been saved to a .bak database backup file
for you to download and use.

1. Download the file TutorialDB.bak .

2. Follow the directions in Restore a database from a backup file in Azure Data
Studio, using these details:

Import from the TutorialDB.bak  file you downloaded.
Name the target database TutorialDB .

3. You can verify that the restored database exists by querying the dbo.rental_data
table:

SQL

Restore the sample database

USE TutorialDB; 
SELECT * FROM [dbo].[rental_data]; 

Clean up resources

https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://rserverdistribution.blob.core.windows.net/production/sqlmldocument/TutorialDB.bak
https://learn.microsoft.com/en-us/sql/azure-data-studio/tutorial-backup-restore-sql-server?view=sql-server-2017#restore-a-database-from-a-backup-file


If you're not going to continue with this tutorial, delete the TutorialDB  database.

In part one of this tutorial series, you completed these steps:

Installed the prerequisites
Import a sample database

To prepare the data from the TutorialDB database, follow part two of this tutorial series:

Next steps

Python Tutorial: Prepare data to train a linear regression model



Python Tutorial: Prepare data to train a
linear regression model with SQL
machine learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part two of this four-part tutorial series, you'll prepare data from a database using
Python. Later in this series, you'll use this data to train and deploy a linear regression
model in Python with SQL Server Machine Learning Services.

In this article, you'll learn how to:

In part one, you learned how to restore the sample database.

In part three, you'll learn how to train a linear regression machine learning model in
Python.

In part four, you'll learn how to store the model in a database, and then create stored
procedures from the Python scripts you developed in parts two and three. The stored
procedures will run on the server to make predictions based on new data.

Part two of this tutorial assumes you have completed part one and its
prerequisites.

To use the data in Python, you'll load the data from the database into a pandas data
frame.

Create a new Python notebook in Azure Data Studio and run the script below.

The Python script below imports the dataset from the dbo.rental_data  table in your
database to a pandas data frame df.

Load the data from the database into a pandas data frame＂

Prepare the data in Python by removing some columns＂

Prerequisites

Explore and prepare the data

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


In the connection string, replace connection details as needed. To use Windows
authentication with an ODBC connection string, specify Trusted_Connection=Yes;
instead of the UID  and PWD  parameters.

Python

You should see results similar to the following.

results

Filter the columns from the dataframe to remove ones we don't want to use in the
training. Rentalcount  should not be included as it is the target of the predictions.

Python

import pyodbc 
import pandas 
from sklearn.linear_model import LinearRegression 
from sklearn.metrics import mean_squared_error 

# Connection string to your SQL Server instance 
conn_str = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server}; SERVER=
<server>; DATABASE=TutorialDB;UID=<username>;PWD=<password>') 

query_str = 'SELECT Year, Month, Day, Rentalcount, Weekday, Holiday, Snow 
FROM dbo.rental_data' 

df = pandas.read_sql(sql=query_str, con=conn_str) 
print("Data frame:", df) 

Data frame:      Year  Month  Day  Rentalcount  WeekDay  Holiday  Snow 
0    2014      1   20          445        2        1     0 
1    2014      2   13           40        5        0     0 
2    2013      3   10          456        1        0     0 
3    2014      3   31           38        2        0     0 
4    2014      4   24           23        5        0     0 
..    ...    ...  ...          ...      ...      ...   ... 
448  2013      2   19           57        3        0     1 
449  2015      3   18           26        4        0     0 
450  2015      3   24           29        3        0     1 
451  2014      3   26           50        4        0     1 
452  2015     12    6          377        1        0     1 

[453 rows x 7 columns] 

columns = df.columns.tolist() 
columns = [c for c in columns if c not in ["Year", "Rentalcount"]] 



Note the data the training set will have access to:

results

In part two of this tutorial series, you completed these steps:

Load the data from the database into a pandas data frame
Prepare the data in Python by removing some columns

To train a machine learning model that uses data from the TutorialDB  database, follow
part three of this tutorial series:

print("Training set:", test[columns]) 

Training set:      Month  Day  Weekday  Holiday  Snow 
1        2   13        5        0     0 
3        3   31        2        0     0 
7        3    8        7        0     0 
15       3    4        2        0     1 
22       1   18        1        0     0 
..     ...  ...      ...      ...   ... 
416      4   13        1        0     1 
421      1   21        3        0     1 
438      2   19        4        0     1 
441      2    3        3        0     1 
447      1    4        6        0     1 

[91 rows x 5 columns] 

Next steps

Python Tutorial: Train a linear regression model



Python tutorial: Train a linear regression
model with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part three of this four-part tutorial series, you'll train a linear regression model in
Python. In the next part of this series, you'll deploy this model in a SQL Server database
with Machine Learning Services.

In this article, you'll learn how to:

In part one, you learned how to restore the sample database.

In part two, you learned how to load the data from a database into a Python data frame,
and prepare the data in Python.

In part four, you'll learn how to store the model in a database, and then create stored
procedures from the Python scripts you developed in parts two and three. The stored
procedures will run in on the server to make predictions based on new data.

Part three of this tutorial assumes you have completed part one and its
prerequisites.

In order to predict, you have to find a function (model) that best describes the
dependency between the variables in our dataset. This called training the model. The
training dataset will be a subset of the entire dataset from the pandas data frame df
that you created in part two of this series.

You will train model lin_model  using a linear regression algorithm.

Python

Train a linear regression model＂

Make predictions using the linear regression model＂

Prerequisites

Train the model

# Store the variable we'll be predicting on. 
target = "Rentalcount" 

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


You should see results similar to the following.

results

Use a predict function to predict the rental counts using the model lin_model .

Python

You should see results similar to the following.

results

# Generate the training set.  Set random_state to be able to replicate 
results. 
train = df.sample(frac=0.8, random_state=1) 

# Select anything not in the training set and put it in the testing set. 
test = df.loc[~df.index.isin(train.index)] 

# Print the shapes of both sets. 
print("Training set shape:", train.shape) 
print("Testing set shape:", test.shape) 

# Initialize the model class. 
lin_model = LinearRegression() 

# Fit the model to the training data. 
lin_model.fit(train[columns], train[target]) 

Training set shape: (362, 7) 
Testing set shape: (91, 7) 

Make predictions

# Generate our predictions for the test set. 
lin_predictions = lin_model.predict(test[columns]) 
print("Predictions:", lin_predictions) 

# Compute error between our test predictions and the actual values. 
lin_mse = mean_squared_error(lin_predictions, test[target]) 
print("Computed error:", lin_mse) 

Predictions: [124.41293228 123.8095075  117.67253182 209.39332151 
135.46159387 
 199.50603805 472.14918499  90.15781602 216.61319499 120.30710327 
  89.47591091 127.71290441 207.44065517 125.68466139 201.38119194 
 204.29377218 127.4494643  113.42721447 127.37388762  94.66754136 



In part three of this tutorial series, you completed these steps:

Train a linear regression model
Make predictions using the linear regression model

To deploy the machine learning model you've created, follow part four of this tutorial
series:

  90.21979191 173.86647615 130.34747586 111.81550069 118.88131715 
 124.74028405 211.95038051 202.06309706 123.53053083 167.06313191 
 206.24643852 122.64812937 179.98791527 125.1558454  168.00847713 
 120.2305587  196.60802649 117.00616326 173.20010759  89.9563518 
  92.11048236 120.91052805 175.47818992 129.65196995 120.97443971 
 175.95863082 127.24800008 135.05866542 206.49627783  91.63004147 
 115.78280925 208.92841718 213.5137192  212.83278197  96.74415948 
  95.1324457  199.9089665  206.10791806 126.16510228 120.0281266 
 209.08150631 132.88996619 178.84110582 128.85971386 124.67637239 
 115.58134503  96.82167192 514.61789505 125.48319717 207.50359894 
 121.64080826 201.9381774  113.22575025 202.46505762  90.7002328 
  92.31194658 201.25627228 516.97252195  91.36660136 599.27093251 
 199.6445585  123.66905128 117.4710676  173.12259514 129.60359486 
 209.59478573 206.29481361 210.69322009 205.50255751 210.88011563 
 207.65572019] 
Computed error: 35003.54030828391

Next steps

Python Tutorial: Deploy a machine learning model



Python Tutorial: Deploy a linear
regression model with SQL machine
learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part four of this four-part tutorial series, you'll deploy a linear regression model
developed in Python into a SQL Server database using Machine Learning Services.

In this article, you'll learn how to:

In part one, you learned how to restore the sample database.

In part two, you learned how to load the data from a database into a Python data frame,
and prepare the data in Python.

In part three, you learned how to train a linear regression machine learning model in
Python.

Part four of this tutorial assumes you have completed part one and its
prerequisites.

Now, using the Python scripts you developed, create a stored procedure
generate_rental_py_model that trains and generates the linear regression model using
LinearRegression from scikit-learn.

Run the following T-SQL statement in Azure Data Studio to create the stored procedure
to train the model.

Create a stored procedure that generates the machine learning model＂

Store the model in a database table＂

Create a stored procedure that makes predictions using the model＂

Execute the model with new data＂

Prerequisites

Create a stored procedure that generates the
model

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


SQL

Create a table in the TutorialDB database and then save the model to the table.

1. Run the following T-SQL statement in Azure Data Studio to create a table called
dbo.rental_py_models which is used to store the model.

SQL

-- Stored procedure that trains and generates a Python model using the 
rental_data and a linear regression algorithm 
DROP PROCEDURE IF EXISTS generate_rental_py_model; 
go 
CREATE PROCEDURE generate_rental_py_model (@trained_model varbinary(max) 
OUTPUT) 
AS 
BEGIN 
    EXECUTE sp_execute_external_script 
      @language = N'Python' 
    , @script = N' 
from sklearn.linear_model import LinearRegression 
import pickle 

df = rental_train_data 

# Get all the columns from the dataframe. 
columns = df.columns.tolist() 

# Store the variable well be predicting on. 
target = "RentalCount" 

# Initialize the model class. 
lin_model = LinearRegression() 

# Fit the model to the training data. 
lin_model.fit(df[columns], df[target]) 

# Before saving the model to the DB table, convert it to a binary object 
trained_model = pickle.dumps(lin_model)' 

, @input_data_1 = N'select "RentalCount", "Year", "Month", "Day", "WeekDay", 
"Snow", "Holiday" from dbo.rental_data where Year < 2015' 
, @input_data_1_name = N'rental_train_data' 
, @params = N'@trained_model varbinary(max) OUTPUT' 
, @trained_model = @trained_model OUTPUT; 
END; 
GO 

Store the model in a database table



2. Save the model to the table as a binary object, with the model name linear_model.

SQL

1. Create a stored procedure py_predict_rentalcount that makes predictions using
the trained model and a set of new data. Run the T-SQL below in Azure Data
Studio.

SQL

USE TutorialDB; 
DROP TABLE IF EXISTS dbo.rental_py_models; 
GO 
CREATE TABLE dbo.rental_py_models ( 
    model_name VARCHAR(30) NOT NULL DEFAULT('default model') PRIMARY 
KEY, 
    model VARBINARY(MAX) NOT NULL 
); 
GO 

DECLARE @model VARBINARY(MAX); 
EXECUTE generate_rental_py_model @model OUTPUT; 

INSERT INTO rental_py_models (model_name, model) VALUES('linear_model', 
@model); 

Create a stored procedure that makes
predictions

DROP PROCEDURE IF EXISTS py_predict_rentalcount; 
GO 
CREATE PROCEDURE py_predict_rentalcount (@model varchar(100)) 
AS 
BEGIN 
    DECLARE @py_model varbinary(max) = (select model from 
rental_py_models where model_name = @model); 

    EXECUTE sp_execute_external_script 
                @language = N'Python', 
                @script = N' 

# Import the scikit-learn function to compute error. 
from sklearn.metrics import mean_squared_error 
import pickle 
import pandas 

rental_model = pickle.loads(py_model) 



2. Create a table for storing the predictions.

SQL

df = rental_score_data 

# Get all the columns from the dataframe. 
columns = df.columns.tolist() 

# Variable you will be predicting on. 
target = "RentalCount" 

# Generate the predictions for the test set. 
lin_predictions = rental_model.predict(df[columns]) 
print(lin_predictions) 

# Compute error between the test predictions and the actual values. 
lin_mse = mean_squared_error(lin_predictions, df[target]) 
#print(lin_mse) 

predictions_df = pandas.DataFrame(lin_predictions) 

OutputDataSet = pandas.concat([predictions_df, df["RentalCount"], 
df["Month"], df["Day"], df["WeekDay"], df["Snow"], df["Holiday"], 
df["Year"]], axis=1) 
' 
, @input_data_1 = N'Select "RentalCount", "Year" ,"Month", "Day", 
"WeekDay", "Snow", "Holiday"  from rental_data where Year = 2015' 
, @input_data_1_name = N'rental_score_data' 
, @params = N'@py_model varbinary(max)' 
, @py_model = @py_model 
with result sets (("RentalCount_Predicted" float, "RentalCount" float, 
"Month" float,"Day" float,"WeekDay" float,"Snow" float,"Holiday" float, 
"Year" float)); 

END; 
GO 

DROP TABLE IF EXISTS [dbo].[py_rental_predictions]; 
GO 

CREATE TABLE [dbo].[py_rental_predictions]( 
 [RentalCount_Predicted] [int] NULL, 
 [RentalCount_Actual] [int] NULL, 
 [Month] [int] NULL, 
 [Day] [int] NULL, 
 [WeekDay] [int] NULL, 
 [Snow] [int] NULL, 
 [Holiday] [int] NULL, 
 [Year] [int] NULL 
) ON [PRIMARY] 
GO 



3. Execute the stored procedure to predict rental counts

SQL

You should see results similar to the following.

You have successfully created, trained, and deployed a model. You then used that model
in a stored procedure to predict values based on new data.

In part four of this tutorial series, you completed these steps:

Create a stored procedure that generates the machine learning model
Store the model in a database table
Create a stored procedure that makes predictions using the model
Execute the model with new data

To learn more about using Python with SQL machine learning, see:

Python tutorials

--Insert the results of the predictions for test set into a table 
INSERT INTO py_rental_predictions 
EXEC py_predict_rentalcount 'linear_model'; 

-- Select contents of the table 
SELECT * FROM py_rental_predictions; 

Next steps



Python tutorial: Categorizing customers
using k-means clustering with SQL
machine learning
Article • 04/17/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In this four-part tutorial series, use Python to develop and deploy a K-Means clustering
model in SQL Server Machine Learning Services to cluster customer data.

In part one of this series, set up the prerequisites for the tutorial and then restore a
sample dataset to a database. Later in this series, use this data to train and deploy a
clustering model in Python with SQL machine learning.

In parts two and three of this series, develop some Python scripts in an Azure Data
Studio notebook to analyze and prepare your data and train a machine learning model.
Then, in part four, run those Python scripts inside a database using stored procedures.

Clustering can be explained as organizing data into groups where members of a group
are similar in some way. For this tutorial series, imagine you own a retail business. Use
the K-Means algorithm to perform the clustering of customers in a dataset of product
purchases and returns. By clustering customers, you can focus your marketing efforts
more effectively by targeting specific groups. K-Means clustering is an unsupervised
learning algorithm that looks for patterns in data based on similarities.

In this article, learn how to:

In part two, learn how to prepare the data from a database to perform clustering.

In part three, learn how to create and train a K-Means clustering model in Python.

In part four, learn how to create a stored procedure in a database that can perform
clustering in Python based on new data.

SQL Server Machine Learning Services with the Python language option - Follow
the installation instructions in the Windows installation guide.

Restore a sample database＂

Prerequisites

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


Azure Data Studio. use a notebook in Azure Data Studio for both Python and SQL.
For more information about notebooks, see How to use notebooks in Azure Data
Studio.

Additional Python packages - The examples in this tutorial series use Python
packages that you may or may not have installed.

Open an Administrative Command Prompt and change to the installation path for
the version of Python you use in Azure Data Studio. For example, cd
%LocalAppData%\Programs\Python\Python37-32 . Then run the following commands to
install any of these packages that aren't already installed. Ensure these packages
are installed in the correct Python installation location. You can use the option -t
to specify the destination directory.

Console

The sample dataset used in this tutorial has been saved to a .bak database backup file
for you to download and use. This dataset is derived from the tpcx-bb  dataset
provided by the Transaction Processing Performance Council (TPC) .

1. Download the file tpcxbb_1gb.bak .

2. Follow the directions in Restore a database from a backup file in Azure Data
Studio, using these details:

Import from the tpcxbb_1gb.bak file you downloaded
Name the target database "tpcxbb_1gb"

3. You can verify that the dataset exists after you have restored the database by
querying the dbo.customer table:

SQL

pip install matplotlib 
pip install pandas 
pip install pyodbc 
pip install scipy 
pip install scikit-learn 

Restore the sample database

USE tpcxbb_1gb; 
SELECT * FROM [dbo].[customer]; 

https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/notebooks/notebooks-guidance?view=sql-server-2017
http://www.tpc.org/tpcx-bb/default5.asp
http://www.tpc.org/
https://rserverdistribution.blob.core.windows.net/production/sqlmldocument/tpcxbb_1gb.bak
https://learn.microsoft.com/en-us/sql/azure-data-studio/tutorial-backup-restore-sql-server?view=sql-server-2017#restore-a-database-from-a-backup-file


If you're not going to continue with this tutorial, delete the tpcxbb_1gb database.

In part one of this tutorial series, you completed these steps:

Restore a sample database

To prepare the data for the machine learning model, follow part two of this tutorial
series:

Clean up resources

Next steps

Python tutorial: Prepare data to perform clustering



Python tutorial: Prepare data to
categorize customers with SQL machine
learning
Article • 04/17/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part two of this four-part tutorial series, you'll restore and prepare the data from a
database using Python. Later in this series, you'll use this data to train and deploy a
clustering model in Python with SQL Server Machine Learning Services.

In this article, you'll learn how to:

In part one, you installed the prerequisites and restored the sample database.

In part three, you'll learn how to create and train a K-Means clustering model in Python.

In part four, you'll learn how to create a stored procedure in a database that can
perform clustering in Python based on new data.

Part two of this tutorial assumes you have fulfilled the prerequisites of part one.

To prepare for clustering customers, you'll first separate customers along the following
dimensions:

orderRatio = return order ratio (total number of orders partially or fully returned
versus the total number of orders)
itemsRatio = return item ratio (total number of items returned versus the number
of items purchased)
monetaryRatio = return amount ratio (total monetary amount of items returned
versus the amount purchased)
frequency = return frequency

Separate customers along different dimensions using Python＂

Load the data from the database into a Python data frame＂

Prerequisites

Separate customers
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Open a new notebook in Azure Data Studio and enter the following script.

In the connection string, replace connection details as needed.

Python

# Load packages. 
import pyodbc 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
from scipy.spatial import distance as sci_distance 
from sklearn import cluster as sk_cluster 

############################################################################
#################### 

## Connect to DB and select data 

############################################################################
#################### 

# Connection string to connect to SQL Server named instance. 
conn_str = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server}; SERVER=
<server>; DATABASE=tpcxbb_1gb; UID=<username>; PWD=<password>') 

input_query = '''SELECT 
ss_customer_sk AS customer, 
ROUND(COALESCE(returns_count / NULLIF(1.0*orders_count, 0), 0), 7) AS 
orderRatio, 
ROUND(COALESCE(returns_items / NULLIF(1.0*orders_items, 0), 0), 7) AS 
itemsRatio, 
ROUND(COALESCE(returns_money / NULLIF(1.0*orders_money, 0), 0), 7) AS 
monetaryRatio, 
COALESCE(returns_count, 0) AS frequency 
FROM 
( 
  SELECT 
    ss_customer_sk, 
    -- return order ratio 
    COUNT(distinct(ss_ticket_number)) AS orders_count, 
    -- return ss_item_sk ratio 
    COUNT(ss_item_sk) AS orders_items, 
    -- return monetary amount ratio 
    SUM( ss_net_paid ) AS orders_money 
  FROM store_sales s 
  GROUP BY ss_customer_sk 
) orders 
LEFT OUTER JOIN 
( 
  SELECT 
    sr_customer_sk, 
    -- return order ratio 
    count(distinct(sr_ticket_number)) as returns_count, 



Results from the query are returned to Python using the Pandas read_sql function. As
part of the process, you'll use the column information you defined in the previous script.

Python

Now display the beginning of the data frame to verify it looks correct.

Python

results

If you're not going to continue with this tutorial, delete the tpcxbb_1gb database.

    -- return ss_item_sk ratio 
    COUNT(sr_item_sk) as returns_items, 
    -- return monetary amount ratio 
    SUM( sr_return_amt ) AS returns_money 
FROM store_returns 
GROUP BY sr_customer_sk ) returned ON ss_customer_sk=sr_customer_sk''' 

# Define the columns we wish to import. 
column_info = { 
    "customer": {"type": "integer"}, 
    "orderRatio": {"type": "integer"}, 
    "itemsRatio": {"type": "integer"}, 
    "frequency": {"type": "integer"} 
} 

Load the data into a data frame

customer_data = pd.read_sql(input_query, conn_str) 

print("Data frame:", customer_data.head(n=5)) 

Rows Read: 37336, Total Rows Processed: 37336, Total Chunk Time: 0.172 
seconds 
Data frame:     customer  orderRatio  itemsRatio  monetaryRatio  frequency 
0    29727.0    0.000000    0.000000       0.000000          0 
1    97643.0    0.068182    0.078176       0.037034          3 
2    57247.0    0.000000    0.000000       0.000000          0 
3    32549.0    0.086957    0.068657       0.031281          4 
4     2040.0    0.000000    0.000000       0.000000          0 

Clean up resources



In part two of this tutorial series, you completed these steps:

Separate customers along different dimensions using Python
Load the data from the database into a Python data frame

To create a machine learning model that uses this customer data, follow part three of
this tutorial series:

Next steps

Python tutorial: Create a predictive model



Python tutorial: Build a model to
categorize customers with SQL machine
learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part three of this four-part tutorial series, you'll build a K-Means model in Python to
perform clustering. In the next part of this series, you'll deploy this model in a database
with SQL Server Machine Learning Services.

In this article, you'll learn how to:

In part one, you installed the prerequisites and restored the sample database.

In part two, you learned how to prepare the data from a database to perform clustering.

In part four, you'll learn how to create a stored procedure in a database that can
perform clustering in Python based on new data.

Part three of this tutorial assumes you have fulfilled the prerequisites of part one,
and completed the steps in part two.

To cluster your customer data, you'll use the K-Means clustering algorithm, one of the
simplest and most well-known ways of grouping data. You can read more about K-
Means in A complete guide to K-means clustering algorithm .

The algorithm accepts two inputs: The data itself, and a predefined number "k"
representing the number of clusters to generate. The output is k clusters with the input
data partitioned among the clusters.

Define the number of clusters for a K-Means algorithm＂

Perform clustering＂

Analyze the results＂

Prerequisites

Define the number of clusters

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://www.kdnuggets.com/2019/05/guide-k-means-clustering-algorithm.html


The goal of K-means is to group the items into k clusters such that all items in same
cluster are as similar to each other, and as different from items in other clusters, as
possible.

To determine the number of clusters for the algorithm to use, use a plot of the within
groups sum of squares, by number of clusters extracted. The appropriate number of
clusters to use is at the bend or "elbow" of the plot.

Python

############################################################################
#################### 
## Determine number of clusters using the Elbow method 
############################################################################
#################### 

cdata = customer_data 
K = range(1, 20) 
KM = (sk_cluster.KMeans(n_clusters=k).fit(cdata) for k in K) 
centroids = (k.cluster_centers_ for k in KM) 

D_k = (sci_distance.cdist(cdata, cent, 'euclidean') for cent in centroids) 
dist = (np.min(D, axis=1) for D in D_k) 
avgWithinSS = [sum(d) / cdata.shape[0] for d in dist] 
plt.plot(K, avgWithinSS, 'b*-') 
plt.grid(True) 
plt.xlabel('Number of clusters') 
plt.ylabel('Average within-cluster sum of squares') 
plt.title('Elbow for KMeans clustering') 
plt.show() 



Based on the graph, it looks like k = 4 would be a good value to try. That k value will
group the customers into four clusters.

In the following Python script, you'll use the KMeans function from the sklearn package.

Python

Perform clustering

############################################################################
#################### 
## Perform clustering using Kmeans 
############################################################################
#################### 

# It looks like k=4 is a good number to use based on the elbow graph. 
n_clusters = 4 

means_cluster = sk_cluster.KMeans(n_clusters=n_clusters, random_state=111) 
columns = ["orderRatio", "itemsRatio", "monetaryRatio", "frequency"] 
est = means_cluster.fit(customer_data[columns]) 
clusters = est.labels_ 
customer_data['cluster'] = clusters 

# Print some data about the clusters: 



Now that you've performed clustering using K-Means, the next step is to analyze the
result and see if you can find any actionable information.

Look at the clustering mean values and cluster sizes printed from the previous script.

results

The four cluster means are given using the variables defined in part one:

orderRatio = return order ratio (total number of orders partially or fully returned
versus the total number of orders)
itemsRatio = return item ratio (total number of items returned versus the number
of items purchased)
monetaryRatio = return amount ratio (total monetary amount of items returned
versus the amount purchased)
frequency = return frequency

Data mining using K-Means often requires further analysis of the results, and further
steps to better understand each cluster, but it can provide some good leads. Here are a
couple ways you could interpret these results:

# For each cluster, count the members. 
for c in range(n_clusters): 
    cluster_members=customer_data[customer_data['cluster'] == c][:] 
    print('Cluster{}(n={}):'.format(c, len(cluster_members))) 
    print('-'* 17) 
print(customer_data.groupby(['cluster']).mean()) 

Analyze the results

Cluster0(n=31675): 
------------------- 
Cluster1(n=4989): 
------------------- 
Cluster2(n=1): 
------------------- 
Cluster3(n=671): 
------------------- 

         customer  orderRatio  itemsRatio  monetaryRatio  frequency 
cluster 
0        50854.809882    0.000000    0.000000       0.000000   0.000000 
1        51332.535779    0.721604    0.453365       0.307721   1.097815 
2        57044.000000    1.000000    2.000000     108.719154   1.000000 
3        48516.023845    0.136277    0.078346       0.044497   4.271237 



Cluster 0 seems to be a group of customers that are not active (all values are zero).
Cluster 3 seems to be a group that stands out in terms of return behavior.

Cluster 0 is a set of customers who are clearly not active. Perhaps you can target
marketing efforts towards this group to trigger an interest for purchases. In the next
step, you'll query the database for the email addresses of customers in cluster 0, so that
you can send a marketing email to them.

If you're not going to continue with this tutorial, delete the tpcxbb_1gb database.

In part three of this tutorial series, you completed these steps:

Define the number of clusters for a K-Means algorithm
Perform clustering
Analyze the results

To deploy the machine learning model you've created, follow part four of this tutorial
series:

Clean up resources

Next steps

Python tutorial: Deploy a clustering model



Python tutorial: Deploy a model to
categorize customers with SQL machine
learning
Article • 04/17/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part four of this four-part tutorial series, you'll deploy a clustering model, developed
in Python, into a database using SQL Server Machine Learning Services.

In order to perform clustering on a regular basis, as new customers are registering, you
need to be able call the Python script from any App. To do that, you can deploy the
Python script in a database by putting the Python script inside a SQL stored procedure.
Because your model executes in the database, it can easily be trained against data
stored in the database.

In this section, you'll move the Python code you just wrote onto the server and deploy
clustering.

In this article, you'll learn how to:

In part one, you installed the prerequisites and restored the sample database.

In part two, you learned how to prepare the data from a database to perform clustering.

In part three, you learned how to create and train a K-Means clustering model in Python.

Part four of this tutorial series assumes you have fulfilled the prerequisites of part
one, and completed the steps in part two and part three.

Create a stored procedure that generates the model＂

Perform clustering on the server＂

Use the clustering information＂

Prerequisites

Create a stored procedure that generates the
model

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


Run the following T-SQL script to create the stored procedure. The procedure recreates
the steps you developed in parts one and two of this tutorial series:

classify customers based on their purchase and return history
generate four clusters of customers using a K-Means algorithm

SQL

USE [tpcxbb_1gb] 
GO 

DROP procedure IF EXISTS [dbo].[py_generate_customer_return_clusters]; 
GO 

CREATE procedure [dbo].[py_generate_customer_return_clusters] 
AS 

BEGIN 
    DECLARE 

-- Input query to generate the purchase history & return metrics 
     @input_query NVARCHAR(MAX) = N' 
SELECT 
  ss_customer_sk AS customer, 
  CAST( (ROUND(COALESCE(returns_count / NULLIF(1.0*orders_count, 0), 0), 7) 
) AS FLOAT) AS orderRatio, 
  CAST( (ROUND(COALESCE(returns_items / NULLIF(1.0*orders_items, 0), 0), 7) 
) AS FLOAT) AS itemsRatio, 
  CAST( (ROUND(COALESCE(returns_money / NULLIF(1.0*orders_money, 0), 0), 7) 
) AS FLOAT) AS monetaryRatio, 
  CAST( (COALESCE(returns_count, 0)) AS FLOAT) AS frequency 
FROM 
  ( 
    SELECT 
      ss_customer_sk, 
      -- return order ratio 
      COUNT(distinct(ss_ticket_number)) AS orders_count, 
      -- return ss_item_sk ratio 
      COUNT(ss_item_sk) AS orders_items, 
      -- return monetary amount ratio 
      SUM( ss_net_paid ) AS orders_money 
    FROM store_sales s 
    GROUP BY ss_customer_sk 
  ) orders 
  LEFT OUTER JOIN 
  ( 
    SELECT 
      sr_customer_sk, 
      -- return order ratio 
      count(distinct(sr_ticket_number)) as returns_count, 
      -- return ss_item_sk ratio 
      COUNT(sr_item_sk) as returns_items, 
      -- return monetary amount ratio 



Now that you've created the stored procedure, execute the following script to perform
clustering using the procedure.

SQL

      SUM( sr_return_amt ) AS returns_money 
    FROM store_returns 
    GROUP BY sr_customer_sk 
  ) returned ON ss_customer_sk=sr_customer_sk 
 ' 

EXEC sp_execute_external_script 
      @language = N'Python' 
    , @script = N' 

import pandas as pd 
from sklearn.cluster import KMeans 

#get data from input query 
customer_data = my_input_data 

#We concluded in step 2 in the tutorial that 4 would be a good number of 
clusters 
n_clusters = 4 

#Perform clustering 
est = KMeans(n_clusters=n_clusters, 
random_state=111).fit(customer_data[["orderRatio","itemsRatio","monetaryRati
o","frequency"]]) 
clusters = est.labels_ 
customer_data["cluster"] = clusters 

OutputDataSet = customer_data 
' 
    , @input_data_1 = @input_query 
    , @input_data_1_name = N'my_input_data' 
             with result sets (("Customer" int, "orderRatio" 
float,"itemsRatio" float,"monetaryRatio" float,"frequency" float,"cluster" 
float)); 
END; 
GO 

Perform clustering

--Create a table to store the predictions in 

DROP TABLE IF EXISTS [dbo].[py_customer_clusters]; 
GO 

CREATE TABLE [dbo].[py_customer_clusters] ( 
    [Customer] [bigint] NULL 



Because you stored the clustering procedure in the database, it can perform clustering
efficiently against customer data stored in the same database. You can execute the
procedure whenever your customer data is updated and use the updated clustering
information.

Suppose you want to send a promotional email to customers in cluster 0, the group that
was inactive (you can see how the four clusters were described in part three of this
tutorial). The following code selects the email addresses of customers in cluster 0.

SQL

You can change the c.cluster value to return email addresses for customers in other
clusters.

When you're finished with this tutorial, you can delete the tpcxbb_1gb database.

  , [OrderRatio] [float] NULL 
  , [itemsRatio] [float] NULL 
  , [monetaryRatio] [float] NULL 
  , [frequency] [float] NULL 
  , [cluster] [int] NULL 
  , 
    ) ON [PRIMARY] 
GO 

--Execute the clustering and insert results into table 
INSERT INTO py_customer_clusters 
EXEC [dbo].[py_generate_customer_return_clusters]; 

-- Select contents of the table to verify it works 
SELECT * FROM py_customer_clusters; 

Use the clustering information

USE [tpcxbb_1gb] 
--Get email addresses of customers in cluster 0 for a promotion campaign 
SELECT customer.[c_email_address], customer.c_customer_sk 
  FROM dbo.customer 
  JOIN 
  [dbo].[py_customer_clusters] as c 
  ON c.Customer = customer.c_customer_sk 
  WHERE c.cluster = 0 

Clean up resources



In part four of this tutorial series, you completed these steps:

Create a stored procedure that generates the model
Perform clustering on the server
Use the clustering information

To learn more about using Python in SQL machine learning, see:

Quickstart: Create and run simple Python scripts
Other Python tutorials for SQL machine learning
Install Python packages with sqlmlutils

Next steps

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-python-packages-on-sql-server?view=sql-server-2017


Python tutorial: Predict NYC taxi fares
with binary classification
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In this five-part tutorial series for SQL programmers, you'll learn about Python
integration in SQL Server Machine Learning Services.

You'll build and deploy a Python-based machine learning solution using a sample
database on SQL Server. You'll use T-SQL, Azure Data Studio or SQL Server Management
Studio, and a database instance with SQL machine learning and Python language
support.

This tutorial series introduces you to Python functions used in a data modeling
workflow. Parts include data exploration, building and training a binary classification
model, and model deployment. You'll use sample data from the New York City Taxi and
Limousine Commission. The model you'll build predicts whether a trip is likely to result
in a tip based on the time of day, distance traveled, and pick-up location.

In the first part of this series, you'll install the prerequisites and restore the sample
database. In parts two and three, you'll develop some Python scripts to prepare your
data and train a machine learning model. Then, in parts four and five, you'll run those
Python scripts inside the database using T-SQL stored procedures.

In this article, you'll:

In part two, you'll explore the sample data and generate some plots.

In part three, you'll learn how to create features from raw data by using a Transact-SQL
function. You'll then call that function from a stored procedure to create a table that
contains the feature values.

In part four, you'll load the modules and call the necessary functions to create and train
the model using a SQL Server stored procedure.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

Install prerequisites＂

Restore the sample database＂

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


Install SQL Server Machine Learning Services with Python

Grant permissions to execute Python scripts

Restore the NYC Taxi demo database

All tasks can be done using Transact-SQL stored procedures in Azure Data Studio or
Management Studio.

This tutorial series assumes familiarity with basic database operations such as creating
databases and tables, importing data, and writing SQL queries. It does not assume you
know Python and all Python code is provided.

The process of building a machine learning solution is a complex one that can involve
multiple tools, and the coordination of subject matter experts across several phases:

obtaining and cleaning data
exploring the data and building features useful for modeling
training and tuning the model
deployment to production

Development and testing of the actual code is best performed using a dedicated
development environment. However, after the script is fully tested, you can easily deploy
it to SQL Server using Transact-SQL stored procedures in the familiar environment of
Azure Data Studio or Management Studio. Wrapping external code in stored procedures
is the primary mechanism for operationalizing code in SQL Server.

After the model has been saved to the database, you can call the model for predictions
from Transact-SQL by using stored procedures.

Whether you're a SQL programmer new to Python, or a Python developer new to SQL,
this five-part tutorial series introduces a typical workflow for conducting in-database
analytics with Python and SQL Server.

７ Note

This tutorial is available in both R and Python. For the R version, see R tutorial:
Predict NYC taxi fares with binary classification.

Prerequisites

Background for SQL developers



In this article, you:

Next steps

Installed prerequisites＂

Restored the sample database＂

Python tutorial: Explore and visualize data



Python tutorial: Explore and visualize
data
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part two of this five-part tutorial series, you'll explore the sample data and generate
some plots. Later, you'll learn how to serialize graphics objects in Python, and then
deserialize those objects and make plots.

In this article, you'll:

In part one, you installed the prerequisites and restored the sample database.

In part three, you'll learn how to create features from raw data by using a Transact-SQL
function. You'll then call that function from a stored procedure to create a table that
contains the feature values.

In part four, you'll load the modules and call the necessary functions to create and train
the model using a SQL Server stored procedure.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

First, take a minute to browse the data schema, as we've made some changes to make it
easier to use the NYC Taxi data

The original dataset used separate files for the taxi identifiers and trip records.
We've joined the two original datasets on the columns medallion, hack_license, and
pickup_datetime.
The original dataset spanned many files and was quite large. We've downsampled
to get just 1% of the original number of records. The current data table has
1,703,957 rows and 23 columns.

Taxi identifiers

The medallion column represents the taxi's unique ID number.

Review the sample data＂

Create plots using Python in T-SQL＂

Review the data

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


The hack_license column contains the taxi driver's license number (anonymized).

Trip and fare records

Each trip record includes the pickup and drop-off location and time, and the trip
distance.

Each fare record includes payment information such as the payment type, total amount
of payment, and the tip amount.

The last three columns can be used for various machine learning tasks. The tip_amount
column contains continuous numeric values and can be used as the label column for
regression analysis. The tipped column has only yes/no values and is used for binary
classification. The tip_class column has multiple class labels and therefore can be used
as the label for multi-class classification tasks.

The values used for the label columns are all based on the tip_amount  column, using
these business rules:

Label column tipped  has possible values 0 and 1

If tip_amount  > 0, tipped  = 1; otherwise tipped  = 0

Label column tip_class  has possible class values 0-4

Class 0: tip_amount  = $0

Class 1: tip_amount  > $0 and tip_amount  <= $5

Class 2: tip_amount  > $5 and tip_amount  <= $10

Class 3: tip_amount  > $10 and tip_amount  <= $20

Class 4: tip_amount  > $20

Developing a data science solution usually includes intensive data exploration and data
visualization. Because visualization is such a powerful tool for understanding the
distribution of the data and outliers, Python provides many packages for visualizing
data. The matplotlib module is one of the more popular libraries for visualization, and
includes many functions for creating histograms, scatter plots, box plots, and other data
exploration graphs.

Create plots using Python in T-SQL



In this section, you learn how to work with plots using stored procedures. Rather than
open the image on the server, you store the Python object plot  as varbinary data, and
then write that to a file that can be shared or viewed elsewhere.

The stored procedure returns a serialized Python figure  object as a stream of varbinary
data. You cannot view the binary data directly, but you can use Python code on the
client to deserialize and view the figures, and then save the image file on a client
computer.

1. Create the stored procedure PyPlotMatplotlib.

In the following script:

The variable @query  defines the query text SELECT tipped FROM
nyctaxi_sample , which is passed to the Python code block as the argument to
the script input variable, @input_data_1 .
The Python script is fairly simple: matplotlib figure  objects are used to make
the histogram and scatter plot, and these objects are then serialized using the
pickle  library.
The Python graphics object is serialized to a pandas DataFrame for output.

SQL

Create a plot as varbinary data

DROP PROCEDURE IF EXISTS PyPlotMatplotlib; 
GO 

CREATE PROCEDURE [dbo].[PyPlotMatplotlib] 
AS 
BEGIN 
    SET NOCOUNT ON; 
    DECLARE @query nvarchar(max) = 
    N'SELECT cast(tipped as int) as tipped, tip_amount, fare_amount 
FROM [dbo].[nyctaxi_sample]' 
    EXECUTE sp_execute_external_script 
    @language = N'Python', 
    @script = N' 
import matplotlib 
matplotlib.use("Agg") 
import matplotlib.pyplot as plt 
import pandas as pd 
import pickle 

fig_handle = plt.figure() 
plt.hist(InputDataSet.tipped) 
plt.xlabel("Tipped") 



2. Now run the stored procedure with no arguments to generate a plot from the data
hard-coded as the input query.

SQL

3. The results should be something like this:

SQL

plt.ylabel("Counts") 
plt.title("Histogram, Tipped") 
plot0 = pd.DataFrame(data =[pickle.dumps(fig_handle)], columns =
["plot"]) 
plt.clf() 

plt.hist(InputDataSet.tip_amount)
plt.xlabel("Tip amount ($)") 
plt.ylabel("Counts") 
plt.title("Histogram, Tip amount") 
plot1 = pd.DataFrame(data =[pickle.dumps(fig_handle)], columns =
["plot"]) 
plt.clf() 

plt.hist(InputDataSet.fare_amount) 
plt.xlabel("Fare amount ($)") 
plt.ylabel("Counts") 
plt.title("Histogram, Fare amount") 
plot2 = pd.DataFrame(data =[pickle.dumps(fig_handle)], columns =
["plot"]) 
plt.clf() 

plt.scatter( InputDataSet.fare_amount, InputDataSet.tip_amount) 
plt.xlabel("Fare Amount ($)") 
plt.ylabel("Tip Amount ($)") 
plt.title("Tip amount by Fare amount") 
plot3 = pd.DataFrame(data =[pickle.dumps(fig_handle)], columns =
["plot"]) 
plt.clf() 

OutputDataSet = plot0.append(plot1, ignore_index=True).append(plot2, 
ignore_index=True).append(plot3, ignore_index=True) 
', 
@input_data_1 = @query 
WITH RESULT SETS ((plot varbinary(max))) 
END 
GO 

EXEC [dbo].[PyPlotMatplotlib] 

plot 
0xFFD8FFE000104A4649... 



4. From a Python client, you can now connect to the SQL Server instance that
generated the binary plot objects, and view the plots.

To do this, run the following Python code, replacing the server name, database
name, and credentials as appropriate (for Windows authentication, replace the UID
and PWD  parameters with Trusted_Connection=True ). Make sure the Python version
is the same on the client and the server. Also make sure that the Python libraries
on your client (such as matplotlib) are the same or higher version relative to the
libraries installed on the server. To view a list of installed packages and their
versions, see Get Python package information.

Python

5. If the connection is successful, you should see a message like the following:

The plots are saved in directory: xxxx

6. The output file is created in the Python working directory. To view the plot, locate
the Python working directory, and open the file. The following image shows a plot
saved on the client computer.

 0xFFD8FFE000104A4649... 
 0xFFD8FFE000104A4649... 
 0xFFD8FFE000104A4649... 

%matplotlib notebook 
import pyodbc 
import pickle 
import os 
cnxn = pyodbc.connect('DRIVER=SQL Server;SERVER={SERVER_NAME};DATABASE=
{DB_NAME};UID={USER_NAME};PWD={PASSWORD}') 
cursor = cnxn.cursor() 
cursor.execute("EXECUTE [dbo].[PyPlotMatplotlib]") 
tables = cursor.fetchall() 
for i in range(0, len(tables)): 
    fig = pickle.loads(tables[i][0]) 
    fig.savefig(str(i)+'.png') 
print("The plots are saved in directory: ",os.getcwd()) 



In this article, you:

Next steps

Reviewed the sample data＂

Created plots using Python in T-SQL＂

Python tutorial: Create Data Features using T-SQL



Python tutorial: Create Data Features
using T-SQL
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part three of this five-part tutorial series, you'll learn how to create features from raw
data by using a Transact-SQL function. You'll then call that function from a SQL stored
procedure to create a table that contains the feature values.

The process of feature engineering, creating features from the raw data, can be a critical
step in advanced analytics modeling.

In this article, you'll:

In part one, you installed the prerequisites and restored the sample database.

In part two, you explored the sample data and generated some plots.

In part four, you'll load the modules and call the necessary functions to create and train
the model using a SQL Server stored procedure.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

The distance values reported in the original data are based on the reported meter
distance, and don't necessarily represent geographical distance or distance traveled.
Therefore, you'll need to calculate the direct distance between the pick-up and drop-off
points, by using the coordinates available in the source NYC Taxi dataset. You can do this
by using the Haversine formula  in a custom Transact-SQL function.

You'll use one custom T-SQL function, fnCalculateDistance, to compute the distance
using the Haversine formula, and use a second custom T-SQL function,
fnEngineerFeatures, to create a table containing all the features.

Modify a custom function to calculate trip distance＂

Save the features using another custom function＂

Define the Function

Calculate trip distance using fnCalculateDistance

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://en.wikipedia.org/wiki/Haversine_formula


The function fnCalculateDistance is included in the sample database. Take a minute to
review the code:

1. In Management Studio, expand Programmability, expand Functions and then
Scalar-valued functions.

2. Right-click fnCalculateDistance, and select Modify to open the Transact-SQL script
in a new query window.

It should look something like this:

SQL

Notes:

The function is a scalar-valued function, returning a single data value of a
predefined type.
The function takes latitude and longitude values as inputs, obtained from trip pick-
up and drop-off locations. The Haversine formula converts locations to radians and
uses those values to compute the direct distance in miles between those two
locations.

CREATE FUNCTION [dbo].[fnCalculateDistance] (@Lat1 float, @Long1 float, 
@Lat2 float, @Long2 float) 
-- User-defined function that calculates the direct distance between 
two geographical coordinates 
RETURNS float 
AS 
BEGIN 
  DECLARE @distance decimal(28, 10) 
  -- Convert to radians 
  SET @Lat1 = @Lat1 / 57.2958 
  SET @Long1 = @Long1 / 57.2958 
  SET @Lat2 = @Lat2 / 57.2958 
  SET @Long2 = @Long2 / 57.2958 
  -- Calculate distance 
  SET @distance = (SIN(@Lat1) * SIN(@Lat2)) + (COS(@Lat1) * COS(@Lat2) 
* COS(@Long2 - @Long1)) 
  --Convert to miles 
  IF @distance <> 0 
  BEGIN 
    SET @distance = 3958.75 * ATAN(SQRT(1 - POWER(@distance, 2)) / 
@distance); 
  END 
  RETURN @distance 
END 
GO 



To add the computed value to a table that can be used for training the model, you'll use
the custom T-SQL function, fnEngineerFeatures. This function is a table-valued function
that takes multiple columns as inputs, and outputs a table with multiple feature
columns. The purpose of this function is to create a feature set for use in building a
model. The function fnEngineerFeatures calls the previously created T-SQL function,
fnCalculateDistance, to get the direct distance between pickup and dropoff locations.

Take a minute to review the code:

SQL

To verify that this function works, you can use it to calculate the geographical distance
for those trips where the metered distance was 0 but the pick-up and drop-off locations
were different.

SQL

Save the features using fnEngineerFeatures

CREATE FUNCTION [dbo].[fnEngineerFeatures] ( 
@passenger_count int = 0, 
@trip_distance float = 0, 
@trip_time_in_secs int = 0, 
@pickup_latitude float = 0, 
@pickup_longitude float = 0, 
@dropoff_latitude float = 0, 
@dropoff_longitude float = 0) 
RETURNS TABLE 
AS 
  RETURN 
  ( 
  -- Add the SELECT statement with parameter references here 
  SELECT 
    @passenger_count AS passenger_count, 
    @trip_distance AS trip_distance, 
    @trip_time_in_secs AS trip_time_in_secs, 
    [dbo].[fnCalculateDistance](@pickup_latitude, @pickup_longitude, 
@dropoff_latitude, @dropoff_longitude) AS direct_distance 
  ) 
GO 

    SELECT tipped, fare_amount, passenger_count,(trip_time_in_secs/60) as 
TripMinutes, 
    trip_distance, pickup_datetime, dropoff_datetime, 
    dbo.fnCalculateDistance(pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude) AS direct_distance 
    FROM nyctaxi_sample 
    WHERE pickup_longitude != dropoff_longitude and pickup_latitude != 



As you can see, the distance reported by the meter doesn't always correspond to
geographical distance. This is why feature engineering is important.

In the next part, you'll learn how to use these data features to create and train a
machine learning model using Python.

In this article, you:

dropoff_latitude and trip_distance = 0 
    ORDER BY trip_time_in_secs DESC 

Next steps

Modified a custom function to calculate trip distance＂

Saved the features using another custom function＂

Python tutorial: Train and save a Python model using T-SQL



Python tutorial: Train and save a Python
model using T-SQL
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part four of this five-part tutorial series, you'll learn how to train a machine learning
model using the Python packages scikit-learn and revoscalepy. These Python libraries
are already installed with SQL Server machine learning.

You'll load the modules and call the necessary functions to create and train the model
using a SQL Server stored procedure. The model requires the data features you
engineered in earlier parts of this tutorial series. Finally, you'll save the trained model to
a SQL Server table.

In this article, you'll:

In part one, you installed the prerequisites and restored the sample database.

In part two, you explored the sample data and generated some plots.

In part three, you learned how to create features from raw data by using a Transact-SQL
function. You then called that function from a stored procedure to create a table that
contains the feature values.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

1. Create a stored procedure called PyTrainTestSplit to divide the data in the
nyctaxi_sample table into two parts: nyctaxi_sample_training and
nyctaxi_sample_testing.

Run the following code to create it:

SQL

Create and train a model using a SQL stored procedure＂

Save the trained model to a SQL table＂

Split the sample data into training and testing
sets

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


2. To divide your data using a custom split, run the stored procedure, and provide an
integer parameter that represents the percentage of data to allocate to the
training set. For example, the following statement would allocate 60% of data to
the training set.

SQL

After the data has been prepared, you can use it to train a model. You do this by calling
a stored procedure that runs some Python code, taking as input the training data table.
For this tutorial, you create two models, both binary classification models:

The stored procedure PyTrainScikit creates a tip prediction model using the scikit-
learn package.
The stored procedure TrainTipPredictionModelRxPy creates a tip prediction model
using the revoscalepy package.

Each stored procedure uses the input data you provide to create and train a logistic
regression model. All Python code is wrapped in the system stored procedure,
sp_execute_external_script.

To make it easier to retrain the model on new data, you wrap the call to
sp_execute_external_script  in another stored procedure, and pass in the new training
data as a parameter. This section will walk you through that process.

DROP PROCEDURE IF EXISTS PyTrainTestSplit; 
GO 

CREATE PROCEDURE [dbo].[PyTrainTestSplit] (@pct int) 
AS 

DROP TABLE IF EXISTS dbo.nyctaxi_sample_training 
SELECT * into nyctaxi_sample_training FROM nyctaxi_sample WHERE 
(ABS(CAST(BINARY_CHECKSUM(medallion,hack_license)  as int)) % 100) < 
@pct 

DROP TABLE IF EXISTS dbo.nyctaxi_sample_testing 
SELECT * into nyctaxi_sample_testing FROM nyctaxi_sample
WHERE (ABS(CAST(BINARY_CHECKSUM(medallion,hack_license)  as int)) % 
100) > @pct 
GO 

EXEC PyTrainTestSplit 60 
GO 

Build a logistic regression model

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


1. In Management Studio, open a new Query window and run the following
statement to create the stored procedure PyTrainScikit. The stored procedure
contains a definition of the input data, so you don't need to provide an input
query.

SQL

2. Run the following SQL statements to insert the trained model into table
nyc_taxi_models.

PyTrainScikit

DROP PROCEDURE IF EXISTS PyTrainScikit; 
GO 

CREATE PROCEDURE [dbo].[PyTrainScikit] (@trained_model varbinary(max) 
OUTPUT) 
AS 
BEGIN 
EXEC sp_execute_external_script 
  @language = N'Python', 
  @script = N' 
import numpy 
import pickle 
from sklearn.linear_model import LogisticRegression 

##Create SciKit-Learn logistic regression model 
X = InputDataSet[["passenger_count", "trip_distance", 
"trip_time_in_secs", "direct_distance"]] 
y = numpy.ravel(InputDataSet[["tipped"]]) 

SKLalgo = LogisticRegression() 
logitObj = SKLalgo.fit(X, y) 

##Serialize model 
trained_model = pickle.dumps(logitObj) 
', 
@input_data_1 = N' 
select tipped, fare_amount, passenger_count, trip_time_in_secs, 
trip_distance,  
dbo.fnCalculateDistance(pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude) as direct_distance 
from nyctaxi_sample_training 
', 
@input_data_1_name = N'InputDataSet', 
@params = N'@trained_model varbinary(max) OUTPUT', 
@trained_model = @trained_model OUTPUT; 
; 
END; 
GO 



SQL

Processing of the data and fitting the model might take a couple of minutes.
Messages that would be piped to Python's stdout stream are displayed in the
Messages window of Management Studio. For example:

text

3. Open the table nyc_taxi_models. You can see that one new row has been added,
which contains the serialized model in the column model.

text

This stored procedure uses the revoscalepy Python package. It contains objects,
transformation, and algorithms similar to those provided for the R language's
RevoScaleR package.

By using revoscalepy, you can create remote compute contexts, move data between
compute contexts, transform data, and train predictive models using popular algorithms
such as logistic and linear regression, decision trees, and more. For more information,
see revoscalepy module in SQL Server and revoscalepy function reference.

1. In Management Studio, open a new Query window and run the following
statement to create the stored procedure TrainTipPredictionModelRxPy. Because
the stored procedure already includes a definition of the input data, you don't
need to provide an input query.

SQL

DECLARE @model VARBINARY(MAX); 
EXEC PyTrainScikit @model OUTPUT;
INSERT INTO nyc_taxi_models (name, model) VALUES('SciKit_model', 
@model); 

STDOUT message(s) from external script: 
C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\lib\site-
packages\revoscalepy 

SciKit_model 
0x800363736B6C6561726E2E6C696E6561.... 

TrainTipPredictionModelRxPy

https://learn.microsoft.com/en-us/r-server/python-reference/revoscalepy/revoscalepy-package


This stored procedure performs the following steps as part of model training:

The SELECT query applies the custom scalar function fnCalculateDistance to
calculate the direct distance between the pick-up and drop-off locations. The
results of the query are stored in the default Python input variable,
InputDataset .
The binary variable tipped is used as the label or outcome column, and the
model is fit using these feature columns: passenger_count, trip_distance,
trip_time_in_secs, and direct_distance.
The trained model is serialized and stored in the Python variable logitObj . By
adding the T-SQL keyword OUTPUT, you can add the variable as an output of
the stored procedure. In the next step, that variable is used to insert the

DROP PROCEDURE IF EXISTS TrainTipPredictionModelRxPy; 
GO 

CREATE PROCEDURE [dbo].[TrainTipPredictionModelRxPy] (@trained_model 
varbinary(max) OUTPUT) 
AS 
BEGIN 
EXEC sp_execute_external_script  
  @language = N'Python', 
  @script = N' 
import numpy 
import pickle 
from revoscalepy.functions.RxLogit import rx_logit 

## Create a logistic regression model using rx_logit function from 
revoscalepy package 
logitObj = rx_logit("tipped ~ passenger_count + trip_distance + 
trip_time_in_secs + direct_distance", data = InputDataSet); 

## Serialize model 
trained_model = pickle.dumps(logitObj) 
', 
@input_data_1 = N' 
select tipped, fare_amount, passenger_count, trip_time_in_secs, 
trip_distance,  
dbo.fnCalculateDistance(pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude) as direct_distance 
from nyctaxi_sample_training 
', 
@input_data_1_name = N'InputDataSet', 
@params = N'@trained_model varbinary(max) OUTPUT', 
@trained_model = @trained_model OUTPUT; 
; 
END; 
GO 



binary code of the model into a database table nyc_taxi_models. This
mechanism makes it easy to store and re-use models.

2. Run the stored procedure as follows to insert the trained revoscalepy model into
the table nyc_taxi_models.

SQL

Processing of the data and fitting the model might take a while. Messages that
would be piped to Python's stdout stream are displayed in the Messages window
of Management Studio. For example:

text

3. Open the table nyc_taxi_models. You can see that one new row has been added,
which contains the serialized model in the column model.

text

In the next part of this tutorial, you'll use the trained models to create predictions.

In this article, you:

DECLARE @model VARBINARY(MAX); 
EXEC TrainTipPredictionModelRxPy @model OUTPUT; 
INSERT INTO nyc_taxi_models (name, model) VALUES('revoscalepy_model', 
@model); 

STDOUT message(s) from external script: 
C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\lib\site-
packages\revoscalepy 

revoscalepy_model 
0x8003637265766F7363616c.... 

Next steps

Created and trained a model using a SQL stored procedure＂

Saved the trained model to a SQL table＂

Python tutorial: Run predictions using Python embedded in a stored procedure



Python tutorial: Run predictions using
Python embedded in a stored procedure
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

In part five of this five-part tutorial series, you'll learn how to operationalize the models
that you trained and saved in the previous part.

In this scenario, operationalization means deploying the model to production for
scoring. The integration with SQL Server makes this fairly easy, because you can embed
Python code in a stored procedure. To get predictions from the model based on new
inputs, just call the stored procedure from an application and pass the new data.

This part of the tutorial demonstrates two methods for creating predictions based on a
Python model: batch scoring and scoring row by row.

Batch scoring: To provide multiple rows of input data, pass a SELECT query as an
argument to the stored procedure. The result is a table of observations
corresponding to the input cases.
Individual scoring: Pass a set of individual parameter values as input. The stored
procedure returns a single row or value.

All the Python code needed for scoring is provided as part of the stored procedures.

In this article, you'll:

In part one, you installed the prerequisites and restored the sample database.

In part two, you explored the sample data and generated some plots.

In part three, you learned how to create features from raw data by using a Transact-SQL
function. You then called that function from a stored procedure to create a table that
contains the feature values.

In part four, you loaded the modules and called the necessary functions to create and
train the model using a SQL Server stored procedure.

Create and use stored procedures for batch scoring＂

Create and use stored procedures for scoring a single row＂

Batch scoring

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


The first two stored procedures created using the following scripts illustrate the basic
syntax for wrapping a Python prediction call in a stored procedure. Both stored
procedures require a table of data as inputs.

The name of the model to use is provided as input parameter to the stored
procedure. The stored procedure loads the serialized model from the database
table nyc_taxi_models .table, using the SELECT statement in the stored procedure.

The serialized model is stored in the Python variable mod  for further processing
using Python.

The new cases that need to be scored are obtained from the Transact-SQL query
specified in @input_data_1 . As the query data is read, the rows are saved in the
default data frame, InputDataSet .

Both stored procedure use functions from sklearn  to calculate an accuracy metric,
AUC (area under curve). Accuracy metrics such as AUC can only be generated if
you also provide the target label (the tipped column). Predictions do not need the
target label (variable y ), but the accuracy metric calculation does.

Therefore, if you don't have target labels for the data to be scored, you can modify
the stored procedure to remove the AUC calculations, and return only the tip
probabilities from the features (variable X  in the stored procedure).

Run the following T-SQL statements to create the stored procedure PredictTipSciKitPy .
This stored procedure requires a model based on the scikit-learn package, because it
uses functions specific to that package.

The data frame containing inputs is passed to the predict_proba  function of the logistic
regression model, mod . The predict_proba  function (probArray = mod.predict_proba(X) )
returns a float that represents the probability that a tip (of any amount) will be given.

SQL

PredictTipSciKitPy

DROP PROCEDURE IF EXISTS PredictTipSciKitPy; 
GO 

CREATE PROCEDURE [dbo].[PredictTipSciKitPy] (@model varchar(50), @inquery 
nvarchar(max)) 
AS 
BEGIN 
DECLARE @lmodel2 varbinary(max) = (select model from nyc_taxi_models where 
name = @model); 



Run the following T-SQL statements to create the stored procedure PredictTipRxPy .
This stored procedure uses the same inputs and creates the same type of scores as the
previous stored procedure, but it uses functions from the revoscalepy package provided
with SQL Server machine learning.

SQL

EXEC sp_execute_external_script 
  @language = N'Python', 
  @script = N' 
import pickle; 
import numpy; 
from sklearn import metrics 

mod = pickle.loads(lmodel2) 
X = InputDataSet[["passenger_count", "trip_distance", "trip_time_in_secs", 
"direct_distance"]] 
y = numpy.ravel(InputDataSet[["tipped"]]) 

probArray = mod.predict_proba(X) 
probList = [] 
for i in range(len(probArray)): 
  probList.append((probArray[i])[1]) 

probArray = numpy.asarray(probList) 
fpr, tpr, thresholds = metrics.roc_curve(y, probArray) 
aucResult = metrics.auc(fpr, tpr)
print ("AUC on testing data is: " + str(aucResult)) 

OutputDataSet = pandas.DataFrame(data = probList, columns = ["predictions"]) 
',  
  @input_data_1 = @inquery, 
  @input_data_1_name = N'InputDataSet', 
  @params = N'@lmodel2 varbinary(max)', 
  @lmodel2 = @lmodel2 
WITH RESULT SETS ((Score float)); 
END 
GO 

PredictTipRxPy

DROP PROCEDURE IF EXISTS PredictTipRxPy; 
GO 

CREATE PROCEDURE [dbo].[PredictTipRxPy] (@model varchar(50), @inquery 
nvarchar(max)) 
AS 
BEGIN 
DECLARE @lmodel2 varbinary(max) = (select model from nyc_taxi_models where 
name = @model); 
EXEC sp_execute_external_script  



The stored procedures PredictTipSciKitPy and PredictTipRxPy require two input
parameters:

The query that retrieves the data for scoring
The name of a trained model

By passing those arguments to the stored procedure, you can select a particular model
or change the data used for scoring.

1. To use the scikit-learn model for scoring, call the stored procedure
PredictTipSciKitPy, passing the model name and query string as inputs.

SQL

  @language = N'Python', 
  @script = N' 
import pickle; 
import numpy; 
from sklearn import metrics 
from revoscalepy.functions.RxPredict import rx_predict; 

mod = pickle.loads(lmodel2) 
X = InputDataSet[["passenger_count", "trip_distance", "trip_time_in_secs", 
"direct_distance"]] 
y = numpy.ravel(InputDataSet[["tipped"]]) 

probArray = rx_predict(mod, X) 
probList = probArray["tipped_Pred"].values  

probArray = numpy.asarray(probList) 
fpr, tpr, thresholds = metrics.roc_curve(y, probArray) 
aucResult = metrics.auc(fpr, tpr)
print ("AUC on testing data is: " + str(aucResult)) 

OutputDataSet = pandas.DataFrame(data = probList, columns = ["predictions"]) 
', 
  @input_data_1 = @inquery, 
  @input_data_1_name = N'InputDataSet', 
  @params = N'@lmodel2 varbinary(max)', 
  @lmodel2 = @lmodel2 
WITH RESULT SETS ((Score float)); 
END 
GO 

Run batch scoring using a SELECT query

DECLARE @query_string nvarchar(max) -- Specify input query 
  SET @query_string=' 
  select tipped, fare_amount, passenger_count, trip_time_in_secs, 
trip_distance, 



The stored procedure returns predicted probabilities for each trip that was passed
in as part of the input query.

If you're using SSMS (SQL Server Management Studio) for running queries, the
probabilities will appear as a table in the Results pane. The Messages pane outputs
the accuracy metric (AUC or area under curve) with a value of around 0.56.

2. To use the revoscalepy model for scoring, call the stored procedure
PredictTipRxPy, passing the model name and query string as inputs.

SQL

Sometimes, instead of batch scoring, you might want to pass in a single case, getting
values from an application, and returning a single result based on those values. For
example, you could set up an Excel worksheet, web application, or report to call the
stored procedure and pass to it inputs typed or selected by users.

In this section, you'll learn how to create single predictions by calling two stored
procedures:

PredictTipSingleModeSciKitPy is designed for single-row scoring using the scikit-
learn model.
PredictTipSingleModeRxPy is designed for single-row scoring using the
revoscalepy model.
If you haven't trained a model yet, return to part five!

Both models take as input a series of single values, such as passenger count, trip
distance, and so forth. A table-valued function, fnEngineerFeatures , is used to convert

  dbo.fnCalculateDistance(pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude) as direct_distance 
  from nyctaxi_sample_testing' 
EXEC [dbo].[PredictTipSciKitPy] 'SciKit_model', @query_string; 

DECLARE @query_string nvarchar(max) -- Specify input query 
  SET @query_string=' 
  select tipped, fare_amount, passenger_count, trip_time_in_secs, 
trip_distance, 
  dbo.fnCalculateDistance(pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude) as direct_distance 
  from nyctaxi_sample_testing' 
EXEC [dbo].[PredictTipRxPy] 'revoscalepy_model', @query_string; 

Single-row scoring



latitude and longitude values from the inputs to a new feature, direct distance. Part four
contains a description of this table-valued function.

Both stored procedures create a score based on the Python model.

The following stored procedure PredictTipSingleModeSciKitPy  performs scoring using
the scikit-learn model.

SQL

７ Note

It's important that you provide all the input features required by the Python model
when you call the stored procedure from an external application. To avoid errors,
you might need to cast or convert the input data to a Python data type, in addition
to validating data type and data length.

PredictTipSingleModeSciKitPy

DROP PROCEDURE IF EXISTS PredictTipSingleModeSciKitPy; 
GO 

CREATE PROCEDURE [dbo].[PredictTipSingleModeSciKitPy] (@model varchar(50), 
@passenger_count int = 0, 
  @trip_distance float = 0, 
  @trip_time_in_secs int = 0, 
  @pickup_latitude float = 0, 
  @pickup_longitude float = 0, 
  @dropoff_latitude float = 0, 
  @dropoff_longitude float = 0) 
AS 
BEGIN 
  DECLARE @inquery nvarchar(max) = N' 
  SELECT * FROM [dbo].[fnEngineerFeatures](  
    @passenger_count, 
    @trip_distance, 
    @trip_time_in_secs, 
    @pickup_latitude, 
    @pickup_longitude, 
    @dropoff_latitude, 
    @dropoff_longitude) 
    ' 
DECLARE @lmodel2 varbinary(max) = (select model from nyc_taxi_models where 
name = @model); 
EXEC sp_execute_external_script  
  @language = N'Python', 
  @script = N' 
import pickle; 



The following stored procedure PredictTipSingleModeRxPy  performs scoring using the
revoscalepy model.

SQL

import numpy; 

# Load model and unserialize 
mod = pickle.loads(model) 

# Get features for scoring from input data 
X = InputDataSet[["passenger_count", "trip_distance", "trip_time_in_secs", 
"direct_distance"]] 

# Score data to get tip prediction probability as a list (of float) 
probList = [] 
probList.append((mod.predict_proba(X)[0])[1]) 

# Create output data frame 
OutputDataSet = pandas.DataFrame(data = probList, columns = ["predictions"]) 
', 
  @input_data_1 = @inquery, 
  @params = N'@model varbinary(max),@passenger_count int,@trip_distance 
float, 
    @trip_time_in_secs int , 
    @pickup_latitude float , 
    @pickup_longitude float , 
    @dropoff_latitude float , 
    @dropoff_longitude float', 
    @model = @lmodel2, 
    @passenger_count =@passenger_count , 
    @trip_distance=@trip_distance, 
    @trip_time_in_secs=@trip_time_in_secs, 
    @pickup_latitude=@pickup_latitude, 
    @pickup_longitude=@pickup_longitude, 
    @dropoff_latitude=@dropoff_latitude, 
    @dropoff_longitude=@dropoff_longitude 
WITH RESULT SETS ((Score float));
END 
GO 

PredictTipSingleModeRxPy

DROP PROCEDURE IF EXISTS PredictTipSingleModeRxPy; 
GO 

CREATE PROCEDURE [dbo].[PredictTipSingleModeRxPy] (@model varchar(50), 
@passenger_count int = 0, 
  @trip_distance float = 0, 
  @trip_time_in_secs int = 0, 
  @pickup_latitude float = 0, 



  @pickup_longitude float = 0, 
  @dropoff_latitude float = 0, 
  @dropoff_longitude float = 0) 
AS 
BEGIN 
DECLARE @inquery nvarchar(max) = N' 
  SELECT * FROM [dbo].[fnEngineerFeatures](  
    @passenger_count, 
    @trip_distance, 
    @trip_time_in_secs, 
    @pickup_latitude, 
    @pickup_longitude, 
    @dropoff_latitude, 
    @dropoff_longitude) 
  ' 
DECLARE @lmodel2 varbinary(max) = (select model from nyc_taxi_models where 
name = @model); 
EXEC sp_execute_external_script  
  @language = N'Python', 
  @script = N' 
import pickle; 
import numpy; 
from revoscalepy.functions.RxPredict import rx_predict; 

# Load model and unserialize 
mod = pickle.loads(model) 

# Get features for scoring from input data 
X = InputDataSet[["passenger_count", "trip_distance", "trip_time_in_secs", 
"direct_distance"]] 

# Score data to get tip prediction probability as a list (of float) 

probArray = rx_predict(mod, X) 

probList = [] 
probList = probArray["tipped_Pred"].values 

# Create output data frame 
OutputDataSet = pandas.DataFrame(data = probList, columns = ["predictions"]) 
', 
  @input_data_1 = @inquery, 
  @params = N'@model varbinary(max),@passenger_count int,@trip_distance 
float, 
    @trip_time_in_secs int , 
    @pickup_latitude float , 
    @pickup_longitude float , 
    @dropoff_latitude float , 
    @dropoff_longitude float', 
    @model = @lmodel2, 
    @passenger_count =@passenger_count , 
    @trip_distance=@trip_distance, 
    @trip_time_in_secs=@trip_time_in_secs, 
    @pickup_latitude=@pickup_latitude, 
    @pickup_longitude=@pickup_longitude, 



After the stored procedures have been created, it's easy to generate a score based on
either model. Open a new Query window and provide parameters for each of the
feature columns.

The seven required values for these feature columns are, in order:

passenger_count
trip_distance
trip_time_in_secs
pickup_latitude
pickup_longitude
dropoff_latitude
dropoff_longitude

For example:

To generate a prediction by using the revoscalepy model, run this statement:

SQL

To generate a score by using the scikit-learn model, run this statement:

SQL

The output from both procedures is a probability of a tip being paid for the taxi trip with
the specified parameters or features.

    @dropoff_latitude=@dropoff_latitude, 
    @dropoff_longitude=@dropoff_longitude 
WITH RESULT SETS ((Score float));
END 
GO 

Generate scores from models

EXEC [dbo].[PredictTipSingleModeRxPy] 'revoscalepy_model', 1, 2.5, 631, 
40.763958,-73.973373, 40.782139,-73.977303 

EXEC [dbo].[PredictTipSingleModeSciKitPy] 'SciKit_model', 1, 2.5, 631, 
40.763958,-73.973373, 40.782139,-73.977303 

Conclusion



In this tutorial series, you've learned how to work with Python code embedded in stored
procedures. The integration with Transact-SQL makes it much easier to deploy Python
models for prediction and to incorporate model retraining as part of an enterprise data
workflow.

In this article, you:

For more information about Python, see Python extension in SQL Server.

Next steps

Created and used stored procedures for batch scoring＂

Created and used stored procedures for scoring a single row＂



Use Python with revoscalepy to create a
model that runs remotely on SQL Server
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later

The revoscalepy Python library from Microsoft provides data science algorithms for data
exploration, visualization, transformations, and analysis. This library has strategic
importance in Python integration scenarios in SQL Server. On a multi-core server,
revoscalepy functions can run in parallel. In a distributed architecture with a central
server and client workstations (separate physical computers, all having the same
revoscalepy library), you can write Python code that starts locally, but then shifts
execution to a remote SQL Server instance where data resides.

You can find revoscalepy in the following Microsoft products and distributions:

SQL Server Machine Learning Services (in-database)
Client-side Python libraries (for development workstations)

This exercise demonstrates how to create a linear regression model based on
rx_lin_mod, one of the algorithms in revoscalepy that accepts compute context as an
input. The code you'll run in this exercise shifts code execution from a local to remote
computing environment, enabled by revoscalepy functions that enable a remote
compute context.

By completing this tutorial, you will learn how to:

Sample data used in this exercise is the flightdata database.

You need an IDE to run the sample code in this article, and the IDE must be linked to the
Python executable.

To practice a compute context shift, you need a local workstation and a SQL Server
database engine instance with Machine Learning Services and Python enabled.

Use revoscalepy to create a linear model＂

Shift operations from local to remote compute context＂

Prerequisites

 Tip

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package
https://learn.microsoft.com/en-us/machine-learning-server/install/python-libraries-interpreter
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-lin-mod


This sample demonstrates the process of creating a Python model in a remote compute
context, which lets you work from a client, but choose a remote environment, such as
SQL Server or Spark, where the operations are actually performed. The objective of
remote compute context is to bring computation to where the data resides.

To execute Python code in SQL Server requires the revoscalepy package. This is a special
Python package provided by Microsoft, similar to the RevoScaleR package for the R
language. The revoscalepy package supports the creation of compute contexts, and
provides the infrastructure for passing data and models between a local workstation and
a remote server. The revoscalepy function that supports in-database code execution is
RxInSqlServer.

In this lesson, you use data in SQL Server to train a linear model based on rx_lin_mod, a
function in revoscalepy that supports regression over very large datasets.

This lesson also demonstrates the basics of how to set up and then use a SQL Server
compute context in Python.

After you have prepared the database and have the data for training stored in a table,
open a Python development environment and run the code sample.

The code performs the following steps:

1. Imports the required libraries and functions.
2. Creates a connection to SQL Server. Creates data source objects for working with

the data.
3. Modifies the data using transformations so that it can be used by the logistic

regression algorithm.
4. Calls rx_lin_mod  and defines the formula used to fit the model.

If you don't have two computers, you can simulate a remote compute context on
one physical computer by installing relevant applications. First, an installation of
SQL Server Machine Learning Services operates as the "remote" instance. Second,
an installation of the Python client libraries operates as the client. You will have
two copies of the same Python distribution and Microsoft Python libraries on the
same machine. You will have to keep track of file paths and which copy of the
Python.exe you are using to complete the exercise successfully.

Remote compute contexts and revoscalepy

Run the sample code

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rxinsqlserver
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-lin-mod


5. Generates a set of predictions based on the original data.
6. Creates a summary based on the predicted values.

All operations are performed using an instance of SQL Server as the compute context.

Python

７ Note

For a demonstration of this sample running from the command line, see this video:
SQL Server 2017 Advanced Analytics with Python

Sample code

from revoscalepy import RxComputeContext, RxInSqlServer, RxSqlServerData 
from revoscalepy import rx_lin_mod, rx_predict, rx_summary 
from revoscalepy import RxOptions, rx_import 

import os 

def test_linmod_sql(): 
    sql_server = os.getenv('PYTEST_SQL_SERVER', '.') 
     
    sql_connection_string = 'Driver=SQL Server;Server=' + sqlServer + 
';Database=sqlpy;Trusted_Connection=True;' 
    print("connectionString={0!s}".format(sql_connection_string)) 

    data_source = RxSqlServerData( 
        sql_query = "select top 10 * from airlinedemosmall", 
        connection_string = sql_connection_string, 

        column_info = { 
            "ArrDelay" : { "type" : "integer" }, 
            "DayOfWeek" : { 
                "type" : "factor", 
                "levels" : [ "Monday", "Tuesday", "Wednesday", "Thursday", 
"Friday", "Saturday", "Sunday" ] 
            } 
        }) 

    sql_compute_context = RxInSqlServer( 
        connection_string = sql_connection_string, 
        num_tasks = 4, 
        auto_cleanup = False 
        ) 

    # 
    # Run linmod locally 
    # 
    linmod_local = rx_lin_mod("ArrDelay ~ DayOfWeek", data = data_source) 

https://www.youtube.com/watch?v=FcoY795jTcc


A data source is different from a compute context. The data source defines the data
used in your code. The compute context defines where the code will be executed.
However, they use some of the same information:

Python variables, such as sql_query  and sql_connection_string , define the source
of the data.

Pass these variables to the RxSqlServerData constructor to implement the data
source object named data_source .

You create a compute context object by using the RxInSqlServer constructor. The
resulting compute context object is named sql_cc .

This example re-uses the same connection string that you used in the data source,
on the assumption that the data is on the same SQL Server instance that you will
be using as the compute context.

However, the data source and the compute context could be on different servers.

After you define a compute context, you must set the active compute context.

By default, most operations are run locally, which means that if you don't specify a
different compute context, the data will be fetched from the data source, and the code
will run in your current Python environment.

There are two ways to set the active compute context:

As an argument of a method or function
By calling rx_set_computecontext

    # 
    # Run linmod remotely 
    # 
    linmod = rx_lin_mod("ArrDelay ~ DayOfWeek", data = data_source, 
compute_context = sql_compute_context) 

    # Predict results 
    #  
    predict = rx_predict(linmod, data = rx_import(input_data = data_source)) 
    summary = rx_summary("ArrDelay ~ DayOfWeek", data = data_source, 
compute_context = sql_compute_context) 

Defining a data source vs. defining a compute context

Changing compute contexts

https://learn.microsoft.com/en-us/r-server/python-reference/revoscalepy/rxsqlserverdata
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rxinsqlserver


In this example, you set the compute context by using an argument of the individual rx
function.

linmod = rx_lin_mod_ex("ArrDelay ~ DayOfWeek", data = data, compute_context =

sql_compute_context)

This compute context is reused in the call to rxsummary:

summary = rx_summary("ArrDelay ~ DayOfWeek", data = data_source, compute_context =

sql_compute_context)

The function rx_set_compute_context lets you toggle between compute contexts that
have already been defined.

After you have set the active compute context, it remains active until you change it.

When you define the compute context, you can also set parameters that control how
the data is handled by the compute context. These parameters differ depending on the
data source type.

For SQL Server compute contexts, you can set the batch size, or provide hints about the
degree of parallelism to use in running tasks.

The sample was run on a computer with four processors, so the num_tasks
parameter is set to 4 to allow maximum use of resources.
If you set this value to 0, SQL Server uses the default, which is to run as many tasks
in parallel as possible, under the current MAXDOP settings for the server. However,
the exact number of tasks that might be allocated depends on many other factors,
such as server settings, and other jobs that are running.

These additional Python samples and tutorials demonstrate end-to-end scenarios using
more complex data sources, as well as the use of remote compute contexts.

In-Database Python for SQL developers
Build a predictive model using Python and SQL Server

Set compute context as an argument of a method or function

Set a compute context explicitly using rx_set_compute_context

Using parallel processing and streaming

Next steps

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-summary
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-set-compute-context
https://microsoft.github.io/sql-ml-tutorials/python/rentalprediction/




R tutorials for SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

This article describes the R tutorials and quickstarts for SQL Server Machine Learning
Services.

Tutorial Description

Predict ski
rental with
decision tree

Use R and a decision tree model to predict the number of future ski rentals. Use
notebooks in Azure Data Studio for preparing data and training the model, and
T-SQL for model deployment.

Categorizing
customers
using k-
means
clustering

Use R to develop and deploy a K-Means clustering model to categorize
customers. Use notebooks in Azure Data Studio for preparing data and training
the model, and T-SQL for model deployment.

In-database R
analytics for
data scientists

For R developers new to SQL machine learning, this tutorial explains how to
perform common data science tasks in SQL. Load and visualize data, train and
save a model in a database, and use the model for predictive analytics.

In-database R
analytics for
SQL
developers

Build and deploy a complete R solution, using only SQL tools. Focuses on moving
a solution into production. You'll learn how to wrap R code in a stored procedure,
save an R model in a database, and make parameterized calls to the R model for
prediction.

If you are new to SQL machine learning, you can also try the R quickstarts.

Quickstart Description

Run simple R scripts Learn the basics of how to call R in T-SQL using
sp_execute_external_script.

Data structures and objects
using R

Shows how SQL uses the R to handle data structures.

Create and score a predictive
model in R

Explains how to create, train, and use a R model to make
predictions from new data.

R tutorials

R quickstarts

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


R extension in SQL Server

Next steps



Tutorial: Develop a predictive model in
R with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In this four-part tutorial series, you will use R and a machine learning model in SQL
Server Machine Learning Services to predict the number of ski rentals.

Imagine you own a ski rental business and you want to predict the number of rentals
that you'll have on a future date. This information will help you get your stock, staff, and
facilities ready.

In the first part of this series, you'll get set up with the prerequisites. In parts two and
three, you'll develop some R scripts in a notebook to prepare your data and train a
machine learning model. Then, in part three, you'll run those R scripts inside a database
using T-SQL stored procedures.

In this article, you'll learn how to:

In part two, you'll learn how to load the data from a database into a Python data frame,
and prepare the data in R.

In part three, you'll learn how to train a machine learning model model in R.

In part four, you'll learn how to store the model in a database, and then create stored
procedures from the R scripts you developed in parts two and three. The stored
procedures will run on the server to make predictions based on new data.

SQL Server Machine Learning Services - To install Machine Learning Services, see
the Windows installation guide.

R IDE - This tutorial uses RStudio Desktop .

RODBC - This driver is used in the R scripts you'll develop in this tutorial. If it's not
already installed, install it using the R command install.packages("RODBC") . For
more information on RODBC, see CRAN - Package RODBC .

Restore a sample database＂

Prerequisites

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://www.rstudio.com/products/rstudio/download/
https://cran.r-project.org/package=RODBC


SQL query tool - This tutorial assumes you're using Azure Data Studio. For more
information, see How to use notebooks in Azure Data Studio.

The sample database used in this tutorial has been saved to a .bak database backup file
for you to download and use.

1. Download the file TutorialDB.bak .

2. Follow the directions in Restore a database from a backup file in Azure Data
Studio, using these details:

Import from the TutorialDB.bak file you downloaded
Name the target database "TutorialDB"

3. You can verify that the restored database exists by querying the dbo.rental_data
table:

SQL

If you're not going to continue with this tutorial, delete the TutorialDB database.

In part one of this tutorial series, you completed these steps:

Installed the prerequisites
Restored a sample database

To prepare the data for the machine learning model, follow part two of this tutorial
series:

Restore the sample database

USE TutorialDB; 
SELECT * FROM [dbo].[rental_data]; 

Clean up resources

Next steps

Prepare data to train a predictive model in R

https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/notebooks/notebooks-guidance?view=sql-server-2017
https://rserverdistribution.blob.core.windows.net/production/sqlmldocument/TutorialDB.bak
https://learn.microsoft.com/en-us/sql/azure-data-studio/tutorial-backup-restore-sql-server?view=sql-server-2017#restore-a-database-from-a-backup-file


Tutorial: Prepare data to train a
predictive model in R with SQL machine
learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part two of this four-part tutorial series, you'll prepare data from a database using R.
Later in this series, you'll use this data to train and deploy a predictive model in R with
SQL Server Machine Learning Services.

In this article, you'll learn how to:

In part one, you learned how to restore the sample database.

In part three, you'll learn how to train a machine learning model in R.

In part four, you'll learn how to store the model in a database, and then create stored
procedures from the R scripts you developed in parts two and three. The stored
procedures will run on the server to make predictions based on new data.

Part two of this tutorial assumes you have completed part one and its prerequisites.

To use the data in R, you'll load the data from the database into a data frame
(rentaldata ).

Create a new RScript file in RStudio and run the following script. Replace ServerName
with your own connection information.

R

Restore a sample database into a database＂

Load the data from the database into an R data frame＂

Prepare the data in R by identifying some columns as categorical＂

Prerequisites

Load the data into a data frame

#Define the connection string to connect to the TutorialDB database 
connStr <- "Driver=SQL 

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


You should see results similar to the following.

results

In this sample database, most of the preparation has already been done, but you'll do
one more preparation here. Use the following R script to identify three columns as
categories by changing the data types to factor.

R

Server;Server=ServerName;Database=TutorialDB;uid=Username;pwd=Password" 

#Get the data from the table 
library(RODBC) 

ch <- odbcDriverConnect(connStr) 

#Import the data from the table 
rentaldata <- sqlFetch(ch, "dbo.rental_data") 

#Take a look at the structure of the data and the top rows 
head(rentaldata) 
str(rentaldata) 

   Year  Month  Day  RentalCount  WeekDay  Holiday  Snow 
1  2014    1     20      445         2        1      0 
2  2014    2     13       40         5        0      0 
3  2013    3     10      456         1        0      0 
4  2014    3     31       38         2        0      0 
5  2014    4     24       23         5        0      0 
6  2015    2     11       42         4        0      0 
'data.frame':       453 obs. of  7 variables: 
$ Year       : int  2014 2014 2013 2014 2014 2015 2013 2014 2013 2015 ... 
$ Month      : num  1 2 3 3 4 2 4 3 4 3 ... 
$ Day        : num  20 13 10 31 24 11 28 8 5 29 ... 
$ RentalCount: num  445 40 456 38 23 42 310 240 22 360 ... 
$ WeekDay    : num  2 5 1 2 5 4 1 7 6 1 ... 
$ Holiday    : int  1 0 0 0 0 0 0 0 0 0 ... 
$ Snow       : num  0 0 0 0 0 0 0 0 0 0 ... 

Prepare the data

#Changing the three factor columns to factor types 
rentaldata$Holiday <- factor(rentaldata$Holiday); 
rentaldata$Snow    <- factor(rentaldata$Snow); 
rentaldata$WeekDay <- factor(rentaldata$WeekDay); 



You should see results similar to the following.

results

The data is now prepared for training.

If you're not going to continue with this tutorial, delete the TutorialDB database.

In part two of this tutorial series, you learned how to:

Load the sample data into an R data frame
Prepare the data in R by identifying some columns as categorical

To create a machine learning model that uses data from the TutorialDB database, follow
part three of this tutorial series:

#Visualize the dataset after the change 
str(rentaldata); 

data.frame':      453 obs. of  7 variables: 
$ Year       : int  2014 2014 2013 2014 2014 2015 2013 2014 2013 2015 ... 
$ Month      : num  1 2 3 3 4 2 4 3 4 3 ... 
$ Day        : num  20 13 10 31 24 11 28 8 5 29 ... 
$ RentalCount: num  445 40 456 38 23 42 310 240 22 360 ... 
$ WeekDay    : Factor w/ 7 levels "1","2","3","4",..: 2 5 1 2 5 4 1 7 6 1 
... 
$ Holiday    : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 1 1 1 1 ... 
$ Snow       : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ... 

Clean up resources

Next steps

Create a predictive model in R with SQL machine learning



Tutorial: Create a predictive model in R
with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part three of this four-part tutorial series, you'll train a predictive model in R. In the
next part of this series, you'll deploy this model in a SQL Server database with Machine
Learning Services.

In this article, you'll learn how to:

In part one, you learned how to restore the sample database.

In part two, you learned how to load the data from a database into a Python data frame
and prepare the data in R.

In part four, you'll learn how to store the model in a database, and then create stored
procedures from the Python scripts you developed in parts two and three. The stored
procedures will run in on the server to make predictions based on new data.

Part three of this tutorial series assumes you have fulfilled the prerequisites of part one,
and completed the steps in part two.

To find the best model for the ski rental data, create two different models (linear
regression and decision tree) and see which one is predicting more accurately. You'll use
the data frame rentaldata  that you created in part one of this series.

R

Train two machine learning models＂

Make predictions from both models＂

Compare the results to choose the most accurate model＂

Prerequisites

Train two models

#First, split the dataset into two different sets: 
# one for training the model and the other for validating it 
train_data = rentaldata[rentaldata$Year < 2015,]; 
test_data  = rentaldata[rentaldata$Year == 2015,]; 

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


Use a predict function to predict the rental counts using each trained model.

R

results

#Use the RentalCount column to check the quality of the prediction against 
actual values 
actual_counts <- test_data$RentalCount; 

#Model 1: Use lm to create a linear regression model, trained with the 
training data set 
model_lm <- lm(RentalCount ~  Month + Day + WeekDay + Snow + Holiday, data = 
train_data); 

#Model 2: Use rpart to create a decision tree model, trained with the 
training data set 
library(rpart); 
model_rpart  <- rpart(RentalCount ~ Month + Day + WeekDay + Snow + Holiday, 
data = train_data); 

Make predictions from both models

#Use both models to make predictions using the test data set. 
predict_lm <- predict(model_lm, test_data) 
predict_lm <- data.frame(RentalCount_Pred = predict_lm, RentalCount = 
test_data$RentalCount,  
                         Year = test_data$Year, Month = test_data$Month, 
                         Day = test_data$Day, Weekday = test_data$WeekDay, 
                         Snow = test_data$Snow, Holiday = test_data$Holiday) 

predict_rpart  <- predict(model_rpart,  test_data) 
predict_rpart <- data.frame(RentalCount_Pred = predict_rpart, RentalCount = 
test_data$RentalCount,  
                         Year = test_data$Year, Month = test_data$Month, 
                         Day = test_data$Day, Weekday = test_data$WeekDay, 
                         Snow = test_data$Snow, Holiday = test_data$Holiday) 

#To verify it worked, look at the top rows of the two prediction data sets. 
head(predict_lm); 
head(predict_rpart); 

    RentalCount_Pred  RentalCount  Month  Day  WeekDay  Snow  Holiday 
1         27.45858          42       2     11     4      0       0 
2        387.29344         360       3     29     1      0       0 
3         16.37349          20       4     22     4      0       0 
4         31.07058          42       3      6     6      0       0 
5        463.97263         405       2     28     7      1       0 



Now you want to see which of the models gives the best predictions. A quick and easy
way to do this is to use a basic plotting function to view the difference between the
actual values in your training data and the predicted values.

R

6        102.21695          38       1     12     2      1       0 
    RentalCount_Pred  RentalCount  Month  Day  WeekDay  Snow  Holiday 
1          40.0000          42       2     11     4      0       0 
2         332.5714         360       3     29     1      0       0 
3          27.7500          20       4     22     4      0       0 
4          34.2500          42       3      6     6      0       0 
5         645.7059         405       2     28     7      1       0 
6          40.0000          38       1     12     2      1       0 

Compare the results

#Use the plotting functionality in R to visualize the results from the 
predictions 
par(mfrow = c(1, 1)); 
plot(predict_lm$RentalCount_Pred - predict_lm$RentalCount, main = 
"Difference between actual and predicted. lm") 
plot(predict_rpart$RentalCount_Pred  - predict_rpart$RentalCount,  main = 
"Difference between actual and predicted. rpart") 



It looks like the decision tree model is the more accurate of the two models.

If you're not going to continue with this tutorial, delete the TutorialDB database.

In part three of this tutorial series, you learned how to:

Train two machine learning models
Make predictions from both models
Compare the results to choose the most accurate model

To deploy the machine learning model you've created, follow part four of this tutorial
series:

Clean up resources

Next steps



Deploy a predictive model in R with SQL machine learning



Tutorial: Deploy a predictive model in R
with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part four of this four-part tutorial series, you'll deploy a machine learning model
developed in R into SQL Server using Machine Learning Services.

In this article, you'll learn how to:

In part one, you learned how to restore the sample database.

In part two, you learned how to import a sample database and then prepare the data to
be used for training a predictive model in R.

In part three, you learned how to create and train multiple machine learning models in
R, and then choose the most accurate one.

Part four of this tutorial assumes you fulfilled the prerequisites of part one and
completed the steps in part two and part three.

In part three of this tutorial series, you decided that a decision tree (dtree) model was
the most accurate. Now, using the R scripts you developed, create a stored procedure
(generate_rental_model ) that trains and generates the dtree model using rpart from the
R package.

Run the following commands in Azure Data Studio.

SQL

Create a stored procedure that generates the machine learning model＂

Store the model in a database table＂

Create a stored procedure that makes predictions using the model＂

Execute the model with new data＂

Prerequisites

Create a stored procedure that generates the
model

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


Create a table in the TutorialDB database and then save the model to the table.

1. Create a table (rental_models ) for storing the model.

SQL

USE [TutorialDB] 
DROP PROCEDURE IF EXISTS generate_rental_model; 
GO 
CREATE PROCEDURE generate_rental_model (@trained_model VARBINARY(max) 
OUTPUT) 
AS 
BEGIN 
    EXECUTE sp_execute_external_script @language = N'R' 
        , @script = N' 
rental_train_data$Month   <- factor(rental_train_data$Month); 
rental_train_data$Day     <- factor(rental_train_data$Day); 
rental_train_data$Holiday <- factor(rental_train_data$Holiday); 
rental_train_data$Snow    <- factor(rental_train_data$Snow); 
rental_train_data$WeekDay <- factor(rental_train_data$WeekDay); 

#Create a dtree model and train it using the training data set 
library(rpart); 
model_dtree <- rpart(RentalCount ~ Month + Day + WeekDay + Snow + Holiday, 
data = rental_train_data); 
#Serialize the model before saving it to the database table 
trained_model <- as.raw(serialize(model_dtree, connection=NULL)); 
' 
        , @input_data_1 = N' 
            SELECT RentalCount 
                 , Year 
                 , Month 
                 , Day 
                 , WeekDay 
                 , Snow 
                 , Holiday 
            FROM dbo.rental_data 
            WHERE Year < 2015 
            ' 
        , @input_data_1_name = N'rental_train_data' 
        , @params = N'@trained_model varbinary(max) OUTPUT' 
        , @trained_model = @trained_model OUTPUT; 
END; 
GO 

Store the model in a database table

USE TutorialDB; 
DROP TABLE IF EXISTS rental_models; 
GO 



2. Save the model to the table as a binary object, with the model name "DTree".

SQL

Create a stored procedure (predict_rentalcount_new ) that makes predictions using the
trained model and a set of new data.

SQL

CREATE TABLE rental_models ( 
      model_name VARCHAR(30) NOT NULL DEFAULT('default model') PRIMARY 
KEY 
    , model VARBINARY(MAX) NOT NULL 
    ); 
GO 

-- Save model to table 
TRUNCATE TABLE rental_models; 

DECLARE @model VARBINARY(MAX); 

EXECUTE generate_rental_model @model OUTPUT; 

INSERT INTO rental_models ( 
      model_name 
    , model 
    ) 
VALUES ( 
     'DTree' 
    , @model 
    ); 

SELECT * 
FROM rental_models; 

Create a stored procedure that makes
predictions

-- Stored procedure that takes model name and new data as input parameters 
and predicts the rental count for the new data 
USE [TutorialDB] 
DROP PROCEDURE IF EXISTS predict_rentalcount_new; 
GO 
CREATE PROCEDURE predict_rentalcount_new ( 
      @model_name VARCHAR(100) 
    , @input_query NVARCHAR(MAX) 
    ) 
AS 
BEGIN 



Now you can use the stored procedure predict_rentalcount_new  to predict the rental
count from new data.

SQL

    DECLARE @model VARBINARY(MAX) = ( 
            SELECT model 
            FROM rental_models 
            WHERE model_name = @model_name 
            ); 

    EXECUTE sp_execute_external_script @language = N'R' 
        , @script = N' 
#Convert types to factors 
rentals$Month   <- factor(rentals$Month); 
rentals$Day     <- factor(rentals$Day); 
rentals$Holiday <- factor(rentals$Holiday); 
rentals$Snow    <- factor(rentals$Snow); 
rentals$WeekDay <- factor(rentals$WeekDay); 

#Before using the model to predict, we need to unserialize it 
rental_model <- unserialize(model); 

#Call prediction function 
rental_predictions <- predict(rental_model, rentals); 
rental_predictions <- data.frame(rental_predictions); 
' 
        , @input_data_1 = @input_query 
        , @input_data_1_name = N'rentals' 
        , @output_data_1_name = N'rental_predictions' 
        , @params = N'@model varbinary(max)' 
        , @model = @model 
    WITH RESULT SETS(("RentalCount_Predicted" FLOAT)); 
END; 
GO 

Execute the model with new data

-- Use the predict_rentalcount_new stored procedure with the model name and 
a set of features to predict the rental count 
EXECUTE dbo.predict_rentalcount_new @model_name = 'DTree' 
    , @input_query = ' 
        SELECT CONVERT(INT,  3) AS Month 
             , CONVERT(INT, 24) AS Day 
             , CONVERT(INT,  4) AS WeekDay 
             , CONVERT(INT,  1) AS Snow 
             , CONVERT(INT,  1) AS Holiday 
        '; 
GO 



You should see a result similar to the following.

results

You have successfully created, trained, and deployed a model in a database. You then
used that model in a stored procedure to predict values based on new data.

When you've finished using the TutorialDB database, delete it from your server.

In part four of this tutorial series, you learned how to:

Create a stored procedure that generates the machine learning model
Store the model in a database table
Create a stored procedure that makes predictions using the model
Execute the model with new data

To learn more about using R in Machine Learning Services, see:

Run simple R scripts
R data structures, types and objects
R functions

RentalCount_Predicted 
332.571428571429 

Clean up resources

Next steps



Tutorial: Develop a clustering model in R
with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In this four-part tutorial series, you'll use R to develop and deploy a K-Means clustering
model in SQL Server Machine Learning Services to cluster customer data.

In part one of this series, you'll set up the prerequisites for the tutorial and then restore
a sample dataset to a database. In parts two and three, you'll develop some R scripts in
an Azure Data Studio notebook to analyze and prepare this sample data and train a
machine learning model. Then, in part four, you'll run those R scripts inside a database
using stored procedures.

Clustering can be explained as organizing data into groups where members of a group
are similar in some way. For this tutorial series, imagine you own a retail business. You'll
use the K-Means algorithm to perform the clustering of customers in a dataset of
product purchases and returns. By clustering customers, you can focus your marketing
efforts more effectively by targeting specific groups. K-Means clustering is an
unsupervised learning algorithm that looks for patterns in data based on similarities.

In this article, you'll learn how to:

In part two, you'll learn how to prepare the data from a database to perform clustering.

In part three, you'll learn how to create and train a K-Means clustering model in R.

In part four, you'll learn how to create a stored procedure in a database that can
perform clustering in R based on new data.

SQL Server Machine Learning Services with the R language option - Follow the
installation instructions in the Windows installation guide.

Azure Data Studio. You'll use a notebook in Azure Data Studio for SQL. For more
information about notebooks, see How to use notebooks in Azure Data Studio.

R IDE - This tutorial uses RStudio Desktop .

Restore a sample database＂

Prerequisites

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/notebooks/notebooks-guidance?view=sql-server-2017
https://www.rstudio.com/products/rstudio/download/


RODBC - This driver is used in the R scripts you'll develop in this tutorial. If it's not
already installed, install it using the R command install.packages("RODBC") . For
more information on RODBC, see CRAN - Package RODBC .

The sample dataset used in this tutorial has been saved to a .bak database backup file
for you to download and use. This dataset is derived from the tpcx-bb  dataset
provided by the Transaction Processing Performance Council (TPC) .

1. Download the file tpcxbb_1gb.bak .

2. Follow the directions in Restore a database from a backup file in Azure Data
Studio, using these details:

Import from the tpcxbb_1gb.bak file you downloaded
Name the target database "tpcxbb_1gb"

3. You can verify that the dataset exists after you have restored the database by
querying the dbo.customer table:

SQL

If you're not going to continue with this tutorial, delete the tpcxbb_1gb database.

In part one of this tutorial series, you completed these steps:

Installed the prerequisites
Restored a sample database

To prepare the data for the machine learning model, follow part two of this tutorial
series:

Restore the sample database

USE tpcxbb_1gb; 
SELECT * FROM [dbo].[customer]; 

Clean up resources

Next steps

Prepare data to perform clustering

https://cran.r-project.org/package=RODBC
http://www.tpc.org/tpcx-bb/default5.asp
http://www.tpc.org/
https://rserverdistribution.blob.core.windows.net/production/sqlmldocument/tpcxbb_1gb.bak
https://learn.microsoft.com/en-us/sql/azure-data-studio/tutorial-backup-restore-sql-server?view=sql-server-2017#restore-a-database-from-a-backup-file


Tutorial: Prepare data to perform
clustering in R with SQL machine
learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part two of this four-part tutorial series, you'll prepare the data from a database to
perform clustering in R with SQL Server Machine Learning Services.

In this article, you'll learn how to:

In part one, you installed the prerequisites and restored the sample database.

In part three, you'll learn how to create and train a K-Means clustering model in R.

In part four, you'll learn how to create a stored procedure in a database that can
perform clustering in R based on new data.

Part two of this tutorial assumes you have completed part one.

Create a new RScript file in RStudio and run the following script. In the SQL query, you're
separating customers along the following dimensions:

orderRatio = return order ratio (total number of orders partially or fully returned
versus the total number of orders)
itemsRatio = return item ratio (total number of items returned versus the number
of items purchased)
monetaryRatio = return amount ratio (total monetary amount of items returned
versus the amount purchased)
frequency = return frequency

In the connStr function, replace ServerName with your own connection information.

Separate customers along different dimensions using R＂

Load the data from the database into an R data frame＂

Prerequisites

Separate customers

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


R

# Define the connection string to connect to the tpcxbb_1gb database 

connStr <- "Driver=SQL 
Server;Server=ServerName;Database=tpcxbb_1gb;uid=Username;pwd=Password" 

#Define the query to select data 
input_query <- " 
SELECT ss_customer_sk AS customer
    ,round(CASE  
            WHEN ( 
                       (orders_count = 0) 
                    OR (returns_count IS NULL) 
                    OR (orders_count IS NULL) 
                    OR ((returns_count / orders_count) IS NULL) 
                    ) 
                THEN 0.0 
            ELSE (cast(returns_count AS NCHAR(10)) / orders_count) 
            END, 7) AS orderRatio
    ,round(CASE  
            WHEN ( 
                     (orders_items = 0) 
                  OR (returns_items IS NULL) 
                  OR (orders_items IS NULL) 
                  OR ((returns_items / orders_items) IS NULL) 
                 ) 
            THEN 0.0 
            ELSE (cast(returns_items AS NCHAR(10)) / orders_items) 
            END, 7) AS itemsRatio
    ,round(CASE  
            WHEN ( 
                     (orders_money = 0) 
                  OR (returns_money IS NULL) 
                  OR (orders_money IS NULL) 
                  OR ((returns_money / orders_money) IS NULL) 
                 ) 
            THEN 0.0 
            ELSE (cast(returns_money AS NCHAR(10)) / orders_money) 
            END, 7) AS monetaryRatio 
    ,round(CASE  
            WHEN (returns_count IS NULL) 
            THEN 0.0 
            ELSE returns_count 
            END, 0) AS frequency 
FROM ( 
    SELECT ss_customer_sk, 
        -- return order ratio 
        COUNT(DISTINCT (ss_ticket_number)) AS orders_count, 
        -- return ss_item_sk ratio 
        COUNT(ss_item_sk) AS orders_items, 
        -- return monetary amount ratio 
        SUM(ss_net_paid) AS orders_money 
    FROM store_sales s 



Now use the following script to return the results from the query to an R data frame.

R

You should see results similar to the following.

results

If you're not going to continue with this tutorial, delete the tpcxbb_1gb database.

    GROUP BY ss_customer_sk 
    ) orders 
LEFT OUTER JOIN ( 
    SELECT sr_customer_sk, 
        -- return order ratio 
        count(DISTINCT (sr_ticket_number)) AS returns_count, 
        -- return ss_item_sk ratio 
        COUNT(sr_item_sk) AS returns_items, 
        -- return monetary amount ratio 
        SUM(sr_return_amt) AS returns_money 
    FROM store_returns 
    GROUP BY sr_customer_sk 
    ) returned ON ss_customer_sk = sr_customer_sk"; 

Load the data into a data frame

# Query using input_query and get the results back 
# to data frame customer_data 

library(RODBC) 

ch <- odbcDriverConnect(connStr) 

customer_data <- sqlQuery(ch, input_query) 

# Take a look at the data just loaded 
head(customer_data, n = 5); 

  customer orderRatio itemsRatio monetaryRatio frequency 
1    29727          0          0      0.000000         0 
2    26429          0          0      0.041979         1 
3    60053          0          0      0.065762         3 
4    97643          0          0      0.037034         3 
5    32549          0          0      0.031281         4 

Clean up resources



In part two of this tutorial series, you learned how to:

Separate customers along different dimensions using R
Load the data from the database into an R data frame

To create a machine learning model that uses this customer data, follow part three of
this tutorial series:

Next steps

Create a predictive model in R with SQL machine learning



Tutorial: Build a clustering model in R
with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part three of this four-part tutorial series, you'll build a K-Means model in R to
perform clustering. In the next part of this series, you'll deploy this model in a database
with SQL Server Machine Learning Services.

In this article, you'll learn how to:

In part one, you installed the prerequisites and restored the sample database.

In part two, you learned how to prepare the data from a database to perform clustering.

In part four, you'll learn how to create a stored procedure in a database that can
perform clustering in R based on new data.

Part three of this tutorial series assumes you have fulfilled the prerequisites of part
one and completed the steps in part two.

To cluster your customer data, you'll use the K-Means clustering algorithm, one of the
simplest and most well-known ways of grouping data. You can read more about K-
Means in A complete guide to K-means clustering algorithm .

The algorithm accepts two inputs: The data itself, and a predefined number "k"
representing the number of clusters to generate. The output is k clusters with the input
data partitioned among the clusters.

To determine the number of clusters for the algorithm to use, use a plot of the within
groups sum of squares, by number of clusters extracted. The appropriate number of
clusters to use is at the bend or "elbow" of the plot.

Define the number of clusters for a K-Means algorithm＂

Perform clustering＂

Analyze the results＂

Prerequisites

Define the number of clusters

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://www.kdnuggets.com/2019/05/guide-k-means-clustering-algorithm.html


R

Based on the graph, it looks like k = 4 would be a good value to try. That k value will
group the customers into four clusters.

In the following R script, you'll use the function kmeans to perform clustering.

R

# Determine number of clusters by using a plot of the within groups sum of 
squares, 
# by number of clusters extracted.  
wss <- (nrow(customer_data) - 1) * sum(apply(customer_data, 2, var)) 
for (i in 2:20) 
    wss[i] <- sum(kmeans(customer_data, centers = i)$withinss) 
plot(1:20, wss, type = "b", xlab = "Number of Clusters", ylab = "Within 
groups sum of squares") 

Perform clustering

# Output table to hold the customer group mappings. 
# Generate clusters using Kmeans and output key / cluster to a table 
# called return_cluster 

## create clustering model 
clust <- kmeans(customer_data[,2:5],4) 



Now that you've done the clustering using K-Means, the next step is to analyze the
result and see if you can find any actionable information.

R

results

## create clustering ouput for table 
customer_cluster <- 
data.frame(cluster=clust$cluster,customer=customer_data$customer,orderRatio=
customer_data$orderRatio, 
        
itemsRatio=customer_data$itemsRatio,monetaryRatio=customer_data$monetaryRati
o,frequency=customer_data$frequency) 

## write cluster output to DB table 
sqlSave(ch, customer_cluster, tablename = "return_cluster") 

# Read the customer returns cluster table from the database 
customer_cluster_check <- sqlFetch(ch, "return_cluster") 

head(customer_cluster_check) 

Analyze the results

#Look at the clustering details to analyze results 
clust[-1] 

$centers 
   orderRatio itemsRatio monetaryRatio frequency 
1 0.621835791  0.1701519    0.35510836  1.009025 
2 0.074074074  0.0000000    0.05886575  2.363248 
3 0.004807692  0.0000000    0.04618708  5.050481 
4 0.000000000  0.0000000    0.00000000  0.000000 

$totss 
[1] 40191.83 

$withinss 
[1] 19867.791   215.714   660.784     0.000 

$tot.withinss 
[1] 20744.29 

$betweenss 
[1] 19447.54 

$size 
[1]  4543   702   416 31675 



The four cluster means are given using the variables defined in part two:

orderRatio = return order ratio (total number of orders partially or fully returned
versus the total number of orders)
itemsRatio = return item ratio (total number of items returned versus the number
of items purchased)
monetaryRatio = return amount ratio (total monetary amount of items returned
versus the amount purchased)
frequency = return frequency

Data mining using K-Means often requires further analysis of the results, and further
steps to better understand each cluster, but it can provide some good leads. Here are a
couple ways you could interpret these results:

Cluster 1 (the largest cluster) seems to be a group of customers that are not active
(all values are zero).
Cluster 3 seems to be a group that stands out in terms of return behavior.

If you're not going to continue with this tutorial, delete the tpcxbb_1gb database.

In part three of this tutorial series, you learned how to:

Define the number of clusters for a K-Means algorithm
Perform clustering
Analyze the results

To deploy the machine learning model you've created, follow part four of this tutorial
series:

$iter 
[1] 3 

$ifault 
[1] 0 

Clean up resources

Next steps

Deploy a clustering model in R with SQL machine learning



Tutorial: Deploy a clustering model in R
with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part four of this four-part tutorial series, you'll deploy a clustering model, developed
in R, into a database using SQL Server Machine Learning Services.

In order to perform clustering on a regular basis, as new customers are registering, you
need to be able call the R script from any app. To do that, you can deploy the R script in
a database by putting the R script inside a SQL stored procedure. Because your model
executes in the database, it can easily be trained against data stored in the database.

In this article, you'll learn how to:

In part one, you installed the prerequisites and restored the sample database.

In part two, you learned how to prepare the data from a database to perform clustering.

In part three, you learned how to create and train a K-Means clustering model in R.

Part four of this tutorial series assumes you have fulfilled the prerequisites of part
one and completed the steps in part two and part three.

Run the following T-SQL script to create the stored procedure. The procedure recreates
the steps you developed in parts two and three of this tutorial series:

classify customers based on their purchase and return history
generate four clusters of customers using a K-Means algorithm

Create a stored procedure that generates the model＂

Perform clustering＂

Use the clustering information＂

Prerequisites

Create a stored procedure that generates the
model

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


The procedure stores the resulting customer cluster mappings in the database table
customer_return_clusters.

SQL

USE [tpcxbb_1gb] 
DROP PROC IF EXISTS generate_customer_return_clusters; 
GO 
CREATE procedure [dbo].[generate_customer_return_clusters] 
AS 
/* 
  This procedure uses R to classify customers into different groups 
  based on their purchase & return history. 
*/ 
BEGIN 
    DECLARE @duration FLOAT 
    , @instance_name NVARCHAR(100) = @@SERVERNAME 
    , @database_name NVARCHAR(128) = db_name() 
-- Input query to generate the purchase history & return metrics 
    , @input_query NVARCHAR(MAX) = N' 
SELECT ss_customer_sk AS customer, 
    round(CASE  
            WHEN ( 
                    (orders_count = 0) 
                    OR (returns_count IS NULL) 
                    OR (orders_count IS NULL) 
                    OR ((returns_count / orders_count) IS NULL) 
                    ) 
                THEN 0.0 
            ELSE (cast(returns_count AS NCHAR(10)) / orders_count) 
            END, 7) AS orderRatio, 
    round(CASE  
            WHEN ( 
                    (orders_items = 0) 
                    OR (returns_items IS NULL) 
                    OR (orders_items IS NULL) 
                    OR ((returns_items / orders_items) IS NULL) 
                    ) 
                THEN 0.0 
            ELSE (cast(returns_items AS NCHAR(10)) / orders_items) 
            END, 7) AS itemsRatio, 
    round(CASE  
            WHEN ( 
                    (orders_money = 0) 
                    OR (returns_money IS NULL) 
                    OR (orders_money IS NULL) 
                    OR ((returns_money / orders_money) IS NULL) 
                    ) 
                THEN 0.0 
            ELSE (cast(returns_money AS NCHAR(10)) / orders_money) 
            END, 7) AS monetaryRatio, 
    round(CASE  
            WHEN (returns_count IS NULL) 
                THEN 0.0 



            ELSE returns_count 
            END, 0) AS frequency 
FROM ( 
    SELECT ss_customer_sk, 
        -- return order ratio 
        COUNT(DISTINCT (ss_ticket_number)) AS orders_count, 
        -- return ss_item_sk ratio 
        COUNT(ss_item_sk) AS orders_items, 
        -- return monetary amount ratio 
        SUM(ss_net_paid) AS orders_money 
    FROM store_sales s 
    GROUP BY ss_customer_sk 
    ) orders 
LEFT OUTER JOIN ( 
    SELECT sr_customer_sk, 
        -- return order ratio 
        count(DISTINCT (sr_ticket_number)) AS returns_count, 
        -- return ss_item_sk ratio 
        COUNT(sr_item_sk) AS returns_items, 
        -- return monetary amount ratio 
        SUM(sr_return_amt) AS returns_money 
    FROM store_returns 
    GROUP BY sr_customer_sk 
    ) returned ON ss_customer_sk = sr_customer_sk 
 ' 
EXECUTE sp_execute_external_script 
      @language = N'R' 
    , @script = N' 
# Define the connection string 

connStr <- paste("Driver=SQL Server; Server=", instance_name, 
                 "; Database=", database_name, 
                 "; uid=Username;pwd=Password; ", 
                 sep="" ) 

# Input customer data that needs to be classified. 
# This is the result we get from the query. 
library(RODBC) 

ch <- odbcDriverConnect(connStr);

customer_data <- sqlQuery(ch, input_query) 

sqlDrop(ch, "customer_return_clusters") 

## create clustering model 
clust <- kmeans(customer_data[,2:5],4) 

## create clustering output for table 
customer_cluster <- 
data.frame(cluster=clust$cluster,customer=customer_data$customer,orderRatio=
customer_data$orderRatio, 
   
itemsRatio=customer_data$itemsRatio,monetaryRatio=customer_data$monetaryRati
o,frequency=customer_data$frequency) 



Now that you've created the stored procedure, execute the following script to perform
clustering.

SQL

Verify that it works and that we actually have the list of customers and their cluster
mappings.

SQL

result

## write cluster output to DB table 
sqlSave(ch, customer_cluster, tablename = "customer_return_clusters") 

## clean up 
odbcClose(ch) 
' 
    , @input_data_1 = N'' 
    , @params = N'@instance_name nvarchar(100), @database_name 
nvarchar(128), @input_query nvarchar(max), @duration float OUTPUT' 
    , @instance_name = @instance_name 
    , @database_name = @database_name 
    , @input_query = @input_query
    , @duration = @duration OUTPUT; 
END; 

GO 

Perform clustering

--Empty table of the results before running the stored procedure 
TRUNCATE TABLE customer_return_clusters; 

--Execute the clustering 
--This will load the table customer_return_clusters with cluster mappings 
EXECUTE [dbo].[generate_customer_return_clusters]; 

--Select data from table customer_return_clusters 
--to verify that the clustering data was loaded 
SELECT TOP (5) * 
FROM customer_return_clusters; 

cluster  customer  orderRatio  itemsRatio  monetaryRatio  frequency 
1        29727     0           0           0              0 
4        26429     0           0           0.041979       1 
2        60053     0           0           0.065762       3 



Because you stored the clustering procedure in the database, it can perform clustering
efficiently against customer data stored in the same database. You can execute the
procedure whenever your customer data is updated and use the updated clustering
information.

Suppose you want to send a promotional email to customers in cluster 0, the group that
was inactive (you can see how the four clusters were described in part three of this
tutorial). The following code selects the email addresses of customers in cluster 0.

SQL

You can change the c.cluster value to return email addresses for customers in other
clusters.

When you're finished with this tutorial, you can delete the tpcxbb_1gb database.

In part four of this tutorial series, you learned how to:

Create a stored procedure that generates the model
Perform clustering with SQL machine learning
Use the clustering information

To learn more about using R in Machine Learning Services, see:

Run simple R scripts

2        97643     0           0           0.037034       3 
2        32549     0           0           0.031281       4 

Use the clustering information

USE [tpcxbb_1gb] 
--Get email addresses of customers in cluster 0 for a promotion campaign 
SELECT customer.[c_email_address], customer.c_customer_sk 
  FROM dbo.customer 
  JOIN 
  [dbo].[customer_clusters] as c 
  ON c.Customer = customer.c_customer_sk 
  WHERE c.cluster = 0 

Clean up resources

Next steps



R data structures, types and objects
R functions



R tutorial: Predict NYC taxi fares with
binary classification
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In this five-part tutorial series for SQL programmers, you'll learn about R integration in
SQL Server Machine Learning Services.

You'll build and deploy an R-based machine learning solution using a sample database
on SQL Server. You'll use T-SQL, Azure Data Studio or SQL Server Management Studio,
and a database engine instance with SQL machine learning and R language support

This tutorial series introduces you to R functions used in a data modeling workflow.
Parts include data exploration, building and training a binary classification model, and
model deployment. You'll use sample data from the New York City Taxi and Limousine
Commission. The model you'll build predicts whether a trip is likely to result in a tip
based on the time of day, distance traveled, and pick-up location.

In the first part of this series, you'll install the prerequisites and restore the sample
database. In parts two and three, you'll develop some R scripts to prepare your data and
train a machine learning model. Then, in parts four and five, you'll run those R scripts
inside the database using T-SQL stored procedures.

In this article, you'll:

In part two, you'll explore the sample data and generate some plots.

In part three, you'll learn how to create features from raw data by using a Transact-SQL
function. You'll then call that function from a stored procedure to create a table that
contains the feature values.

In part four, you'll load the modules and call the necessary functions to create and train
the model using a SQL Server stored procedure.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

Install prerequisites＂

Restore the sample database＂

７ Note

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


Install SQL Server Machine Learning Services with R enabled

Install R libraries

Grant permissions to execute Python scripts

Restore the NYC Taxi demo database

All tasks can be done using Transact-SQL stored procedures in Azure Data Studio or
Management Studio.

This tutorial assumes familiarity with basic database operations such as creating
databases and tables, importing data, and writing SQL queries. It does not assume you
know R and all R code is provided.

The process of building a machine learning solution is a complex one that can involve
multiple tools, and the coordination of subject matter experts across several phases:

obtaining and cleaning data
exploring the data and building features useful for modeling
training and tuning the model
deployment to production

Development and testing of the actual code is best performed using a dedicated R
development environment. However, after the script is fully tested, you can easily deploy
it to SQL Server using Transact-SQL stored procedures in the familiar environment of
Azure Data Studio or Management Studio. Wrapping external code in stored procedures
is the primary mechanism for operationalizing code in SQL Server.

After the model has been saved to the database, you can call the model for predictions
from Transact-SQL by using stored procedures.

Whether you're a SQL programmer new to R, or an R developer new to SQL, this five-
part tutorial series introduces a typical workflow for conducting in-database analytics
with R and SQL Server.

This tutorial is available in both R and Python. For the Python version, see Python
tutorial: Predict NYC taxi fares with binary classification.

Prerequisites

Background for SQL developers



In this article, you:

Next steps

Installed prerequisites＂

Restored the sample database＂

R tutorial: Explore and visualize data



R tutorial: Explore and visualize data
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part two of this five-part tutorial series, you'll explore the sample data and generate
some plots. Later, you'll learn how to serialize graphics objects in Python, and then
deserialize those objects and make plots.

In part two of this five-part tutorial series, you'll review the sample data and then
generate some plots using the generic barplot  and hist  functions in base R.

A key objective of this article is showing how to call R functions from Transact-SQL in
stored procedures and save the results in application file formats:

Create a stored procedure using barplot  to generate an R plot as varbinary data.
Use bcp to export the binary stream to an image file.
Create a stored procedure using hist  to generate a plot, saving results as JPG and
PDF output.

In this article, you'll:

In part one, you installed the prerequisites and restored the sample database.

In part three, you'll learn how to create features from raw data by using a Transact-SQL
function. You'll then call that function from a stored procedure to create a table that
contains the feature values.

７ Note

Because visualization is such a powerful tool for understanding data shape and
distribution, R provides a range of functions and packages for generating
histograms, scatter plots, box plots, and other data exploration graphs. R typically
creates images using an R device for graphical output, which you can capture and
store as a varbinary data type for rendering in application. You can also save the
images to any of the support file formats (.JPG, .PDF, etc.).

Review the sample data＂

Create plots using R in T-SQL＂

Output plots in multiple file formats＂

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


In part four, you'll load the modules and call the necessary functions to create and train
the model using a SQL Server stored procedure.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

Developing a data science solution usually includes intensive data exploration and data
visualization. So first take a minute to review the sample data, if you haven't already.

In the original public dataset, the taxi identifiers and trip records were provided in
separate files. However, to make the sample data easier to use, the two original datasets
have been joined on the columns medallion, hack_license, and pickup_datetime. The
records were also sampled to get just 1% of the original number of records. The
resulting down-sampled dataset has 1,703,957 rows and 23 columns.

Taxi identifiers

The medallion column represents the taxi's unique ID number.

The hack_license column contains the taxi driver's license number (anonymized).

Trip and fare records

Each trip record includes the pickup and drop-off location and time, and the trip
distance.

Each fare record includes payment information such as the payment type, total
amount of payment, and the tip amount.

The last three columns can be used for various machine learning tasks. The
tip_amount column contains continuous numeric values and can be used as the
label column for regression analysis. The tipped column has only yes/no values and
is used for binary classification. The tip_class column has multiple class labels and
therefore can be used as the label for multi-class classification tasks.

This walkthrough demonstrates only the binary classification task; you are welcome
to try building models for the other two machine learning tasks, regression and
multiclass classification.

The values used for the label columns are all based on the tip_amount column,
using these business rules:

Review the data



Derived column name RuleDerived column name Rule

tipped If tip_amount > 0, tipped = 1, otherwise tipped = 0

tip_class Class 0: tip_amount = $0 

Class 1: tip_amount > $0 and tip_amount <= $5 

Class 2: tip_amount > $5 and tip_amount <= $10 

Class 3: tip_amount > $10 and tip_amount <= $20 

Class 4: tip_amount > $20

To create the plot, use the R function barplot . This step plots a histogram based on
data from a Transact-SQL query. You can wrap this function in a stored procedure,
RPlotHistogram.

1. In SQL Server Management Studio, in Object Explorer, right-click the
NYCTaxi_Sample database and select New Query. Or, in Azure Data Studio, select
New Notebook from the File menu and connect to the database.

2. Paste in the following script to create a stored procedure that plots the histogram.
This example is named RPlotHistogram.

SQL

Create plots using R in T-SQL

CREATE PROCEDURE [dbo].[RPlotHistogram] 
AS 
BEGIN 
  SET NOCOUNT ON; 
  DECLARE @query nvarchar(max) =   
  N'SELECT tipped FROM [dbo].[nyctaxi_sample]'   
  EXECUTE sp_execute_external_script @language = N'R',  
                                     @script = N'   
   image_file = tempfile();   
   jpeg(filename = image_file);  
   #Plot histogram   
   barplot(table(InputDataSet$tipped), main = "Tip Histogram", 
col="lightgreen", xlab="Tipped or not", ylab = "Counts", space=0) 
   dev.off();   
   OutputDataSet <- data.frame(data=readBin(file(image_file, "rb"), 
what=raw(), n=1e6));   
   ',   
   @input_data_1 = @query   
   WITH RESULT SETS ((plot varbinary(max)));   



Key points to understand in this script include the following:

The variable @query  defines the query text ('SELECT tipped FROM nyctaxi_sample' ),
which is passed to the R script as the argument to the script input variable,
@input_data_1 . For R scripts that run as external processes, you should have a one-
to-one mapping between inputs to your script, and inputs to the
sp_execute_external_script system stored procedure that starts the R session on
SQL Server.

Within the R script, a variable (image_file ) is defined to store the image.

The barplot  function is called to generate the plot.

The R device is set to off because you are running this command as an external
script in SQL Server. Typically in R, when you issue a high-level plotting command,
R opens a graphics window, called a device. You can turn the device off if you are
writing to a file or handling the output some other way.

The R graphics object is serialized to an R data.frame for output.

The stored procedure returns the image as a stream of varbinary data, which obviously
you cannot view directly. However, you can use the bcp utility to get the varbinary data
and save it as an image file on a client computer.

1. In Management Studio, run the following statement:

SQL

Results

plot 0xFFD8FFE000104A4649...

2. Open a PowerShell command prompt and run the following command, providing
the appropriate instance name, database name, username, and credentials as
arguments. For those using Windows identities, you can replace -U and -P with -T.

END 
GO 

Execute the stored procedure and use bcp to export
binary data to an image file

EXEC [dbo].[RPlotHistogram] 

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


PowerShell

3. If the connection is successful, you will be prompted to enter more information
about the graphic file format.

Press ENTER at each prompt to accept the defaults, except for these changes:

For prefix-length of field plot, type 0.

Type Y if you want to save the output parameters for later reuse.

text

Results

text

bcp "exec RPlotHistogram" queryout "plot.jpg" -S <SQL Server instance 
name> -d  NYCTaxi_Sample  -U <user name> -P <password> -T 

７ Note

Command switches for bcp are case-sensitive.

Enter the file storage type of field plot [varbinary(max)]:  
Enter prefix-length of field plot [8]: 0 
Enter length of field plot [0]: 
Enter field terminator [none]: 

Do you want to save this format information in a file? [Y/n] 
Host filename [bcp.fmt]: 

Starting copy... 
1 rows copied. 
Network packet size (bytes): 4096
Clock Time (ms.) Total     : 3922   Average : (0.25 rows per sec.) 

 Tip

If you save the format information to file (bcp.fmt), the bcp utility generates a
format definition that you can apply to similar commands in future without
being prompted for graphic file format options. To use the format file, add -f
bcp.fmt  to the end of any command line, after the password argument.



4. The output file will be created in the same directory where you ran the PowerShell
command. To view the plot, just open the file plot.jpg.

Typically, data scientists generate multiple data visualizations to get insights into the
data from different perspectives. In this example, you will create a stored procedure
called RPlotHist to write histograms, scatterplots, and other R graphics to .JPG and .PDF
format.

This stored procedure uses the hist  function to create the histogram, exporting the
binary data to popular formats such as .JPG, .PDF, and .PNG.

1. In SQL Server Management Studio, in Object Explorer, right-click the
NYCTaxi_Sample database and select New Query.

2. Paste in the following script to create a stored procedure that plots the histogram.
This example is named RPlotHist .

SQL

Create a stored procedure using hist

CREATE PROCEDURE [dbo].[RPlotHist]   
AS   



BEGIN   
  SET NOCOUNT ON;   
  DECLARE @query nvarchar(max) =   
  N'SELECT cast(tipped as int) as tipped, tip_amount, fare_amount FROM 
[dbo].[nyctaxi_sample]'   
  EXECUTE sp_execute_external_script @language = N'R',  
  @script = N'   
   # Set output directory for files and check for existing files with 
same names    
    mainDir <- ''C:\\temp\\plots''   
    dir.create(mainDir, recursive = TRUE, showWarnings = FALSE)   
    setwd(mainDir);   
    print("Creating output plot files:", quote=FALSE) 

    # Open a jpeg file and output histogram of tipped variable in that 
file.   
    dest_filename = tempfile(pattern = ''rHistogram_Tipped_'', tmpdir = 
mainDir)   
    dest_filename = paste(dest_filename, ''.jpg'',sep="")   
    print(dest_filename, quote=FALSE);   
    jpeg(filename=dest_filename);   
    hist(InputDataSet$tipped, col = ''lightgreen'', xlab=''Tipped'',    
        ylab = ''Counts'', main = ''Histogram, Tipped'');   
     dev.off();   

    # Open a pdf file and output histograms of tip amount and fare 
amount.    
    # Outputs two plots in one row   
    dest_filename = tempfile(pattern = 
''rHistograms_Tip_and_Fare_Amount_'', tmpdir = mainDir)   
    dest_filename = paste(dest_filename, ''.pdf'',sep="")   
    print(dest_filename, quote=FALSE);   
    pdf(file=dest_filename, height=4, width=7);   
    par(mfrow=c(1,2));   
    hist(InputDataSet$tip_amount, col = ''lightgreen'',    
        xlab=''Tip amount ($)'',    
        ylab = ''Counts'',    
        main = ''Histogram, Tip amount'', xlim = c(0,40), 100);   
    hist(InputDataSet$fare_amount, col = ''lightgreen'',    
        xlab=''Fare amount ($)'',    
        ylab = ''Counts'',    
        main = ''Histogram,    
        Fare amount'',    
        xlim = c(0,100), 100);   
    dev.off();   

    # Open a pdf file and output an xyplot of tip amount vs. fare 
amount using lattice;   
    # Only 10,000 sampled observations are plotted here, otherwise file 
is large.   
    dest_filename = tempfile(pattern = 
''rXYPlots_Tip_vs_Fare_Amount_'', tmpdir = mainDir)   
    dest_filename = paste(dest_filename, ''.pdf'',sep="")   
    print(dest_filename, quote=FALSE);   
    pdf(file=dest_filename, height=4, width=4);   



Key points to understand in this script include the following:

The output of the SELECT query within the stored procedure is stored in the
default R data frame, InputDataSet . Various R plotting functions can then be called
to generate the actual graphics files. Most of the embedded R script represents
options for these graphics functions, such as plot  or hist .

The R device is set to off because you are running this command as an external
script in SQL Server. Typically in R, when you issue a high-level plotting command,
R opens a graphics window, called a device. You can turn the device off if you are
writing to a file or handling the output some other way.

All files are saved to the local folder C:\temp\Plots. The destination folder is
defined by the arguments provided to the R script as part of the stored procedure.
To output the files to a different folder, change the value of the mainDir  variable in
the R script embedded in the stored procedure. You can also modify the script to
output different formats, more files, and so on.

Run the following statement to export binary plot data to JPEG and PDF file formats.

SQL

Results

text

    plot(tip_amount ~ fare_amount,    
        data = InputDataSet[sample(nrow(InputDataSet), 10000), ],    
        ylim = c(0,50),    
        xlim = c(0,150),    
        cex=.5,    
        pch=19,    
        col=''darkgreen'',     
        main = ''Tip amount by Fare amount'',    
        xlab=''Fare Amount ($)'',    
        ylab = ''Tip Amount ($)'');    
    dev.off();',   
  @input_data_1 = @query   
END 

Execute the stored procedure

EXEC RPlotHist 

STDOUT message(s) from external script: 
[1] Creating output plot files:[1] 



The numbers in the file names are randomly generated to ensure that you don't get an
error when trying to write to an existing file.

To view the plot, open the destination folder and review the files that were created by
the R code in the stored procedure.

1. Go the folder indicated in the STDOUT message (in the example, this is
C:\temp\plots)

2. Open rHistogram_Tipped.jpg  to show the number of trips that got a tip vs. the
trips that got no tip (this histogram is similar to the one you generated in the
previous step).

3. Open rHistograms_Tip_and_Fare_Amount.pdf  to view distribution of tip amounts,
plotted against the fare amounts.

4. Open rXYPlots_Tip_vs_Fare_Amount.pdf  to view a scatterplot with the fare amount
on the x-axis and the tip amount on the y-axis.

C:\temp\plots\rHistogram_Tipped_18887f6265d4.jpg[1]  

C:\temp\plots\rHistograms_Tip_and_Fare_Amount_1888441e542c.pdf[1] 

C:\temp\plots\rXYPlots_Tip_vs_Fare_Amount_18887c9d517b.pdf 

View output



In this article, you:

Next steps

Reviewed the sample data＂

Created plots using R in T-SQL＂

Output plots in multiple file formats＂

R tutorial: Create data features



R tutorial: Create data features
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part three of this five-part tutorial series, you'll learn how to create features from raw
data by using a Transact-SQL function. You'll then call that function from a SQL stored
procedure to create a table that contains the feature values.

In this article, you'll:

In part one, you installed the prerequisites and restored the sample database.

In part two, you reviewed the sample data and generated some plots.

In part four, you'll load the modules and call the necessary functions to create and train
the model using a SQL Server stored procedure.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

After several rounds of data exploration, you have collected some insights from the
data, and are ready to move on to feature engineering. This process of creating
meaningful features from the raw data is a critical step in creating analytical models.

In this dataset, the distance values are based on the reported meter distance, and don't
necessarily represent geographical distance or the actual distance traveled. Therefore,
you'll need to calculate the direct distance between the pick-up and drop-off points, by
using the coordinates available in the source NYC Taxi dataset. You can do this by using
the Haversine formula  in a custom Transact-SQL function.

You'll use one custom T-SQL function, fnCalculateDistance, to compute the distance
using the Haversine formula, and use a second custom T-SQL function,
fnEngineerFeatures, to create a table containing all the features.

Modify a custom function to calculate trip distance＂

Save the features using another custom function＂

About feature engineering

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://en.wikipedia.org/wiki/Haversine_formula


The overall process is as follows:

Create the T-SQL function that performs the calculations

Call the function to generate the feature data

Save the feature data to a table

The function fnCalculateDistance should have been downloaded and registered with
SQL Server as part of the preparation for this tutorial. Take a minute to review the code.

1. In Management Studio, expand Programmability, expand Functions and then
Scalar-valued functions.

2. Right-click fnCalculateDistance, and select Modify to open the Transact-SQL script
in a new query window.

SQL

Calculate trip distance using
fnCalculateDistance

CREATE FUNCTION [dbo].[fnCalculateDistance] (@Lat1 float, @Long1 float, 
@Lat2 float, @Long2 float)   
-- User-defined function that calculates the direct distance between 
two geographical coordinates.   
RETURNS float   
AS   
BEGIN   
  DECLARE @distance decimal(28, 10)   
  -- Convert to radians   
  SET @Lat1 = @Lat1 / 57.2958   
  SET @Long1 = @Long1 / 57.2958   
  SET @Lat2 = @Lat2 / 57.2958   
  SET @Long2 = @Long2 / 57.2958   
  -- Calculate distance   
  SET @distance = (SIN(@Lat1) * SIN(@Lat2)) + (COS(@Lat1) * COS(@Lat2) 
* COS(@Long2 - @Long1))   
  --Convert to miles   
  IF @distance <> 0   
  BEGIN   
    SET @distance = 3958.75 * ATAN(SQRT(1 - POWER(@distance, 2)) / 
@distance);   
  END   
  RETURN @distance   
END 
GO 



The function is a scalar-valued function, returning a single data value of a
predefined type.

It takes latitude and longitude values as inputs, obtained from trip pick-up
and drop-off locations. The Haversine formula converts locations to radians
and uses those values to compute the direct distance in miles between those
two locations.

To add the computed values to a table that can be used for training the model, you'll
use another function, fnEngineerFeatures. The new function calls the previously created
T-SQL function, fnCalculateDistance, to get the direct distance between pick-up and
drop-off locations.

1. Take a minute to review the code for the custom T-SQL function,
fnEngineerFeatures, which should have been created for you as part of the
preparation for this walkthrough.

SQL

This table-valued function that takes multiple columns as inputs, and outputs
a table with multiple feature columns.

Generate the features using fnEngineerFeatures

CREATE FUNCTION [dbo].[fnEngineerFeatures] (   
@passenger_count int = 0,   
@trip_distance float = 0,   
@trip_time_in_secs int = 0,   
@pickup_latitude float = 0,   
@pickup_longitude float = 0,   
@dropoff_latitude float = 0,   
@dropoff_longitude float = 0)   
RETURNS TABLE   
AS 
  RETURN 
  ( 
  -- Add the SELECT statement with parameter references here 
  SELECT 
    @passenger_count AS passenger_count, 
    @trip_distance AS trip_distance, 
    @trip_time_in_secs AS trip_time_in_secs, 
    [dbo].[fnCalculateDistance](@pickup_latitude, @pickup_longitude, 
@dropoff_latitude, @dropoff_longitude) AS direct_distance 

  ) 
GO 



The purpose of this function is to create new features for use in building a
model.

2. To verify that this function works, use it to calculate the geographical distance for
those trips where the metered distance was 0 but the pick-up and drop-off
locations were different.

SQL

As you can see, the distance reported by the meter doesn't always correspond to
geographical distance. This is why feature engineering is so important. You can use
these improved data features to train a machine learning model using R.

In this article, you:

    SELECT tipped, fare_amount, passenger_count,(trip_time_in_secs/60) 
as TripMinutes, 
    trip_distance, pickup_datetime, dropoff_datetime, 
    dbo.fnCalculateDistance(pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude) AS direct_distance 
    FROM nyctaxi_sample 
    WHERE pickup_longitude != dropoff_longitude and pickup_latitude != 
dropoff_latitude and trip_distance = 0 
    ORDER BY trip_time_in_secs DESC 

Next steps

Modified a custom function to calculate trip distance＂

Saved the features using another custom function＂

R tutorial: Train and save model



R tutorial: Train and save model
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Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part four of this five-part tutorial series, you'll learn how to train a machine learning
model by using R. You'll train the model using the data features you created in the
previous part, and then save the trained model in a SQL Server table. In this case, the R
packages are already installed with R Services (In-Database), so everything can be done
from SQL.

In this article, you'll:

In part one, you installed the prerequisites and restored the sample database.

In part two, you reviewed the sample data and generate some plots.

In part three, you learned how to create features from raw data by using a Transact-SQL
function. You then called that function from a stored procedure to create a table that
contains the feature values.

In part five, you'll learn how to operationalize the models that you trained and saved in
part four.

When calling R from T-SQL, you use the system stored procedure,
sp_execute_external_script. However, for processes that you repeat often, such as
retraining a model, it is easier to encapsulate the call to sp_execute_external_script  in
another stored procedure.

1. In Management Studio, open a new Query window.

2. Run the following statement to create the stored procedure RTrainLogitModel.
This stored procedure defines the input data and uses glm to create a logistic
regression model.

SQL

Create and train a model using a SQL stored procedure＂

Save the trained model to a SQL table＂

Create the stored procedure

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


To ensure that some data is left over to test the model, 70% of the data are
randomly selected from the taxi data table for training purposes.

The SELECT query uses the custom scalar function fnCalculateDistance to
calculate the direct distance between the pick-up and drop-off locations. The
results of the query are stored in the default R input variable, InputDataset .

The R script calls the R function glm to create the logistic regression model.

The binary variable tipped is used as the label or outcome column, and the
model is fit using these feature columns: passenger_count, trip_distance,
trip_time_in_secs, and direct_distance.

The trained model, saved in the R variable logitObj , is serialized and
returned as an output parameter.

CREATE PROCEDURE [dbo].[RTrainLogitModel] (@trained_model 
varbinary(max) OUTPUT) 

AS 
BEGIN 
  DECLARE @inquery nvarchar(max) = N' 
    select tipped, fare_amount, 
passenger_count,trip_time_in_secs,trip_distance, 
    pickup_datetime, dropoff_datetime, 
    dbo.fnCalculateDistance(pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude) as direct_distance 
    from nyctaxi_sample 
    tablesample (70 percent) repeatable (98052) 
' 

  EXEC sp_execute_external_script @language = N'R', 
                                  @script = N' 
## Create model 
logitObj <- glm(tipped ~ passenger_count + trip_distance + 
trip_time_in_secs + direct_distance, data = InputDataSet, family = 
binomial) 
summary(logitObj) 

## Serialize model  
trained_model <- as.raw(serialize(logitObj, NULL)); 
', 
  @input_data_1 = @inquery, 
  @params = N'@trained_model varbinary(max) OUTPUT', 
  @trained_model = @trained_model OUTPUT;  
END 
GO 



Because the stored procedure already includes a definition of the input data, you don't
need to provide an input query.

1. To train and deploy the R model, call the stored procedure and insert it into the
database table nyc_taxi_models, so that you can use it for future predictions:

SQL

2. Watch the Messages window of Management Studio for messages that would be
piped to R's stdout stream, like this message:

"STDOUT message(s) from external script: Rows Read: 1193025, Total Rows
Processed: 1193025, Total Chunk Time: 0.093 seconds"

3. When the statement has completed, open the table nyc_taxi_models. Processing of
the data and fitting the model might take a while.

You can see that one new row has been added, which contains the serialized
model in the column model and the model name RTrainLogit_model in the column
name.

text

In the next part of this tutorial you'll use the trained model to generate predictions.

In this article, you:

Train and deploy the R model using the stored
procedure

DECLARE @model VARBINARY(MAX); 
EXEC RTrainLogitModel @model OUTPUT; 
INSERT INTO nyc_taxi_models (name, model) VALUES('RTrainLogit_model', 
@model); 

model                        name
---------------------------- ------------------ 
0x580A00000002000302020....  RTrainLogit_model 

Next steps

Created and trained a model using a SQL stored procedure＂

Saved the trained model to a SQL table＂



R tutorial: Run predictions in SQL stored procedures



R tutorial: Run predictions in SQL stored
procedures
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In part five of this five-part tutorial series, you'll learn to operationalize the model that
you trained and saved in the previous part by using the model to predict potential
outcomes. The model is wrapped in a stored procedure which can be called directly by
other applications.

This article demonstrates two ways to perform scoring:

Batch scoring mode: Use a SELECT query as an input to the stored procedure. The
stored procedure returns a table of observations corresponding to the input cases.

Individual scoring mode: Pass a set of individual parameter values as input. The
stored procedure returns a single row or value.

In this article, you'll:

In part one, you installed the prerequisites and restored the sample database.

In part two, you reviewed the sample data and generated some plots.

In part three, you learned how to create features from raw data by using a Transact-SQL
function. You then called that function from a stored procedure to create a table that
contains the feature values.

In part four, you loaded the modules and called the necessary functions to create and
train the model using a SQL Server stored procedure.

The stored procedure RPredict illustrates the basic syntax for wrapping a PREDICT  call in
a stored procedure.

SQL

Create and use stored procedures for batch scoring＂

Create and use stored procedures for scoring a single row＂

Basic scoring

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


The SELECT statement gets the serialized model from the database, and stores the
model in the R variable mod  for further processing using R.

The new cases for scoring are obtained from the Transact-SQL query specified in
@inquery , the first parameter to the stored procedure. As the query data is read,
the rows are saved in the default data frame, InputDataSet . This data frame is
passed to the PREDICT function which generates the scores.

OutputDataSet <- data.frame(predict(mod, InputDataSet, type = "response"));

Because a data.frame can contain a single row, you can use the same code for
batch or single scoring.

The value returned by the PREDICT  function is a float that represents the
probability that the driver gets a tip of any amount.

A more common scenario is to generate predictions for multiple observations in batch
mode. In this step, let's see how batch scoring works.

1. Start by getting a smaller set of input data to work with. This query creates a "top
10" list of trips with passenger count and other features needed to make a

CREATE PROCEDURE [dbo].[RPredict] (@model varchar(250), @inquery 
nvarchar(max)) 
AS  
BEGIN  

DECLARE @lmodel2 varbinary(max) = (SELECT model FROM nyc_taxi_models WHERE 
name = @model);   
EXEC sp_execute_external_script @language = N'R', 
  @script = N'  
    mod <- unserialize(as.raw(model)); 
    print(summary(mod)) 
    OutputDataSet <- data.frame(predict(mod, InputDataSet, type = 
"response")); 
    str(OutputDataSet) 
    print(OutputDataSet) 
    ', 
  @input_data_1 = @inquery, 
  @params = N'@model varbinary(max)', 
  @model = @lmodel2  
  WITH RESULT SETS (("Score" float)); 
END 
GO 

Batch scoring (a list of predictions)

https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017


prediction.

SQL

Sample results

text

2. Create a stored procedure called RPredictBatchOutput in Management Studio.

SQL

SELECT TOP 10 a.passenger_count AS passenger_count, a.trip_time_in_secs 
AS trip_time_in_secs, a.trip_distance AS trip_distance, 
a.dropoff_datetime AS dropoff_datetime, 
dbo.fnCalculateDistance(pickup_latitude, pickup_longitude, 
dropoff_latitude,dropoff_longitude) AS direct_distance 

FROM (SELECT medallion, hack_license, pickup_datetime, 
passenger_count,trip_time_in_secs,trip_distance, dropoff_datetime, 
pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude 
FROM nyctaxi_sample)a 

LEFT OUTER JOIN 

(SELECT medallion, hack_license, pickup_datetime FROM nyctaxi_sample 
TABLESAMPLE (70 percent) REPEATABLE (98052)    )b 

ON a.medallion=b.medallion AND a.hack_license=b.hack_license  
AND a.pickup_datetime=b.pickup_datetime 
WHERE b.medallion IS NULL 

passenger_count   trip_time_in_secs    trip_distance  dropoff_datetime    
direct_distance 
1                 283                  0.7            2013-03-27 
14:54:50.000   0.5427964547 
1                 289                  0.7            2013-02-24 
12:55:29.000   0.3797099614 
1                 214                  0.7            2013-06-26 
13:28:10.000   0.6970098661 

CREATE PROCEDURE [dbo].[RPredictBatchOutput] (@model varchar(250), 
@inquery nvarchar(max))
AS 
BEGIN 
DECLARE @lmodel2 varbinary(max) = (SELECT model FROM nyc_taxi_models 
WHERE name = @model); 
EXEC sp_execute_external_script  
  @language = N'R', 
  @script = N' 
    mod <- unserialize(as.raw(model)); 



3. Provide the query text in a variable and pass it as a parameter to the stored
procedure:

SQL

The stored procedure returns a series of values representing the prediction for each of
the top 10 trips. However, the top trips are also single-passenger trips with a relatively
short trip distance, for which the driver is unlikely to get a tip.

    print(summary(mod)) 
    OutputDataSet <- data.frame(predict(mod, InputDataSet, type = 
"response")); 
    str(OutputDataSet) 
    print(OutputDataSet) 
  ', 
  @input_data_1 = @inquery, 
  @params = N'@model varbinary(max)', 
  @model = @lmodel2 
  WITH RESULT SETS ((Score float)); 
END 

-- Define the input data 
DECLARE @query_string nvarchar(max) 
SET @query_string='SELECT TOP 10 a.passenger_count as passenger_count, 
a.trip_time_in_secs AS trip_time_in_secs, a.trip_distance AS 
trip_distance, a.dropoff_datetime AS dropoff_datetime, 
dbo.fnCalculateDistance(pickup_latitude, pickup_longitude, 
dropoff_latitude,dropoff_longitude) AS direct_distance FROM  (SELECT 
medallion, hack_license, pickup_datetime, 
passenger_count,trip_time_in_secs,trip_distance, dropoff_datetime, 
pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude 
FROM nyctaxi_sample  )a   LEFT OUTER JOIN (SELECT medallion, 
hack_license, pickup_datetime FROM nyctaxi_sample TABLESAMPLE (70 
percent) REPEATABLE (98052))b ON a.medallion=b.medallion AND 
a.hack_license=b.hack_license AND a.pickup_datetime=b.pickup_datetime 
WHERE b.medallion is null' 

-- Call the stored procedure for scoring and pass the input data 
EXEC [dbo].[RPredictBatchOutput] @model = 'RTrainLogit_model', @inquery 
= @query_string; 

 Tip

Rather than returning just the "yes-tip" and "no-tip" results, you could also return
the probability score for the prediction, and then apply a WHERE clause to the
Score column values to categorize the score as "likely to tip" or "unlikely to tip",
using a threshold value such as 0.5 or 0.7. This step is not included in the stored
procedure but it would be easy to implement.



Sometimes you want to pass in multiple input values and get a single prediction based
on those values. For example, you could set up an Excel worksheet, web application, or
Reporting Services report to call the stored procedure and provide inputs typed or
selected by users from those applications.

In this section, you learn how to create single predictions using a stored procedure that
takes multiple inputs, such as passenger count, trip distance, and so forth. The stored
procedure creates a score based on the previously stored R model.

If you call the stored procedure from an external application, make sure that the data
matches the requirements of the R model. This might include ensuring that the input
data can be cast or converted to an R data type, or validating data type and data length.

1. Create a stored procedure RPredictSingleRow.

SQL

Single-row scoring of multiple inputs

CREATE PROCEDURE [dbo].[RPredictSingleRow] @model varchar(50), 
@passenger_count int = 0, @trip_distance float = 0, @trip_time_in_secs 
int = 0, @pickup_latitude float = 0, @pickup_longitude float = 0, 
@dropoff_latitude float = 0, @dropoff_longitude float = 0 
AS 
BEGIN 
DECLARE @inquery nvarchar(max) = N'SELECT * FROM [dbo].
[fnEngineerFeatures](@passenger_count, @trip_distance, 
@trip_time_in_secs,  @pickup_latitude, @pickup_longitude, 
@dropoff_latitude, @dropoff_longitude)'; 
DECLARE @lmodel2 varbinary(max) = (SELECT model FROM nyc_taxi_models 
WHERE name = @model); 
EXEC sp_execute_external_script  
  @language = N'R', 
  @script = N'   
    mod <- unserialize(as.raw(model));   
    print(summary(mod));   
    OutputDataSet <- data.frame(predict(mod, InputDataSet, type = 
"response")); 
    str(OutputDataSet); 
    print(OutputDataSet);  
    ',   
  @input_data_1 = @inquery,   
  @params = N'@model varbinary(max),@passenger_count int,@trip_distance 
float,@trip_time_in_secs int ,  @pickup_latitude float 
,@pickup_longitude float ,@dropoff_latitude float ,@dropoff_longitude 
float', @model = @lmodel2, @passenger_count =@passenger_count, 
@trip_distance=@trip_distance, @trip_time_in_secs=@trip_time_in_secs, 
@pickup_latitude=@pickup_latitude, @pickup_longitude=@pickup_longitude, 



2. Try it out, by providing the values manually.

Open a new Query window, and call the stored procedure, providing values for
each of the parameters. The parameters represent feature columns used by the
model and are required.

SQL

Or, use this shorter form supported for parameters to a stored procedure:

SQL

3. The results indicate that the probability of getting a tip is low (zero) on these top
10 trips, since all are single-passenger trips over a relatively short distance.

Now that you have learned to embed R code in stored procedures, you can extend
these practices to build models of your own. The integration with Transact-SQL makes it
much easier to deploy R models for prediction and to incorporate model retraining as
part of an enterprise data workflow.

In this article, you:

@dropoff_latitude=@dropoff_latitude, 
@dropoff_longitude=@dropoff_longitude   
  WITH RESULT SETS ((Score float));   
END 

EXEC [dbo].[RPredictSingleRow] @model = 'RTrainLogit_model', 
@passenger_count = 1, 
@trip_distance = 2.5, 
@trip_time_in_secs = 631, 
@pickup_latitude = 40.763958, 
@pickup_longitude = -73.973373, 
@dropoff_latitude =  40.782139, 
@dropoff_longitude = -73.977303 

EXEC [dbo].[RPredictSingleRow] 'RTrainLogit_model', 1, 2.5, 631, 
40.763958,-73.973373, 40.782139,-73.977303 

Conclusions

Next steps

Created and used stored procedures for batch scoring＂

https://learn.microsoft.com/en-us/sql/relational-databases/stored-procedures/specify-parameters?view=sql-server-2017


For more information about R, see R extension in SQL Server.

Created and used stored procedures for scoring a single row＂



Tutorial: SQL development for R data
scientists
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

In this tutorial for data scientists, learn how to build end-to-end solution for predictive
modeling based on R feature support in either SQL Server 2016 or SQL Server 2017. This
tutorial uses a NYCTaxi_sample database on SQL Server.

You use a combination of R code, SQL Server data, and custom SQL functions to build a
classification model that indicates the probability that the driver might get a tip on a
particular taxi trip. You also deploy your R model to SQL Server and use server data to
generate scores based on the model.

This example can be extended to all kinds of real-life problems, such as predicting
customer responses to sales campaigns, or predicting spending or attendance at events.
Because the model can be invoked from a stored procedure, you can easily embed it in
an application.

Because the walkthrough is designed to introduce R developers to R Services (In-
Database), R is used wherever possible. However, this does not mean that R is
necessarily the best tool for each task. In many cases, SQL Server might provide better
performance, particularly for tasks such as data aggregation and feature engineering.
Such tasks can particularly benefit from new features in SQL Server, such as memory
optimized columnstore indexes. We try to point out possible optimizations along the
way.

SQL Server Machine Learning Services with R integration or SQL Server 2016 R
Services

Database permissions and a SQL Server database user login

SQL Server Management Studio

NYC Taxi demo database

An R IDE such as RStudio or the built-in RGUI tool included with R

Prerequisites

https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-r-services-windows-install?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


We recommend that you do this walkthrough on a client workstation. You must be able
to connect, on the same network, to a SQL Server computer with SQL Server and the R
language enabled. For instructions on workstation configuration, see Set up a data
science client for R development.

Alternatively, you can run the walkthrough on a computer that has both SQL Server and
an R development environment, but we don't recommend this configuration for a
production environment. If you need to put client and server on the same computer, be
sure to install a second set of Microsoft R libraries for sending R script from a "remote"
client. Do not use the R libraries that are installed in the program files of the SQL Server
instance. Specifically, if you are using one computer, you need the RevoScaleR library in
both of these locations to support client and server operations.

C:\Program Files\Microsoft\R Client\R_SERVER\library\RevoScaleR
C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES\library\RevoScaleR

This walkthrough requires several R libraries that are not installed by default as part of R
Services (In-Database). You must install the packages both on the client where you
develop the solution, and on the SQL Server computer where you deploy the solution.

In your R environment, copy the following lines and execute the code in a Console
window (Rgui or an IDE). Some packages also install required packages. In all, about 32
packages are installed. You must have an internet connection to complete this step.

R

Additional R packages

On a client workstation

# Install required R libraries, if they are not already installed. 
if (!('ggmap' %in% rownames(installed.packages())))
{install.packages('ggmap')} 
if (!('mapproj' %in% rownames(installed.packages())))
{install.packages('mapproj')} 
if (!('ROCR' %in% rownames(installed.packages()))){install.packages('ROCR')} 
if (!('RODBC' %in% rownames(installed.packages())))
{install.packages('RODBC')} 

On the server



You have several options for installing packages on SQL Server. For example, SQL Server
provides R package management feature that lets database administrators create a
package repository and assign user the rights to install their own packages. However, if
you are an administrator on the computer, you can install new packages using R, as long
as you install to the correct library.

1. On the SQL Server computer, open RGui.exe as an administrator. If you have
installed SQL Server R Services using the defaults, Rgui.exe can be found in
C:\Program Files\Microsoft SQL
Server\MSSQL13.MSSQLSERVER\R_SERVICES\bin\x64).

2. At an R prompt, run the following R commands:

R

This example uses the R grep function to search the vector of available paths and find
the path that includes "Program Files". For more information, see
https://www.rdocumentation.org/packages/base/functions/grep .

If you think the packages are already installed, check the list of installed packages by
running installed.packages() .

７ Note

On the server, do not install to a user library even if prompted. If you install to a
user library, the SQL Server instance cannot find or run the packages. For more
information, see Installing new R Packages on SQL Server.

install.packages("ggmap", lib=grep("Program Files", .libPaths(), value=TRUE)
[1]) 
install.packages("mapproj", lib=grep("Program Files", .libPaths(), 
value=TRUE)[1]) 
install.packages("ROCR", lib=grep("Program Files", .libPaths(), value=TRUE)
[1]) 
install.packages("RODBC", lib=grep("Program Files", .libPaths(), value=TRUE)
[1]) 

Next steps
Explore and summarize the data

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017
https://www.rdocumentation.org/packages/base/functions/grep
https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017


View and summarize SQL Server data
using R (walkthrough)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This lesson introduces you to functions in the RevoScaleR package and steps you
through the following tasks:

Run the following R statements in an R environment on the client workstation. This
section assumes a data science workstation with Microsoft R Client, because it includes
all the RevoScaleR packages, as well as a basic, lightweight set of R tools. For example,
you can use Rgui.exe to run the R script in this section.

1. If the RevoScaleR package is not already loaded, run this line of R code:

R

The quotation marks are optional, in this case, though recommended.

If you get an error, make sure that your R development environment is using a
library that includes the RevoScaleR package. Use a command such as .libPaths()
to view the current library path.

2. Create the connection string for SQL Server and save it in an R variable, connStr.

You must change the placeholder "your_server_name" to a valid SQL Server
instance name. For the server name, you might be able to use only the instance
name, or you might need to fully qualify the name, depending on your network.

For SQL Server authentication, the connection syntax is as follows:

Connect to SQL Server＂

Define a query that has the data you need, or specify a table or view＂

Define one or more compute contexts to use when running R code＂

Optionally, define transformations that are applied to the data source while it is
being read from the source

＂

Define a SQL Server compute context

library("RevoScaleR") 



R

For Windows authentication, the syntax is a bit different:

R

Generally, we recommend that you use Windows authentication where possible, to
avoid saving passwords in your R code.

3. Define variables to use in creating a new compute context. After you create the
compute context object, you can use it to run R code on the SQL Server instance.

R

R uses a temporary directory when serializing R objects back and forth
between your workstation and the SQL Server computer. You can specify the
local directory that is used as sqlShareDir, or accept the default.

Use sqlWait to indicate whether you want R to wait for results from the
server. For a discussion of waiting versus non-waiting jobs, see Distributed
and parallel computing with RevoScaleR in Microsoft R.

Use the argument sqlConsoleOutput to indicate that you don't want to see
output from the R console.

4. You call the RxInSqlServer constructor to create the compute context object with
the variables and connection strings already defined, and save the new object in
the R variable sqlcc.

R

connStr <- "Driver=SQL 
Server;Server=your_server_name;Database=nyctaxi_sample;Uid=your-sql-
login;Pwd=your-login-password" 

connStr <- "Driver=SQL 
Server;Server=your_server_name;Database=nyctaxi_sample;Trusted_Connecti
on=True" 

sqlShareDir <- paste("C:\\AllShare\\",Sys.getenv("USERNAME"),sep="") 
sqlWait <- TRUE 
sqlConsoleOutput <- FALSE 

sqlcc <- RxInSqlServer(connectionString = connStr, shareDir = 
sqlShareDir, wait = sqlWait, consoleOutput = sqlConsoleOutput) 

https://learn.microsoft.com/en-us/r-server/r/how-to-revoscaler-distributed-computing
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxinsqlserver


5. By default, the compute context is local, so you need to explicitly set the active
compute context.

R

rxSetComputeContext returns the previously active compute context invisibly
so that you can use it
rxGetComputeContext returns the active compute context

Note that setting a compute context only affects operations that use functions in
the RevoScaleR package; the compute context does not affect the way that open-
source R operations are performed.

When using the Microsoft R libraries like RevoScaleR and MicrosoftML, a data source is
an object you create using RevoScaleR functions. The data source object specifies some
set of data that you want to use for a task, such as model training or feature extraction.
You can get data from a variety of sources including SQL Server. For the list of currently
supported sources, see RxDataSource.

Earlier you defined a connection string, and saved that information in an R variable. You
can re-use that connection information to specify the data you want to get.

1. Save a SQL query as a string variable. The query defines the data for training the
model.

R

We've used a TOP clause here to make things run faster, but the actual rows
returned by the query can vary depending on order. Hence, your summary results
might also be different from those listed below. Feel free to remove the TOP
clause.

2. Pass the query definition as an argument to the RxSqlServerData function.

rxSetComputeContext(sqlcc) 

Create a data source using RxSqlServer

sampleDataQuery <- "SELECT TOP 1000 tipped, fare_amount, 
passenger_count,trip_time_in_secs,trip_distance, pickup_datetime, 
dropoff_datetime, pickup_longitude, pickup_latitude, dropoff_longitude, 
dropoff_latitude FROM nyctaxi_sample" 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsetcomputecontext
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsetcomputecontext
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxdatasource
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxsqlserverdata


R

The argument colClasses specifies the column types to use when moving the
data between SQL Server and R. This is important because SQL Server uses
different data types than R, and more data types. For more information, see R
Libraries and Data Types.

The argument rowsPerRead is important for managing memory usage and
efficient computations. Most of the enhanced analytical functions inR
Services (In-Database) process data in chunks and accumulate intermediate
results, returning the final computations after all of the data has been read.
By adding the rowsPerRead parameter, you can control how many rows of
data are read into each chunk for processing. If the value of this parameter is
too large, data access might be slow because you don't have enough
memory to efficiently process such a large chunk of data. On some systems,
setting rowsPerRead to an excessively small value can also provide slower
performance.

3. At this point, you've created the inDataSource object, but it doesn't contain any
data. The data is not pulled from the SQL query into the local environment until
you run a function such as rxImport or rxSummary.

However, now that you've defined the data objects, you can use it as the argument
to other functions.

In this section, you'll try out several of the functions provided in R Services (In-Database)
that support remote compute contexts. By applying R functions to the data source, you
can explore, summarize, and chart the SQL Server data.

1. Call the function rxGetVarInfo to get a list of the variables in the data source and
their data types.

inDataSource <- RxSqlServerData( 
  sqlQuery = sampleDataQuery, 
  connectionString = connStr, 
  colClasses = c(pickup_longitude = "numeric", pickup_latitude = 
"numeric", 
  dropoff_longitude = "numeric", dropoff_latitude = "numeric"), 
  rowsPerRead=500 
  ) 

Use the SQL Server data in R summaries

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxdatastep
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxsummary
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxgetvarinfo


rxGetVarInfo is a handy function; you can call it on any data frame, or on a set of
data in a remote data object, to get information such as the maximum and
minimum values, the data type, and the number of levels in factor columns.

Consider running this function after any kind of data input, feature transformation,
or feature engineering. By doing so, you can ensure that all the features you want
to use in your model are of the expected data type and avoid errors.

R

Results

R

2. Now, call the RevoScaleR function rxSummary to get more detailed statistics about
individual variables.

rxSummary is based on the R summary  function, but has some additional features
and advantages. rxSummary works in multiple compute contexts and supports
chunking. You can also use rxSummary to transform values, or summarize based
on factor levels.

In this example, you summarize the fare amount based on the number of
passengers.

R

rxGetVarInfo(data = inDataSource)

Var 1: tipped, Type: integer 
Var 2: fare_amount, Type: numeric 
Var 3: passenger_count, Type: integer 
Var 4: trip_time_in_secs, Type: numeric, Storage: int64 
Var 5: trip_distance, Type: numeric 
Var 6: pickup_datetime, Type: character 
Var 7: dropoff_datetime, Type: character 
Var 8: pickup_longitude, Type: numeric 
Var 9: pickup_latitude, Type: numeric 
Var 10: dropoff_longitude, Type: numeric 

start.time <- proc.time() 
rxSummary(~fare_amount:F(passenger_count,1,6), data = inDataSource) 
used.time <- proc.time() - start.time 
print(paste("It takes CPU Time=", round(used.time[1]+used.time[2],2)," 
seconds, 
  Elapsed Time=", round(used.time[3],2), 
  " seconds to summarize the inDataSource.", sep="")) 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxsummary


The first argument to rxSummary specifies the formula or term to summarize
by. Here, the F()  function is used to convert the values in passenger_count
into factors before summarizing. You also have to specify the minimum value
(1) and maximum value (6) for the passenger_count factor variable.
If you do not specify the statistics to output, by default rxSummary outputs
Mean, StDev, Min, Max, and the number of valid and missing observations.
This example also includes some code to track the time the function starts
and completes, so that you can compare performance.

Results

If the rxSummary function runs successfully, you should see results like these,
followed by a list of statistics by category.

R

Try defining a new query string with all the rows. We recommend you set up a new data
source object for this experiment. You might also try changing the rowsToRead
parameter to see how it affects throughput.

R

rxSummary(formula = ~fare_amount:F(passenger_count, 1,6), data = 
inDataSource) 
Data: inDataSource (RxSqlServerData Data Source) 
Number of valid observations: 1000 

Bonus exercise on big data

bigDataQuery  <- "SELECT tipped, fare_amount, 
passenger_count,trip_time_in_secs,trip_distance, pickup_datetime, 
dropoff_datetime, pickup_longitude, pickup_latitude, dropoff_longitude, 
dropoff_latitude FROM nyctaxi_sample" 

bigDataSource <- RxSqlServerData(
      sqlQuery = bigDataQuery, 
      connectionString = connStr,
      colClasses = c(pickup_longitude = "numeric", pickup_latitude = 
"numeric", 
      dropoff_longitude = "numeric", dropoff_latitude = "numeric"), 
      rowsPerRead=500 
      ) 

start.time <- proc.time() 
rxSummary(~fare_amount:F(passenger_count,1,6), data = bigDataSource) 
used.time <- proc.time() - start.time 



print(paste("It takes CPU Time=", round(used.time[1]+used.time[2],2)," 
seconds, 
  Elapsed Time=", round(used.time[3],2), 
  " seconds to summarize the inDataSource.", sep="")) 

 Tip

While this is running, you can use a tool like Process Explorer or SQL Profiler to see
how the connection is made and the R code is run using SQL Server services.

Next steps
Create graphs and plots using R

https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer


Create graphs and plots using SQL and
R (walkthrough)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

In this part of the walkthrough, you learn techniques for generating plots and maps
using R with SQL Server data. You create a simple histogram and then develop a more
complex map plot.

This step assumes an ongoing R session based on previous steps in this walkthrough. It
uses the connection strings and data source objects created in those steps. The
following tools and packages are used to run the script.

Rgui.exe to run R commands
Management Studio to run T-SQL
googMap
ggmap package
mapproj package

1. Generate the first plot, using the rxHistogram function. The rxHistogram function
provides functionality similar to that in open-source R packages, but can run in a
remote execution context.

R

2. The image is returned in the R graphics device for your development environment.
For example, in RStudio, click the Plot window. In R Tools for Visual Studio, a

Prerequisites

Create a histogram

# Plot fare amount on SQL Server and return the plot 
start.time <- proc.time() 
rxHistogram(~fare_amount, data = inDataSource, title = "Fare Amount 
Histogram") 
used.time <- proc.time() - start.time 
print(paste("It takes CPU Time=", round(used.time[1]+used.time[2],2), " 
seconds, Elapsed Time=", round(used.time[3],2), " seconds to generate 
plot.", sep="")) 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxdatasource


separate graphics window is opened.

Typically, database servers block Internet access. This can be inconvenient when using R
packages that need to download maps or other images to generate plots. However,
there is a workaround that you might find useful when developing your own
applications. Basically, you generate the map representation on the client, and then
overlay on the map the points that are stored as attributes in the SQL Server table.

７ Note

Does your graph look different?

That's because inDataSource uses only the top 1000 rows. The ordering of
rows using TOP is non-deterministic in the absence of an ORDER BY clause, so
it's expected that the data and the resulting graph might vary. This particular
image was generated using about 10,000 rows of data. We recommend that
you experiment with different numbers of rows to get different graphs, and
note how long it takes to return the results in your environment.

Create a map plot



1. Define the function that creates the R plot object. The custom function mapPlot
creates a scatter plot that uses the taxi pickup locations, and plots the number of
rides that started from each location. It uses the ggplot2 and ggmap packages,
which should already be installed and loaded.

R

The mapPlot function takes two arguments: an existing data object, which
you defined earlier using RxSqlServerData, and the map representation
passed from the client.
In the line beginning with the ds variable, rxImport is used to load into
memory data from the previously created data source, inDataSource. (That
data source contains only 1000 rows; if you want to create a map with more
data points, you can substitute a different data source.)
Whenever you use open-source R functions, data must be loaded into data
frames in local memory. However, by calling the rxImport function, you can
run in the memory of the remote compute context.

2. Change the compute context to local, and load the libraries required for creating
the maps.

R

The gc  variable stores a set of coordinates for Times Square, NY.

The line beginning with googmap  generates a map with the specified
coordinates at the center.

mapPlot <- function(inDataSource, googMap){ 
    library(ggmap) 
    library(mapproj) 
    ds <- rxImport(inDataSource) 
    p <- ggmap(googMap)+ 
    geom_point(aes(x = pickup_longitude, y =pickup_latitude ), data=ds, 
alpha =.5, 
color="darkred", size = 1.5) 
    return(list(myplot=p)) 
} 

rxSetComputeContext("local") 
library(ggmap) 
library(mapproj) 
gc <- geocode("Times Square", source = "google") 
googMap <- get_googlemap(center = as.numeric(gc), zoom = 12, maptype = 
'roadmap', color = 'color'); 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rximport


3. Switch to the SQL Server compute context, and render the results, by wrapping the
plot function in rxExec as shown here. The rxExec function is part of the
RevoScaleR package, and supports execution of arbitrary R functions in a remote
compute context.

R

The map data in googMap  is passed as an argument to the remotely executed
function mapPlot. Because the maps were generated in your local
environment, they must be passed to the function in order to create the plot
in the context of SQL Server.

When the line beginning with plot  runs, the rendered data is serialized back
to the local R environment so that you can view it in your R client.

4. The following image shows the output plot. The taxi pickup locations are added to
the map as red dots. Your image might look different, depending how many
locations are in the data source you used.

rxSetComputeContext(sqlcc) 
myplots <- rxExec(mapPlot, inDataSource, googMap, timesToRun = 1) 
plot(myplots[[1]][["myplot"]]); 

７ Note

If you are using SQL Server in an Azure virtual machine, you might get an
error at this point. An error occurs when the default firewall rule in Azure
blocks network access by R code. For details on how to fix this error, see
Installing Machine Learning (R) Services on an Azure VM.

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxexec


Next steps
Create data features using R and SQL



Create data features using R and SQL
Server (walkthrough)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

Data engineering is an important part of machine learning. Data often requires
transformation before you can use it for predictive modeling. If the data does not have
the features you need, you can engineer them from existing values.

For this modeling task, rather than using the raw latitude and longitude values of the
pickup and drop-off location, you'd like to have the distance in miles between the two
locations. To create this feature, you compute the direct linear distance between two
points, by using the haversine formula .

In this step, learn two different methods for creating a feature from data:

The goal is to create a new SQL Server set of data that includes the original columns
plus the new numeric feature, direct_distance.

This step assumes an ongoing R session based on previous steps in this walkthrough. It
uses the connection strings and data source objects created in those steps. The
following tools and packages are used to run the script.

Rgui.exe to run R commands
Management Studio to run T-SQL

The R language is well-known for its rich and varied statistical libraries, but you still
might need to create custom data transformations.

First, let's do it the way R users are accustomed to: get the data onto your laptop, and
then run a custom R function, ComputeDist, which calculates the linear distance between
two points specified by latitude and longitude values.

Using a custom R function＂

Using a custom T-SQL function in Transact-SQL＂

Prerequisites

Featurization using R

https://en.wikipedia.org/wiki/Haversine_formula


1. Remember that the data source object you created earlier gets only the top 1000
rows. So let's define a query that gets all the data.

R

2. Create a new data source object using the query.

R

RxSqlServerData can take either a query consisting of a valid SELECT query,
provided as the argument to the sqlQuery parameter, or the name of a table
object, provided as the table parameter.

If you want to sample data from a table, you must use the sqlQuery
parameter, define sampling parameters using the T-SQL TABLESAMPLE
clause, and set the rowBuffering argument to FALSE.

3. Run the following code to create the custom R function. ComputeDist takes in two
pairs of latitude and longitude values, and calculates the linear distance between
them, returning the distance in miles.

R

bigQuery <- "SELECT tipped, fare_amount, 
passenger_count,trip_time_in_secs,trip_distance, pickup_datetime, 
dropoff_datetime,  pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude FROM nyctaxi_sample"; 

featureDataSource <- RxSqlServerData(sqlQuery = bigQuery,colClasses = 
c(pickup_longitude = "numeric", pickup_latitude = "numeric", 
dropoff_longitude = "numeric", dropoff_latitude = "numeric", 
passenger_count  = "numeric", trip_distance  = "numeric", 
trip_time_in_secs  = "numeric", direct_distance  = "numeric"), 
connectionString = connStr); 

env <- new.env(); 
env$ComputeDist <- function(pickup_long, pickup_lat, dropoff_long, 
dropoff_lat){ 
  R <- 6371/1.609344 #radius in mile 
  delta_lat <- dropoff_lat - pickup_lat 
  delta_long <- dropoff_long - pickup_long 
  degrees_to_radians = pi/180.0 
  a1 <- sin(delta_lat/2*degrees_to_radians) 
  a2 <- as.numeric(a1)^2 
  a3 <- cos(pickup_lat*degrees_to_radians) 
  a4 <- cos(dropoff_lat*degrees_to_radians) 
  a5 <- sin(delta_long/2*degrees_to_radians) 
  a6 <- as.numeric(a5)^2 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxsqlserverdata


The first line defines a new environment. In R, an environment can be used to
encapsulate name spaces in packages and such. You can use the search()
function to view the environments in your workspace. To view the objects in a
specific environment, type ls(<envname>) .
The lines beginning with $env.ComputeDist  contain the code that defines the
haversine formula, which calculates the great-circle distance between two
points on a sphere.

4. Having defined the function, you apply it to the data to create a new feature
column, direct_distance. but before you run the transformation, change the
compute context to local.

R

5. Call the rxDataStep function to get the feature engineering data, and apply the
env$ComputeDist  function to the data in memory.

R

  a <- a2+a3*a4*a6 
  c <- 2*atan2(sqrt(a),sqrt(1-a)) 
  d <- R*c 
  return (d) 
} 

rxSetComputeContext("local"); 

start.time <- proc.time(); 

changed_ds <- rxDataStep(inData = featureDataSource, 
transforms = 
list(direct_distance=ComputeDist(pickup_longitude,pickup_latitude, 
dropoff_longitude, dropoff_latitude), 
tipped = "tipped", fare_amount = "fare_amount", passenger_count = 
"passenger_count", 
trip_time_in_secs = "trip_time_in_secs",  
trip_distance="trip_distance", 
pickup_datetime = "pickup_datetime",  dropoff_datetime = 
"dropoff_datetime"), 
transformEnvir = env, 
rowsPerRead=500, 
reportProgress = 3); 

used.time <- proc.time() - start.time; 
print(paste("It takes CPU Time=", round(used.time[1]+used.time[2],2)," 
seconds, Elapsed Time=", round(used.time[3],2), " seconds to generate 
features.", sep="")); 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxdatastep


The rxDataStep function supports various methods for modifying data in
place. For more information, see this article: How to transform and subset
data in Microsft R

However, a couple of points worth noting regarding rxDataStep:

In other data sources, you can use the arguments varsToKeep and varsToDrop, but
these are not supported for SQL Server data sources. Therefore, in this example,
we've used the transforms argument to specify both the pass-through columns
and the transformed columns. Also, when running in a SQL Server compute
context, the inData argument can only take a SQL Server data source.

The preceding code can also produce a warning message when run on larger data
sets. When the number of rows times the number of columns being created
exceeds a set value (the default is 3,000,000), rxDataStep returns a warning, and
the number of rows in the returned data frame will be truncated. To remove the
warning, you can modify the maxRowsByCols argument in the rxDataStep function.
However, if maxRowsByCols is too large, you might experience problems when
loading the data frame into memory.

6. Optionally, you can call rxGetVarInfo to inspect the schema of the transformed
data source.

R

In this exercise, learn how to accomplish the same task using SQL functions instead of
custom R functions.

Switch to SQL Server Management Studio or another query editor to run the T-SQL
script.

1. Use a SQL function, named fnCalculateDistance. The function should already exist
in the NYCTaxi_Sample database. In Object Explorer, verify the function exists by
navigating this path: Databases > NYCTaxi_Sample > Programmability > Functions
> Scalar-valued Functions > dbo.fnCalculateDistance.

If the function does not exist, use SQL Server Management Studio to generate the
function in the NYCTaxi_Sample database.

rxGetVarInfo(data = changed_ds); 

Featurization using Transact-SQL

https://learn.microsoft.com/en-us/r-server/r/how-to-revoscaler-data-transform
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxgetvarinfo
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


SQL

2. In Management Studio, in a new query window, run the following Transact-SQL
statement from any application that supports Transact-SQL to see how the
function works.

SQL

3. To insert values directly into a new table (you have to create it first), you can add
an INTO clause specifying the table name.

SQL

CREATE FUNCTION [dbo].[fnCalculateDistance] (@Lat1 float, @Long1 float, 
@Lat2 float, @Long2 float) 
-- User-defined function calculates the direct distance between two 
geographical coordinates. 
RETURNS decimal(28, 10) 
AS 
BEGIN 
  DECLARE @distance decimal(28, 10) 
  -- Convert to radians 
  SET @Lat1 = @Lat1 / 57.2958 
  SET @Long1 = @Long1 / 57.2958 
  SET @Lat2 = @Lat2 / 57.2958 
  SET @Long2 = @Long2 / 57.2958 
  -- Calculate distance 
  SET @distance = (SIN(@Lat1) * SIN(@Lat2)) + (COS(@Lat1) * COS(@Lat2) 
* COS(@Long2 - @Long1)) 
  --Convert to miles 
  IF @distance <> 0 
  BEGIN 
    SET @distance = 3958.75 * ATAN(SQRT(1 - POWER(@distance, 2)) / 
@distance); 
  END 
  RETURN @distance 
END 

USE nyctaxi_sample 
GO 

SELECT tipped, fare_amount, 
passenger_count,trip_time_in_secs,trip_distance, pickup_datetime, 
dropoff_datetime, 
dbo.fnCalculateDistance(pickup_latitude, pickup_longitude, 
dropoff_latitude, dropoff_longitude) as direct_distance, 
pickup_latitude, pickup_longitude,  dropoff_latitude, dropoff_longitude  
FROM nyctaxi_sample 



4. You can also call the SQL function from R code. Switch back to Rgui and store the
SQL featurization query in an R variable.

R

5. Use the following lines of code to call the Transact-SQL function from your R
environment and apply it to the data defined in featureEngineeringQuery.

R

USE nyctaxi_sample 
GO 

SELECT tipped, fare_amount, passenger_count, trip_time_in_secs, 
trip_distance, pickup_datetime, dropoff_datetime, 
dbo.fnCalculateDistance(pickup_latitude, pickup_longitude, 
dropoff_latitude, dropoff_longitude) as direct_distance, 
pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude 
INTO NewFeatureTable 
FROM nyctaxi_sample 

featureEngineeringQuery = "SELECT tipped, fare_amount, passenger_count, 
    trip_time_in_secs,trip_distance, pickup_datetime, dropoff_datetime, 
    dbo.fnCalculateDistance(pickup_latitude, pickup_longitude,  
dropoff_latitude, dropoff_longitude) as direct_distance, 
    pickup_latitude, pickup_longitude,  dropoff_latitude, 
dropoff_longitude 
    FROM nyctaxi_sample 
    tablesample (1 percent) repeatable (98052)" 

 Tip

This query has been modified to get a smaller sample of data, to make this
walkthrough faster. You can remove the TABLESAMPLE clause if you want to
get all the data; however, depending on your environment, it might not be
possible to load the full datset into R, resulting in an error.

featureDataSource = RxSqlServerData(sqlQuery = featureEngineeringQuery, 
  colClasses = c(pickup_longitude = "numeric", pickup_latitude = 
"numeric", 
    dropoff_longitude = "numeric", dropoff_latitude = "numeric", 
    passenger_count  = "numeric", trip_distance  = "numeric", 
    trip_time_in_secs  = "numeric", direct_distance  = "numeric"), 
  connectionString = connStr) 



6. Now that the new feature is created, call rxGetVarsInfo to create a summary of the
data in the feature table.

R

Results

R

Remember this piece of code used to time the R code?

R

rxGetVarInfo(data = featureDataSource) 

Var 1: tipped, Type: integer 
Var 2: fare_amount, Type: numeric 
Var 3: passenger_count, Type: numeric 
Var 4: trip_time_in_secs, Type: numeric 
Var 5: trip_distance, Type: numeric 
Var 6: pickup_datetime, Type: character 
Var 7: dropoff_datetime, Type: character 
Var 8: direct_distance, Type: numeric 
Var 9: pickup_latitude, Type: numeric 
Var 10: pickup_longitude, Type: numeric 
Var 11: dropoff_latitude, Type: numeric 
Var 12: dropoff_longitude, Type: numeric 

７ Note

In some cases, you might get an error like this one: The EXECUTE permission
was denied on the object 'fnCalculateDistance' If so, make sure that the login
you are using has permissions to run scripts and create objects on the
database, not just on the instance. Check the schema for the object,
fnCalculateDistance. If the object was created by the database owner, and
your login belongs to the role db_datareader, you need to give the login
explicit permissions to run the script.

Comparing R functions and SQL functions

start.time <- proc.time() 
<your code here> 
used.time <- proc.time() - start.time 
print(paste("It takes CPU Time=", round(used.time[1]+used.time[2],2)," 



You can try using this with the SQL custom function example to see how long the data
transformation takes when calling a SQL function. Also, try switching compute contexts
with rxSetComputeContext and compare the timings.

Your times might vary significantly, depending on your network speed, and your
hardware configuration. In the configurations we tested, the Transact-SQL function
approach was faster than using a custom R function. Therefore, we've use the Transact-
SQL function for these calculations in subsequent steps.

seconds, Elapsed Time=", round(used.time[3],2), " seconds to generate 
features.", sep="")) 

 Tip

Very often, feature engineering using Transact-SQL will be faster than R. For
example, T-SQL includes fast windowing and ranking functions that can be applied
to common data science calculations such as rolling moving averages and n-tiles.
Choose the most efficient method based on your data and task.

Next steps
Build an R model and save to SQL



Build an R model and save to SQL
Server (walkthrough)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

In this step, learn how to build a machine learning model and save the model in SQL
Server. By saving a model, you can call it directly from Transact-SQL code, using the
system stored procedure, sp_execute_external_script or the PREDICT (T-SQL) function.

This step assumes an ongoing R session based on previous steps in this walkthrough. It
uses the connection strings and data source objects created in those steps. The
following tools and packages are used to run the script.

Rgui.exe to run R commands
Management Studio to run T-SQL
ROCR package
RODBC package

This step uses a stored procedure to save a trained model to SQL Server. Creating a
stored procedure to perform this operation makes the task easier.

Run the following T-SQL code in a query windows in Management Studio to create the
stored procedure.

SQL

Prerequisites

Create a stored procedure to save models

USE [NYCTaxi_Sample] 
GO 

SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 

IF EXISTS (SELECT * FROM sys.objects WHERE type = 'P' AND name = 
'PersistModel') 
  DROP PROCEDURE PersistModel 
GO 

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017


The model is a binary classifier that predicts whether the taxi driver is likely to get a tip
on a particular ride or not. You'll use the data source you created in the previous lesson
to train the tip classifier, using logistic regression.

1. Call the rxLogit function, included in the RevoScaleR package, to create a logistic
regression model.

R

The call that builds the model is enclosed in the system.time function. This lets you
get the time required to build the model.

2. After you build the model, you can inspect it using the summary  function, and view
the coefficients.

R

Results

CREATE PROCEDURE [dbo].[PersistModel] @m nvarchar(max) 
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SET NOCOUNT ON; 
 insert into nyc_taxi_models (model) values 
(convert(varbinary(max),@m,2)) 
END 
GO 

７ Note

If you get an error, make sure that your login has permission to create objects. You
can grant explicit permissions to create objects by running a T-SQL statement like
this: exec sp_addrolemember 'db_owner', '<user_name>' .

Create a classification model using rxLogit

system.time(logitObj <- rxLogit(tipped ~ passenger_count + 
trip_distance + trip_time_in_secs + direct_distance, data = 
featureDataSource)); 

summary(logitObj); 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxlogit


R

Now that the model is built, you can use to predict whether the driver is likely to get a
tip on a particular drive or not.

1. First, use the RxSqlServerData function to define a data source object for storing
the scoring result.

R

To make this example simpler, the input to the logistic regression model is
the same feature data source (sql_feature_ds ) that you used to train the
model. More typically, you might have some new data to score with, or you
might have set aside some data for testing vs. training.

The prediction results will be saved in the table, taxiscoreOutput. Notice that
the schema for this table is not defined when you create it using
rxSqlServerData. The schema is obtained from the rxPredict output.

 *Logistic Regression Results for: tipped ~ passenger_count + 
trip_distance + trip_time_in_secs +* 
 direct_distance*  
 *Data: featureDataSource (RxSqlServerData Data Source)* 
 *Dependent variable(s): tipped* 
 *Total independent variables: 5* 
 *Number of valid observations: 17068* 
 *Number of missing observations: 0* 
 *-2\*LogLikelihood: 23540.0602 (Residual deviance on 17063 degrees of 
freedom)* 
 *Coefficients:* 
 *Estimate Std. Error z value Pr(>|z|)* 
 *(Intercept)       -2.509e-03  3.223e-02  -0.078  0.93793* 
 *passenger_count   -5.753e-02  1.088e-02  -5.289 1.23e-07 \*\*\** 
 *trip_distance     -3.896e-02  1.466e-02  -2.658  0.00786 \*\** 
 *trip_time_in_secs  2.115e-04  4.336e-05   4.878 1.07e-06 \*\*\** 
 *direct_distance    6.156e-02  2.076e-02   2.966  0.00302 \*\** 
 *---* 
 *Signif. codes:  0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1* 
 *Condition number of final variance-covariance matrix: 48.3933* 
 *Number of iterations: 4* 

Use the logistic regression model for scoring

scoredOutput <- RxSqlServerData( 
  connectionString = connStr, 
  table = "taxiScoreOutput"  ) 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxsqlserverdata


To create the table that stores the predicted values, the SQL login running the
rxSqlServer data function must have DDL privileges in the database. If the
login cannot create tables, the statement fails.

2. Call the rxPredict function to generate results.

R

If the statement succeeds, it should take some time to run. When complete, you
can open SQL Server Management Studio and verify that the table was created and
that it contains the Score column and other expected output.

To get an idea of the accuracy of the model, you can use the rxRoc function to plot the
Receiver Operating Curve. Because rxRoc is one of the new functions provided by the
RevoScaleR package that supports remote compute contexts, you have two options:

You can use the rxRoc function to execute the plot in the remote compute context
and then return the plot to your local client.

You can also import the data to your R client computer, and use other R plotting
functions to create the performance graph.

In this section, you'll experiment with both techniques.

1. Call the function rxRoc and provide the data defined earlier as input.

R

rxPredict(modelObject = logitObj,
    data = featureDataSource, 
    outData = scoredOutput, 
    predVarNames = "Score", 
    type = "response", 
    writeModelVars = TRUE, overwrite = TRUE) 

Plot model accuracy

Execute a plot in the remote (SQL Server) compute
context

scoredOutput = rxImport(scoredOutput); 
rxRoc(actualVarName= "tipped", predVarNames = "Score", scoredOutput); 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxpredict
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxroc


This call returns the values used in computing the ROC chart. The label column is
tipped, which has the actual results you are trying to predict, while the Score
column has the prediction.

2. To actually plot the chart, you can save the ROC object and then draw it with the
plot function. The graph is created on the remote compute context, and returned
to your R environment.

R

View the graph by opening the R graphics device, or by clicking the Plot window in
RStudio.

scoredOutput = rxImport(scoredOutput); 
rocObjectOut <- rxRoc(actualVarName= "tipped", predVarNames = "Score", 
scoredOutput); 
plot(rocObjectOut); 



You can verify the compute context is local by running rxGetComputeContext()  at the
command prompt. The return value should be "RxLocalSeq Compute Context".

1. For the local compute context, the process is much the same. You use the rxImport
function to bring the specified data into your local R environment.

R

2. Using the data in local memory, you load the ROCR package, and use the
prediction function from that package to create some new predictions.

R

3. Generate a local plot, based on the values stored in the output variable pred .

R

Create the plots in the local compute context using data
from SQL Server

scoredOutput = rxImport(scoredOutput) 

library('ROCR'); 
pred <- prediction(scoredOutput$Score, scoredOutput$tipped); 

acc.perf = performance(pred, measure = 'acc'); 
plot(acc.perf); 
ind = which.max( slot(acc.perf, 'y.values')[[1]] ); 
acc = slot(acc.perf, 'y.values')[[1]][ind]; 
cutoff = slot(acc.perf, 'x.values')[[1]][ind]; 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rximport


After you have built a model and ascertained that it is performing well, you probably
want to deploy it to a site where users or people in your organization can make use of
the model, or perhaps retrain and recalibrate the model on a regular basis. This process
is sometimes called operationalizing a model. In SQL Server, operationalization is
achieved by embedding R code in a stored procedure. Because code resides in the
procedure, it can be called from any application that can connect to SQL Server.

Before you can call the model from an external application, you must save the model to
the database used for production. Trained models are stored in binary form, in a single

７ Note

Your charts might look different from these, depending on how many data points
you used.

Deploy the model



column of type varbinary(max).

A typical deployment workflow consists of the following steps:

1. Serialize the model into a hexadecimal string
2. Transmit the serialized object to the database
3. Save the model in a varbinary(max) column

In this section, learn how to use a stored procedure to persist the model and make it
available for predictions. The stored procedure used in this section is PersistModel. The
definition of PersistModel is in Prerequisites.

1. Switch back to your local R environment if you are not already using it, serialize the
model, and save it in a variable.

R

2. Open an ODBC connection using RODBC. You can omit the call to RODBC if you
already have the package loaded.

R

3. Call the PersistModel stored procedure on SQL Server to transmite the serialized
object to the database and store the binary representation of the model in a
column.

R

4. Use Management Studio to verify the model exists. In Object Explorer, right-click
on the nyc_taxi_models table and click Select Top 1000 Rows. In Results, you
should see a binary representation in the models column.

Saving a model to a table requires only an INSERT statement. However, it's often easier
when wrapped in a stored procedure, such as PersistModel.

rxSetComputeContext("local"); 
modelbin <- serialize(logitObj, NULL); 
modelbinstr=paste(modelbin, collapse=""); 

library(RODBC); 
conn <- odbcDriverConnect(connStr); 

q <- paste("EXEC PersistModel @m='", modelbinstr,"'", sep=""); 
sqlQuery (conn, q); 



In the next and final lesson, learn how to perform scoring against the saved model using
Transact-SQL.

Next steps

Deploy the R model and use in SQL



Deploy the R model and use it in SQL
Server (walkthrough)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

In this lesson, learn how to deploy R models in a production environment by calling a
trained model from a stored procedure. You can invoke the stored procedure from R or
any application programming language that supports Transact-SQL (such as C#, Java,
Python, and so forth) and use the model to make predictions on new observations.

This article demonstrates the two most common ways to use a model in scoring:

Create a stored procedure, PredictTipBatchMode, that generates multiple predictions,
passing a SQL query or table as input. A table of results is returned, which you might
insert directly into a table or write to a file.

Gets a set of input data as a SQL query
Calls the trained logistic regression model that you saved in the previous lesson
Predicts the probability that the driver gets any non-zero tip

1. In Management Studio, open a new query window and run the following T-SQL
script to create the PredictTipBatchMode stored procedure.

SQL

Batch scoring mode generates multiple predictions＂

Individual scoring mode generates predictions one at a time＂

Batch scoring

USE [NYCTaxi_Sample] 
GO 

SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 

IF EXISTS (SELECT * FROM sys.objects WHERE type = 'P' AND name = 
'PredictTipBatchMode') 
DROP PROCEDURE v 
GO 



You use a SELECT statement to call the stored model from a SQL table. The
model is retrieved from the table as varbinary(max) data, stored in the SQL
variable @lmodel2, and passed as the parameter mod to the system stored
procedure sp_execute_external_script.

The data used as inputs for scoring is defined as a SQL query and stored as a
string in the SQL variable @input. As data is retrieved from the database, it is
stored in a data frame called InputDataSet, which is just the default name for
input data to the sp_execute_external_script procedure; you can define
another variable name if needed by using the parameter
@input_data_1_name.

To generate the scores, the stored procedure calls the rxPredict function from
the RevoScaleR library.

The return value, Score, is the probability, given the model, that driver gets a
tip. Optionally, you could easily apply some kind of filter to the returned
values to categorize the return values into "tip" and "no tip" groups. For
example, a probability of less than 0.5 would mean a tip is unlikely.

2. To call the stored procedure in batch mode, you define the query required as input
to the stored procedure. Below is the SQL query, which you can run in SSMS to
verify that it works.

SQL

CREATE PROCEDURE [dbo].[PredictTipBatchMode] @input nvarchar(max) 
AS 
BEGIN 
  DECLARE @lmodel2 varbinary(max) = (SELECT TOP 1 model  FROM 
nyc_taxi_models); 
  EXEC sp_execute_external_script @language = N'R', 
     @script = N' 
       mod <- unserialize(as.raw(model)); 
       print(summary(mod)) 
       OutputDataSet<-rxPredict(modelObject = mod, 
         data = InputDataSet, 
         outData = NULL, 
         predVarNames = "Score", type = "response", 
         writeModelVars = FALSE, overwrite = TRUE); 
       str(OutputDataSet) 
       print(OutputDataSet)', 
  @input_data_1 = @input, 
  @params = N'@model varbinary(max)', 
  @model = @lmodel2 
  WITH RESULT SETS ((Score float)); 
END 

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


3. Use this R code to create the input string from the SQL query:

R

4. To run the stored procedure from R, call the sqlQuery method of the RODBC
package and use the SQL connection conn  that you defined earlier:

R

If you get an ODBC error, check for syntax errors and whether you have the right
number of quotation marks.

SELECT TOP 10 
  a.passenger_count AS passenger_count, 
  a.trip_time_in_secs AS trip_time_in_secs, 
  a.trip_distance AS trip_distance, 
  a.dropoff_datetime AS dropoff_datetime, 
  dbo.fnCalculateDistance( pickup_latitude, pickup_longitude, 
dropoff_latitude, dropoff_longitude) AS direct_distance 
  FROM  
    (SELECT medallion, hack_license, pickup_datetime, 
passenger_count,trip_time_in_secs,trip_distance, dropoff_datetime, 
pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude  
    FROM nyctaxi_sample)a  
  LEFT OUTER JOIN 
  ( SELECT medallion, hack_license, pickup_datetime 
  FROM nyctaxi_sample  tablesample (1 percent) repeatable (98052)  )b 
  ON a.medallion=b.medallion 
  AND a.hack_license=b.hack_license 
  AND a.pickup_datetime=b.pickup_datetime 
  WHERE b.medallion is null 

input <- "N'SELECT TOP 10 a.passenger_count AS passenger_count, 
a.trip_time_in_secs AS trip_time_in_secs, a.trip_distance AS 
trip_distance, a.dropoff_datetime AS dropoff_datetime, 
dbo.fnCalculateDistance(pickup_latitude, pickup_longitude, 
dropoff_latitude, dropoff_longitude) AS direct_distance FROM (SELECT 
medallion, hack_license, pickup_datetime, 
passenger_count,trip_time_in_secs,trip_distance, dropoff_datetime, 
pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude 
FROM nyctaxi_sample)a LEFT OUTER JOIN ( SELECT medallion, hack_license, 
pickup_datetime FROM nyctaxi_sample  tablesample (1 percent) repeatable 
(98052)  )b ON a.medallion=b.medallion AND 
a.hack_license=b.hack_license AND  a.pickup_datetime=b.pickup_datetime 
WHERE b.medallion is null'"; 
q <- paste("EXEC PredictTipBatchMode @input = ", input, sep=""); 

sqlQuery (conn, q); 



If you get a permissions error, make sure the login has the ability to execute the
stored procedure.

Individual scoring mode generates predictions one at a time, passing a set of individual
values to the stored procedure as input. The values correspond to features in the model,
which the model uses to create a prediction, or generate another result such as a
probability value. You can then return that value to the application, or user.

When calling the model for prediction on a row-by-row basis, you pass a set of values
that represent features for each individual case. The stored procedure then returns a
single prediction or probability.

The stored procedure PredictTipSingleMode demonstrates this approach. It takes as
input multiple parameters representing feature values (for example, passenger count
and trip distance), scores these features using the stored R model, and outputs the tip
probability.

1. Run the following Transact-SQL statement to create the stored procedure.

SQL

Single row scoring

USE [NYCTaxi_Sample] 
GO 

SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 

IF EXISTS (SELECT * FROM sys.objects WHERE type = 'P' AND name = 
'PredictTipSingleMode') 
DROP PROCEDURE v 
GO 

CREATE PROCEDURE [dbo].[PredictTipSingleMode] @passenger_count int = 0, 
@trip_distance float = 0, 
@trip_time_in_secs int = 0, 
@pickup_latitude float = 0, 
@pickup_longitude float = 0, 
@dropoff_latitude float = 0, 
@dropoff_longitude float = 0 
AS 
BEGIN 
  DECLARE @inquery nvarchar(max) = N' 
    SELECT * FROM [dbo].[fnEngineerFeatures](@passenger_count, 
@trip_distance, @trip_time_in_secs, @pickup_latitude, 



2. In SQL Server Management Studio, you can use the Transact-SQL EXEC procedure
(or EXECUTE) to call the stored procedure, and pass it the required inputs. For
example, try running this statement in Management Studio:

SQL

@pickup_longitude, @dropoff_latitude, @dropoff_longitude)' 
  DECLARE @lmodel2 varbinary(max) = (SELECT TOP 1 model FROM 
nyc_taxi_models); 

  EXEC sp_execute_external_script @language = N'R',  @script = N' 
        mod <- unserialize(as.raw(model)); 
        print(summary(mod)) 
        OutputDataSet<-rxPredict(
          modelObject = mod, 
          data = InputDataSet, 
          outData = NULL, 
          predVarNames = "Score",
          type = "response", 
          writeModelVars = FALSE,
          overwrite = TRUE); 
        str(OutputDataSet) 
        print(OutputDataSet) 
        ', 
  @input_data_1 = @inquery, 
  @params = N' 
  -- passthrough columns 
  @model varbinary(max) , 
  @passenger_count int , 
  @trip_distance float , 
  @trip_time_in_secs int , 
  @pickup_latitude float , 
  @pickup_longitude float , 
  @dropoff_latitude float , 
  @dropoff_longitude float', 
  -- mapped variables 
  @model = @lmodel2 , 
  @passenger_count =@passenger_count , 
  @trip_distance=@trip_distance ,
  @trip_time_in_secs=@trip_time_in_secs , 
  @pickup_latitude=@pickup_latitude , 
  @pickup_longitude=@pickup_longitude , 
  @dropoff_latitude=@dropoff_latitude , 
  @dropoff_longitude=@dropoff_longitude 
  WITH RESULT SETS ((Score float)); 
END 

EXEC [dbo].[PredictTipSingleMode] 1, 2.5, 631, 40.763958,-73.973373, 
40.782139,-73.977303 



The values passed in here are, respectively, for the variables passenger_count,
trip_distance, trip_time_in_secs, pickup_latitude, pickup_longitude, dropoff_latitude,
and dropoff_longitude.

3. To run this same call from R code, you simply define an R variable that contains the
entire stored procedure call, like this one:

R

The values passed in here are, respectively, for the variables passenger_count,
trip_distance, trip_time_in_secs, pickup_latitude, pickup_longitude, dropoff_latitude,
and dropoff_longitude.

4. Call sqlQuery  (from the RODBC package) and pass the connection string, together
with the string variable containing the stored procedure call.

R

Now that you have learned how to work with SQL Server data and persist trained R
models to SQL Server, it should be relatively easy for you to create new models based
on this data set. For example, you might try creating these additional models:

A regression model that predicts the tip amount
A multiclass classification model that predicts whether the tip is big, medium, or
small

You might also want to explore these additional samples and resources:

q2 = "EXEC PredictTipSingleMode 1, 2.5, 631, 40.763958,-73.973373, 
40.782139,-73.977303 "; 

# predict with stored procedure in single mode 
sqlQuery (conn, q2); 

 Tip

R Tools for Visual Studio (RTVS) provides great integration with both SQL
Server and R. See this article for more examples of using RODBC with a SQL
Server connection: Working with SQL Server and R

Next steps

https://learn.microsoft.com/en-us/visualstudio/rtvs/sql-server


Data science scenarios and solution templates
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Tutorial: Use RevoScaleR R functions
with SQL Server data
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

In this multi-part tutorial series, you're introduced to a range of RevoScaleR functions
for tasks associated with data science. In the process, you'll learn how to create a remote
compute context, move data between local and remote compute contexts, and execute
R code on a remote SQL Server. You'll also learn how to analyze and plot data both
locally and on the remote server, and how to create and deploy models.

RevoScaleR is a Microsoft R package providing distributed and parallel processing for
data science and machine learning workloads. For R development in SQL Server,
RevoScaleR is one of the core built-in packages, with functions for creating data source
objects, setting a compute context, managing packages, and most importantly: working
with data end-to-end, from import to visualization and analysis. Machine Learning
algorithms in SQL Server have a dependency on RevoScaleR data sources. Given the
importance of RevoScaleR, knowing when and how to call its functions is an essential
skill.

SQL Server Machine Learning Services with the R feature, or SQL Server R Services
(in-Database)

Database permissions and a SQL Server database user login

SQL Server Management Studio

An IDE such as RStudio or the built-in RGUI tool included with R

To switch back and forth between local and remote compute contexts, you need two
systems. Local is typically a development workstation with sufficient power for data
science workloads. Remote in this case is SQL Server with the R feature enabled.

Switching compute contexts is predicated on having the same-version RevoScaleR on
both local and remote systems. On a local workstation, you can get the RevoScaleR
packages and related providers by installing Microsoft R Client.

Prerequisites

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-r-services-windows-install?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


If you need to put client and server on the same computer, be sure to install a second
set of Microsoft R libraries for sending R script from a "remote" client. Do not use the R
libraries that are installed in the program files of the SQL Server instance. Specifically, if
you are using one computer, you need the RevoScaleR library in both of these locations
to support client and server operations.

C:\Program Files\Microsoft\R Client\R_SERVER\library\RevoScaleR
C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES\library\RevoScaleR

For instructions on client configuration, see Set up a data science client for R
development.

R developers typically use IDEs for writing and debugging R code. Here are some
suggestions:

R Tools for Visual Studio (RTVS) is a free plug-in that provides Intellisense,
debugging, and support for Microsoft R. You can use it with SQL Server Machine
Learning Services. To download, see R Tools for Visual Studio .

RStudio is one of the more popular environments for R development. For more
information, see https://www.rstudio.com/products/RStudio/ .

Basic R tools (R.exe, RTerm.exe, RScripts.exe) are also installed by default when you
install R in SQL Server or R Client. If you do not wish to install an IDE, you can use
built-in R tools to execute the code in this tutorial.

Recall that RevoScaleR is required on both local and remote computers. You cannot
complete this tutorial using a generic installation of RStudio or other environment that's
missing the Microsoft R libraries. For more information, see Set Up a Data Science Client.

Data is initially obtained from CSV files or XDF files. You import the data into SQL
Server using the functions in the RevoScaleR package.
Model training and scoring is performed using the SQL Server compute context.
Use RevoScaleR functions to create new SQL Server tables to save your scoring
results.
Create plots both on the server and in the local compute context.

R development tools

Summary of tasks

https://marketplace.visualstudio.com/items?itemName=MikhailArkhipov007.RTVS2019
https://www.rstudio.com/products/RStudio/


Train a model on data in SQL Server database, running R in the SQL Server
instance.
Extract a subset of data and save it as an XDF file for re-use in analysis on your
local workstation.
Get new data for scoring, by opening an ODBC connection to the SQL Server
database. Scoring is done on the local workstation.
Create a custom R function and run it in the server compute context to perform a
simulation.

Next steps
Tutorial 1: Create database and permissions



Create a database and permissions (SQL
Server and RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 1 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

This tutorial describes how to create a SQL Server database and set the permissions
necessary for completing the other tutorials in this series. Use SQL Server Management
Studio or another query editor to complete the following tasks:

This tutorial requires a database for storing data and code. If you're not an
administrator, ask your DBA to create the database and login for you. You'll need
permissions to write and read data, and to run R scripts.

1. In SQL Server Management Studio, connect to an R-enabled database instance.

2. Right-click Databases, and select New database.

3. Type a name for the new database: RevoDeepDive.

1. Click New Query, and change the database context to the master database.

2. In the new Query window, run the following commands to create the user
accounts and assign them to the database used for this tutorial. Be sure to change
the database name if needed.

3. To verify the login, select the new database, expand Security, and expand Users.

Windows user

SQL

Create a new database to store the data for training and scoring two R models＂

Create a database user login with permissions for creating and using database
objects

＂

Create the database

Create a login

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


SQL login

SQL

This tutorial demonstrates R script and DDL operations, including creating and deleting
tables and stored procedures, and running R script in an external process on SQL Server.
In this step, assign permssions to allow these tasks.

This example assumes a SQL login (DDUser01), but if you created a Windows login, use
that instead.

SQL

 -- Create server user based on Windows account 
USE master 
GO 
CREATE LOGIN [<DOMAIN>\<user_name>] FROM WINDOWS WITH DEFAULT_DATABASE=
[RevoDeepDive] 

 --Add the new user to tutorial database 
USE [RevoDeepDive] 
GO 
CREATE USER [<user_name>] FOR LOGIN [<DOMAIN>\<user_name>] WITH 
DEFAULT_SCHEMA=[db_datareader] 

-- Create new SQL login 
USE master 
GO 
CREATE LOGIN [DDUser01] WITH PASSWORD='<type password here>', 
CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF; 

-- Add the new SQL login to tutorial database 
USE RevoDeepDive 
GO 
CREATE USER [DDUser01] FOR LOGIN [DDUser01] WITH DEFAULT_SCHEMA=
[db_datareader] 

Assign permissions

USE RevoDeepDive 
GO 

EXEC sp_addrolemember 'db_owner', 'DDUser01' 
GRANT EXECUTE ANY EXTERNAL SCRIPT TO DDUser01 
GO 



This section lists some common issues that you might run across in the course of setting
up the database.

How can I verify database connectivity and check SQL queries?

Before you run R code using the server, you might want to check that the database
can be reached from your R development environment. Both Server Explorer in
Visual Studio and SQL Server Management Studio are free tools with powerful
database connectivity and management features.

If you don't want to install additional database management tools, you can create
a test connection to the SQL Server instance by using the ODBC Data Source
Administrator in Control Panel. If the database is configured correctly and you
enter the correct user name and password, you should be able to see the database
you just created and select it as your default database.

Common reasons for connection failures include remote connections are not
enabled for the server, and Named Pipes protocol is not enabled. You can find
more troubleshooting tips in this article: Troubleshoot Connecting to the SQL
Server Database Engine.

My table name has datareader prefixed to it - why?

When you specify the default schema for this user as db_datareader, all tables and
other new objects created by this user are prefixed with the schema name. A
schema is like a folder that you can add to a database to organize objects. The
schema also defines a user's privileges within the database.

When the schema is associated with one particular user name, the user is the
schema owner. When you create an object, you always create it in your own
schema, unless you specifically ask it to be created in another schema.

For example, if you create a table with the name TestData, and your default
schema is db_datareader, the table is created with the name
<database_name>.db_datareader.TestData .

For this reason, a database can contain multiple tables with the same names, as
long as the tables belong to different schemas.

If you are looking for a table and do not specify a schema, the database server
looks for a schema that you own. Therefore, there is no need to specify the schema
name when accessing tables in a schema associated with your login.

Troubleshoot connections

https://learn.microsoft.com/en-us/previous-versions/x603htbk(v=vs.140)
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/odbc/admin/odbc-data-source-administrator?view=sql-server-2017
https://learn.microsoft.com/en-us/troubleshoot/sql/connect/network-related-or-instance-specific-error-occurred-while-establishing-connection


I don't have DDL privileges. Can I still run the tutorial??

Yes, but you should ask someone to pre-load the data into the SQL Server tables,
and skip ahead to the next tutorial. The functions that require DDL privileges are
called out in the tutorial wherever possible.

Also, ask your administrator to grant you the permission, EXECUTE ANY EXTERNAL
SCRIPT. It is needed for R script execution, whether remote or by using
sp_execute_external_script .

Next steps
Create SQL Server data objects using RxSqlServerData



Create SQL Server data objects using
RxSqlServerData (SQL Server and
RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 2 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

This tutorial is a continuation of database creation: adding tables and loading data. If a
DBA created the database and login in tutorial two, you can add tables using an R IDE
like RStudio or a built-in tool like Rgui.

From R, connect to SQL Server and use RevoScaleR functions to perform the following
tasks:

Sample data is simulated credit card fraud data (the ccFraud dataset), partitioned into
training and scoring datasets. The data file is included in RevoScaleR.

Use an R IDE or Rgui to complete these taks. Be sure to use the R executables found at
this location: C:\Program Files\Microsoft\R Client\R_SERVER\bin\x64 (either Rgui.exe if
you are using that tool, or an R IDE pointing to C:\Program Files\Microsoft\R
Client\R_SERVER). Having an R client workstation with these executables is considered a
prerequisite of this tutorial.

1. Store the database connection string in an R variable. Below are two examples of
valid ODBC connection strings for SQL Server: one using a SQL login, and one for
Windows integrated authentication.

Be sure to modify the server name, user name, and password as appropriate.

SQL login

R

Create tables for training data and predictions＂

Load tables with data from a local .csv file＂

Create the training data table

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler


Windows authentication

R

2. Specify the name of the table you want to create, and save it in an R variable.

R

Because the server instance and database name are already specified as part of the
connection string, when you combine the two variables, the fully qualified name of
the new table becomes instance.database.schema.ccFraudSmall.

3. Optionally, specify rowsPerRead to control how many rows of data are read in each
batch.

R

Although this parameter is optional, setting it can result in more efficient
computations. Most of the enhanced analytical functions in RevoScaleR and
MicrosoftML process data in chunks. The rowsPerRead parameter determines the
number of rows in each chunk.

You might need to experiment with this setting to find the right balance. If the
value is too large, data access might be slow if there is not enough memory to
process data in chunks of that size. Conversely, on some systems, if the value of
rowsPerRead is too small, performance can also slow down.

As an initial value, use the default batch process size defined by the database
engine instance to control the number of rows in each chunk (5,000 rows). Save
that value in the variable sqlRowsPerRead.

4. Define a variable for the new data source object, and pass the arguments
previously defined to the RxSqlServerData constructor. Note that this only creates

sqlConnString <- "Driver=SQL Server;Server=<server-name>; 
Database=RevoDeepDive;Uid=<user_name>;Pwd=<password>" 

sqlConnString <- "Driver=SQL Server;Server=<server-
name>;Database=RevoDeepDive;Trusted_Connection=True" 

sqlFraudTable <- "ccFraudSmall" 

sqlRowsPerRead = 5000 



the data source object and does not populate it. Loading data is a separate step.

R

Using the same steps, create the table that holds the scoring data using the same
process.

1. Create a new R variable, sqlScoreTable, to store the name of the table used for
scoring.

R

2. Provide that variable as an argument to the RxSqlServerData function to define a
second data source object, sqlScoreDS.

R

Because you've already defined the connection string and other parameters as variables
in the R workspace, you can reuse it for new data sources representing different tables,
views, or queries.

sqlFraudDS <- RxSqlServerData(connectionString = sqlConnString, 
   table = sqlFraudTable, 
   rowsPerRead = sqlRowsPerRead) 

Create the scoring data table

sqlScoreTable <- "ccFraudScoreSmall" 

sqlScoreDS <- RxSqlServerData(connectionString = sqlConnString, 
   table = sqlScoreTable, rowsPerRead = sqlRowsPerRead) 

７ Note

The function uses different arguments for defining a data source based on an entire
table than for a data source based on a query. This is because the SQL Server
database engine must prepare the queries differently. Later in this tutorial, you
learn how to create a data source object based on a SQL query.

Load data into SQL tables using R



Now that you have created the SQL Server tables, you can load data into them using the
appropriate Rx function.

The RevoScaleR package contains functions specific to data source types. For text data,
use RxTextData to generate the data source object. There are additional functions for
creating data source objects from Hadoop data, ODBC data, and so forth.

1. Create an R variable, ccFraudCsv, and assign to the variable the file path for the
CSV file containing the sample data. This dataset is provided in RevoScaleR. The
"sampleDataDir" is a keyword on the rxGetOption function.

R

Notice the call to rxGetOption, which is the GET method associated with rxOptions
in RevoScaleR. Use this utility to set and list options related to local and remote
compute contexts, such as the default shared directory, or the number of
processors (cores) to use in computations.

This particular call gets the samples from the correct library, regardless of where
you are running your code. For example, try running the function on SQL Server,
and on your development computer, and see how the paths differ.

2. Define a variable to store the new data, and use the RxTextData function to specify
the text data source.

R

７ Note

For this section, you must have Execute DDL permissions on the database.

Load data into the training table

ccFraudCsv <- file.path(rxGetOption("sampleDataDir"), 
"ccFraudSmall.csv") 

inTextData <- RxTextData(file = ccFraudCsv,      colClasses = c( 
    "custID" = "integer", "gender" = "integer", "state" = "integer", 
    "cardholder" = "integer", "balance" = "integer", 
    "numTrans" = "integer", 
    "numIntlTrans" = "integer", "creditLine" = "integer", 
    "fraudRisk" = "integer")) 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxtextdata
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxoptions


The argument colClasses is important. You use it to indicate the data type to assign
to each column of data loaded from the text file. In this example, all columns are
handled as text, except for the named columns, which are handled as integers.

3. At this point, you might want to pause a moment, and view your database in SQL
Server Management Studio. Refresh the list of tables in the database.

You can see that, although the R data objects have been created in your local
workspace, the tables have not been created in the SQL Server database. Also, no
data has been loaded from the text file into the R variable.

4. Insert the data by calling the function rxDataStep function.

R

Assuming no problems with your connection string, after a brief pause, you should
see results like these:

Total Rows written: 10000, Total time: 0.466 Rows Read: 10000, Total Rows Processed:
10000, Total Chunk Time: 0.577 seconds

5. Refresh the list of tables. To verify that each variable has the correct data types and
was imported successfully, you can also right-click the table in SQL Server
Management Studio and select Select Top 1000 Rows.

1. Repeat the steps to load the data set used for scoring into the database.

Start by providing the path to the source file.

R

2. Use the RxTextData function to get the data and save it in the variable, inTextData.

R

rxDataStep(inData = inTextData, outFile = sqlFraudDS, overwrite = TRUE) 

Load data into the scoring table

ccScoreCsv <- file.path(rxGetOption("sampleDataDir"), 
"ccFraudScoreSmall.csv") 

inTextData <- RxTextData(file = ccScoreCsv,      colClasses = c( 
    "custID" = "integer", "gender" = "integer", "state" = "integer", 
    "cardholder" = "integer", "balance" = "integer", 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxdatastep


3. Call the rxDataStep function to overwrite the current table with the new schema
and data.

R

The inData argument defines the data source to use.

The outFile argument specifies the table in SQL Server where you want to
save the data.

If the table already exists and you don't use the overwrite option, results are
inserted without truncation.

Again, if the connection was successful, you should see a message indicating completion
and the time required to write the data into the table:

Total Rows written: 10000, Total time: 0.384 Rows Read: 10000, Total Rows Processed:
10000, Total Chunk Time: 0.456 seconds

rxDataStep is a powerful function that can perform multiple transformations on an R
data frame. You can also use rxDataStep to convert data into the representation required
by the destination: in this case, SQL Server.

Optionally, you can specify transformations on the data, by using R functions in the
arguments to rxDataStep. Examples of these operations are provided later in this
tutorial.

    "numTrans" = "integer", 
    "numIntlTrans" = "integer", "creditLine" = "integer")) 

rxDataStep(inData = inTextData, sqlScoreDS, overwrite = TRUE) 

More about rxDataStep

Next steps
Query and modify the SQL Server data

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxdatastep


Query and modify the SQL Server data
(SQL Server and RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 3 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In the previous tutorial, you loaded the data into SQL Server. In this tutorial, you can
explore and modify data using RevoScaleR:

Categorical data, or factor variables, are useful for exploratory data visualizations. You
can use them as inputs to histograms to get an idea of what variable data looks like.

Use an R IDE or RGui.exe to run R script.

First, get a list of the columns and their data types. You can use the function
rxGetVarInfo and specify the data source you want to analyze. Depending on your
version of RevoScaleR, you could also use rxGetVarNames.

R

Results

R

Return basic information about the variables＂

Create categorical data from raw data＂

Query for columns and types

rxGetVarInfo(data = sqlFraudDS) 

Var 1: custID, Type: integer 
Var 2: gender, Type: integer 
Var 3: state, Type: integer 
Var 4: cardholder, Type: integer 
Var 5: balance, Type: integer 
Var 6: numTrans, Type: integer 
Var 7: numIntlTrans, Type: integer 
Var 8: creditLine, Type: integer 
Var 9: fraudRisk, Type: integer 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxgetvarinfoxdf
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxgetvarnames


All the variables are stored as integers, but some variables represent categorical data,
called factor variables in R. For example, the column state contains numbers used as
identifiers for the 50 states plus the District of Columbia. To make it easier to understand
the data, you replace the numbers with a list of state abbreviations.

In this step, you create a string vector containing the abbreviations, and then map these
categorical values to the original integer identifiers. Then you use the new variable in
the colInfo argument, to specify that this column be handled as a factor. Whenever you
analyze the data or move it, the abbreviations are used and the column is handled as a
factor.

Mapping the column to abbreviations before using it as a factor actually improves
performance as well. For more information, see R and data optimization.

1. Begin by creating an R variable, stateAbb, and defining the vector of strings to add
to it, as follows.

R

2. Next, create a column information object, named ccColInfo, that specifies the
mapping of the existing integer values to the categorical levels (the abbreviations
for states).

This statement also creates factor variables for gender and cardholder.

R

Create categorical data

stateAbb <- c("AK", "AL", "AR", "AZ", "CA", "CO", "CT", "DC", 
    "DE", "FL", "GA", "HI","IA", "ID", "IL", "IN", "KS", "KY", "LA", 
    "MA", "MD", "ME", "MI", "MN", "MO", "MS", "MT", "NB", "NC", "ND", 
    "NH", "NJ", "NM", "NV", "NY", "OH", "OK", "OR", "PA", "RI","SC", 
    "SD", "TN", "TX", "UT", "VA", "VT", "WA", "WI", "WV", "WY") 

ccColInfo <- list( 
gender = list( 
          type = "factor", 
          levels = c("1", "2"), 
          newLevels = c("Male", "Female") 
          ), 
cardholder = list( 
              type = "factor", 
              levels = c("1", "2"), 
              newLevels = c("Principal", "Secondary") 
               ), 
state = list( 



3. To create the SQL Server data source that uses the updated data, call the
RxSqlServerData function as before, but add the colInfo argument.

R

For the table parameter, pass in the variable sqlFraudTable, which contains the
data source you created earlier.
For the colInfo parameter, pass in the ccColInfo variable, which contains the
column data types and factor levels.

4. You can now use the function rxGetVarInfo to view the variables in the new data
source.

R

Results

R

Now the three variables you specified (gender, state, and cardholder) are treated as
factors.

         type = "factor", 
         levels = as.character(1:51), 
         newLevels = stateAbb 
         ), 
balance = list(type = "numeric") 
) 

sqlFraudDS <- RxSqlServerData(connectionString = sqlConnString, 
table = sqlFraudTable, colInfo = ccColInfo, 
rowsPerRead = sqlRowsPerRead) 

rxGetVarInfo(data = sqlFraudDS) 

Var 1: custID, Type: integer 
Var 2: gender  2 factor levels: Male Female 
Var 3: state   51 factor levels: AK AL AR AZ CA ... VT WA WI WV WY 
Var 4: cardholder  2 factor levels: Principal Secondary 
Var 5: balance, Type: integer 
Var 6: numTrans, Type: integer 
Var 7: numIntlTrans, Type: integer 
Var 8: creditLine, Type: integer 
Var 9: fraudRisk, Type: integer 



Next steps
Define and use compute contexts



Define and use compute contexts (SQL
Server and RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 4 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In the previous tutorial, you used RevoScaleR functions to inspect data objects. This
tutorial introduces the RxInSqlServer function, which lets you define a compute context
for a remote SQL Server. With a remote compute context, you can shift R execution from
a local session to a remote session on the server.

RevoScaleR supports multiple compute contexts: Hadoop, Spark on HDFS, and SQL
Server in-database. For SQL Server, the RxInSqlServer function is used for server
connections and passing objects between the local computer and the remote execution
context.

The RxInSqlServer function that creates the SQL Server compute context uses the
following information:

Connection string for the SQL Server instance
Specification of how output should be handled
Optional specification of a shared data directory
Optional arguments that enable tracing or specify the trace level

This section walks you through each part.

1. Specify the connection string for the instance where computations are performed.
You can re-use the connection string that you created earlier.

Using a SQL login

R

Learn the elements of a remote SQL Server compute context＂

Enable tracing on a compute context object＂

Create and set a compute context

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinsqlserver


Using Windows authentication

R

2. Specify how you want the output handled. The following script directs the local R
session to wait for R job results on the server before processing the next operation.
It also suppresses output from remote computations from appearing in the local
session.

R

The wait argument to RxInSqlServer supports these options:

TRUE. The job is configured as blocking and does not return until it has
completed or has failed.

FALSE. Jobs are configured as non-blocking and return immediately, allowing
you to continue running other R code. However, even in non-blocking mode,
the client connection with SQL Server must be maintained while the job is
running.

3. Optionally, specify the location of a local directory for shared use by the local R
session and by the remote SQL Server computer and its accounts.

R

If you want to manually create a specific directory for sharing, you can add a line
like the following:

R

sqlConnString <- "Driver=SQL Server;Server=<SQL Server instance name>; 
Database=<database name>;Uid=<SQL user nme>;Pwd=<password>" 

sqlConnString <- "Driver=SQL 
Server;Server=instance_name;Database=RevoDeepDive;Trusted_Connection=Tr
ue" 

sqlWait <- TRUE 
sqlConsoleOutput <- FALSE 

sqlShareDir <- paste("c:\\AllShare\\", Sys.getenv("USERNAME"), sep="") 

dir.create(sqlShareDir, recursive = TRUE) 



4. Pass arguments to the RxInSqlServer constructor to create the compute context
object.

R

The syntax for RxInSqlServer looks almost identical to that of the RxSqlServerData
function that you used earlier to define the data source. However, there are some
important differences.

The data source object, defined by using the function RxSqlServerData,
specifies where the data is stored.

In contrast, the compute context, defined by using the function RxInSqlServer
indicates where aggregations and other computations are to take place.

Defining a compute context does not affect any other generic R computations that
you might perform on your workstation, and does not change the source of the
data. For example, you could define a local text file as the data source but change
the compute context to SQL Server and do all your reading and summaries on the
data on the SQL Server computer.

5. Activate the remote compute context.

R

6. Return information about the compute context, including its properties.

R

7. Reset the compute context back to the local computer by specifying the "local"
keyword (the next tutorial demonstrates using the remote compute context).

R

sqlCompute <- RxInSqlServer(   
     connectionString = sqlConnString, 
     wait = sqlWait, 
     consoleOutput = sqlConsoleOutput) 

rxSetComputeContext(sqlCompute) 

rxGetComputeContext() 

rxSetComputeContext("local") 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsqlserverdata
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinsqlserver


Sometimes operations work on your local context, but have issues when running in a
remote compute context. If you want to analyze issues or monitor performance, you can
enable tracing in the compute context, to support run-time troubleshooting.

1. Create a new compute context that uses the same connection string, but add the
arguments traceEnabled and traceLevel to the RxInSqlServer constructor.

R

In this example, the traceLevel property is set to 7, meaning "show all tracing
information."

2. Use the rxSetComputeContext function to specify the tracing-enabled compute
context by name.

R

Learn how to switch compute contexts to run R code on the server or locally.

 Tip

For a list of other keywords supported by this function, type
help("rxSetComputeContext")  from an R command line.

Enable tracing

sqlComputeTrace <- RxInSqlServer(
    connectionString = sqlConnString, 
    #shareDir = sqlShareDir, 
    wait = sqlWait, 
    consoleOutput = sqlConsoleOutput, 
    traceEnabled = TRUE, 
    traceLevel = 7) 

rxSetComputeContext(sqlComputeTrace) 

Next steps

Compute summary statistics in local and remote compute contexts

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsetcomputecontext


Compute summary statistics in R (SQL
Server and RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 5 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

This tutorial uses the established data sources and compute contexts created in previous
tutorials to run high-powered R scripts. In this tutorial, you will use local and remote
server compute contexts for the following tasks:

If you completed the previous tutorials, you should have these remote compute
contexts: sqlCompute and sqlComputeTrace. Moving forward, you use will sqlCompute
and the local compute context in subsequent tutorials.

Use an R IDE or Rgui to run the R script in this tutorial.

Before you can run any R code remotely, you need to specify the remote compute
context. All subsequent computations take place on the SQL Server computer specified
in the sqlCompute parameter.

A compute context remains active until you change it. However, any R scripts that
cannot run in a remote server context will automatically run locally.

To see how a compute context works, generate summary statistics on the sqlFraudDS
data source on the remote SQL Server. This data source object was created in tutorial
two and represents the ccFraudSmall table in the RevoDeepDive database.

1. Switch the compute context to sqlCompute created in the previous tutorial:

R

Switch the compute context to SQL Server＂

Obtain summary statistics on remote data objects＂

Compute a local summary＂

Compute summary statistics on remote data

rxSetComputeContext(sqlCompute) 
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2. Call the rxSummary function and pass required arguments, such as the formula
and the data source, and assign the results to the variable sumOut .

R

The R language provides many summary functions, but rxSummary in RevoScaleR
supports execution on various remote compute contexts, including SQL Server. For
information about similar functions, see Data summaries using RevoScaleR.

3. Print the contents of sumOut to the console.

R

Results

R

sumOut <- rxSummary(formula = ~gender + balance + numTrans + 
numIntlTrans + creditLine, data = sqlFraudDS) 

sumOut 

７ Note

If you get an error, wait a few minutes for execution to finish before retrying
the command.

Summary Statistics Results for: ~gender + balance + numTrans + numIntlTrans 
+ creditLine 
Data: sqlFraudDS (RxSqlServerData Data Source) 
Number of valid observations: 10000 

 Name  Mean    StdDev  Min Max ValidObs    MissingObs 
 balance       4075.0318 3926.558714            0   25626 100000 
 numTrans        29.1061   26.619923 0     100 10000    0           100000 
 numIntlTrans     4.0868    8.726757 0      60 10000    0           100000 
 creditLine       9.1856    9.870364 1      75 10000    0          100000 
  
 Category Counts for gender 
 Number of categories: 2 
 Number of valid observations: 10000 
 Number of missing observations: 0 

 gender Counts 
  Male   6154 
  Female 3846 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsummary
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1. Change the compute context to do all your work locally.

R

2. When extracting data from SQL Server, you can often get better performance by
increasing the number of rows extracted for each read, assuming the increased
block size can be accommodated in memory. Run the following command to
increase the value for the rowsPerRead parameter on the data source. Previously,
the value of rowsPerRead was set to 5000.

R

3. Call rxSummary on the new data source.

R

The actual results should be the same as when you run rxSummary in the context
of the SQL Server computer. However, the operation might be faster or slower.
Much depends on the connection to your database, because the data is being
transferred to your local computer for analysis.

4. Switch back to the remote compute context for the next several tutorials.

R

Create a local summary

rxSetComputeContext ("local") 

sqlServerDS1 <- RxSqlServerData( 
   connectionString = sqlConnString, 
   table = sqlFraudTable, 
   colInfo = ccColInfo, 
   rowsPerRead = 10000) 

rxSummary(formula = ~gender + balance + numTrans + numIntlTrans + 
creditLine, data = sqlServerDS1) 

rxSetComputeContext(sqlCompute) 

Next steps
Visualize SQL Server data using R



Visualize SQL Server data using R (SQL
Server and RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 6 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In this tutorial, you'll use R functions to view the distribution of values in the creditLine
column by gender.

As this tutorial demonstrates, you can combine open-source and Microsoft-specific
functions in the same script.

Based on the computed summary statistics from the previous tutorial, you've discovered
some useful information about the data that you can insert into the data source for
further computations. For example, the minimum and maximum values can be used to
compute histograms. In this exercise, add the high and low values to the
RxSqlServerData data source.

1. Start by setting up some temporary variables.

R

2. Use the variable ccColInfo that you created in the previous tutorial to define the
columns in the data source.

Add new computed columns (numTrans, numIntlTrans, and creditLine) to the
column collection that override the original definition. The script below adds

Create min-max variables for histogram inputs＂

Visualize data in a histogram using rxHistogram from RevoScaleR＂

Visualize with scatter plots using levelplot from lattice included in the base R
distribution

＂

Add maximum and minimum values

sumDF <- sumOut$sDataFrame 
var <- sumDF$Name 
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factors based on minimum and maximum values, obtained from sumOut, which is
storing the in-memory output from rxSummary.

R

3. Having updated the column collection, apply the following statement to create an
updated version of the SQL Server data source that you defined earlier.

R

The sqlFraudDS data source now includes the new columns added using ccColInfo.

At this point, the modifications affect only the data source object in R; no new data has
been written to the database table yet. However, you can use the data captured in the
sumOut variable to create visualizations and summaries.

ccColInfo <- list( 
    gender = list(type = "factor", 
      levels = c("1", "2"),  
      newLevels = c("Male", "Female")), 
    cardholder = list(type = "factor", 
      levels = c("1", "2"),  
      newLevels = c("Principal", "Secondary")),  
    state = list(type = "factor",  
      levels = as.character(1:51),  
      newLevels = stateAbb),  
    balance  = list(type = "numeric"), 
    numTrans = list(type = "factor",  
      levels = as.character(sumDF[var == "numTrans", "Min"]:sumDF[var 
== "numTrans", "Max"])), 
    numIntlTrans = list(type = "factor",   
        levels = as.character(sumDF[var == "numIntlTrans", 
"Min"]:sumDF[var =="numIntlTrans", "Max"])), 
    creditLine = list(type = "numeric") 
        ) 

sqlFraudDS <- RxSqlServerData( 
    connectionString = sqlConnString, 
    table = sqlFraudTable, 
    colInfo = ccColInfo, 
    rowsPerRead = sqlRowsPerRead)

 Tip

If you forget which compute context you're using, run rxGetComputeContext(). A
return value of "RxLocalSeq Compute Context" indicates that you are running in the
local compute context.



1. Use the following R code to call the rxHistogram function and pass a formula and
data source. You can run this locally at first, to see the expected results, and how
long it takes.

R

Internally, rxHistogram calls the rxCube function, which is included in the
RevoScaleR package. rxCube outputs a single list (or data frame) containing one
column for each variable specified in the formula, plus a counts column.

2. Now, set the compute context to the remote SQL Server computer and run
rxHistogram again.

R

3. The results are exactly the same because you're using the same data source, but in
the second step, the computations are performed on the remote server. The results
are then returned to your local workstation for plotting.

Visualize data using rxHistogram

rxHistogram(~creditLine|gender, data = sqlFraudDS,  histType = 
"Percent") 

rxSetComputeContext(sqlCompute) 
rxHistogram(~creditLine|gender, data = sqlFraudDS,  histType = 
"Percent") 
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Scatter plots are often used during data exploration to compare the relationship
between two variables. You can use built-in R packages for this purpose, with inputs
provided by RevoScaleR functions.

1. Call the rxCube function to compute the mean of fraudRisk for every combination
of numTrans and numIntlTrans:

R

To specify the groups used to compute group means, use the F()  notation. In this
example, F(numTrans):F(numIntlTrans)  indicates that the integers in the variables
numTrans  and numIntlTrans  should be treated as categorical variables, with a level
for each integer value.

The default return value of rxCube is an rxCube object, which represents a cross-
tabulation.

2. Call rxResultsDF function to convert the results into a data frame that can easily be
used in one of R's standard plotting functions.

R

The rxCube function includes an optional argument, returnDataFrame = TRUE, that
you could use to convert the results to a data frame directly. For example:

print(rxCube(fraudRisk~F(numTrans):F(numIntlTrans), data = sqlFraudDS,

returnDataFrame = TRUE))

However, the output of rxResultsDF is cleaner and preserves the names of the
source columns. You can run head(cube1)  followed by head(cubePlot)  to compare
the output.

3. Create a heat map using the levelplot function from the lattice package, included
with all R distributions.

R

Visualize with scatter plots

cube1 <- rxCube(fraudRisk~F(numTrans):F(numIntlTrans),  data = 
sqlFraudDS) 

cubePlot <- rxResultsDF(cube1) 
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Results

From this quick analysis, you can see that the risk of fraud increases with both the
number of transactions and the number of international transactions.

For more information about the rxCube function and crosstabs in general, see Data
summaries using RevoScaleR.

levelplot(fraudRisk~numTrans*numIntlTrans, data = cubePlot) 

Next steps
Create R models using SQL Server data
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Create R models (SQL Server and
RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 7 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

You have enriched the training data. In this tutorial, you'll analyze the data using
regression modeling. Linear models are an important tool in the world of predictive
analytics. The RevoScaleR package includes regression algorithms that can subdivide
the workload and run it in parallel.

In this step, create a simple linear model that estimates the credit card balance for the
customers using as independent variables the values in the gender and creditLine
columns.

To do this, use the rxLinMod function, which supports remote compute contexts.

1. Create an R variable to store the completed model, and call rxLinMod, passing an
appropriate formula.

R

2. To view a summary of the results, call the standard R summary function on the
model object.

R

Create a linear regression model＂

Create a logistic regression model＂

Create a linear regression model

linModObj <- rxLinMod(balance ~ gender + creditLine,  data = 
sqlFraudDS) 

summary(linModObj) 
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You might think it peculiar that a plain R function like summary would work here, since
in the previous step, you set the compute context to the server. However, even when the
rxLinMod function uses the remote compute context to create the model, it also returns
an object that contains the model to your local workstation, and stores it in the shared
directory.

Therefore, you can run standard R commands against the model just as if it had been
created using the "local" context.

Results

R

Next, create a logistic regression model that indicates whether a particular customer is a
fraud risk. You'll use the RevoScaleR rxLogit function, which supports fitting of logistic
regression models in remote compute contexts.

Keep the compute context as is. You'll also continue to use the same data source as well.

1. Call the rxLogit function and pass the formula needed to define the model.

R

Linear Regression Results for: balance ~ gender + creditLineData: sqlFraudDS 
(RxSqlServerData Data Source) 
Dependent variable(s): balance 
Total independent variables: 4 (Including number dropped: 1) 
Number of valid observations: 10000 
Number of missing observations: 0
Coefficients: (1 not defined because of singularities) 

Estimate Std. Error t value Pr(>|t|) (Intercept) 
3253.575 71.194 45.700 2.22e-16 
gender=Male -88.813 78.360 -1.133 0.257 
gender=Female Dropped Dropped Dropped Dropped 
creditLine 95.379 3.862 24.694 2.22e-16 
Signif. codes: 0  0.001  0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 3812 on 9997 degrees of freedom
Multiple R-squared: 0.05765 
Adjusted R-squared: 0.05746 
F-statistic: 305.8 on 2 and 9997 DF, p-value: < 2.2e-16 
Condition number: 1.0184 

Create a logistic regression model

logitObj <- rxLogit(fraudRisk ~ state + gender + cardholder + balance + 
numTrans + numIntlTrans + creditLine, data = sqlFraudDS, dropFirst = 
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Because it is a large model, containing 60 independent variables, including three
dummy variables that are dropped, you might have to wait some time for the
compute context to return the object.

The reason the model is so large is that, in R and in the RevoScaleR package, every
level of a categorical factor variable is automatically treated as a separate dummy
variable.

2. To view a summary of the returned model, call the R summary function.

R

Partial results

R

TRUE) 

summary(logitObj) 

Logistic Regression Results for: fraudRisk ~ state + gender + cardholder + 
balance + numTrans + numIntlTrans + creditLine 
Data: sqlFraudDS (RxSqlServerData Data Source) 
Dependent variable(s): fraudRisk 
Total independent variables: 60 (Including number dropped: 3) 
Number of valid observations: 10000 -2 

LogLikelihood: 2032.8699 (Residual deviance on 9943 degrees of freedom) 

Coefficients: 
Estimate Std. Error z value Pr(>|z|)     (Intercept) 
-8.627e+00  1.319e+00  -6.538 6.22e-11 
state=AK                Dropped    Dropped Dropped  Dropped 
state=AL             -1.043e+00  1.383e+00  -0.754   0.4511 

(other states omitted) 

gender=Male             Dropped    Dropped Dropped  Dropped 
gender=Female         7.226e-01  1.217e-01   5.936 2.92e-09 
cardholder=Principal    Dropped    Dropped Dropped  Dropped 
cardholder=Secondary  5.635e-01  3.403e-01   1.656   0.0977 
balance               3.962e-04  1.564e-05  25.335 2.22e-16 
numTrans              4.950e-02  2.202e-03  22.477 2.22e-16 
numIntlTrans          3.414e-02  5.318e-03   6.420 1.36e-10 
creditLine            1.042e-01  4.705e-03  22.153 2.22e-16 

Signif. codes:  0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 
Condition number of final variance-covariance matrix: 3997.308 
Number of iterations: 15 



Next steps
Score new data



Score new data (SQL Server and
RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 8 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In this tutorial, you'll use the logistic regression model that you created in the previous
tutorial to score another data set that uses the same independent variables as inputs.

1. Update the sqlScoreDS data source (created in tutorial two) to use column
information created in the previous tutorial.

R

2. To make sure you don't lose the results, create a new data source object. Then, use
the new data source object to populate a new table in the RevoDeepDive
database.

R

Score new data＂

Create a histogram of the scores＂

７ Note

You need DDL admin privileges for some of these steps.

Generate and save scores

sqlScoreDS <- RxSqlServerData( 
    connectionString = sqlConnString, 
    table = sqlScoreTable, 
    colInfo = ccColInfo, 
    rowsPerRead = sqlRowsPerRead)

sqlServerOutDS <- RxSqlServerData(table = "ccScoreOutput", 
    connectionString = sqlConnString, 
    rowsPerRead = sqlRowsPerRead ) 
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At this point, the table has not been created. This statement just defines a
container for the data.

3. Check the current compute context using rxGetComputeContext(), and set the
compute context to the server if needed.

R

4. As a precaution, check for the existence of the output table. If one already exists
with the same name, you will get an error when attempting to write the new table.

To do this, make a call to the functions rxSqlServerTableExists and
rxSqlServerDropTable, passing the table name as input.

R

rxSqlServerTableExists queries the ODBC driver and returns TRUE if the table
exists, FALSE otherwise.
rxSqlServerDropTable executes the DDL and returns TRUE if the table is
successfully dropped, FALSE otherwise.

5. Execute rxPredict to create the scores, and save them in the new table defined in
data source sqlScoreDS.

R

The rxPredict function is another function that supports running in remote
compute contexts. You can use the rxPredict function to create scores from
models based on rxLinMod, rxLogit, or rxGlm.

The parameter writeModelVars is set to TRUE here. This means that the
variables that were used for estimation will be included in the new table.

rxSetComputeContext(sqlCompute) 

if (rxSqlServerTableExists("ccScoreOutput"))     
rxSqlServerDropTable("ccScoreOutput") 

rxPredict(modelObject = logitObj,
    data = sqlScoreDS, 
    outData = sqlServerOutDS, 
    predVarNames = "ccFraudLogitScore", 
      type = "link", 
    writeModelVars = TRUE, 
    overwrite = TRUE) 
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The parameter predVarNames specifies the variable where results will be
stored. Here you are passing a new variable, ccFraudLogitScore .

The type parameter for rxPredict defines how you want the predictions
calculated. Specify the keyword response to generate scores based on the
scale of the response variable. Or, use the keyword link to generate scores
based on the underlying link function, in which case predictions are created
using a logistic scale.

6. After a while, you can refresh the list of tables in Management Studio to see the
new table and its data.

7. To add additional variables to the output predictions, use the extraVarsToWrite
argument. For example, in the following code, the variable custID is added from
the scoring data table into the output table of predictions.

R

After the new table has been created, compute and display a histogram of the 10,000
predicted scores. Computation is faster if you specify the low and high values, so get
those from the database and add them to your working data.

1. Create a new data source, sqlMinMax, that queries the database to get the low and
high values.

R

From this example, you can see how easy it is to use RxSqlServerData data source
objects to define arbitrary datasets based on SQL queries, functions, or stored

rxPredict(modelObject = logitObj,
        data = sqlScoreDS, 
        outData = sqlServerOutDS,
        predVarNames = "ccFraudLogitScore", 
          type = "link", 
        writeModelVars = TRUE, 
        extraVarsToWrite = "custID", 
        overwrite = TRUE) 

Display scores in a histogram

sqlMinMax <- RxSqlServerData( 
    sqlQuery = paste("SELECT MIN(ccFraudLogitScore) AS minVal,", 
    "MAX(ccFraudLogitScore) AS maxVal FROM ccScoreOutput"), 
    connectionString = sqlConnString) 



procedures, and then use those in your R code. The variable does not store the
actual values, just the data source definition; the query is executed to generate the
values only when you use it in a function like rxImport.

2. Call the rxImport function to put the values in a data frame that can be shared
across compute contexts.

R

Results

R

3. Now that the maximum and minimum values are available, use the values to create
another data source for the generated scores.

R

4. Use the data source object sqlOutScoreDS to get the scores, and compute and
display a histogram. Add the code to set the compute context if needed.

R

Results

minMaxVals <- rxImport(sqlMinMax)
minMaxVals <- as.vector(unlist(minMaxVals)) 

> minMaxVals 

[1] -23.970256   9.786345 

sqlOutScoreDS <- RxSqlServerData(sqlQuery = "SELECT ccFraudLogitScore 
FROM ccScoreOutput", 
    connectionString = sqlConnString, 
    rowsPerRead = sqlRowsPerRead,
        colInfo = list(ccFraudLogitScore = list( 
            low = floor(minMaxVals[1]), 
                    high = ceiling(minMaxVals[2]) ) ) ) 

# rxSetComputeContext(sqlCompute)
rxHistogram(~ccFraudLogitScore, data = sqlOutScoreDS) 
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Next steps
Transform data using R



Transform data using R (SQL Server and
RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 9 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In this tutorial, you'll learn about the RevoScaleR functions for transforming data at
various stages of your analysis.

Although not specifically for data movement, the functions rxSummary, rxCube,
rxLinMod, and rxLogit all support data transformations.

The rxDataStep function processes data one chunk at a time, reading from one data
source and writing to another. You can specify the columns to transform, the
transformations to load, and so forth.

To make this example interesting, let's use a function from another R package to
transform the data. The boot package is one of the "recommended" packages, meaning
that boot is included with every distribution of R, but is not loaded automatically on
start-up. Therefore, the package should already be available on the SQL Server instance
configured for R integration.

From the boot package, use the function inv.logit, which computes the inverse of a
logit. That is, the inv.logit function converts a logit back to a probability on the [0,1]
scale.

Use rxDataStep to create and transform a data subset＂

Use rxImport to transform in-transit data to or from an XDF file or an in-memory
data frame during import

＂

Use rxDataStep to transform variables

 Tip

Another way to get predictions in this scale would be to set the type parameter to
response in the original call to rxPredict.
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1. Start by creating a data source to hold the data destined for the table,
ccScoreOutput .

R

2. Add another data source to hold the data for the table ccScoreOutput2 .

R

In the new table, store all the variables from the previous ccScoreOutput  table, plus
the newly created variable.

3. Set the compute context to the SQL Server instance.

R

4. Use the function rxSqlServerTableExists to check whether the output table
ccScoreOutput2  already exists; and if so, use the function rxSqlServerDropTable to
delete the table.

R

5. Call the rxDataStep function, and specify the desired transforms in a list.

R

sqlOutScoreDS <- RxSqlServerData( table =  "ccScoreOutput",  
connectionString = sqlConnString, rowsPerRead = sqlRowsPerRead ) 

sqlOutScoreDS2 <- RxSqlServerData( table =  "ccScoreOutput2",  
connectionString = sqlConnString, rowsPerRead = sqlRowsPerRead ) 

rxSetComputeContext(sqlCompute) 

if (rxSqlServerTableExists("ccScoreOutput2"))     
rxSqlServerDropTable("ccScoreOutput2") 

rxDataStep(inData = sqlOutScoreDS, 
    outFile = sqlOutScoreDS2, 
    transforms = list(ccFraudProb = inv.logit(ccFraudLogitScore)), 
    transformPackages = "boot", 
    overwrite = TRUE) 



When you define the transformations that are applied to each column, you can
also specify any additional R packages that are needed to perform the
transformations. For more information about the types of transformations that you
can perform, see How to transform and subset data using RevoScaleR.

6. Call rxGetVarInfo to view a summary of the variables in the new data set.

R

Results

R

The original logit scores are preserved, but a new column, ccFraudProb, has been added,
in which the logit scores are represented as values between 0 and 1.

Notice that the factor variables have been written to the table ccScoreOutput2  as
character data. To use them as factors in subsequent analyses, use the parameter colInfo
to specify the levels.

rxGetVarInfo(sqlOutScoreDS2) 

Var 1: ccFraudLogitScore, Type: numeric 
Var 2: state, Type: character 
Var 3: gender, Type: character 
Var 4: cardholder, Type: character 
Var 5: balance, Type: integer 
Var 6: numTrans, Type: integer 
Var 7: numIntlTrans, Type: integer 
Var 8: creditLine, Type: integer 
Var 9: ccFraudProb, Type: numeric 

Next steps
Load data into memory using rxImport

https://learn.microsoft.com/en-us/machine-learning-server/r/how-to-revoscaler-data-transform


Load data into memory using rxImport
(SQL Server and RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 10 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In this tutorial, you'll learn how to get data from SQL Server, and then use the rxImport
function to put the data of interest into a local file. That way, you can analyze it in the
local compute context repeatedly, without having to re-query the database.

The rxImport function can be used to move data from a data source into a data frame in
session memory, or into an XDF file on disk. If you don't specify a file as destination,
data is put into memory as a data frame.

You've decided that you want to examine only the high risk individuals in more detail.
The source table in SQL Server is big, so you want to get the information about just the
high-risk customers. You then load that data into a data frame in the memory of the
local workstation.

1. Reset the compute context to your local workstation.

R

2. Create a new SQL Server data source object, providing a valid SQL statement in the
sqlQuery parameter. This example gets a subset of the observations with the
highest risk scores. That way, only the data you really need is put in local memory.

R

Extract a subset of data from SQL Server to
local memory

rxSetComputeContext("local") 

sqlServerProbDS \<- RxSqlServerData( 
    sqlQuery = paste("SELECT * FROM ccScoreOutput2", 
    "WHERE (ccFraudProb > .99)"), 
    connectionString = sqlConnString) 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rximport


3. Call the function rxImport to read the data into a data frame in the local R session.

R

If the operation was successful, you should see a status message like this one:
"Rows Read: 35, Total Rows Processed: 35, Total Chunk Time: 0.036 seconds"

4. Now that the high-risk observations are in an in-memory data frame, you can use
various R functions to manipulate the data frame. For example, you can order
customers by their risk score, and print a list of the customers who pose the
highest risk.

R

Results

R

You can use rxImport not just to move data, but to transform data in the process of
reading it. For example, you can specify the number of characters for fixed-width
columns, provide a description of the variables, set levels for factor columns, and even
create new levels to use after importing.

highRisk <- rxImport(sqlServerProbDS) 

orderedHighRisk <- highRisk[order(-highRisk$ccFraudProb),] 
row.names(orderedHighRisk) <- NULL 
head(orderedHighRisk) 

ccFraudLogitScore   state gender cardholder balance numTrans numIntlTrans 
creditLine ccFraudProb1 
9.786345    SD   Male  Principal   23456       25            5 75   
0.99994382 
9.433040    FL Female  Principal   20629       24           28 75   
0.99992003 
8.556785    NY Female  Principal   19064       82           53 43   
0.99980784 
8.188668    AZ Female  Principal   19948       29            0 75   
0.99972235 
7.551699    NY Female  Principal   11051       95            0 75   
0.99947516 
7.335080    NV   Male  Principal   21566        4            6  75   
0.9993482 

More about rxImport

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rximport


The rxImport function assigns variable names to the columns during the import process,
but you can indicate new variable names by using the colInfo parameter, or change data
types using the colClasses parameter.

By specifying additional operations in the transforms parameter, you can do elementary
processing on each chunk of data that is read.

Next steps
Create new SQL Server table using rxDataStep



Create new SQL Server table using
rxDataStep (SQL Server and RevoScaleR
tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 11 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In this tutorial, you'll learn how to move data between in-memory data frames, the SQL
Server context, and local files.

In the first half of this tutorial series, you used the RxTextData function to import data
into R from a text file, and then used the RxDataStep function to move the data into
SQL Server.

This tutorial takes a different approach, and uses data from a file saved in the XDF
format . After doing some lightweight transformations on the data using the XDF file,
you save the transformed data into a new SQL Server table.

What is XDF?

The XDF format is an XML standard developed for high-dimensional data. It is a binary
file format with an R interface that optimizes row and column processing and analysis.
You can use it for moving data and to store subsets of data that are useful for analysis.

1. Set the compute context to the local workstation. DDL permissions are needed for
this step.

R

７ Note

This tutorial uses a different data set. The Airline Delays dataset is a public dataset
that is widely used for machine learning experiments. The data files used in this
example are available in the same directory as other product samples.

Load data from a local XDF file

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://en.wikipedia.org/wiki/Extensible_Data_Format


2. Define a new data source object using the RxXdfData function. To define an XDF
data source, specify the path to the data file.

You could specify the path to the file using a text variable. However, in this case,
there's a handy shortcut, which is to use the rxGetOption function and get the file
(AirlineDemoSmall.xdf) from the sample data directory.

R

3. Call rxGetVarInfo on the in-memory data to view a summary of the dataset.

R

Results

R

With the XDF data source created in the local R session, you can now move this data
into a database table, storing DayOfWeek as an integer with values from 1 to 7.

rxSetComputeContext("local") 

xdfAirDemo <- RxXdfData(file.path(rxGetOption("sampleDataDir"),  
"AirlineDemoSmall.xdf")) 

rxGetVarInfo(xdfAirDemo) 

Var 1: ArrDelay, Type: integer, Low/High: (-86, 1490) 
Var 2: CRSDepTime, Type: numeric, Storage: float32, Low/High: (0.0167, 
23.9833) 
Var 3: DayOfWeek 7 factor levels: Monday Tuesday Wednesday Thursday Friday 
Saturday Sunday 

７ Note

Did you notice that you did not need to call any other functions to load the data
into the XDF file, and could call rxGetVarInfo on the data immediately? That's
because XDF is the default interim storage method for RevoScaleR. In addition to
XDF files, the rxGetVarInfo function now supports multiple source types.

Move contents to SQL Server

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxgetvarinfoxdf


1. Define a SQL Server data source object, specifying a table to contain the data, and
connection to the remote server.

R

2. As a precaution, include a step that checks whether a table with the same name
already exists, and delete the table if it exists. An existing table of the same names
prevents a new one from being created.

R

3. Load the data into the table using rxDataStep. This function moves data between
two already defined data sources and can optionally transform the data en route.

R

This is a fairly large table, so wait until you see a final status message like this one:
Rows Read: 200000, Total Rows Processed: 600000.

Once data exists in the table, you can load it by using a simple SQL query.

1. Create a new SQL Server data source. The input is a query on the new table you
just created and loaded with data. This definition adds factor levels for the
DayOfWeek column, using the colInfo argument to RxSqlServerData.

R

sqlServerAirDemo <- RxSqlServerData(table = "AirDemoSmallTest", 
connectionString = sqlConnString)

if (rxSqlServerTableExists("AirDemoSmallTest",  connectionString = 
sqlConnString))  rxSqlServerDropTable("AirDemoSmallTest",  
connectionString = sqlConnString)

rxDataStep(inData = xdfAirDemo, outFile = sqlServerAirDemo, 
    transforms = list( DayOfWeek = as.integer(DayOfWeek), 
    rowNum = .rxStartRow : (.rxStartRow + .rxNumRows - 1) ), 
    overwrite = TRUE ) 

Load data from a SQL table

sqlServerAirDemo2 <- RxSqlServerData( 
    sqlQuery = "SELECT * FROM AirDemoSmallTest", 
    connectionString = sqlConnString, 
    rowsPerRead = 50000, 



2. Call rxSummary once more to review a summary of the data in your query.

R

    colInfo = list(DayOfWeek = list(type = "factor",  levels = 
as.character(1:7)))) 

rxSummary(~., data = sqlServerAirDemo2) 

Next steps
Perform chunking analysis using rxDataStep



Perform chunking analysis using
rxDataStep (SQL Server and RevoScaleR
tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 12 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In this tutorial, you'll use the rxDataStep function to process data in chunks, rather than
requiring that the entire dataset be loaded into memory and processed at one time, as
in traditional R. The rxDataStep functions reads the data in chunk, applies R functions to
each chunk of data in turn, and then saves the summary results for each chunk to a
common SQL Server data source. When all data has been read, the results are
combined.

1. Create a custom R function that calls the R table function on each chunk of data,
and name the new function ProcessChunk.

R

 Tip

For this tutorial, you compute a contingency table by using the table function in R.
This example is meant for instructional purposes only.

If you need to tabulate real-world data sets, we recommend that you use the
rxCrossTabs or rxCube functions in RevoScaleR, which are optimized for this sort of
operation.

Partition data by values

ProcessChunk <- function( dataList) { 
# Convert the input list to a data frame and compute contingency table 
chunkTable <- table(as.data.frame(dataList)) 

# Convert table output to a data frame with a single row 
varNames <- names(chunkTable) 
varValues <- as.vector(chunkTable) 
dim(varValues) <- c(1, length(varNames)) 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler


2. Set the compute context to the server.

R

3. Define a SQL Server data source to hold the data you're processing. Start by
assigning a SQL query to a variable. Then, use that variable in the sqlQuery
argument of a new SQL Server data source.

R

4. Optionally, you can run rxGetVarInfo on this data source. At this point, it contains
a single column: Var 1: DayOfWeek, Type: factor, no factor levels available

5. Before applying this factor variable to the source data, create a separate table to
hold the intermediate results. Again, you just use the RxSqlServerData function to
define the data, making sure to delete any existing tables of the same name.

R

6. Call the custom function ProcessChunk to transform the data as it is read, by using
it as the transformFunc argument to the rxDataStep function.

R

chunkDF <- as.data.frame(varValues) 
names(chunkDF) <- varNames 

# Return the data frame, which has a single row 
return( chunkDF ) 
} 

rxSetComputeContext(sqlCompute) 

dayQuery <-  "SELECT DayOfWeek FROM AirDemoSmallTest" 
inDataSource <- RxSqlServerData(sqlQuery = dayQuery, 
    connectionString = sqlConnString, 
    rowsPerRead = 50000, 
    colInfo = list(DayOfWeek = list(type = "factor", 
        levels = as.character(1:7)))) 

iroDataSource = RxSqlServerData(table = "iroResults",   
connectionString = sqlConnString)
# Check whether the table already exists. 
if (rxSqlServerTableExists(table = "iroResults",  connectionString = 
sqlConnString))  { rxSqlServerDropTable( table = "iroResults", 
connectionString = sqlConnString) } 



7. To view the intermediate results of ProcessChunk, assign the results of rxImport to
a variable, and then output the results to the console.

R

Partial results

Row # 1 2 3 4 5 6 7

1 8228 8924 6916 6932 6944 5602 6454

2 8321 5351 7329 7411 7409 6487 7692

8. To compute the final results across all chunks, sum the columns, and display the
results in the console.

R

Results

1 2 3 4 5 6 7

97975 77725 78875 81304 82987 86159 94975

9. To remove the intermediate results table, make a call to rxSqlServerDropTable.

R

rxDataStep( inData = inDataSource, outFile = iroDataSource, 
transformFunc = ProcessChunk, overwrite = TRUE) 

iroResults <- rxImport(iroDataSource) 
iroResults 

finalResults <- colSums(iroResults) 
finalResults 

rxSqlServerDropTable( table = "iroResults", connectionString = 
sqlConnString) 

Next steps
R Tutorials for SQL Server



Move data between SQL Server and XDF
file (SQL Server and RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 13 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In this tutorial, you'll learn how to use an XDF file to transfer data between remote and
local compute contexts. Storing the data in an XDF file allows you to perform
transformations on the data.

When you're done, you use the data in the file to create a new SQL Server table. The
function rxDataStep can apply transformations to the data and performs the conversion
between data frames and .xdf files.

For this exercise, you use the credit card fraud data again. In this scenario, you've been
asked to do some extra analysis on users in the states of California, Oregon, and
Washington. To be more efficient, you've decided to store data for only these states on
your local computer, and work with only the variables gender, cardholder, state, and
balance.

1. Re-use the stateAbb  variable you created earlier to identify the levels to include,
and write them to a new variable, statesToKeep .

R

Results

CA OR WA

5 38 48

2. Define the data you want to bring over from SQL Server, using a Transact-SQL
query. Later you use this variable as the inData argument for rxImport.

Create a SQL Server table from an XDF file

statesToKeep <- sapply(c("CA", "OR", "WA"), grep, stateAbb) 
statesToKeep 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxdatastep


R

Make sure there are no hidden characters such as line feeds or tabs in the query.

3. Next, define the columns to use when working with the data in R. For example, in
the smaller data set, you need only three factor levels, because the query returns
data for only three states. Apply the statesToKeep  variable to identify the correct
levels to include.

R

4. Set the compute context to local, because you want all the data available on your
local computer.

R

The rxImport function can import data from any supported data source to a local
XDF file. Using a local copy of the data is convenient when you want to do many
different analyses on the data, but want to avoid running the same query over and
over.

5. Create the data source object by passing the variables previously defined as
arguments to RxSqlServerData.

R

importQuery <- paste("SELECT gender,cardholder,balance,state FROM",  
sqlFraudTable,  "WHERE (state = 5 OR state = 38 OR state = 48)") 

importColInfo <- list( 
    gender = list( type = "factor",  levels = c("1", "2"), newLevels = 
c("Male", "Female")), 
    cardholder = list(  type = "factor",  levels = c("1", "2"), 
newLevels = c("Principal", "Secondary")), 
    state = list(   type = "factor",  levels = 
as.character(statesToKeep), newLevels = names(statesToKeep)) 
        ) 

rxSetComputeContext("local") 

sqlServerImportDS <- RxSqlServerData( 
    connectionString = sqlConnString, 
    sqlQuery = importQuery, 
    colInfo = importColInfo) 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsqlserverdata


6. Call rxImport to write the data to a file named ccFraudSub.xdf , in the current
working directory.

R

The localDs  object returned by the rxImport function is a light-weight RxXdfData
data source object that represents the ccFraud.xdf  data file stored locally on disk.

7. Call rxGetVarInfo on the XDF file to verify that the data schema is the same.

R

Results

R

8. You can now call various R functions to analyze the localDs object, just as you
would with the source data on SQL Server. For example, you might summarize by
gender:

R

This tutorial concludes the multi-part tutorial series on RevoScaleR and SQL Server. It
introduced you to numerous data-related and computational concepts, giving you a
foundation for moving forward with your own data and project requirements.

localDS <- rxImport(inData = sqlServerImportDS, 
    outFile = "ccFraudSub.xdf", 
    overwrite = TRUE) 

rxGetVarInfo(data = localDS) 

rxGetVarInfo(data = localDS) 
Var 1: gender, Type: factor, no factor levels available 
Var 2: cardholder, Type: factor, no factor levels available 
Var 3: balance, Type: integer, Low/High: (0, 22463) 
Var 4: state, Type: factor, no factor levels available 

rxSummary(~gender + cardholder + balance + state, data = localDS) 

Next steps

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxgetvarinfoxdf


To deepen your knowledge of RevoScaleR, you can return to the R tutorials list to step
through any exercises you might have missed. Alternatively, review the How-to articles
in the table of contents for information about general tasks.

R Tutorials for SQL Server



Run custom R functions on SQL Server
using rxExec (SQL Server and
RevoScaleR tutorial)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This is tutorial 14 of the RevoScaleR tutorial series on how to use RevoScaleR functions
with SQL Server.

In this tutorial, you'll use simulated data to demonstrate execution of a custom R
function that runs on a remote server.

You can run custom R functions in the context of SQL Server by passing your function
via rxExec, assuming that any libraries your script requires are also installed on the server
and those libraries are compatible with the base distribution of R.

The rxExec function in RevoScaleR provides a mechanism for running any R script you
require. Additionally, rxExec is able to explicitly distribute work across multiple cores in a
single server, adding scale to scripts that are otherwise limited to the resource
constraints of the native R engine.

SQL Server Machine Learning Services (with R) or SQL Server 2016 R Services (in-
Database)

Database permissions and a SQL Server database user login

A development workstation with the RevoScaleR libraries

The R distribution on the client workstation provides a built-in Rgui tool that you can
use to run the R script in this tutorial. You can also use an IDE such as RStudio or R Tools
for Visual Studio.

Run the following R commands on a client workstation. For example, you are using Rgui,
start it from this location: C:\Program Files\Microsoft\R Client\R_SERVER\bin\x64.

Prerequisites

Create the remote compute context

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxexec
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-r-services-windows-install?view=sql-server-2017


1. Specify the connection string for the SQL Server instance where computations are
performed. The server must be configured for R integration. The database name is
not used in this exercise, but the connection string requires one. If you have a test
or sample database, you can use that.

Using a SQL login

R

Using Windows authentication

R

2. Create a remote compute context to the SQL Server instance referenced in the
connection string.

R

3. Activate the compute context and then return the object definition as a
confirmation step. You should see the properties of the compute context object.

R

In this exercise, you will create a custom R function that simulates a common casino
consisting of rolling a pair of dice. Rules of the game determine a win or loss outcome:

Roll a 7 or 11 on your initial roll, you win.
Roll 2, 3, or 12, you lose.
Roll a 4, 5, 6, 8, 9, or 10, that number becomes your point, and you continue rolling
until you either roll your point again (in which case you win) or roll a 7, in which

sqlConnString <- "Driver=SQL Server;Server=<SQL-Server-instance-name>; 
Database=<database-name>;Uid=<SQL-user-name>;Pwd=<password>" 

sqlConnString <- "Driver=SQL Server;Server=<SQL-Server-instance-
name>;Database=<database-name>;Trusted_Connection=True" 

sqlCompute <- RxInSqlServer(connectionString = sqlConnString) 

rxSetComputeContext(sqlCompute) 
rxGetComputeContext() 

Create the custom function



case you lose.

The game is easily simulated in R, by creating a custom function, and then running it
many times.

1. Create the custom function using the following R code:

R

2. Simulate a single game of dice by running the function.

R

Did you win or lose?

Now that you have an operational script, let's see how you can use rxExec to run the
function multiple times to create a simulation that helps determine the probability of a
win.

rollDice <- function() 
{ 
    result <- NULL 
    point <- NULL 
    count <- 1 
        while (is.null(result)) 
        { 
            roll <- sum(sample(6, 2, replace=TRUE)) 

            if (is.null(point)) 
            { point <- roll } 
            if (count == 1 && (roll == 7 || roll == 11)) 
            {  result <- "Win" } 
            else if (count == 1 && (roll == 2 || roll == 3 || roll == 
12)) 
            { result <- "Loss" } 
            else if (count > 1 && roll == 7 ) 
            { result <- "Loss" } 
            else if (count > 1 && point == roll) 
            { result <- "Win" } 
            else { count <- count + 1 } 
        } 
        result 
} 

rollDice() 

Pass rollDice() in rxExec



To run an arbitrary function in the context of a remote SQL Server, call the rxExec
function.

1. Call the custom function as an argument to rxExec, together with other parameters
that modify the simulation.

R

Use the timesToRun argument to indicate how many times the function
should be executed. In this case, you roll the dice 20 times.

The arguments RNGseed and RNGkind can be used to control random
number generation. When RNGseed is set to auto, a parallel random number
stream is initialized on each worker.

2. The rxExec function creates a list with one element for each run; however, you
won't see much happening until the list is complete. When all the iterations are
complete, the line starting with length will return a value.

You can then go to the next step to get a summary of your win-loss record.

3. Convert the returned list to a vector using R's unlist function, and summarize the
results using the table function.

R

Your results should look something like this:

Loss Win 12 8

Although this exercise is simplistic, it demonstrates an important mechanism for
integrating arbitrary R functions in R script running on SQL Server. To summarize the key
points that make this technique possible:

SQL Server must be configured for machine learning and R integration: SQL Server
Machine Learning Services with the R feature, or SQL Server 2016 R Services (in-
Database).

sqlServerExec <- rxExec(rollDice, timesToRun=20, RNGseed="auto") 
length(sqlServerExec) 

table(unlist(sqlServerExec)) 

Conclusion

https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-r-services-windows-install?view=sql-server-2017


Open-source or third-party libraries used in your function, including any
dependencies, must be installed on SQL Server. For more information, see Install
new R packages.

Moving script from a development environment to a hardened production
environment can introduce firewall and network restrictions. Test carefully to make
sure your script is able to perform as expected.

For a more complex example of using rxExec, see this article: Coarse grain parallelism
with foreach and rxExec

Next steps

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017
https://blog.revolutionanalytics.com/2015/04/coarse-grain-parallelism-with-foreach-and-rxexec.html


Airline flight arrival demo data for SQL
Server Python and R tutorials
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

In this exercise, create a SQL Server database to store imported data from R or Python
built-in Airline demo data sets. R and Python distributions provide equivalent data,
which you can import to a SQL Server database using Management Studio.

To complete this exercise, you should have SQL Server Management Studio or another
tool that can run T-SQL queries.

Tutorials and quickstarts using this data set include the following:

Create a Python model using revoscalepy

1. Start SQL Server Management Studio, connect to a database engine instance that
has R or Python integration.

2. In Object Explorer, right-click Databases and create a new database called
flightdata.

3. Right-click flightdata, click Tasks, click Import Flat File.

4. Open the AirlineDemoData.csv file provided in the R or Python distribution,
depending on which language you installed.

For R, look for AirlineDemoSmall.csv at C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES\library\RevoScaleR\SampleData

For Python, look for AirlineDemoSmall.csv at C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES\Lib\site-
packages\revoscalepy\data\sample_data

When you select the file, default values are filled in for table name and schema.

Create the database

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


Click through the remaining pages, accepting the defaults, to import the data.

As a validation step, run a query to confirm the data was uploaded.

1. In Object Explorer, under Databases, right-click the flightdata database, and start a
new query.

2. Run some simple queries:

SQL

In the following lesson, you will create a linear regression model based on this data.

Create a Python model using revoscalepy

Query the data

SELECT TOP(10) * FROM AirlineDemoSmall; 
SELECT COUNT(*) FROM AirlineDemoSmall; 

Next steps



Iris demo data for Python and R
tutorials with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

In this exercise, create a database to store data from the Iris flower data set  and
models based on the same data. Iris data is included in both the R and Python
distributions, and is used in machine learning tutorials for SQL machine learning.

To complete this exercise, you should have SQL Server Management Studio or another
tool that can run T-SQL queries.

Tutorials and quickstarts using this data set include the following:

Quickstart: Create and score a predictive model in Python

1. Start SQL Server Management Studio, and open a new Query window.

2. Create a new database for this project, and change the context of your Query
window to use the new database.

SQL

3. Add some empty tables: one to store the data, and one to store the trained
models. The iris_models table is used for storing serialized models generated in
other exercises.

The following code creates the table for the training data.

SQL

Create the database

CREATE DATABASE irissql 
GO 
USE irissql 
GO 

DROP TABLE IF EXISTS iris_data; 
GO 
CREATE TABLE iris_data ( 
  id INT NOT NULL IDENTITY PRIMARY KEY 
  , "Sepal.Length" FLOAT NOT NULL, "Sepal.Width" FLOAT NOT NULL 

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


4. Run the following code to create the table used for storing the trained model. To
save Python (or R) models in SQL Server, they must be serialized and stored in a
column of type varbinary(max).

SQL

In addition to the model contents, typically, you would also add columns for other
useful metadata, such as the model's name, the date it was trained, the source
algorithm and parameters, source data, and so forth. For now we'll keep it simple
and use just the model name.

You can obtain built-in Iris data from either R or Python. You can use Python or R to load
the data into a data frame, and then insert it into a table in the database. Moving
training data from an external session into a table is a multistep process:

Design a stored procedure that gets the data you want.
Execute the stored procedure to actually get the data.
Construct an INSERT statement to specify where the retrieved data should be
saved.

1. On systems with Python integration, create the following stored procedure that
uses Python code to load the data.

SQL

  , "Petal.Length" FLOAT NOT NULL, "Petal.Width" FLOAT NOT NULL 
  , "Species" VARCHAR(100) NOT NULL, "SpeciesId" INT NOT NULL 
); 

DROP TABLE IF EXISTS iris_models; 
GO 

CREATE TABLE iris_models ( 
  model_name VARCHAR(50) NOT NULL DEFAULT('default model') PRIMARY KEY, 
  model VARBINARY(MAX) NOT NULL 
); 
GO 

Populate the table

CREATE PROCEDURE get_iris_dataset 
AS 
BEGIN 
EXEC sp_execute_external_script @language = N'Python',  
@script = N' 
from sklearn import datasets 



When you run this code, you should get the message "Commands completed
successfully." All this means is that the stored procedure has been created
according to your specifications.

2. Alternatively, on systems having R integration, create a procedure that uses R
instead.

SQL

3. To actually populate the table, run the stored procedure and specify the table
where the data should be written. When run, the stored procedure executes the
Python or R code, which loads the built-in Iris data set, and then inserts the data
into the iris_data table.

SQL

iris = datasets.load_iris() 
iris_data = pandas.DataFrame(iris.data) 
iris_data["Species"] = pandas.Categorical.from_codes(iris.target, 
iris.target_names) 
iris_data["SpeciesId"] = iris.target 
',  
@input_data_1 = N'',  
@output_data_1_name = N'iris_data' 
WITH RESULT SETS (("Sepal.Length" float not null, "Sepal.Width" float 
not null, "Petal.Length" float not null, "Petal.Width" float not null, 
"Species" varchar(100) not null, "SpeciesId" int not null)); 
END; 
GO 

CREATE PROCEDURE get_iris_dataset 
AS 
BEGIN 
EXEC sp_execute_external_script @language = N'R',  
@script = N' 
library(RevoScaleR) 
data(iris) 
iris$SpeciesID <- c(unclass(iris$Species)) 
iris_data <- iris 
',  
@input_data_1 = N'',  
@output_data_1_name = N'iris_data' 
WITH RESULT SETS (("Sepal.Length" float not null, "Sepal.Width" float 
not null, "Petal.Length" float not null, "Petal.Width" float not null, 
"Species" varchar(100) not null, "SpeciesId" int not null)); 
END; 
GO 



If you're new to T-SQL, be aware that the INSERT statement only adds new data; it
won't check for existing data, or delete and rebuild the table. To avoid getting
multiple copies of the same data in a table, you can run this statement first:
TRUNCATE TABLE iris_data . The T-SQL TRUNCATE TABLE statement deletes existing
data but keeps the structure of the table intact.

As a validation step, run a query to confirm the data was uploaded.

1. In Object Explorer, under Databases, right-click the irissql database, and start a
new query.

2. Run some simple queries:

SQL

In the following quickstart, you will create a machine learning model and save it to a
table, and then use the model to generate predicted outcomes.

Quickstart:Create and score a predictive model in Python

INSERT INTO iris_data ("Sepal.Length", "Sepal.Width", "Petal.Length", 
"Petal.Width", "Species", "SpeciesId") 
EXEC dbo.get_iris_dataset; 

Query the data

SELECT TOP(10) * FROM iris_data; 
SELECT COUNT(*) FROM iris_data; 

Next steps

https://learn.microsoft.com/en-us/sql/t-sql/statements/truncate-table-transact-sql?view=sql-server-2017


NYC Taxi demo data for SQL Server
Python and R tutorials
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

This article explains how to set up a sample database consisting of public data from the
New York City Taxi and Limousine Commission . This data is used in several R and
Python tutorials for in-database analytics on SQL Server. To make the sample code run
quicker, we created a representative 1% sampling of the data. On your system, the
database backup file is slightly over 90 MB, providing 1.7 million rows in the primary
data table.

To complete this exercise, you should have SQL Server Management Studio (SSMS) or
another tool that can restore a database backup file and run T-SQL queries.

Tutorials and quickstarts using this data set include the following:

Learn in-database analytics using R in SQL Server
Learn in-database analytics using Python in SQL Server

The sample database is a SQL Server 2016 BAK file hosted by Microsoft. You can restore
it on SQL Server 2016 and later. File download begins immediately when you open the
link.

File size is approximately 90 MB.

1. Download the NYCTaxi_Sample.bak  database backup file.

2. Copy the file to C:\Program files\Microsoft SQL Server\MSSQL-instance-
name\MSSQL\Backup  or similar path, for your instance's default Backup  folder.

3. In SSMS, right-click Databases and select Restore Files and File Groups.

4. Enter NYCTaxi_Sample  as the database name.

5. Select From device and then open the file selection page to select the
NYCTaxi_Sample.bak  backup file. Select Add to select NYCTaxi_Sample.bak .

6. Select the Restore checkbox and select OK to restore the database.

Download files

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017&preserve-view=true
https://aka.ms/sqlmldocument/NYCTaxi_Sample.bak


Confirm the database objects exist on the SQL Server instance using SQL Server
Management Studio. You should see the database, tables, functions, and stored
procedures.

The following table summarizes the objects created in the NYC Taxi demo database.

Object name Object
type

Description

NYCTaxi_Sample database Creates a database and two tables: 

dbo.nyctaxi_sample  table: Contains the main NYC Taxi dataset.
A clustered columnstore index is added to the table to improve
storage and query performance. The 1% sample of the NYC
Taxi dataset is inserted into this table. 

dbo.nyc_taxi_models  table: Used to persist the trained
advanced analytics model.

Review database objects

Objects in NYCTaxi_Sample database



Object name Object
type

Description

fnCalculateDistance scalar-
valued
function

Calculates the direct distance between pickup and dropoff
locations. This function is used in Create data features, Train
and save a model and Operationalize the R model.

fnEngineerFeatures table-
valued
function

Creates new data features for model training. This function is
used in Create data features and Operationalize the R model.

Stored procedures are created using R and Python script found in various tutorials. The
following table summarizes the stored procedures that you can optionally add to the
NYC Taxi demo database when you run script from various lessons.

Stored procedure Language Description

RxPlotHistogram R Calls the RevoScaleR rxHistogram  function to plot the
histogram of a variable and then returns the plot as a
binary object. This stored procedure is used in Explore and
visualize data.

RPlotRHist R Creates a graphic using the Hist  function and saves the
output as a local PDF file. This stored procedure is used in
Explore and visualize data.

RxTrainLogitModel R Trains a logistic regression model by calling an R package.
The model predicts the value of the tipped  column, and is
trained using a randomly selected 70% of the data. The
output of the stored procedure is the trained model, which
is saved in the table dbo.nyc_taxi_models . This stored
procedure is used in Train and save a model.

RxPredictBatchOutput R Calls the trained model to create predictions using the
model. The stored procedure accepts a query as its input
parameter and returns a column of numeric values
containing the scores for the input rows. This stored
procedure is used in Predict potential outcomes.

RxPredictSingleRow R Calls the trained model to create predictions using the
model. This stored procedure accepts a new observation as
input, with individual feature values passed as in-line
parameters, and returns a value that predicts the outcome
for the new observation. This stored procedure is used in
Predict potential outcomes.

Query the data



As a validation step, run a query to confirm the data was uploaded.

1. In Object Explorer, under Databases, right-click the NYCTaxi_Sample database, and
start a new query.

2. Run some simple queries:

SQL

The database contains 1.7 million rows.

3. Within the database is a dbo.nyctaxi_sample  table that contains the data set. The
table has been optimized for set-based calculations with the addition of a
columnstore index. Run this statement to generate a quick summary on the table.

SQL

Results should be similar to those showing in the following screenshot.

NYC Taxi sample data is now available for hands-on learning.

SELECT TOP(10) * FROM dbo.nyctaxi_sample; 
SELECT COUNT(*) FROM dbo.nyctaxi_sample; 

SELECT DISTINCT [passenger_count] 
    , ROUND (SUM ([fare_amount]),0) as TotalFares 
    , ROUND (AVG ([fare_amount]),0) as AvgFares 
FROM [dbo].[nyctaxi_sample] 
GROUP BY [passenger_count] 
ORDER BY  AvgFares DESC

Next steps

https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-2017


Learn in-database analytics using R in SQL Server
Learn in-database analytics using Python in SQL Server



Extensibility architecture in SQL Server
Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article describes the architecture of the extensibility framework for running an
external Python or R script on SQL server Machine Learning Services. The script executes
in a language runtime environment as an extension to the core database engine.

The extensibility framework was introduced in SQL Server 2016 to support the R runtime
with R Services. SQL Server 2017 and later has support for Python with Machine
Learning Services.

The purpose of the extensibility framework is to provide an interface between SQL
Server and data science languages such as R and Python. The goal is to reduce friction
when moving data science solutions into production, and protecting data exposed
during the development process. By executing a trusted scripting language within a
secure framework managed by SQL Server, database administrators can maintain
security while allowing data scientists access to enterprise data.

The following diagram visually describes opportunities and benefits of the extensible
architecture.

An external script can be run by calling a stored procedure, and the results are returned
as tabular results directly to SQL Server. This makes it easy to generate or consume
machine learning from any application that can send a SQL query and handle the
results.

Background

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017


External script execution is subject to SQL Server data security. A user running an
external script can only access data that is equally available in a SQL query. If a
query fails due to insufficient permission, a script run by the same user would also
fail for the same reason. SQL Server security is enforced at the table, database, and
instance level. Database administrators can manage user access, resources used by
external scripts, and external code libraries added to the server.

Scale and optimization opportunities have a dual basis: gains through the
database platform (ColumnStore indexes, resource governance); and extension-
specific gains, for example when Microsoft libraries for R and Python are used for
data science models. Whereas R is single-threaded, RevoScaleR functions are
multi-threaded, capable of distributing a workload over multiple cores.

Deployment uses SQL Server methodologies. These can be stored procedures
wrapping an external script, embedded SQL, or T-SQL queries calling functions like
PREDICT to return results from forecasting models persisted on the server.

Developers with established skills in specific tools and IDEs can write code in those
tools and then port the code to SQL Server.

The architecture is designed such that external scripts run in a separate process from
SQL Server, but with components that internally manage the chain of requests for data
and operations on SQL Server. Depending on the version of SQL Server, supported
language extensions include R, Python, and third-party languages such as Java and .NET.

Component architecture in Windows:

Architecture diagram



Component architecture in Linux:

Components include a launchpad service used to invoke external runtimes and library-
specific logic for loading interpreters and libraries. The launcher loads a language
runtime, plus any proprietary modules. For example, if your code includes RevoScaleR
functions, a RevoScaleR interpreter is loaded. BxlServer and SQL Satellite manage
communication and data transfer with SQL Server.

In Linux, SQL uses a launchpadd service to communicate with a separate launchpad
process for each user.

The SQL Server Launchpad is a service that manages and executes external scripts,
similar to the way that the full-text indexing and query service launches a separate host
for processing full-text queries. The launchpad service can start only trusted launchers
that are published by Microsoft, or that have been certified by Microsoft as meeting
requirements for performance and resource management.

Trusted launchers Extension SQL Server versions

RLauncher.dll for the R language for Windows R extension SQL Server 2016 and
later

Pythonlauncher.dll for Python language for
Windows

Python
extension

SQL Server 2017 and
later

RLauncher.so for the R language for Linux R extension SQL Server 2019 and
later

Launchpad



Trusted launchers Extension SQL Server versions

Pythonlauncher.so for Python language for Linux Python
extension

SQL Server 2019 and
later

The SQL Server Launchpad service runs under its own user account. If you change the
account that runs launchpad, be sure to do so using SQL Server Configuration Manager,
to ensure that changes are written to related files.

In Windows, a separate SQL Server Launchpad service is created for each database
engine instance to which you have added SQL Server Machine Learning Services. There
is one launchpad service for each database engine instance, so if you have multiple
instances with external script support, you will have a launchpad service for each one. A
database engine instance is bound to the launchpad service created for it. All
invocations of external script in a stored procedure or T-SQL result in the SQL Server
service calling the launchpad service created for the same instance.

To execute tasks in a specific supported language, the launchpad gets a secured worker
account from the pool, and starts a satellite process to manage the external runtime.
Each satellite process inherits the user account of the launchpad and uses that worker
account for the duration of script execution. If script uses parallel processes, they are
created under the same, single worker account.

In Linux, only one database engine instance is supported and there is one launchpadd
service bound to the instance. When a script is executed, the launchpadd service starts a
separate launchpad process with the low-privileged user account mssql_satellite. Each
satellite process inherits the mssql_satellite user account of launchpad and uses that for
the duration of script execution.

BxlServer is an executable provided by Microsoft that manages communication
between SQL Server and the language runtime. It creates the Windows job objects for
Windows, or the namespaces for Linux, that are used to contain external script sessions.
It also provisions secure working folders for each external script job and uses SQL
Satellite to manage data transfer between the external runtime and SQL Server. If you
run Process Explorer while a job is running, you might see one or multiple instances of
BxlServer.

In effect, BxlServer is a companion to a language runtime environment that works with
SQL Server to transfer data and manage tasks. BXL stands for Binary Exchange language

BxlServer and SQL Satellite

https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer


and refers to the data format used to move data efficiently between SQL Server and
external processes.

SQL Satellite is an extensibility API, included in the database engine, that supports
external code or external runtimes implemented using C or C++.

BxlServer uses SQL Satellite for these tasks:

Reading input data
Writing output data
Getting input arguments
Writing output arguments
Error handling
Writing STDOUT and STDERR back to client

SQL Satellite uses a custom data format that is optimized for fast data transfer between
SQL Server and external script languages. It performs type conversions and defines the
schemas of the input and output datasets during communications between SQL Server
and the external script runtime.

The SQL Satellite can be monitored by using Windows extended events (xEvents). For
more information, see Extended Events for SQL Server Machine Learning Services.

Communication protocols among components and data platforms are described in this
section.

TCP/IP

By default, internal communications between SQL Server and the SQL Satellite use
TCP/IP.

Named Pipes

Internal data transport between the BxlServer and SQL Server through SQL Satellite
uses a proprietary, compressed data format to enhance performance. Data is
exchanged between language run times and BxlServer in BXL format, using Named
Pipes.

ODBC

Communications between external data science clients and a remote SQL Server
instance use ODBC. The account that sends the script jobs to SQL Server must have

Communication channels between components



both permissions to connect to the instance and to run external scripts.

Additionally, depending on the task, the account might need these permissions:
Read data used by the job
Write data to tables: for example, when saving results to a table
Create database objects: for example, if saving external script as part of a new
stored procedure.

When SQL Server is used as the compute context for script executed from a
remote client, and the executable must retrieve data from an external source,
ODBC is used for writeback. SQL Server maps the identity of the user issuing the
remote command to the identity of the user on the current instance, and runs the
ODBC command using that user's credentials. The connection string needed to
perform this ODBC call is obtained from the client code.

RODBC (R only)

Additional ODBC calls can be made inside the script by using RODBC. RODBC is a
popular R package used to access data in relational databases; however, its
performance is generally slower than comparable providers used by SQL Server.
Many R scripts use embedded calls to RODBC as a way of retrieving "secondary"
datasets for use in analysis. For example, the stored procedure that trains a model
might define a SQL query to get the data for training a model, but use an
embedded RODBC call to get additional factors, to perform lookups, or to get new
data from external sources such as text files or Excel.

The following code illustrates an RODBC call embedded in an R script:

R

Other protocols

Processes that might need to work in "chunks" or transfer data back to a remote
client can also use the XDF file format. Actual data transfer is via encoded blobs.

R extension in SQL Server

library(RODBC); 
connStr <- paste("Driver=SQL Server;Server=", instance_name, 
";Database=", database_name, ";Trusted_Connection=true;", sep=""); 
dbhandle <- odbcDriverConnect(connStr) 
OutputDataSet <- sqlQuery(dbhandle, "select * from table_name"); 

See Also

https://learn.microsoft.com/en-us/machine-learning-server/r/concept-what-is-xdf


Python extension in SQL Server



Python language extension in SQL
Server Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later

This article describes the Python extension for running external Python scripts with SQL
Server Machine Learning Services. The extension adds:

A Python execution environment
Anaconda distribution with the Python 3.5 runtime and interpreter
Standard libraries and tools
Microsoft Python packages:

revoscalepy for analytics at scale.
microsoftml for machine learning algorithms.

Installation of the Python 3.5 runtime and interpreter ensures near-complete
compatibility with standard Python solutions. Python runs in a separate process from
SQL Server, to guarantee that database operations are not compromised.

SQL Server includes both open-source and proprietary packages. The Python runtime
installed by Setup is Anaconda 4.2 with Python 3.5. The Python runtime is installed
independently of SQL tools, and is executed outside of core engine processes, in the
extensibility framework. As part of the installation of Machine Learning Services with
Python, you must consent to the terms of the GNU Public License.

SQL Server does not modify the Python executables, but you must use the version of
Python installed by Setup because that version is the one that the proprietary packages
are built and tested on. For a list of packages supported by the Anaconda distribution,
see the Continuum analytics site: Anaconda package list .

The Anaconda distribution associated with a specific database engine instance can be
found in the folder associated with the instance. For example, if you installed SQL Server
2017 database engine with Machine Learning Services and Python on the default
instance, look under C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES .

Python packages added by Microsoft for parallel and distributed workloads include the
following libraries.

Python components

https://docs.continuum.io/anaconda/packages/pkg-docs


Library Description

revoscalepy Supports data source objects and data exploration, manipulation, transformation,
and visualization. It supports creation of remote compute contexts, as well as a
various scalable machine learning models, such as rxLinMod. For more
information, see revoscalepy module with SQL Server.

microsoftml Contains machine learning algorithms that have been optimized for speed and
accuracy, as well as in-line transformations for working with text and images. For
more information, see microsoftml module with SQL Server.

Microsoftml and revoscalepy are tightly coupled; data sources used in microsoftml are
defined as revoscalepy objects. Compute context limitations in revoscalepy transfer to
microsoftml. Namely, all functionality is available for local operations, but switching to a
remote compute context requires RxInSqlServer.

You import the revoscalepy module into your Python code, and then call functions from
the module, like any other Python functions.

Supported data sources include ODBC databases, SQL Server, and XDF file format to
exchange data with other sources, or with R solutions. Input data for Python must be
tabular. All Python results must be returned in the form of a pandas data frame.

Supported compute contexts include local, or remote SQL Server compute context. A
remote compute context refers to code execution that starts on one computer such as a
workstation, but then switches script execution to a remote computer. Switching the
compute context requires that both systems have the same revoscalepy library.

Local compute context, as you might expect, includes execution of Python code on the
same server as the database engine instance, with code inside T-SQL or embedded in a
stored procedure. You can also run the code from a local Python IDE and have the script
execute on the SQL Server computer, by defining a remote compute context.

The following diagrams depict the interaction of SQL Server components with the
Python runtime in each of the supported scenarios: running script in-database, and
remote execution from a Python terminal, using a SQL Server compute context.

Using Python in SQL Server

Execution architecture

Python scripts executed in-database

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


When you run Python "inside" SQL Server, you must encapsulate the Python script
inside a special stored procedure, sp_execute_external_script.

After the script has been embedded in the stored procedure, any application that can
make a stored procedure call can initiate execution of the Python code. Thereafter SQL
Server manages code execution as summarized in the following diagram.

1. A request for the Python runtime is indicated by the parameter
@language='Python'  passed to the stored procedure. SQL Server sends this request
to the launchpad service. In Linux, SQL uses a launchpadd service to communicate
with a separate launchpad process for each user. See the Extensibility architecture
diagram for details.

2. The launchpad service starts the appropriate launcher; in this case,
PythonLauncher.

3. PythonLauncher starts the external Python35 process.
4. BxlServer coordinates with the Python runtime to manage exchanges of data, and

storage of working results.
5. SQL Satellite manages communications about related tasks and processes with

SQL Server.
6. BxlServer uses SQL Satellite to communicate status and results to SQL Server.
7. SQL Server gets results and closes related tasks and processes.

You can run Python scripts from a remote computer, such as a laptop, and have them
execute in the context of the SQl Server computer, if these conditions are met:

You design the scripts appropriately
The remote computer has installed the extensibility libraries that are used by
Machine Learning Services. The revoscalepy package is required to use remote
compute contexts.

Python scripts executed from a remote client

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


The following diagram summarizes the overall workflow when scripts are sent from a
remote computer.

1. For functions that are supported in revoscalepy, the Python runtime calls a linking
function, which in turn calls BxlServer.

2. BxlServer is included with Machine Learning Services (In-Database) and runs in a
separate process from the Python runtime.

3. BxlServer determines the connection target and initiates a connection using ODBC,
passing credentials supplied as part of the connection string in the Python script.

4. BxlServer opens a connection to the SQL Server instance.
5. When an external script runtime is called, the launchpad service is invoked, which

in turn starts the appropriate launcher: in this case, PythonLauncher.dll. Thereafter,
processing of Python code is handled in a workflow similar to that when Python
code is invoked from a stored procedure in T-SQL.

6. PythonLauncher makes a call to the instance of the Python that is installed on the
SQL Server computer.

7. Results are returned to BxlServer.
8. SQL Satellite manages communication with SQL Server and cleanup of related job

objects.
9. SQL Server passes results back to the client.

revoscalepy module in SQL Server
revoscalepy function reference
Extensibility framework in SQL Server
R and machine learning extensions in SQL Server
Get Python package information
Install Python packages with sqlmlutils

Next steps

https://learn.microsoft.com/en-us/r-server/python-reference/revoscalepy/revoscalepy-package
https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-python-packages-on-sql-server?view=sql-server-2017


R language extension in SQL Server
Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article describes the R extension for running external Python scripts with SQL Server
Machine Learning Services and SQL Server 2016 R Services. The extension adds:

An R execution environment
Base R distribution with standard libraries and tools
Microsoft R libraries:

RevoScaleR for analytics at scale
MicrosoftML for machine learning algorithms. Applies only to SQL Server 2016,
SQL Server 2017, and SQL Server 2019.
Other libraries for accessing data or R code in SQL Server

SQL Server includes both open-source and proprietary packages. The base R libraries
are installed through Microsoft's distribution of open-source R: Microsoft R Open
(MRO). Current users of R should be able to port their R code and execute it as an
external process on SQL Server with few or no modifications. MRO is installed
independently of SQL tools, and is executed outside of core engine processes, in the
extensibility framework. During installation, you must consent to the terms of the open-
source license. Thereafter, you can run standard R packages without further modification
just as you would in any other open-source distribution of R.

For SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server 2019 (15.x), SQL
Server does not modify the base R executables, but you must use the version of R
installed by Setup because that version is the one that the proprietary packages are built
and tested on. For more information about how MRO differs from a base distribution of
R that you might get from CRAN, see Interoperability with R language and Microsoft R
products and features.

The R base package distribution installed by Setup can be found in the folder associated
with the instance. For example, if you installed R Services on a SQL Server default
instance, the R libraries are located in this folder by default: C:\Program Files\Microsoft
SQL Server\MSSQL13.MSSQLSERVER\R_SERVICES\library . Similarly, the R tools associated

R components

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017
https://learn.microsoft.com/en-us/r-server/what-is-r-server-interoperability


with the default instance would be located in this folder by default: C:\Program
Files\Microsoft SQL Server\MSSQL13.MSSQLSERVER\R_SERVICES\bin .

R packages added by Microsoft for parallel and distributed workloads include the
following libraries.

Library Description

RevoScaleR Supports data source objects and data exploration, manipulation, transformation,
and visualization. It supports creation of remote compute contexts, as well as a
various scalable machine learning models, such as rxLinMod. The APIs have been
optimized to analyze data sets that are too big to fit in memory and to perform
computations distributed over several cores or processors. The RevoScaleR
package also supports the XDF file format for faster movement and storage of
data used for analysis. The XDF format uses columnar storage, is portable, and can
be used to load and then manipulate data from various sources, including text,
SPSS, or an ODBC connection.

MicrosoftML Contains machine learning algorithms that have been optimized for speed and
accuracy, as well as in-line transformations for working with text and images. For
more information, see MicrosoftML in SQL Server. Applies only to SQL Server
2016, SQL Server 2017, and SQL Server 2019.

You can script R using base functions, but to benefit from multi-processing, you must
import the RevoScaleR and MicrosoftML modules into your R code, and then call its
functions to create models that execute in parallel.

Supported data sources include ODBC databases, SQL Server, and XDF file format to
exchange data with other sources, or with R solutions. Input data must be tabular. All R
results must be returned in the form of a data frame.

Supported compute contexts include local, or remote SQL Server compute context. A
remote compute context refers to code execution that starts on one computer such as a
workstation, but then switches script execution to a remote computer. Switching the
compute context requires that both systems have the same RevoScaleR library.

Local compute context, as you might expect, includes execution of R code on the same
server as the database engine instance, with code inside T-SQL or embedded in a stored
procedure. You can also run the code from a local R IDE and have the script execute on
the SQL Server computer, by defining a remote compute context.

Using R in SQL Server

Execution architecture

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/r-server/r/concept-what-is-the-microsoftml-package


The following diagrams depict the interaction of SQL Server components with the R
runtime in each of the supported scenarios: running script in-database, and remote
execution from an R command line, using a SQL Server compute context.

R code that is run from "inside" SQL Server is executed by calling a stored procedure.
Thus, any application that can make a stored procedure call can initiate execution of R
code. Thereafter SQL Server manages the execution of R code as summarized in the
following diagram.

1. A request for the R runtime is indicated by the parameter @language='R' passed
to the stored procedure, sp_execute_external_script. SQL Server sends this request
to the launchpad service. In Linux, SQL uses a launchpadd service to communicate
with a separate launchpad process for each user. See the Extensibility architecture
diagram for details.

2. The launchpad service starts the appropriate launcher; in this case, RLauncher.
3. RLauncher starts the external R process.
4. BxlServer coordinates with the R runtime to manage exchanges of data with SQL

Server and storage of working results.
5. SQL Satellite manages communications about related tasks and processes with

SQL Server.
6. BxlServer uses SQL Satellite to communicate status and results to SQL Server.
7. SQL Server gets results and closes related tasks and processes.

When connecting from a remote data science client that supports Microsoft R, you can
run R functions in the context of SQL Server by using the RevoScaleR functions. This is a
different workflow from the previous one, and is summarized in the following diagram.

R scripts executed from SQL Server in-database

R scripts executed from a remote client

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


1. For RevoScaleR functions, the R runtime calls a linking function which in turn calls
BxlServer.

2. BxlServer is provided with Microsoft R and runs in a separate process from the R
runtime.

3. BxlServer determines the connection target and initiates a connection using ODBC,
passing credentials supplied as part of the connection string in the R data source
object.

4. BxlServer opens a connection to the SQL Server instance.
5. For an R call, the launchpad service is invoked, which is turn starts the appropriate

launcher, RLauncher. Thereafter, processing of R code is similar to the process for
running R code from T-SQL.

6. RLauncher makes a call to the instance of the R runtime that is installed on the SQL
Server computer.

7. Results are returned to BxlServer.
8. SQL Satellite manages communication with SQL Server and cleanup of related job

objects.
9. SQL Server passes results back to the client.

Extensibility framework in SQL Server
Python and machine learning extensions in SQL Server

See also



Security architecture for the extensibility
framework in SQL Server Machine
Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article describes the security architecture that is used to integrate the SQL Server
database engine and related components with the extensibility framework in SQL Server
Machine Learning Services. It examines the securables, services, process identity, and
permissions. Key points covered in this article include the purpose of launchpad,
SQLRUserGroup and worker accounts, process isolation of external scripts, and how user
identities are mapped to worker accounts.

For more information about the key concepts and components of extensibility in SQL
Server, see Extensibility architecture in SQL Server Machine Learning Services.

An external script is submitted as an input parameter to a system stored procedure
created for this purpose, or is wrapped in a stored procedure that you define. The script
may be written in R, Python, or external languages such as Java or .NET. Alternatively,
you might have models that are pretrained and stored in a binary format in a database
table, callable in a T-SQL PREDICT function.

As the script is provided through existing database schema objects, stored procedures
and tables, there are no new securables for SQL Server Machine Learning Services.

Regardless of how you are using script or, what they consist of, database objects will be
created and probably saved, but no new object type is introduced for storing script. As a
result, the ability to consume, create, and save database objects depends largely on
database permissions already defined for your users.

SQL Server's data security model of database logins and roles extends to external script.
A SQL Server login or Windows user account is required to run external scripts that use
SQL Server data or that run with SQL Server as the compute context. Database users
having permissions to execute a query can access the same data from external script.

Securables for external script

Permissions

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/security/securables?view=sql-server-2017


The login or user account identifies the security principal, who might need multiple
levels of access, depending on the external script requirements:

Permission to access the database where external scripts are enabled.
Permissions to read data from secured objects such as tables.
The ability to write new data to a table, such as a model, or scoring results.
The ability to create new objects, such as tables, stored procedures that use the
external script, or custom functions that use external script job.
The right to install new packages on the SQL Server computer, or use packages
provided to a group of users.

Each person who runs an external script using SQL Server as the execution context must
be mapped to a user in the database. Rather than individually set database user
permissions, you could create roles to manage sets of permissions, and assign users to
those roles, rather than individually set user permissions.

For more information, see Give users permission to SQL Server Machine Learning
Services.

Users who are using script in an external client tool must have their login or account
mapped to a user in the database if they need to run an external script in-database, or
access database objects and data. The same permissions are required whether the
external script is sent from a remote data science client or run using a T-SQL stored
procedure.

For example, assume that you created an external script that runs on your local
computer, and you want to run that script on SQL Server. You must ensure that the
following conditions are met:

The database allows remote connections.
The SQL login or Windows account that you used for database access has been
added to the SQL Server at the instance level.
The SQL login or Windows user must have the permission to execute external
scripts. Generally, this permission can only be added by a database administrator.
The SQL login or Window user must be added as a user, with appropriate
permissions, in each database where the external script performs any of these
operations:

Retrieving data.
Writing or updating data.
Creating new objects, such as tables or stored procedures.

Permissions when using an external client tool



After the login or Windows user account has been provisioned and given the necessary
permissions, you can run an external script on SQL Server by using a data source object
in R or the revoscalepy library in Python, or by calling a stored procedure that contains
the external script.

Whenever an external script is launched from SQL Server, the database engine security
gets the security context of the user who started the job, and manages the mappings of
the user or login to securable objects.

Therefore, all external scripts that are initiated from a remote client must specify the
login or user information as part of the connection string.

The extensibility framework adds one new NT service to the list of services in a SQL
Server installation: SQL Server Launchpad (MSSSQLSERVER).

The database engine uses the SQL Server launchpad service to instantiate an external
script session as a separate process. The process runs under a low-privilege account.
This account is distinct from SQL Server, launchpad itself, and the user identity under
which the stored procedure or host query was executed. Running script in a separate
process, under a low-privilege account, is the basis of the security and isolation model
for external scripts in SQL Server.

SQL Server also maintains a mapping of the identity of the calling user to the low-
privilege worker account used to start the satellite process. In some scenarios, where
script or code calls back to SQL Server for data and operations, SQL Server is able to
manage identity transfer seamlessly. Script containing SELECT statements or calling
functions and other programming objects will typically succeed if the calling user has
sufficient permissions.

Services used in external processing
(launchpad)

７ Note

By default, SQL Server Launchpad is configured to run under NT
Service\MSSQLLaunchpad, which is provisioned with all necessary permissions to
run external scripts. For more information about configurable options, see SQL
Server launchpad service configuration.

Identities used in processing (SQLRUserGroup)

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-windows-service-accounts-and-permissions?view=sql-server-2017#Service_Details


SQLRUserGroup (SQL restricted user group) is created by SQL Server Setup and
contains a pool of low-privilege local Windows user accounts. When an external process
is needed, launchpad takes an available worker account and uses it to run a process.
More specifically, launchpad activates an available worker account, maps it to the
identity of the calling user, and runs the script under the worker account.

SQLRUserGroup is linked to a specific instance. A separate pool of worker
accounts is needed for each instance on which machine learning has been enabled.
Accounts cannot be shared between instances.

The size of the user account pool is static and the default value is 20, which
supports 20 concurrent sessions. The number of external runtime sessions that can
be launched simultaneously is limited by the size of this user account pool.

Worker account names in the pool are of the format SQLInstanceNamenn. For
example, on a default instance, SQLRUserGroup contains accounts named
MSSQLSERVER01, MSSQLSERVER02, and so forth, on up to MSSQLSERVER20.

Parallelized tasks do not consume additional accounts. For example, if a user runs a
scoring task that uses parallel processing, the same worker account is reused for all
threads. If you intend to make heavy use of machine learning, you can increase the
number of accounts used to run external scripts. For more information, see Scale
concurrent execution of external scripts in SQL Server Machine Learning Services.

By default, members of SQLRUserGroup have read and execute permissions on files in
the SQL Server Binn, R_SERVICES, and PYTHON_SERVICES directories. This includes
access to executables, libraries, and built-in datasets in the R and Python distributions
installed with SQL Server.

To protect sensitive resources on SQL Server, you can optionally define an access control
list (ACL) that denies access to SQLRUserGroup. Conversely, you could also grant
permissions to local data resources that exist on host computer, apart from SQL Server
itself.

By design, SQLRUserGroup does not have a database login or permissions to any data.
Under certain circumstances, you might want to create a login to allow loopback
connections, particularly when a trusted Windows identity is the calling user. This
capability is called implied authentication. For more information, see Add
SQLRUserGroup as a database user.

Permissions granted to SQLRUserGroup



When a session is started, launchpad maps the identity of the calling user to a worker
account. The mapping of an external Windows user or valid SQL login to a worker
account is valid only for the lifetime of the SQL stored procedure that executes the
external script. Parallel queries from the same login are mapped to the same user worker
account.

During execution, launchpad creates temporary folders to store session data, deleting
them when the session concludes. The directories are access-restricted. For R, RLauncher
performs this task. For Python, PythonLauncher performs this task. Each individual
worker account is restricted to its own folder, and cannot access files in folders above its
own level. However, the worker account can read, write, or delete children under the
session working folder that was created. If you are an administrator on the computer,
you can view the directories created for each process. Each directory is identified by its
session GUID.

Implied authentication describes connection request behavior under which external
processes running as low-privilege worker accounts are presented as a trusted user
identity to SQL Server on loopback requests for data or operations. As a concept,
implied authentication is unique to Windows authentication, in SQL Server connection
strings specifying a trusted connection, on requests originating from external processes
such as R or Python script. It is sometimes also referred to as a loopback.

Trusted connections are workable from external script, but only with additional
configuration. In the extensibility architecture, external processes run under worker
accounts, inheriting permissions from the parent SQLRUserGroup. When a connection
string specifies Trusted_Connection=True , the identity of the worker account is presented
on the connection request, which is unknown by default to SQL Server.

To make trusted connections successful, you must create a database login for the
SQLRUserGroup. After doing so, any trusted connection from any member of
SQLRUserGroup has login rights to SQL Server. For step-by-step instructions, see Add
SQLRUserGroup to a database login.

Trusted connections are not the most widely used formulation of a connection request.
When external script specifies a connection, it can be more common to use a SQL login,
or a fully specified user name and password if the connection is to an ODBC data
source.

Identity mapping

Implied authentication (loopback requests)



The following diagram shows the interaction of SQL Server components with the
language runtime and how it does implied authentication in Windows.

Transparent Data Encryption (TDE) is not supported for data sent to or received from the
external script runtime. The reason is that the external process runs outside the SQL
Server process. Therefore, data used by the external runtime is not protected by the
encryption features of the database engine. This behavior is no different than any other
client running on the SQL Server computer that reads data from the database and
makes a copy.

As a consequence, TDE is not applied to any data that you use in external scripts, or to
any data saved to disk, or to any persisted intermediate results. However, other types of
encryption, such as Windows BitLocker encryption or third-party encryption applied at
the file or folder level, still apply.

In the case of Always Encrypted, external runtimes do not have access to the encryption
keys. Therefore, data cannot be sent to the scripts.

How implied authentication works for external script
sessions

No support for Transparent Data Encryption at
rest

Next steps

https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/overview-of-key-management-for-always-encrypted?view=sql-server-2017


In this article, you learned the components and interaction model of the security
architecture built into the extensibility framework. Key points covered in this article
include the purpose of launchpad, SQLRUserGroup and worker accounts, process
isolation of external scripts, and how user identities are mapped to worker accounts.

As a next step, review the instructions for granting permissions. For servers that use
Windows authentication, you should also review Add SQLRUserGroup to a database
login to learn when additional configuration is required.



Using data from OLAP cubes in R
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

The olapR package is an R package in SQL Server Machine Learning Services that lets
you run MDX queries to get data from OLAP cubes. With this package, you don't need
to create linked servers or clean up flattened rowsets; you can get OLAP data directly
from R.

This article describes the API, along with an overview of OLAP and MDX for R users who
might be new to multidimensional cube databases.

OLAP is short for Online Analytical Processing. OLAP solutions are widely used for
capturing and storing critical business data over time. OLAP data is consumed for
business analytics by a variety of tools, dashboards, and visualizations. For more
information, see Online analytical processing .

Microsoft provides Analysis Services, which lets you design, deploy, and query OLAP
data in the form of cubes or tabular models. A cube is a multi-dimensional database.
Dimensions are like facets of the data, or factors in R: you use dimensions to identify
some particular subset of data that you want to summarize or analyze. For example,
time is an important dimension, so much so that many OLAP solutions include multiple
calendars defined by default, to use when slicing and summarizing data.

For performance reasons, an OLAP database often calculates summaries (or
aggregations) in advance, and then stores them for faster retrieval. Summaries are based
on measures, which represent formulas that can be applied to numerical data. You use
the dimensions to define a subset of data, and then compute the measure over that
data. For example, you would use a measure to compute the total sales for a certain

） Important

An instance of Analysis Services can support either conventional multidimensional
cubes, or tabular models, but an instance cannot support both types of models.
Therefore, before you try to build an MDX query against a cube, verify that the
Analysis Services instance contains multidimensional models.

What is an OLAP cube?

https://en.wikipedia.org/wiki/Online_analytical_processing
https://learn.microsoft.com/en-us/analysis-services/analysis-services-overview


product line over multiple quarters minus taxes, to report the average shipping costs for
a particular supplier, year-to-date cumulative wages paid, and so forth.

MDX, short for multidimensional expressions, is the language used for querying cubes.
An MDX query typically contains a data definition that includes one or more dimensions,
and at least one measure, though MDX queries can get considerably more complex, and
include rolling windows, cumulative averages, sums, ranks, or percentiles.

Here are some other terms that might be helpful when you start building MDX queries:

Slicing takes a subset of the cube by using values from a single dimension.

Dicing creates a subcube by specifying a range of values on multiple dimensions.

Drill-down navigates from a summary to details.

Drill-up moves from details to a higher level of aggregation.

Roll-up summarizes the data on a dimension.

Pivot rotate the cube or the data selection.

The following article provides detailed examples of the syntax for creating or executing
queries against a cube:

How to create MDX queries using R

The olapR package supports two methods of creating MDX queries:

Use the MDX builder. Use the R functions in the package to generate a simple
MDX query, by choosing a cube, and then setting axes and slicers. This is an easy
way to build a valid MDX query if you do not have access to traditional OLAP tools,
or don't have deep knowledge of the MDX language.

Not all MDX queries can be created by using this method, because MDX can be
complex. However, this API supports most of the most common and useful
operations, including slice, dice, drilldown, rollup, and pivot in N dimensions.

Copy-paste well-formed MDX. Manually create and then paste in any MDX query.
This option is the best if you have existing MDX queries that you want to reuse, or

How to use olapR to create MDX queries

olapR API



if the query you want to build is too complex for olapR to handle.

After building your MDX using any client utility, such as SSMS or Excel, save the
query string. Provide this MDX string as an argument to the SSAS query handler in
the olapR package. The provider sends the query to the specified Analysis Services
server, and passes back the results to R.

For examples of how to build an MDX query or run an existing MDX query, see How to
create MDX queries using R.

This section lists some known issues and common questions about the olapR package.

If you connect to an instance of Analysis Services that contains a tabular model, the
explore  function reports success with a return value of TRUE. However, tabular model
objects are different from multidimensional objects, and the structure of a
multidimensional database is different from that of a tabular model.

Although DAX (Data analysis Expressions) is the language typically used with tabular
models, you can design valid MDX queries against a tabular model, if you are already
familiar with MDX. You cannot use the olapR constructors to build valid MDX queries
against a tabular model.

However, MDX queries are an inefficient way to retrieve data from a tabular model. If
you need to get data from a tabular model for use in R, consider these methods instead:

Enable DirectQuery on the model and add the server as a linked server in SQL
Server.
If the tabular model was built on a relational data mart, obtain the data directly
from the source.

A single Analysis Services instance can contain only one type of model, though it can
contain multiple models. The reason is that there are fundamental differences between
tabular models and multidimensional models that control the way data is stored and
processed. For example, tabular models are stored in memory and leverage columnstore

Known issues

Tabular model support

How to determine whether an instance contains tabular
or multidimensional models



indexes to perform very fast calculations. In multidimensional models, data is stored on
disk and aggregations are defined in advance and retrieved by using MDX queries.

If you connect to Analysis Services using a client such as SQL Server Management
Studio, you can tell at a glance which model type is supported, by looking at the icon for
the database.

You can also view and query the server properties to determine which type of model the
instance supports. The Server mode property supports two values: multidimensional or
tabular.

See the following article for general information about the two types of models:

Comparing multidimensional and tabular models

See the following article for information about querying server properties:

OLE DB for OLAP Schema Rowsets

It is not possible to write the results of custom R calculations back to the cube.

In general, even when a cube is enabled for writeback, only limited operations are
supported, and additional configuration might be required. We recommend that you
use MDX for such operations.

Write-enabled dimensions
Write-enabled partitions
Set custom access to cell data

Although the olapR package performs only read operations, long-running MDX queries
can create locks that prevent the cube from being processed. Always test your MDX
queries in advance so that you know how much data should be returned.

If you try to connect to a cube that is locked, you might get an error that the SQL Server
data warehouse cannot be reached. Suggested resolutions include enabling remote
connections, checking the server or instance name, and so forth; however, consider the
possibility of a prior open connection.

An SSAS administrator can prevent locking issues by identifying and terminating open
sessions. A timeout property can also be applied to MDX queries at the server level to

Writeback is not supported

Long-running MDX queries block cube processing

https://learn.microsoft.com/en-us/analysis-services/comparing-tabular-and-multidimensional-solutions-ssas
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2012/ms126079(v=sql.110)
https://learn.microsoft.com/en-us/analysis-services/multidimensional-models-olap-logical-dimension-objects/write-enabled-dimensions
https://learn.microsoft.com/en-us/analysis-services/multidimensional-models-olap-logical-cube-objects/partitions-write-enabled-partitions
https://learn.microsoft.com/en-us/analysis-services/multidimensional-models/grant-custom-access-to-cell-data-analysis-services


force termination of all long-running queries.

If you are new to OLAP or to MDX queries, see these Wikipedia articles:

OLAP cubes
MDX queries

Resources

https://en.wikipedia.org/wiki/OLAP_cube
https://en.wikipedia.org/wiki/MultiDimensional_eXpressions


How to create MDX queries in R using
olapR
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

The olapR in SQL Server Machine Learning Services package supports MDX queries
against cubes hosted in SQL Server Analysis Services. You can build a query against an
existing cube, explore dimensions and other cube objects, and paste in existing MDX
queries to retrieve data.

This article describes the two main uses of the olapR package:

Build an MDX query from R, using the constructors provided in the olapR package
Execute an existing, valid MDX query using olapR and an OLAP provider

The following operations are not supported:

DAX queries against a tabular model
Creation of new OLAP objects
Writeback to partitions, including measures or sums

1. Define a connection string that specifies the OLAP data source (SSAS instance),
and the MSOLAP provider.

2. Use the function OlapConnection(connectionString)  to create a handle for the
MDX query and pass the connection string.

3. Use the Query()  constructor to instantiate a query object.

4. Use the following helper functions to provide more details about the dimensions
and measures to include in the MDX query:

cube()  Specify the name of the SSAS database. If connecting to a named
instance, provide the machine name and instance name.

columns()  Provide the names of the measures to use in the ON COLUMNS
argument.

Build an MDX query from R

https://learn.microsoft.com/en-us/analysis-services/ssas-overview


rows()  Provide the names of the measures to use in the ON ROWS
argument.

slicers()  Specify a field or members to use as a slicer. A slicer is like a filter
that is applied to all MDX query data.

axis()  Specify the name of an additional axis to use in the query.

An OLAP cube can contain up to 128 query axes. Generally, the first four axes
are referred to as Columns, Rows, Pages, and Chapters.

If your query is relatively simple, you can use the functions columns , rows ,
etc. to build your query. However, you can also use the axis()  function with
a non-zero index value to build an MDX query with many qualifiers, or to add
extra dimensions as qualifiers.

5. Pass the handle, and the completed MDX query, into one of the following
functions, depending on the shape of the results:

executeMD  Returns a multi-dimensional array
execute2D  Returns a two-dimensional (tabular) data frame

1. Define a connection string that specifies the OLAP data source (SSAS instance),
and the MSOLAP provider.

2. Use the function OlapConnection(connectionString)  to create a handle for the
MDX query and pass the connection string.

3. Define an R variable to store the text of the MDX query.

4. Pass the handle and the variable containing the MDX query into the functions
executeMD  or execute2D , depending on the shape of the results.

executeMD  Returns a multi-dimensional array
execute2D  Returns a two-dimensional (tabular) data frame

The following examples are based on the AdventureWorks data mart and cube project,
because that project is widely available, in multiple versions, including backup files that

Execute a valid MDX query from R

Examples



can easily be restored to Analysis Services. If you don't have an existing cube, get a
sample cube using either of these options:

Create the cube that is used in these examples by following the Analysis Services
tutorial up to Lesson 4: Creating an OLAP cube

Download an existing cube as a backup, and restore it to an instance of Analysis
Services. For example, this site provides a fully processed cube in zipped format:
Adventure Works Multidimensional Model SQL 2014. Extract the file, and then
restore it to your SSAS instance. For more information, see Backup and restore, or
Restore-ASDatabase Cmdlet.

This MDX query selects the measures for count and amount of Internet sales count and
sales amount, and places them on the Column axis. It adds a member of the
SalesTerritory dimension as a slicer, to filter the query so that only the sales from
Australia are used in calculations.

MDX

On columns, you can specify multiple measures as elements of a comma-separated
string.
The Row axis uses all possible values (all MEMBERS) of the "Product Line"
dimension.
This query would return a table with three columns, containing a rollup summary
of Internet sales from all countries/regions.
The WHERE clause specifies the slicer axis. In this example, the slicer uses a
member of the SalesTerritory dimension to filter the query so that only the sales
from Australia are used in calculations.

R

1. Basic MDX with slicer

SELECT {[Measures].[Internet Sales Count], [Measures].[InternetSales-Sales 
Amount]} ON COLUMNS,  
{[Product].[Product Line].[Product Line].MEMBERS} ON ROWS  
FROM [Analysis Services Tutorial]  
WHERE [Sales Territory].[Sales Territory Country].[Australia] 

To build this query using the functions provided in olapR

cnnstr <- "Data Source=localhost; Provider=MSOLAP; initial catalog=Analysis 
Services Tutorial" 

https://learn.microsoft.com/en-us/analysis-services/multidimensional-tutorial/multidimensional-modeling-adventure-works-tutorial
https://learn.microsoft.com/en-us/analysis-services/multidimensional-tutorial/multidimensional-modeling-adventure-works-tutorial
https://learn.microsoft.com/en-us/analysis-services/multidimensional-models/backup-and-restore-of-analysis-services-databases
https://learn.microsoft.com/en-us/powershell/module/sqlserver/restore-asdatabase


For a named instance, be sure to escape any characters that could be considered control
characters in R. For example, the following connection string references an instance
OLAP01, on a server named ContosoHQ:

R

R

If you define a query by using the MDX builder in SQL Server Management Studio and
then save the MDX string, it will number the axes starting at 0, as shown here:

MDX

ocs <- OlapConnection(cnnstr) 

qry <- Query() 
cube(qry) <- "[Analysis Services Tutorial]" 
columns(qry) <- c("[Measures].[Internet Sales Count]", "[Measures].[Internet 
Sales-Sales Amount]") 
rows(qry) <- c("[Product].[Product Line].[Product Line].MEMBERS") 
slicers(qry) <- c("[Sales Territory].[Sales Territory Country].[Australia]") 

result1 <- executeMD(ocs, qry) 

cnnstr <- "Data Source=ContosoHQ\\OLAP01; Provider=MSOLAP; initial 
catalog=Analysis Services Tutorial" 

To run this query as a predefined MDX string

cnnstr <- "Data Source=localhost; Provider=MSOLAP; initial catalog=Analysis 
Services Tutorial" 
ocs <- OlapConnection(cnnstr) 

mdx <- "SELECT {[Measures].[Internet Sales Count], [Measures].
[InternetSales-Sales Amount]} ON COLUMNS, {[Product].[Product Line].[Product 
Line].MEMBERS} ON ROWS FROM [Analysis Services Tutorial] WHERE [Sales 
Territory].[Sales Territory Country].[Australia]" 

result2 <- execute2D(ocs, mdx) 

SELECT {[Measures].[Internet Sales Count], [Measures].[Internet Sales-Sales 
Amount]} ON AXIS(0),  
   {[Product].[Product Line].[Product Line].MEMBERS} ON AXIS(1)  
   FROM [Analysis Services Tutorial]  
   WHERE [Sales Territory].[Sales Territory Countr,y].[Australia] 



You can still run this query as a predefined MDX string. However, to build the same
query using R using the axis()  function, you must renumber the axes starting at 1.

You can use the explore  function to return a list of cubes, dimensions, or members to
use in constructing your query. This is handy if you don't have access to other OLAP
browsing tools, or if you want to programmatically manipulate or construct the MDX
query.

To view all cubes or perspectives on the instance that you have permission to view,
provide the handle as an argument to explore .

R

Results

Analysis Services Tutorial

Internet Sales

Reseller Sales

Sales Summary

[1] TRUE

To view all dimensions in the cube or perspective, specify the cube or perspective name.

2. Explore cubes and their fields on an SSAS instance

To list the cubes available on the specified connection

） Important

The final result is not a cube; TRUE merely indicates that the metadata operation
was successful. An error is thrown if arguments are invalid.

cnnstr <- "Data Source=localhost; Provider=MSOLAP; initial catalog=Analysis 
Services Tutorial" 
ocs <- OlapConnection(cnnstr) 
explore(ocs) 

To get a list of cube dimensions



R

Results

Customer

Date

Region

After defining the source and creating the handle, specify the cube, dimension, and
hierarchy to return. In the return results, items that are prefixed with -> represent
children of the previous member.

R

Results

Accessories

Bikes

Clothing

Components

-> Assembly Components

-> Assembly Components

Using data from OLAP cubes in R

cnnstr <- "Data Source=localhost; Provider=MSOLAP; initial catalog=Analysis 
Services Tutorial" 
ocs \<- OlapConnection(cnnstr) 
explore(ocs, "Sales") 

To return all members of the specified dimension and hierarchy

cnnstr <- "Data Source=localhost; Provider=MSOLAP; initial catalog=Analysis 
Services Tutorial" 
ocs <- OlapConnection(cnnstr) 
explore(ocs, "Analysis Services Tutorial", "Product", "Product Categories", 
"Category") 

See also



Plot histograms in Python
Article • 08/10/2023

Applies to:  SQL Server  Azure SQL Database  Azure SQL Managed Instance

This article describes how to plot data using the Python package pandas'.hist() . A SQL
database is the source used to visualize the histogram data intervals that have
consecutive, non-overlapping values.

SQL Server for Windows or for Linux

Azure Data Studio. To install, see Azure Data Studio.

Restore sample DW database to get sample data used in this article.

You can verify that the restored database exists by querying the Person.CountryRegion
table:

SQL

Download and Install Azure Data Studio.

Install the following Python packages:

pyodbc

pandas

sqlalchemy

matplotlib

To install these packages:

1. In your Azure Data Studio notebook, select Manage Packages.

Prerequisites

Verify restored database

USE AdventureWorksDW;
SELECT * FROM Person.CountryRegion;

Install Python packages

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.hist.html
https://learn.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-2017


2. In the Manage Packages pane, select the Add new tab.
3. For each of the following packages, enter the package name, select Search, then

select Install.

The distributed data displayed in the histogram is based on a SQL query from
AdventureWorksDW2022 . The histogram visualizes data and the frequency of data values.

Edit the connection string variables: 'server', 'database', 'username', and 'password' to
connect to SQL Server database.

To create a new notebook:

1. In Azure Data Studio, select File, select New Notebook.
2. In the notebook, select kernel Python3, select the +code.
3. Paste code in notebook, select Run All.

Python

Plot histogram

import pyodbc 
import pandas as pd
import matplotlib
import sqlalchemy

from sqlalchemy import create_engine

matplotlib.use('TkAgg', force=True)
from matplotlib import pyplot as plt

# Some other example server values are
# server = 'localhost\sqlexpress' # for a named instance
# server = 'myserver,port' # to specify an alternate port
server = 'servername'
database = 'AdventureWorksDW2022'
username = 'yourusername'
password = 'databasename'

url = 'mssql+pyodbc://{user}:{passwd}@{host}:{port}/{db}?
driver=SQL+Server'.format(user=username, passwd=password, host=server, 
port=port, db=database)
engine = create_engine(url)

sql = "SELECT DATEDIFF(year, c.BirthDate, GETDATE()) AS Age FROM [dbo].
[FactInternetSales] s INNER JOIN dbo.DimCustomer c ON s.CustomerKey = 
c.CustomerKey"

df = pd.read_sql(sql, engine)
df.hist(bins=50)



The display shows the age distribution of customers in the FactInternetSales  table.

plt.show()



Insert data from a SQL table into a
Python pandas dataframe
Article • 02/28/2023

Applies to:  SQL Server  Azure SQL Database  Azure SQL Managed Instance

This article describes how to insert SQL data into a pandas  dataframe using the
pyodbc package in Python. The rows and columns of data contained within the
dataframe can be used for further data exploration.

SQL Server for Windows or for Linux

Azure Data Studio. To install, see Azure Data Studio.

Restore sample database to get sample data used in this article.

You can verify that the restored database exists by querying the Person.CountryRegion
table:

SQL

Download and Install Azure Data Studio.

Install the following Python packages:

pyodbc
pandas

To install these packages:

1. In your Azure Data Studio notebook, select Manage Packages.
2. In the Manage Packages pane, select the Add new tab.

Prerequisites

Verify restored database

USE AdventureWorks; 
SELECT * FROM Person.CountryRegion; 

Install Python packages

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://pandas.pydata.org/
https://learn.microsoft.com/en-us/sql/connect/python/pyodbc/python-sql-driver-pyodbc?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/what-is-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-2017


3. For each of the following packages, enter the package name, click Search, then
click Install.

Use the following script to select data from Person.CountryRegion table and insert into a
dataframe. Edit the connection string variables: 'server', 'database', 'username', and
'password' to connect to SQL.

To create a new notebook:

1. In Azure Data Studio, select File, select New Notebook.
2. In the notebook, select kernel Python3, select the +code.
3. Paste code in notebook, select Run All.

Python

Output

The print  command in the preceding script displays the rows of data from the pandas
dataframe df .

text

Insert data

import pyodbc 
import pandas as pd 
# Some other example server values are 
# server = 'localhost\sqlexpress' # for a named instance 
# server = 'myserver,port' # to specify an alternate port 
server = 'servername'  
database = 'AdventureWorks'  
username = 'yourusername'  
password = 'databasename'   
cnxn = pyodbc.connect('DRIVER={SQL 
Server};SERVER='+server+';DATABASE='+database+';UID='+username+';PWD='+ 
password) 
cursor = cnxn.cursor() 
# select 26 rows from SQL table to insert in dataframe. 
query = "SELECT [CountryRegionCode], [Name] FROM Person.CountryRegion;" 
df = pd.read_sql(query, cnxn) 
print(df.head(26)) 

CountryRegionCode                 Name 
0                 AF          Afghanistan 
1                 AL              Albania 
2                 DZ              Algeria 
3                 AS       American Samoa 
4                 AD              Andorra 



Insert Python dataframe into SQL

5                 AO               Angola 
6                 AI             Anguilla 
7                 AQ           Antarctica 
8                 AG  Antigua and Barbuda 
9                 AR            Argentina 
10                AM              Armenia 
11                AW                Aruba 
12                AU            Australia 
13                AT              Austria 
14                AZ           Azerbaijan 
15                BS         Bahamas, The 
16                BH              Bahrain 
17                BD           Bangladesh 
18                BB             Barbados 
19                BY              Belarus 
20                BE              Belgium 
21                BZ               Belize 
22                BJ                Benin 
23                BM              Bermuda 
24                BT               Bhutan 
25                BO              Bolivia 

Next steps



Insert Python dataframe into SQL table
Article • 02/28/2023

Applies to:  SQL Server  Azure SQL Database  Azure SQL Managed Instance

This article describes how to insert a pandas  dataframe into a SQL database using the
pyodbc package in Python.

SQL Server for Windows or for Linux

Azure Data Studio. To install, see Download and install Azure Data Studio.

Follow the steps in AdventureWorks sample databases to restore the OLTP version
of the AdventureWorks sample database for your version of SQL Server.

You can verify that the database was restored correctly by querying the
HumanResources.Department table:

SQL

1. In Azure Data Studio, open a new notebook and connect to the Python 3 kernel.

2. Select Manage Packages.

3. In the Manage Packages pane, select the Add new tab.

4. For each of the following packages, enter the package name, click Search, then
click Install.

pyodbc
pandas

Prerequisites

USE AdventureWorks; 
SELECT * FROM HumanResources.Department; 

Install Python packages

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://pandas.pydata.org/
https://learn.microsoft.com/en-us/sql/connect/python/pyodbc/python-sql-driver-pyodbc?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/database-engine/install-windows/install-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-2017


Copy the following text and save it to a file named department.csv .

text

1. Follow the steps in Connect to a SQL Server to connect to the AdventureWorks
database.

2. Create a table named HumanResources.DepartmentTest. The SQL table will be
used for the dataframe insertion.

SQL

Use the Python pandas  package to create a dataframe, load the CSV file, and then load
the dataframe into the new SQL table, HumanResources.DepartmentTest.

Create a sample CSV file

DepartmentID,Name,GroupName, 
1,Engineering,Research and Development, 
2,Tool Design,Research and Development, 
3,Sales,Sales and Marketing, 
4,Marketing,Sales and Marketing, 
5,Purchasing,Inventory Management, 
6,Research and Development,Research and Development, 
7,Production,Manufacturing, 
8,Production Control,Manufacturing, 
9,Human Resources,Executive General and Administration, 
10,Finance,Executive General and Administration, 
11,Information Services,Executive General and Administration, 
12,Document Control,Quality Assurance, 
13,Quality Assurance,Quality Assurance, 
14,Facilities and Maintenance,Executive General and Administration, 
15,Shipping and Receiving,Inventory Management, 
16,Executive,Executive General and Administration 

Create a new database table

CREATE TABLE [HumanResources].[DepartmentTest]( 
[DepartmentID] [smallint] NOT NULL, 
[Name] [dbo].[Name] NOT NULL, 
[GroupName] [dbo].[Name] NOT NULL 
) 
GO 

Load a dataframe from the CSV file

https://learn.microsoft.com/en-us/sql/azure-data-studio/quickstart-sql-server?view=sql-server-ver15&preserve-view=true#connect-to-a-sql-server


1. Connect to the Python 3 kernel.

2. Paste the following code into a code cell, updating the code with the correct values
for server , database , username , password , and the location of the CSV file.

Python

3. Run the cell.

Connect to the SQL kernel and AdventureWorks database and run the following SQL
statement to confirm the table was successfully loaded with data from the dataframe.

SQL

Results

Bash

import pyodbc 
import pandas as pd 
# insert data from csv file into dataframe. 
# working directory for csv file: type "pwd" in Azure Data Studio or 
Linux 
# working directory in Windows c:\users\username 
df = pd.read_csv("c:\\user\\username\department.csv") 
# Some other example server values are 
# server = 'localhost\sqlexpress' # for a named instance 
# server = 'myserver,port' # to specify an alternate port 
server = 'yourservername'  
database = 'AdventureWorks'  
username = 'username'  
password = 'yourpassword'  
cnxn = pyodbc.connect('DRIVER={SQL 
Server};SERVER='+server+';DATABASE='+database+';UID='+username+';PWD='+ 
password) 
cursor = cnxn.cursor() 
# Insert Dataframe into SQL Server: 
for index, row in df.iterrows(): 
     cursor.execute("INSERT INTO HumanResources.DepartmentTest 
(DepartmentID,Name,GroupName) values(?,?,?)", row.DepartmentID, 
row.Name, row.GroupName) 
cnxn.commit() 
cursor.close() 

Confirm data in the database

SELECT count(*) from HumanResources.DepartmentTest; 



Plot a histogram for data exploration with Python

(No column name) 
16 

Next steps



Use ODBC to save and load R objects in
SQL Server Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

Learn how to use the RevoScaleR package to store serialized R objects in a table and
then load the object from the table as needed with SQL Server Machine Learning
Services. This can be used when training and saving a model, and then use it later for
scoring or analysis.

The RevoScaleR package includes serialization and deserialization functions that can R
objects compactly to SQL Server and then read the objects from the table. In general,
each function call uses a simple key value store, in which the key is the name of the
object, and the value associated with the key is the varbinary R object to be moved in or
out of a table.

To save R objects to SQL Server directly from an R environment, you must:

established a connection to SQL Server using the RxOdbcData data source.
Call the new functions over the ODBC connection
Optionally, you can specify that the object not be serialized. Then, choose a new
compression algorithm to use instead of the default compression algorithm.

By default, any object that you call from R to move to SQL Server is serialized and
compressed. Conversely, when you load an object from a SQL Server table to use in your
R code, the object is deserialized and decompressed.

rxWriteObject  writes an R object into SQL Server using the ODBC data source.

rxReadObject  reads an R object from a SQL Server database, using an ODBC data
source

rxDeleteObject  deletes an R object from the SQL Server database specified in the
ODBC data source. If there are multiple objects identified by the key/version
combination, all are deleted.

RevoScaleR package

List of new functions



rxListKeys  lists as key-value pairs all the available objects. This helps you
determine the names and versions of the R objects.

For detailed help on the syntax of each function, use R help. Details are also available in
the ScaleR reference.

This procedure demonstrates how you can use the new functions to create a model and
save it to SQL Server.

1. Set up the connection string for the SQL Server.

R

2. Create an rxOdbcData data source object in R using the connection string.

R

3. Delete the table if it already exists, and you don't want to track old versions of the
objects.

R

4. Define a table that can be used to store binary objects.

R

How to store R objects in SQL Server using
ODBC

conStr <- 'Driver={SQL 
Server};Server=localhost;Database=storedb;Trusted_Connection=true' 

ds <- RxOdbcData(table="robjects", connectionString=conStr) 

if(rxSqlServerTableExists(ds@table, ds@connectionString)) { 
    rxSqlServerDropTable(ds@table, ds@connectionString) 
    } 

ddl <- paste(" CREATE TABLE [", ds@table, "]  
   (","  [id] varchar(200) NOT NULL, 
    "," [value] varbinary(max), 
    "," CONSTRAINT unique_id UNIQUE (id))",  
    sep = "")  

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler


5. Open the ODBC connection to create the table, and when the DDL statement has
completed, close the connection.

R

6. Generate the R objects that you want to store.

R

7. Use the RxOdbcData object created earlier to save the model to the database.

R

This procedure demonstrates how you can use the new functions to load a model from
SQL Server.

1. Set up the connection string for the SQL Server.

R

2. Create an rxOdbcData data source object in R, using the connection string.

R

3. Read the model from the table by specifying its R object name.

 rxOpen(ds, "w")  
 rxExecuteSQLDDL(ds, ddl)  
 rxClose(ds) 

infertLogit <- rxLogit(case ~ age + parity + education + spontaneous + 
induced,  
  data = infert) 

rxWriteObject(ds, "logit.model", infertLogit) 

How to read R objects from SQL Server using
ODBC

conStr2 <- 'Driver={SQL 
Server};Server=localhost;Database=storedb;Trusted_Connection=true' 

ds <- RxOdbcData(table="robjects", connectionString=conStr2) 



R

What is SQL Server Machine Learning Services?

 infertLogit2 <- rxReadObject(ds, "logit.model") 

Next steps



Creating multiple models using
rxExecBy
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

Learn how to use the rxExecBy function in RevoScaleR to parallel process multiple
related models with SQL Server Machine Learning Services. Rather than train one large
model based on data from multiple similar entities, you can quickly create many related
models, each using data specific to a single entity.

For example, suppose you are monitoring device failures, capturing data for many
different types of equipment. By using rxExecBy, you can provide a single large dataset
as input, specify a column on which to stratify the dataset, such as device type, and then
create multiple models for individual devices.

This use case has been termed "pleasingly parallel"  because it breaks a large
complicated problem into component parts for concurrent processing.

Typical applications of this approach include forecasting for individual household smart
meters, creating revenue projections for separate product lines, or creating models for
loan approvals that are tailored to individual bank branches.

The rxExecBy function in RevoScaleR is designed for high-volume parallel processing
over a large number of small data sets.

1. You call the rxExecBy function as part of your R code, and pass a dataset of
unordered data.

2. Specify the partition by which the data should be grouped and sorted.
3. Define a transformation or modeling function that should be applied to each data

partition
4. When the function executes, the data queries are processed in parallel if your

environment supports it. Moreover, the modeling or transformation tasks are
distributed among individual cores and executed in parallel. Supported compute
context for thee operations include RxSpark and RxInSQLServer.

5. Multiple results are returned.

What rxExecBy can do

How rxExecBy works

https://en.wikipedia.org/wiki/Embarrassingly_parallel


rxExecBy takes four inputs, one of the inputs being a dataset or data source object that
can be partitioned on a specified key column. The function returns an output for each
partition. The form of the output depends on the function that is passed as an
argument. For example, if you pass a modeling function such as rxLinMod, you could
return a separate trained model for each partition of the dataset.

Modeling: rxLinMod , rxLogit , rxGlm , rxDtree

Scoring: rxPredict ,

Transformation or analysis: rxCovCor

The following example demonstrates how to create multiple models using the Airline
dataset, which is partitioned on the [DayOfWeek] column. The user-defined function,
delayFunc , is applied to each of the partitions by calling rxExecBy. The function creates
separate models for Mondays, Tuesdays, and so forth.

SQL

If you get the error, varsToPartition is invalid , check whether the name of the key
column or columns is typed correctly. The R language is case-sensitive.

This particular example is not optimized for SQL Server, and you could in many cases
achieve better performance by using SQL to group the data. However, using rxExecBy,

rxExecBy syntax and examples

Supported functions

Example

EXEC sp_execute_external_script 
@language = N'R' 
, @script = N' 
delayFunc <- function(key, data, params) {  
    df <- rxImport(inData = airlineData)  
    rxLinMod(ArrDelay ~ CRSDepTime, data = df)  
}  
OutputDataSet <- rxExecBy(airlineData, c("DayOfWeek"), delayFunc) 
' 
, @input_data_1 = N'select ArrDelay, DayOfWeek, CRSDepTime from 
AirlineDemoSmall]' 
, @input_data_1_name = N'airlineData' 



you can create parallel jobs from R.

The following example illustrates the process in R, using SQL Server as the compute
context:

R

What is SQL Server Machine Learning Services?

sqlServerConnString <- 
"SERVER=hostname;DATABASE=TestDB;UID=DBUser;PWD=Password;" 
inTable <- paste("airlinedemosmall") 
sqlServerDataDS <- RxSqlServerData(table = inTable, connectionString = 
sqlServerConnString) 

# user function 
".Count" <- function(keys, data, params) 
{ 
  myDF <- rxImport(inData = data)
  return (nrow(myDF)) 
} 

# Set SQL Server compute context with level of parallelism = 2 
sqlServerCC <- RxInSqlServer(connectionString = sqlServerConnString, 
numTasks = 4) 
rxSetComputeContext(sqlServerCC) 

# Execute rxExecBy in SQL Server compute context 
sqlServerCCResults <- rxExecBy(inData = sqlServerDataDS, keys = 
c("DayOfWeek"), func = .Count) 

Next steps



Data type mappings between Python
and SQL Server
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

This article lists the supported data types, and the data type conversions performed,
when using the Python integration feature in SQL Server Machine Learning Services.

Python supports a limited number of data types in comparison to SQL Server. As a
result, whenever you use data from SQL Server in Python scripts, SQL data might be
implicitly converted to a compatible Python data type. However, often an exact
conversion cannot be performed automatically and an error is returned.

This table lists the implicit conversions that are provided. Other data types are not
supported.

SQL type Python
type

Description

bigint float64

binary bytes

bit bool

char str

date datetime

datetime datetime Supported with SQL Server 2017 CU6 and above (with NumPy
arrays of type datetime.datetime  or Pandas pandas.Timestamp ).
sp_execute_external_script  now supports datetime  types with
fractional seconds.

float float64

nchar str

nvarchar str

nvarchar(max) str

Python and SQL Data Types

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


SQL type Python
type

Description

real float64

smalldatetime datetime

smallint int32

tinyint int32

uniqueidentifier str

varbinary bytes

varbinary(max) bytes

varchar(n) str

varchar(max) str

Data type mappings between R and SQL Server

See also



Data type mappings between R and SQL
Server
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

This article lists the supported data types, and the data type conversions performed,
when using the R integration feature in SQL Server Machine Learning Services.

SQL Server 2016 R Services and SQL Server Machine Learning Services with R are
aligned with specific releases of Microsoft R Open. For example, the latest release, SQL
Server 2019 Machine Learning Services, is built on Microsoft R Open 3.5.2.

To view the R version associated with a particular instance of SQL Server, open RGui in
the SQL instance. For example, the path for the default instance in SQL Server 2019
would be: C:\Program Files\Microsoft SQL
Server\MSSQL15.MSSQLSERVER\R_SERVICES\bin\x64\Rgui.exe .

The tool loads base R and other libraries. Package version information is provided in a
notification for each package that is loaded at session start up.

While SQL Server supports several dozen data types, R has a limited number of scalar
data types (numeric, integer, complex, logical, character, date/time, and raw). As a result,
whenever you use data from SQL Server in R scripts, data might be implicitly converted
to a compatible data type. However, often an exact conversion cannot be performed
automatically, and an error is returned, such as "Unhandled SQL data type".

This section lists the implicit conversions that are provided, and lists unsupported data
types. Some guidance is provided for mapping data types between R and SQL Server.

The following table shows the changes in data types and values when data from SQL
Server is used in an R script and then returned to SQL Server.

Base R version

R and SQL Data Types

Implicit data type conversions

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


SQL type R class RESULT SET
type

CommentsSQL type R class RESULT SET
type

Comments

bigint numeric float Executing an R script with
sp_execute_external_script  allows bigint data
type as input data. However, because they are
converted to R's numeric type, it suffers a
precision loss with values that are very high or
have decimal point values. R only support up to
53-bit integers and then it will start to have
precision loss.

binary(n) 
n <= 8000

raw varbinary(max) Only allowed as input parameter and output

bit logical bit

char(n) 
n <= 8000

character varchar(max) The input data frame (input_data_1) are created
without explicitly setting of stringsAsFactors
parameter so the column type will depend on
the default.stringsAsFactors() in R

datetime POSIXct datetime Represented as GMT

date POSIXct datetime Represented as GMT

decimal(p,s) numeric float Executing an R script with
sp_execute_external_script  allows decimal
data type as input data. However, because they
are converted to R's numeric type, it suffers a
precision loss with values that are very high or
have decimal point values.
sp_execute_external_script  with an R script
does not support the full range of the data type
and would alter the last few decimal digits
especially those with fraction.

float numeric float

int integer int

money numeric float Executing an R script with
sp_execute_external_script  allows money data
type as input data. However, because they are
converted to R's numeric type, it suffers a
precision loss with values that are very high or
have decimal point values. Sometimes cent
values would be imprecise and a warning would
be issued: Warning: unable to precisely
represent cents values.



SQL type R class RESULT SET
type

Comments

numeric(p,s) numeric float Executing an R script with
sp_execute_external_script  allows numeric
data type as input data. However, because they
are converted to R's numeric type, it suffers a
precision loss with values that are very high or
have decimal point values.
sp_execute_external_script  with an R script
does not support the full range of the data type
and would alter the last few decimal digits
especially those with fraction.

real numeric float

smalldatetime POSIXct datetime Represented as GMT

smallint integer int

smallmoney numeric float

tinyint integer int

uniqueidentifier character varchar(max)

varbinary(n) 
n <= 8000

raw varbinary(max) Only allowed as input parameter and output

varbinary(max) raw varbinary(max) Only allowed as input parameter and output

varchar(n) 
n <= 8000

character varchar(max) The input data frame (input_data_1) are created
without explicitly setting of stringsAsFactors
parameter so the column type will depend on
the default.stringsAsFactors() in R

Of the categories of data types supported by the SQL Server type system, the following
types are likely to pose problems when passed to R code:

Data types listed in the Other section of the SQL type system article: cursor,
timestamp, hierarchyid, uniqueidentifier, sql_variant, xml, table
All spatial types
image

Data types not supported by R

Data types that might convert poorly

https://learn.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-2017


Most datetime types should work, except for datetimeoffset.
Most numeric data types are supported, but conversions might fail for money and
smallmoney.
varchar is supported, but because SQL Server uses Unicode as a rule, use of
nvarchar and other Unicode text data types is recommended where possible.
Functions from the RevoScaleR library prefixed with rx can handle the SQL binary
data types (binary and varbinary), but in most scenarios special handling will be
required for these types. Most R code cannot work with binary columns.

For more information about SQL Server data types, see Data Types (Transact-SQL)

Microsoft SQL Server 2016 and later include improvements in data type conversions and
in several other operations. Most of these improvements offer increased precision when
you deal with floating-point types, as well as minor changes to operations on classic
datetime types.

These improvements are all available by default when you use a database compatibility
level of 130 or later. However, if you use a different compatibility level, or connect to a
database using an older version, you might see differences in the precision of numbers
or other results.

For more information, see SQL Server 2016 improvements in handling some data types
and uncommon operations .

In general, whenever you have any doubt about how a particular data type or data
structure is being used in R, use the str()  function to get the internal structure and
type of the R object. The result of the function is printed to the R console and is also
available in the query results, in the Messages tab in Management Studio.

When retrieving data from a database for use in R code, you should always eliminate
columns that cannot be used in R, as well as columns that are not useful for analysis,
such as GUIDS (uniqueidentifier), timestamps and other columns used for auditing, or
lineage information created by ETL processes.

Note that inclusion of unnecessary columns can greatly reduce the performance of R
code, especially if high cardinality columns are used as factors. Therefore, we

Changes in data types between SQL Server
versions

Verify R and SQL data schemas in advance

https://learn.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-2017
https://support.microsoft.com/help/4010261/sql-server-2016-improvements-in-handling-some-data-types-and-uncommon-


recommend that you use SQL Server system stored procedures and information views to
get the data types for a given table in advance, and eliminate or convert incompatible
columns. For more information, see Information Schema Views in Transact-SQL

If a particular SQL Server data type is not supported by R, but you need to use the
columns of data in the R script, we recommend that you use the CAST and CONVERT
(Transact-SQL) functions to ensure that the data type conversions are performed as
intended before using the data in your R script.

The following example demonstrates how data is transformed when making the round-
trip between SQL Server and R.

The query gets a series of values from a SQL Server table, and uses the stored procedure
sp_execute_external_script to output the values using the R runtime.

SQL

２ Warning

If you use the rxDataStep to drop incompatible columns while moving data, be
aware that the arguments varsToKeep and varsToDrop are not supported for the
RxSqlServerData data source type.

Examples

Example 1: Implicit conversion

CREATE TABLE MyTable (     
 c1 int,     
 c2 varchar(10),     
 c3 uniqueidentifier     
);     
go     
INSERT MyTable VALUES(1, 'Hello', newid());     
INSERT MyTable VALUES(-11, 'world', newid());     
SELECT * FROM MyTable;     
   
EXECUTE sp_execute_external_script     
 @language = N'R'     
 , @script = N'     
inputDataSet["cR"] <- c(4, 2)    
str(inputDataSet)     
outputDataSet <- inputDataSet'     
 , @input_data_1 = N'SELECT c1, c2, c3 FROM MyTable'     
 , @input_data_1_name = N'inputDataSet'     

https://learn.microsoft.com/en-us/sql/relational-databases/system-information-schema-views/system-information-schema-views-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


Results

Row # C1 C2 C3 C4

1 1 Hello 6e225611-4b58-4995-a0a5-554d19012ef1 4

2 -11 world 6732ea46-2d5d-430b-8ao1-86e7f3351c3e 2

Note the use of the str  function in R to get the schema of the output data. This
function returns the following information:

Output

From this, you can see that the following data type conversions were implicitly
performed as part of this query:

Column C1. The column is represented as int in SQL Server, integer  in R, and int in
the output result set.

No type conversion was performed.

Column C2. The column is represented as varchar(10) in SQL Server, factor  in R,
and varchar(max) in the output.

Note how the output changes; any string from R (either a factor or a regular string)
will be represented as varchar(max), no matter what the length of the strings is.

Column C3. The column is represented as uniqueidentifier in SQL Server,
character  in R, and varchar(max) in the output.

Note the data type conversion that happens. SQL Server supports the
uniqueidentifier but R does not; therefore, the identifiers are represented as
strings.

Column C4. The column contains values generated by the R script and not present
in the original data.

 , @output_data_1_name = N'outputDataSet'     
 WITH RESULT SETS((C1 int, C2 varchar(max), C3 varchar(max), C4 float));   

'data.frame':2 obs. of  4 variables: 
 $ c1: int  1 -11 
 $ c2: Factor w/ 2 levels "Hello","world": 1 2 
 $ c3: Factor w/ 2 levels "6732EA46-2D5D-430B-8A01-86E7F3351C3E",..: 2 1 
 $ cR: num  4 2 



The following example shows how you can use R code to check for invalid column types.
The gets the schema of a specified table using the SQL Server system views, and
removes any columns that have a specified invalid type.

R

Data type mappings between Python and SQL Server

Example 2: Dynamic column selection using R

connStr <- "Server=.;Database=TestDB;Trusted_Connection=Yes" 
data <- RxSqlServerData(connectionString = connStr, sqlQuery = "SELECT 
COLUMN_NAME FROM TestDB.INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 
N'testdata' AND DATA_TYPE <> 'image';") 
columns <- rxImport(data) 
columnList <- do.call(paste, c(as.list(columns$COLUMN_NAME), sep = ",")) 
sqlQuery <- paste("SELECT", columnList, "FROM testdata") 

See also



Modify R/Python code to run in SQL
Server (In-Database) instances
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

This article provides high-level guidance on how to modify R or Python code to run as a
SQL Server stored procedure to improve performance when accessing SQL data.

When you move R/Python code from a local IDE or other environment to SQL Server,
the code generally works without further modification. This is especially true for simple
code, such as a function that takes some inputs and returns a value. It's also easier to
port solutions that use the RevoScaleR/revoscalepy packages, which support execution
in different execution contexts with minimal changes. Note that MicrosoftML applies to
SQL Server 2016 (13.x), SQL Server 2017 (14.x), and SQL Server 2019 (15.x), and does not
appear in SQL Server 2022 (16.x).

However, your code might require substantial changes if any of the following apply:

You use libraries that access the network or that cannot be installed on SQL Server.
The code makes separate calls to data sources outside SQL Server, such as Excel
worksheets, files on shares, and other databases.
You want to parameterize the stored procedure and run the code in the @script
parameter of sp_execute_external_script.
Your original solution includes multiple steps that might be more efficient in a
production environment if executed independently, such as data preparation or
feature engineering vs. model training, scoring, or reporting.
You want to optimize performance by changing libraries, using parallel execution,
or offloading some processing to SQL Server.

Determine which packages are needed and ensure that they work on SQL Server.

Install packages in advance, in the default package library used by Machine
Learning Services. User libraries are not supported.

Step 1. Plan requirements and resources

Packages

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


If you intend to embed your code in sp_execute_external_script, identify primary
and secondary data sources.

Primary data sources are large datasets, such as model training data, or input
data for predictions. Plan to map your largest dataset to the input parameter of
sp_execute_external_script.

Secondary data sources are typically smaller data sets, such as lists of factors, or
additional grouping variables.

Currently, sp_execute_external_script supports only a single dataset as input to the
stored procedure. However, you can add multiple scalar or binary inputs.

Stored procedure calls preceded by EXECUTE cannot be used as an input to
sp_execute_external_script. You can use queries, views, or any other valid SELECT
statement.

Determine the outputs you need. If you run code using sp_execute_external_script,
the stored procedure can output only one data frame as a result. However, you can
also output multiple scalar outputs, including plots and models in binary format, as
well as other scalar values derived from code or SQL parameters.

For a detailed look at the data type mappings between R/Python and SQL Server, see
these articles:

Data type mappings between R and SQL Server
Data type mappings between Python and SQL Server

Take a look at the data types used in your R/Python code and do the following:

Make a checklist of possible data type issues.

All R/Python data types are supported by SQL Server Machine Learning Services.
However, SQL Server supports a greater variety of data types than does R or
Python. Therefore, some implicit data type conversions are performed when
moving SQL Server data to and from your code. You might need to explicitly cast
or convert some data.

NULL values are supported. However, R uses the na  data construct to represent a
missing value, which is similar to a null.

Data sources

Data types

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


Consider eliminating dependency on data that cannot be used by R: for example,
rowid and GUID data types from SQL Server cannot be consumed by R and will
generate errors.

How much you change your code depends on whether you intend to submit the code
from a remote client to run in the SQL Server compute context, or intend to deploy the
code as part of a stored procedure. The latter can provide better performance and data
security, though it imposes some additional requirements.

Define your primary input data as a SQL query wherever possible to avoid data
movement.

When running code in a stored procedure, you can pass through multiple scalar
inputs. For any parameters that you want to use in the output, add the OUTPUT
keyword.

For example, the following scalar input @model_name  contains the model name,
which is also later modified by the R script, and output in its own column in the
results:

SQL

Step 2. Convert or repackage code

-- declare a local scalar variable which will be passed into the R 
script 
DECLARE @local_model_name AS NVARCHAR (50) = 'DefaultModel'; 

-- The below defines an OUTPUT variable in the scope of the R script, 
called model_name 
-- Syntactically, it is defined by using the @model_name name. Be aware 
that the sequence 
-- of these parameters is very important. Mandatory parameters to 
sp_execute_external_script 
-- must appear first, followed by the additional parameter definitions 
like @params, etc. 
EXECUTE sp_execute_external_script @language = N'R', @script = N' 
  model_name <- "Model name from R script" 
  OutputDataSet <- data.frame(InputDataSet$c1, model_name)' 
  , @input_data_1 = N'SELECT 1 AS c1' 
  , @params = N'@model_name nvarchar(50) OUTPUT' 
  , @model_name = @local_model_name OUTPUT; 

-- optionally, examine the new value for the local variable: 
SELECT @local_model_name; 



Any variables that you pass in as parameters of the stored procedure
sp_execute_external_script must be mapped to variables in the code. By default,
variables are mapped by name. All columns in the input dataset must also be
mapped to variables in the script.

For example, assume your R script contains a formula like this one:

R

An error is raised if the input dataset does not contain columns with the matching
names ArrDelay, CRSDepTime, DayOfWeek, CRSDepHour, and DayOfWeek.

In some cases, an output schema must be defined in advance for the results.

For example, to insert the data into a table, you must use the WITH RESULT SET
clause to specify the schema.

The output schema is also required if the script uses the argument @parallel=1 .
The reason is that multiple processes might be created by SQL Server to run the
query in parallel, with the results collected at the end. Therefore, the output
schema must be prepared before the parallel processes can be created.

In other cases, you can omit the result schema by using the option WITH RESULT
SETS UNDEFINED. This statement returns the dataset from the script without
naming the columns or specifying the SQL data types.

Consider generating timing or tracking data using T-SQL rather than R/Python.

For example, you could pass the system time or other information used for
auditing and storage by adding a T-SQL call that's passed through to the results,
rather than generating similar data in the script.

Avoid writing predictions or intermediate results to a file. Write predictions to a
table instead to avoid data movement.

Run all queries in advance, and review the SQL Server query plans to identify tasks
that can be performed in parallel.

If the input query can be parallelized, set @parallel=1  as part of your arguments to
sp_execute_external_script.

formula <- ArrDelay ~ CRSDepTime + DayOfWeek + CRSDepHour:DayOfWeek 

Improve performance and security

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


Parallel processing with this flag is typically possible any time that SQL Server can
work with partitioned tables or distribute a query among multiple processes and
aggregate the results at the end. Parallel processing with this flag is typically not
possible if you're training models using algorithms that require all data to be read,
or if you need to create aggregates.

Review your code to determine if there are steps that can be performed
independently, or performed more efficiently, by using a separate stored
procedure call. For example, you might get better performance by doing feature
engineering or feature extraction separately and saving the values to a table.

Look for ways to use T-SQL rather than R/Python code for set-based
computations.

For example, this R solution shows how user-defined T-SQL functions and R can
perform the same feature engineering task: Data Science End-to-End Walkthrough.

Consult with a database developer to determine ways to improve performance by
using SQL Server features such as memory-optimized tables, or, if you have
Enterprise Edition, Resource Governor.

If you're using R, then if possible replace conventional R functions with RevoScaleR
functions that support distributed execution. For more information, see
Comparison of Base R and RevoScaleR Functions.

Notify the administrator so that packages can be installed and tested in advance of
deploying your code.

In a development environment, it might be okay to install packages as part of your
code, but this is a bad practice in a production environment.

User libraries are not supported, regardless of whether you're using a stored
procedure or running R/Python code in the SQL Server compute context.

Create a T-SQL user-defined function, embedding your code using the sp-execute-
external-script statement.

If you have complex R code, use the R package sqlrutils to convert your code. This
package is designed to help experienced R users write good stored procedure

Step 3. Prepare for deployment

Package your R/Python code in a stored procedure

https://learn.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/introduction-to-memory-optimized-tables?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler-compared-to-base-r
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


code. You rewrite your R code as a single function with clearly defined inputs and
outputs, then use the sqlrutils package to generate the input and outputs in the
correct format. The sqlrutils package generates the complete stored procedure
code for you, and can also register the stored procedure in the database.

For more information and examples, see sqlrutils (SQL).

Leverage T-SQL tools and ETL processes. Perform feature engineering, feature
extraction, and data cleansing in advance as part of data workflows.

When you're working in a dedicated development environment, you might pull
data to your computer, analyze the data iteratively, and then write out or display
the results. However, when standalone code is migrated to SQL Server, much of
this process can be simplified or delegated to other SQL Server tools.

Use secure, asynchronous visualization strategies.

Users of SQL Server often cannot access files on the server, and SQL client tools
typically do not support the R/Python graphics devices. If you generate plots or
other graphics as part of the solution, consider exporting the plots as binary data
and saving to a table, or writing.

Wrap prediction and scoring functions in stored procedures for direct access by
applications.

To view examples of how R and Python solutions can be deployed in SQL Server, see
these tutorials:

Develop a predictive model in R with SQL machine learning

Predict NYC taxi fares with binary classification

SQL development for R data scientists

Predict ski rental with linear regression with SQL machine learning

Integrate with other workflows

Next steps

R tutorials

Python tutorials



Predict NYC taxi fares with binary classification



Native scoring using the PREDICT T-SQL
function with SQL machine learning
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Database  Azure SQL
Managed Instance  Azure Synapse Analytics

Learn how to use native scoring with the PREDICT T-SQL function to generate prediction
values for new data inputs in near-real-time. Native scoring requires that you have an
already-trained model.

The PREDICT  function uses the native C++ extension capabilities in SQL machine
learning. This methodology offers the fastest possible processing speed of forecasting
and prediction workloads and support models in Open Neural Network Exchange
(ONNX)  format or models trained using the RevoScaleR and revoscalepy packages.

Native scoring uses libraries that can read models in ONNX or a predefined binary
format, and generate scores for new data inputs that you provide. Because the model is
trained, deployed, and stored, it can be used for scoring without having to call the R or
Python interpreter. This means that the overhead of multiple process interactions is
reduced, resulting in faster prediction performance.

To use native scoring, call the PREDICT  T-SQL function and pass the following required
inputs:

A compatible model based on a supported model and algorithm.
Input data, typically defined as a T-SQL query.

The function returns predictions for the input data, together with any columns of source
data that you want to pass through.

PREDICT  is available on:

All editions of SQL Server 2017 and later on Windows and Linux
Azure SQL Managed Instance
Azure SQL Database

How native scoring works

Prerequisites

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017
https://onnx.ai/get-started.html


Azure SQL Edge
Azure Synapse Analytics

The function is enabled by default. You do not need to install R or Python, or enable
additional features.

The model formats supported by the PREDICT  function depends on the SQL platform on
which you perform native scoring. See the table below to see which model formats are
supported on which platform.

Platform ONNX model format RevoScale model format

SQL Server No Yes

Azure SQL Managed Instance Yes Yes

Azure SQL Database No Yes

Azure SQL Edge Yes No

Azure Synapse Analytics Yes No

The model must be trained in advance using one of the supported rx algorithms listed
below using the RevoScaleR or revoscalepy package.

Serialize the model using rxSerialize for R, and rx_serialize_model for Python. These
serialization functions have been optimized to support fast scoring.

The following algorithms are supported in revoscalepy and RevoScaleR.

revoscalepy algorithms
rx_lin_mod
rx_logit
rx_btrees
rx_dtree
rx_dforest

RevoScaleR algorithms

Supported models

RevoScale models

Supported RevoScale algorithms

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxserializemodel
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-serialize-model
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-lin-mod
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-logit
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-btrees
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-dtree
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-dforest


rxLinMod
rxLogit
rxBTrees
rxDtree
rxDForest

If you need to use an algorithms from MicrosoftML or microsoftml, use real-time
scoring with sp_rxPredict.

Unsupported model types include the following types:

Models containing other transformations
Models using the rxGlm  or rxNaiveBayes  algorithms in RevoScaleR or revoscalepy
equivalents
PMML models
Models created using other open-source or third-party libraries

In this example, you create a model using RevoScaleR in R, and then call the real-time
prediction function from T-SQL.

Run the following code to create the sample database and required tables.

SQL

Use the following statement to populate the data table with data from the iris dataset.

Examples

PREDICT with RevoScale model

Step 1. Prepare and save the model

CREATE DATABASE NativeScoringTest; 
GO 
USE NativeScoringTest; 
GO 
DROP TABLE IF EXISTS iris_rx_data; 
GO 
CREATE TABLE iris_rx_data ( 
    "Sepal.Length" float not null, "Sepal.Width" float not null 
  , "Petal.Length" float not null, "Petal.Width" float not null 
  , "Species" varchar(100) null 
); 
GO 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxlinmod
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxlogit
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxbtrees
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxdtree
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxdforest


SQL

Now, create a table for storing models.

SQL

The following code creates a model based on the iris dataset and saves it to the table
named models.

SQL

INSERT INTO iris_rx_data ("Sepal.Length", "Sepal.Width", "Petal.Length", 
"Petal.Width" , "Species") 
EXECUTE sp_execute_external_script 
  @language = N'R' 
  , @script = N'iris_data <- iris;' 
  , @input_data_1 = N'' 
  , @output_data_1_name = N'iris_data'; 
GO 

DROP TABLE IF EXISTS ml_models; 
GO 
CREATE TABLE ml_models ( model_name nvarchar(100) not null primary key 
  , model_version nvarchar(100) not null 
  , native_model_object varbinary(max) not null); 
GO 

DECLARE @model varbinary(max); 
EXECUTE sp_execute_external_script 
  @language = N'R' 
  , @script = N' 
    iris.sub <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25)) 
    iris.dtree <- rxDTree(Species ~ Sepal.Length + Sepal.Width + 
Petal.Length + Petal.Width, data = iris[iris.sub, ]) 
    model <- rxSerializeModel(iris.dtree, realtimeScoringOnly = TRUE) 
    ' 
  , @params = N'@model varbinary(max) OUTPUT' 
  , @model = @model OUTPUT 
  INSERT [dbo].[ml_models]([model_name], [model_version], 
[native_model_object]) 
  VALUES('iris.dtree','v1', @model) ; 

７ Note

Be sure to use the rxSerializeModel function from RevoScaleR to save the model.
The standard R serialize  function cannot generate the required format.

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxserializemodel


You can run a statement such as the following to view the stored model in binary
format:

SQL

The following simple PREDICT statement gets a classification from the decision tree
model using the native scoring function. It predicts the iris species based on attributes
you provide, petal length and width.

SQL

If you get the error, "Error occurred during execution of the function PREDICT. Model is
corrupt or invalid", it usually means that your query didn't return a model. Check
whether you typed the model name correctly, or if the models table is empty.

PREDICT T-SQL function
SQL machine learning documentation
Machine learning and AI with ONNX in SQL Edge
Deploy and make predictions with an ONNX model in Azure SQL Edge
Score machine learning models with PREDICT in Azure Synapse Analytics

SELECT *, datalength(native_model_object)/1024. as model_size_kb 
FROM ml_models; 

Step 2. Run PREDICT on the model

DECLARE @model varbinary(max) = ( 
  SELECT native_model_object 
  FROM ml_models 
  WHERE model_name = 'iris.dtree' 
  AND model_version = 'v1'); 
SELECT d.*, p.* 
  FROM PREDICT(MODEL = @model, DATA = dbo.iris_rx_data as d) 
  WITH(setosa_Pred float, versicolor_Pred float, virginica_Pred float) as p; 
go 

７ Note

Because the columns and values returned by PREDICT can vary by model type, you
must define the schema of the returned data by using a WITH clause.

Next steps

https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/azure/azure-sql-edge/onnx-overview
https://learn.microsoft.com/en-us/azure/azure-sql-edge/deploy-onnx
https://learn.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-predict


Real-time scoring with sp_rxPredict in
SQL Server
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

Learn how to perform real-time scoring with the sp_rxPredict system stored procedure
in SQL Server for high-performance predictions or scores in forecasting workloads.

Real-time scoring with sp_rxPredict  is language-agnostic and executes with no
dependencies on the R or Python runtimes in Machine Learning Services. Using a model
created and trained using Microsoft functions and serialized to a binary format in SQL
Server, you can use real-time scoring to generate predicted outcomes on new data
inputs on SQL Server instances that do not have the R or Python add-on installed.

Real-time scoring is supported on specific model types based on functions in
RevoScaleR or MicrosoftML in R, or revoscalepy or microsoftml in Python. It uses native
C++ libraries to generate scores based on user input provided to a machine learning
model stored in a special binary format.

Because a trained model can be used for scoring without having to call an external
language runtime in Machine Learning Services, the overhead of multiple processes is
reduced.

Real-time scoring is a multi-step process:

1. You enable the stored procedure that does scoring on a per-database basis.
2. You load the pre-trained model in binary format.
3. You provide new input data to be scored, either tabular or single rows, as input to

the model.
4. To generate scores, call the sp_rxPredict stored procedure.

Enable SQL Server CLR integration.

Enable real-time scoring.

How real-time scoring works

Prerequisites

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-rxpredict-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-rxpredict-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration/clr-integration-enabling?view=sql-server-2017


The model must be trained in advance using one of the supported rx algorithms.
For details, see Supported algorithms for sp_rxPredict .

Serialize the model using rxSerialize for R or rx_serialize_model for Python. These
serialization functions have been optimized to support fast scoring.

Save the model to the database engine instance from which you want to call it.
This instance is not required to have the R or Python runtime extension.

Enable this feature for each database that you want to use for scoring. The server
administrator should run the command-line utility, RegisterRExt.exe, which is included
with the RevoScaleR package.

1. Open an elevated command prompt, and navigate to the folder where
RegisterRExt.exe is located. The following path can be used in a default installation:

<SQLInstancePath>\R_SERVICES\library\RevoScaleR\rxLibs\x64\

2. Run the following command, substituting the name of your instance and the target
database where you want to enable the extended stored procedures:

RegisterRExt.exe /installRts [/instance:name] /database:databasename

For example, to add the extended stored procedure to the CLRPredict database on
the default instance, type:

RegisterRExt.exe /installRts /database:CLRPRedict

７ Note

Real-time scoring is currently optimized for fast predictions on smaller data sets,
ranging from a few rows to hundreds of thousands of rows. On big datasets, using
rxPredict might be faster.

Enable real-time scoring

Ｕ Caution

In order for real-time scoring to work, SQL CLR functionality needs to be enabled in
the instance and the database needs to be marked trustworthy. When you run the
script, these actions are performed for you. However, consider carefully the
additional security implications before doing this.

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-rxpredict-transact-sql?view=sql-server-2017#supported-algorithms
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxserializemodel
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-serialize-model
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxpredict


The instance name is optional if the database is on the default instance. If you're
using a named instance, specify the instance name.

3. RegisterRExt.exe creates the following objects:

Trusted assemblies
The stored procedure sp_rxPredict
A new database role, rxpredict_users . The database administrator can use
this role to grant permission to users who use the real-time scoring
functionality.

4. Add any users who need to run sp_rxPredict  to the new role.

To disable real-time scoring functionality, open an elevated command prompt, and run
the following command: RegisterRExt.exe /uninstallrts /database:<database_name>
[/instance:name]

This example describes the steps required to prepare and save a model for real-time
prediction, and provides an example in R of how to call the function from T-SQL.

The binary format required by sp_rxPredict is the same as the format required to use the
PREDICT function. Therefore, in your R code, include a call to rxSerializeModel, and be
sure to specify realtimeScoringOnly = TRUE , as in this example:

R

７ Note

In SQL Server 2017 and later, additional security measures are in place to prevent
problems with CLR integration. These measures impose additional restrictions on
the use of this stored procedure as well.

Disable real-time scoring

Example

Step 1. Prepare and save the model

model <- rxSerializeModel(model.name, realtimeScoringOnly = TRUE) 

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxserializemodel


You call sp_rxPredict  as you would any other stored procedure. In the current release,
the stored procedure takes only two parameters: @model for the model in binary
format, and @inputData for the data to use in scoring, defined as a valid SQL query.

Because the binary format is the same as that used by the PREDICT function, you can
use the models and data table from the preceding example.

SQL

Native scoring using the PREDICT T-SQL function with SQL machine learning
sp_rxPredict
SQL machine learning

Step 2. Call sp_rxPredict

DECLARE @irismodel varbinary(max) 
SELECT @irismodel = [native_model_object] from [ml_models] 
WHERE model_name = 'iris.dtree'  
AND model_version = 'v1' 

EXEC sp_rxPredict 
@model = @irismodel, 
@inputData = N'SELECT * FROM iris_rx_data' 

７ Note

The call to sp_rxPredict  fails if the input data for scoring does not include columns
that match the requirements of the model. Currently, only the following .NET data
types are supported: double, float, short, ushort, long, ulong and string.

Therefore, you might need to filter out unsupported types in your input data before
using it for real-time scoring.

For information about corresponding SQL types, see SQL-CLR Type Mapping or
Mapping CLR Parameter Data.

Next steps

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-rxpredict-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/sql-clr-type-mapping
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-types-net-framework/mapping-clr-parameter-data?view=sql-server-2017


Get Python package information
Article • 02/28/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

This article describes how to get information about installed Python packages, including
versions and installation locations, on SQL Server Machine Learning Services. Example
Python scripts show you how to list package information such as installation path and
version.

When you install machine learning with SQL Server, a single package library is created at
the instance level for each language that you install. The instance library is a secured
folder registered with SQL Server.

All script or code that runs in-database on SQL Server must load functions from the
instance library. SQL Server can't access packages installed to other libraries. This applies
to remote clients as well: any Python code running in the server compute context can
only use packages installed in the instance library. To protect server assets, the default
instance library can be modified only by a computer administrator.

The default path of the binaries for Python is:

C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES

This assumes the default SQL instance, MSSQLSERVER. If SQL Server is installed as a
user-defined named instance, the given name is used instead.

Enable external scripts by running the following SQL commands:

SQL

Run the following SQL statement if you want to verify the default library for the current
instance. This example returns the list of folders included in the Python sys.path
variable. The list includes the current directory and the standard library path.

SQL

Default Python library location

sp_configure 'external scripts enabled', 1; 
RECONFIGURE WITH override; 

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


For more information about the variable sys.path  and how it's used to set the
interpreter's search path for modules, see The Module Search Path .

The following Microsoft Python packages are installed with SQL Server Machine
Learning Services when you select the Python feature during setup.

Packages Version Description

revoscalepy 9.4.7 Used for remote compute contexts, streaming, parallel execution of rx
functions for data import and transformation, modeling, visualization,
and analysis.

microsoftml 9.4.7 Adds machine learning algorithms in Python.

For information on which version of Python is included, see Python and R versions.

By default, Python packages are refreshed through service packs and cumulative
updates. Additional packages and full version upgrades of core Python components are
possible only through product upgrades.

When you select the Python language option during setup, Anaconda 4.2 distribution
(over Python 3.5) is installed. In addition to Python code libraries, the standard
installation includes sample data, unit tests, and sample scripts.

EXECUTE sp_execute_external_script 
  @language =N'Python',
  @script=N'import sys; print("\n".join(sys.path))' 

Default Microsoft Python packages

Component upgrades

Default open-source Python packages

） Important

You should never manually overwrite the version of Python installed by SQL Server
Setup with newer versions on the web. Microsoft Python packages are based on
specific versions of Anaconda. Modifying your installation could destabilize it.

https://docs.python.org/2/tutorial/modules.html#the-module-search-path
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


The following example script displays a list of all Python packages installed in the SQL
Server instance.

SQL

If you've installed a Python package and want to make sure that it's available to a
particular SQL Server instance, you can execute a stored procedure to look for the
package and return messages.

For example, the following code looks for the scikit-learn  package. If the package is
found, the code prints the package version.

SQL

Result:

text

List all installed Python packages

EXECUTE sp_execute_external_script 
  @language = N'Python', 
  @script = N' 
import pkg_resources 
import pandas 
OutputDataSet = pandas.DataFrame(sorted([(i.key, i.version) for i in 
pkg_resources.working_set]))' 
WITH result sets((Package NVARCHAR(128), Version NVARCHAR(128))); 

Find a single Python package

EXECUTE sp_execute_external_script 
  @language = N'Python', 
  @script = N' 
import pkg_resources 
pkg_name = "scikit-learn" 
try: 
    version = pkg_resources.get_distribution(pkg_name).version 
    print("Package " + pkg_name + " is version " + version) 
except: 
    print("Package " + pkg_name + " not found") 
' 

STDOUT message(s) from external script: Package scikit-learn is version 
0.20.2 



The following example code returns the version of Python installed in the instance of
SQL Server.

SQL

Install packages with Python tools

View the version of Python

EXECUTE sp_execute_external_script 
  @language = N'Python', 
  @script = N' 
import sys 
print(sys.version) 
' 

Next steps



Install packages with Python tools on
SQL Server
Article • 02/28/2023

Applies to:  SQL Server 2017 (14.x) only

This article describes how to use standard Python tools to install new Python packages
on an instance of SQL Server Machine Learning Services. In general, the process for
installing new packages is similar to that in a standard Python environment. However,
some additional steps are required if the server does not have an Internet connection.

For more information about package location and installation paths, see Get Python
package information.

You must have SQL Server Machine Learning Services installed with the Python
language option.

Packages must be Python 3.5-compliant and run on Windows.

The Python package library is located in the Program Files folder of your SQL
Server instance and, by default, installing in this folder requires administrator
permissions. For more information, see Package library location.

Package installation is per instance. If you have multiple instances of Machine
Learning Services, you must add the package to each one.

Database servers are frequently locked down. In many cases, Internet access is
blocked entirely. For packages with a long list of dependencies, you will need to
identify these dependencies in advance and be ready to install each one manually.

Before adding a package, consider whether the package is a good fit for the SQL
Server environment.

We recommend that you use Python in-database for tasks that benefit from
tight integration with the database engine, such as machine learning, rather
than tasks that simply query the database.

Prerequisites

Other considerations



If you add packages that put too much computational pressure on the server,
performance will suffer.

On a hardened SQL Server environment, you might want to avoid the following:
Packages that require network access
Packages that require elevated file system access
Packages used for web development or other tasks that don't benefit by
running inside SQL Server

To install a new Python package that can be used in a script on SQL Server, you install
the package in the instance of Machine Learning Services. If you have multiple instances
of Machine Learning Services, you must add the package to each one.

The package installed in the following examples is CNTK, a framework for deep learning
from Microsoft that supports customization, training, and sharing of different types of
neural networks.

If you are installing Python packages on a server with no Internet access, you must
download the WHL file from a computer with Internet access and then copy the file to
the server.

For example, on an Internet-connected computer you can download a .whl  file for
CNTK and then copy the file to a local folder on the SQL Server computer. See Install
CNTK from Wheel Files for a list of available .whl  files for CNTK.

For more information about downloads of the CNTK framework for multiple platforms
and for multiple versions of Python, see Setup CNTK on your machine.

Locate the default Python library location used by SQL Server. If you have installed
multiple instances, locate the PYTHON_SERVICES  folder for the instance where you want to

Add a Python package on SQL Server

For offline install, download the Python package

） Important

Make sure that you get the Windows version of the package. If the file ends in .gz,
it's probably not the right version.

Locate the Python library

https://learn.microsoft.com/en-us/cognitive-toolkit/
https://learn.microsoft.com/en-us/cognitive-toolkit/setup-windows-python?tabs=cntkpy26#2-install-from-wheel-files
https://learn.microsoft.com/en-us/cognitive-toolkit/Setup-CNTK-on-your-machine


add the package.

For example, if Machine Learning Services was installed using defaults, and machine
learning was enabled on the default instance, the path is:

Console

Use the pip installer to install new packages. You can find pip.exe  in the Scripts
subfolder of the PYTHON_SERVICES  folder. SQL Server Setup does not add the Scripts
subfolder to the system path, so you must specify the full path, or you can add the
Scripts folder to the PATH variable in Windows.

If the computer has Internet access, provide the name of the package:

Console

You can also specify the URL of a specific package and version, for example:

Console

cd "C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\PYTHON_SERVICES" 

 Tip

For future debugging and testing, you might want to set up a Python environment
specific to the instance library.

Install the package using pip

７ Note

If you're using Visual Studio 2017, or Visual Studio 2015 with the Python extensions,
you can run pip install  from the Python Environments window. Click Packages,
and in the text box, provide the name or location of the package to install. You
don't need to type pip install ; it is filled in for you automatically.

scripts\pip.exe install cntk 

scripts\pip.exe install https://cntk.ai/PythonWheel/CPU-Only/cntk-2.1-
cp35-cp35m-win_amd64.whl 



If the computer does not have Internet access, specify the WHL file you
downloaded earlier. For example:

Console

You might be prompted to elevate permissions to complete the install. As the
installation progresses, you can see status messages in the command prompt window.

When installation is complete, you can immediately begin using the package in Python
scripts in SQL Server.

To use functions from the package in your script, insert the standard import
<package_name>  statement in the initial lines of the script:

SQL

Get Python package information
Python tutorials for SQL Server Machine Learning Services
Python API for CNTK .

scripts\pip.exe install C:\Downloads\cntk-2.1-cp35-cp35m-win_amd64.whl 

Load the package or its functions as part of your script

EXECUTE sp_execute_external_script  
  @language = N'Python',  
  @script = N' 
import cntk 
# Python statements ... 
' 

See also

https://cntk.ai/pythondocs/tutorials.html


Get R package information
Article • 08/01/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

This article describes how to get information about installed R packages on SQL Server
Machine Learning Services. Example R scripts show you how to list package information
such as installation path and version.

When you install machine learning with SQL Server, a single package library is created at
the instance level for each language that you install. On Windows, the instance library is
a secured folder registered with SQL Server.

All script that runs in-database on SQL Server must load functions from the instance
library. SQL Server can't access packages installed to other libraries. This applies to
remote clients as well: any R script running in the server compute context can only use
packages installed in the instance library. To protect server assets, the default instance
library can be modified only by a computer administrator.

The default path of the binaries for R is:

C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\R_SERVICES\library

This assumes the default SQL instance, MSSQLSERVER. If SQL Server is installed as a
user-defined named instance, the given name is used instead.

Run the following statement to verify the default R package library for the current
instance:

SQL

７ Note

Feature capabilities and installation options vary between versions of SQL Server.
Use the version selector dropdown to choose the appropriate version of SQL
Server.

Default R library location

EXECUTE sp_execute_external_script  
  @language = N'R',
  @script = N'OutputDataSet <- data.frame(.libPaths());'

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to


The following Microsoft R packages are installed with SQL Server Machine Learning
Services when you select the R feature during setup.

Packages Version Description

RevoScaleR 9.2 Used for remote compute contexts, streaming, parallel execution of rx
functions for data import and transformation, modeling, visualization,
and analysis.

sqlrutils 1.0.0 Used for including R script in stored procedures.

MicrosoftML 1.4.0 Adds machine learning algorithms in R.

olapR 1.0.0 Used for writing MDX statements in R.

By default, R packages are refreshed through service packs and cumulative updates.
Additional packages and full version upgrades of core R components are possible only
through product upgrades.

R support includes open-source R so that you can call base R functions and install
additional open-source and third-party packages. R language support includes core
functionality such as base, stats, utils, and others. A base installation of R also includes
numerous sample datasets and standard R tools such as RGui (a lightweight interactive
editor) and RTerm (an R command prompt).

For information on which version of R is included with each SQL Server version, see
Python and R versions.

WITH RESULT SETS (([DefaultLibraryName] VARCHAR(MAX) NOT NULL));
GO

Default Microsoft R packages

Component upgrades

Default open-source R packages

） Important

You should never manually overwrite the version of R installed by SQL Server Setup
with newer versions on the web. Microsoft R packages are based on specific
versions of R. Modifying your installation could destabilize it.

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/revoscaler


The following example uses the R function installed.packages()  in a Transact-SQL
stored procedure to display a list of R packages that have been installed in the
R_SERVICES library for the current SQL instance. This script returns package name and
version fields in the DESCRIPTION file.

SQL

For more information about the optional and default fields for the R package
DESCRIPTION field, see https://cran.r-project.org .

If you've installed an R package and want to make sure that it's available to a particular
SQL Server instance, you can execute a stored procedure to load the package and return
messages.

For example, the following statement looks for and loads the glue  package, if
available. If the package cannot be located or loaded, you get an error.

SQL

To see more information about the package, view the packageDescription . The following
statement returns information for the MicrosoftML package.

SQL

List all installed R packages

EXECUTE sp_execute_external_script
  @language=N'R',
@script = N'str(OutputDataSet);
packagematrix <- installed.packages();
Name <- packagematrix[,1];
Version <- packagematrix[,3];
OutputDataSet <- data.frame(Name, Version);',
@input_data_1 = N'
  '
WITH RESULT SETS ((PackageName nvarchar(250), PackageVersion nvarchar(max) 
))

Find a single R package

EXECUTE sp_execute_external_script  
  @language =N'R',
  @script=N'
require("glue")
'

https://cran.r-project.org/doc/manuals/R-exts.html#The-DESCRIPTION-file
https://cran.r-project.org/web/packages/glue/


Install packages with R tools

EXECUTE sp_execute_external_script
  @language = N'R',
  @script = N'
print(packageDescription("MicrosoftML"))
'

Next steps



Install packages with R tools
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x)  SQL Server 2017 (14.x)

This article describes how to use standard R tools to install new R packages to an
instance of SQL Server Machine Learning Services or SQL Server R Services. You can
install packages on a SQL Server that has an Internet connection, as well as one that is
isolated from the Internet.

In addition to standard R tools, you can install R packages using:

RevoScaleR

T-SQL (CREATE EXTERNAL LIBRARY)

R code running in SQL Server can use only packages installed in the default
instance library. SQL Server cannot load packages from external libraries, even if
that library is on the same computer. This includes R libraries installed with other
Microsoft products.

The R package library is located in the Program Files folder of your SQL Server
instance and, by default, installing in this folder requires administrator permissions.
For more information, see Package library location.

Non-administrators can install packages using RevoScaleR 9.0.1 and later, or using
CREATE EXTERNAL LIBRARY. The dbo_owner user, or a user with CREATE
EXTERNAL LIBRARY permission, can install R packages to the current database. For
more information, see:

Use RevoScaleR to install R packages
Use T-SQL (CREATE EXTERNAL LIBRARY) to install R packages on SQL Server

On a hardened SQL Server environment, you might want to avoid the following:
Packages that require network access
Packages that require elevated file system access
Packages used for web development or other tasks that don't benefit by
running inside SQL Server

General considerations

Online installation (with Internet access)



If the SQL Server has access to the Internet, then you can use standard package
installation tools to install R packages.

1. Determine the location of the instance library (see Get R package information) and
navigate to the folder where the R tools are installed.

For example the default path for a SQL Server default instance is:

C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\R_SERVICES\bin\x64\

2. Run R or Rgui as administrator from this folder.

3. Run the R command install.packages  and specify the package name. If the
package has any dependencies, the installer automatically downloads the
dependencies and installs them.

If you have multiple, side-by-side instances of SQL Server, run the installation separately
for each instance in which you want to use the package. Packages cannot be shared
across instances.

Frequently, servers that host production databases don't have an internet connection. To
install R packages in that environment, you download and prepare packages and
dependencies in advance (as zipped files), and then copy the files to a folder on the
server. Once the files are in place, the packages can be installed offline.

Identifying all dependencies gets complicated. For R, we recommend that you use
miniCRAN  to create a local repository. miniCRAN takes a list of packages you want to
install, analyzes dependencies, and collects all the necessary zipped files. It then creates
a single repository that you can copy to the isolated SQL Server instance. The igraph
package is also helpful in analyzing package dependencies.

For more information, see Create a local R package repository using miniCRAN.

Once the zip file is on the SQL Server instance, you can install it using standard R tools
on the server.

1. Determine the location of the instance library (see Get R package information) and
navigate to the folder where the R tools are installed.

For example the default path for a SQL Server default instance is:

C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\R_SERVICES\bin\x64\

Offline installation (no internet access)

https://andrie.github.io/miniCRAN/
https://igraph.org/r/


2. Run R or Rgui as administrator from this folder.

3. Run the R command install.packages  and specify the package or repository
name, and the location of the zipped files. For example:

R

This command extracts the R package mynewpackage  from its local zipped file and
installs the package. If the package has any dependencies, the installer checks for
existing packages in the library. If you have created a repository that includes the
dependencies, the installer installs the required packages as well.

As an alternative to miniCRAN, you can perform these steps manually:

1. Identify all package dependencies.
2. Check whether any required packages are already installed on the server. If the

package is installed, verify that the version is correct.
3. Download the package and all dependencies to a separate computer with Internet

access.
4. Place the package and dependencies in a single package archive.
5. Zip the archive if it's not already in zipped format.
6. Move the files to a folder accessible by the server.
7. Run a supported installation command or DDL statement to install the package

into the instance library.

Get R package information
Tips for using R packages
SQL Server R language tutorials

install.packages("C:\\Temp\\Downloaded packages\\mynewpackage.zip", 
repos=NULL) 

７ Note

If any required packages are not present in the instance library, and cannot be
found in the zipped files, installation of the target package fails.

See also



Use T-SQL (CREATE EXTERNAL LIBRARY)
to install R packages on SQL Server
Article • 02/28/2023

Applies to:  SQL Server 2017 (14.x) only

This article explains how to install new R packages on an instance of SQL Server where
machine learning is enabled. There are multiple approaches to choose from. Using T-
SQL works best for server administrators who are unfamiliar with R.

The CREATE EXTERNAL LIBRARY statement makes it possible to add a package or set of
packages to an instance or a specific database without running R or Python code
directly. However, this method requires package preparation and additional database
permissions.

All packages must be available as a local zipped file, rather than downloaded on
demand from the internet.

All dependencies must be identified by name and version, and included in the zip
file. The statement fails if required packages are not available, including
downstream package dependencies.

You must be db_owner or have CREATE EXTERNAL LIBRARY permission in a
database role. For details, see CREATE EXTERNAL LIBRARY.

If you are installing a single package, download the package in zipped format.

It's more common to install multiple packages due to package dependencies. When a
package requires other packages, you must verify that all of them are accessible to each
other during installation. We recommend creating a local repository using miniCRAN
to assemble a full collection of packages, as well as igraph  for analyzing packages
dependencies. Installing the wrong version of a package or omitting a package
dependency can cause a CREATE EXTERNAL LIBRARY statement to fail.

Copy the zipped file containing all packages to a local folder on the server. If you do not
have access to the file system on the server, you can also pass a complete package as a

Download packages in archive format

Copy the file to a local folder

https://learn.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql?view=sql-server-2017
https://andrie.github.io/miniCRAN/
https://igraph.org/r/


variable, using a binary format. For more information, see CREATE EXTERNAL LIBRARY.

Open a Query window, using an account with administrative privileges.

Run the T-SQL statement CREATE EXTERNAL LIBRARY  to upload the zipped package
collection to the database.

For example, the following statement names as the package source a miniCRAN
repository containing the randomForest package, together with its dependencies.

SQL

You cannot use an arbitrary name; the external library name must have the same name
that you expect to use when loading or calling the package.

If the library is successfully created, you can run the package in SQL Server, by calling it
inside a stored procedure.

SQL

Get R package information
R tutorials

Run the statement to upload packages

CREATE EXTERNAL LIBRARY [randomForest] 
FROM (CONTENT = 'C:\Temp\Rpackages\randomForest_4.6-12.zip') 
WITH (LANGUAGE = 'R'); 

Verify package installation

EXEC sp_execute_external_script 
@language =N'R', 
@script=N'library(randomForest)' 

See also

https://learn.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql?view=sql-server-2017


Use RevoScaleR to install R packages
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x)  SQL Server 2017 (14.x)

This article describes how to use RevoScaleR (version 9.0.1 and later) functions to install
R packages on SQL Server with Machine Learning Services or R Services. The RevoScaleR
functions can be used by remote, non-administrators to install packages on SQL Server
without direct access to the server.

The following table describes the functions used for R package installation and
management.

Function Description

rxSqlLibPaths Determine the path of the instance library on the remote SQL Server.

rxFindPackage Gets the path for one or more packages on the remote SQL Server.

rxInstallPackages Call this function from a remote R client to install packages in a SQL Server
compute context, either from a specified repository, or by reading locally
saved zipped packages. This function checks for dependencies and ensures
that any related packages can be installed to SQL Server, just like R package
installation in the local compute context. To use this option, you must have
enabled package management on the server and database. Both client and
server environments must have the same version of RevoScaleR.

rxInstalledPackages Gets a list of packages installed in the specified compute context.

rxSyncPackages Copy information about a package library between the file system and
database, for the specified compute context.

rxRemovePackages Removes packages from a specified compute context. It also computes
dependencies and ensures that packages that are no longer used by other
packages on SQL Server are removed, to free up resources.

Remote management enabled on SQL Server. For more information, see Enable
remote R package management on SQL Server.

RevoScaleR functions for package management

Prerequisites

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsqllibpaths
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxfindpackage
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinstallpackages
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinstalledpackages
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsyncpackages
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxremovepackages


RevoScaleR versions are the same on both client and server environments. For
more information, see Get R package information.

You have permission to connect to the server and a database, and to run R
commands. You must be a member of a database role that allows you to install
packages on the specified instance and database.

Packages in shared scope can be installed by users belonging to the rpkgs-
shared  role in a specified database. All users in this role can uninstall shared
packages.

Packages in private scope can be installed by any user belonging to the rpkgs-
private  role in a database. However, users can see and uninstall only their own
packages.

Database owners can work with shared or private packages.

A client workstation can be Microsoft R Client or a Microsoft Machine Learning Server
(data scientists often use the free developer edition) on the same network.

When calling package management functions from a remote R client, you must create a
compute context object first, using the RxInSqlServer function. Thereafter, for each
package management function that you use, pass the compute context as an argument.

User identity is typically specified when setting the compute context. If you don't specify
a user name and password when you create the compute context, the identity of the
user running the R code is used.

1. From an R command line, define a connection string to the instance and database.

2. Use the RxInSqlServer constructor to define a SQL Server compute context, using
the connection string.

R

Client connections

） Important

The support for Machine Learning Server (previously known as R Server) ended on
July 1, 2022. For more information, see What's happening to Machine Learning
Server?

https://learn.microsoft.com/en-us/machine-learning-server/r-client/install-on-windows
https://learn.microsoft.com/en-us/machine-learning-server/install/machine-learning-server-windows-install
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinsqlserver
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinsqlserver
https://learn.microsoft.com/en-us/machine-learning-server/what-is-happening-to-machine-learning-server


3. Create a list of the packages you want to install and save the list in a string
variable.

R

4. Call rxInstallPackages and pass the compute context and the string variable
containing the package names.

R

If dependent packages are required, they are also installed, assuming an internet
connection is available on the client.

Packages are installed using the credentials of the user making the connection, in
the default scope for that user.

You can run package management functions inside sp_execute_external_script . When
you do so, the function is executed using the security context of the stored procedure
caller.

This section provides examples of how to use these functions from a remote client when
connecting to a SQL Server instance or database as the compute context.

For all examples, you must provide either a connection string, or a compute context,
which requires a connection string. This example provides one way to create a compute
context for SQL Server:

R

sqlcc <- RxInSqlServer(connectionString = myConnString, shareDir = 
sqlShareDir, wait = sqlWait, consoleOutput = sqlConsoleOutput) 

packageList <- c("e1071", "mice") 

rxInstallPackages(pkgs = packageList, verbose = TRUE, computeContext = 
sqlcc) 

Call package management functions in stored
procedures

Examples

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinstallpackages


Depending on where the server is located, and the security model, you might need to
provide a domain and subnet specification in the connection string, or use a SQL login.
For example:

R

This example gets the path for the RevoScaleR package on the compute context, sqlcc .

R

Results

"C:/Program Files/Microsoft SQL
Server/MSSQL14.MSSQLSERVER/R_SERVICES/library/RevoScaleR"

instance_name <- "computer-name/instance-name"; 
database_name <- "TestDB"; 
sqlWait= TRUE; 
sqlConsoleOutput <- TRUE; 
connString <- paste("Driver=SQL Server;Server=", instance_name, 
";Database=", database_name, ";Trusted_Connection=true;", sep=""); 
sqlcc <- RxInSqlServer(connectionString = connString, wait = sqlWait, 
consoleOutput = sqlConsoleOutput, numTasks = 4); 

connStr <- "Driver=SQL 
Server;Server=myserver.financeweb.contoso.com;Database=Finance;Uid=RUser1;Pw
d=RUserPassword" 

Get package path on a remote SQL Server compute
context

sqlPackagePaths <- rxFindPackage(package = "RevoScaleR", computeContext = 
sqlcc) 
print(sqlPackagePaths) 

 Tip

If you have enabled the option to see SQL console output, you might get status
messages from the function that precedes the print  statement. After you have
finished testing your code, set consoleOutput  to FALSE in the compute context
constructor to eliminate messages.



The following example gets the paths for the RevoScaleR and lattice packages, on the
compute context, sqlcc . To get information about multiple packages, pass a string
vector containing the package names.

R

Run this command from an R console to get the build number and version numbers for
packages installed on the compute context, sqlServer.

R

This example installs the forecast package and its dependencies into the compute
context.

R

This example removes the forecast package and its dependencies from the compute
context.

R

Get locations for multiple packages

packagePaths <- rxFindPackage(package = c("RevoScaleR", "lattice"), 
computeContext = sqlcc) 
print(packagePaths) 

Get package versions on a remote compute context

sqlPackages <- rxInstalledPackages(fields = c("Package", "Version", 
"Built"), computeContext = sqlServer) 

Install a package on SQL Server

pkgs <- c("forecast") 
rxInstallPackages(pkgs = pkgs, verbose = TRUE, scope = "private", 
computeContext = sqlcc) 

Remove a package from SQL Server

pkgs <- c("forecast") 
rxRemovePackages(pkgs = pkgs, verbose = TRUE, scope = "private", 
computeContext = sqlcc) 



The following example checks the database TestDB, and determines whether all
packages are installed in the file system. If some packages are missing, they are installed
in the file system.

R

Package synchronization works on a per database and per user basis. For more
information, see R package synchronization for SQL Server.

Run this command from Management Studio or another tool that supports T-SQL, to
get a list of installed packages on the current instance, using rxInstalledPackages  in a
stored procedure.

SQL

The rxSqlLibPaths  function can be used to determine the active library used by SQL
Server Machine Learning Services. This script can return only the library path for the
current server.

SQL

Synchronize packages between database and file system

# Instantiate the compute context
connectionString <- "Driver=SQL 
Server;Server=myServer;Database=TestDB;Trusted_Connection=True;" 
computeContext <- RxInSqlServer(connectionString = connectionString ) 

# Synchronize the packages in the file system for all scopes and users 
rxSyncPackages(computeContext=computeContext, verbose=TRUE) 

Use a stored procedure to list packages in SQL Server

EXEC sp_execute_external_script  
  @language=N'R',  
  @script=N' 
    myPackages <- rxInstalledPackages(); 
    OutputDataSet <- as.data.frame(myPackages); 
    ' 

declare @instance_name nvarchar(100) = @@SERVERNAME, @database_name 
nvarchar(128) = db_name(); 
exec sp_execute_external_script  
  @language = N'R', 
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  @script = N' 
    connStr <- paste("Driver=SQL Server;Server=", instance_name, 
";Database=", database_name, ";Trusted_Connection=true;", sep=""); 
    .libPaths(rxSqlLibPaths(connStr)); 
    print(.libPaths()); 
  ',  
  @input_data_1 = N'',  
  @params = N'@instance_name nvarchar(100), @database_name nvarchar(128)', 
  @instance_name = @instance_name,  
  @database_name = @database_name; 

See also



Enable or disable remote package
management for SQL Server
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x)  SQL Server 2017 (14.x)

This article describes how to enable remote management of R packages from a client
workstation or a different Machine Learning Server. After the package management
feature has been enabled on SQL Server, you can use RevoScaleR commands on a client
to install packages on SQL Server.

By default, the external package management feature for SQL Server is disabled. You
must run a separate script to enable the feature as described in the next section.

To enable or disable package management on SQL Server, use the command-line utility
RegisterRExt.exe, which is included with the RevoScaleR package.

Enabling this feature is a two-step process, requiring a database administrator: you
enable package management on the SQL Server instance (once per SQL Server
instance), and then enable package management on the SQL database (once per SQL
Server database).

Disabling the package management feature also requires multipel steps: you remove
database-level packages and permissions (once per database), and then remove the
roles from the server (once per instance).

1. On SQL Server, open an elevated command prompt and navigate to the folder
containing the utility, RegisterRExt.exe. The default location is
<SQLInstancePath>\R_SERVICES\library\RevoScaleR\rxLibs\x64\RegisterRExe.exe .

） Important

The support for Machine Learning Server (previously known as R Server) ended on
July 1, 2022. For more information, see What's happening to Machine Learning
Server?

Overview of process and tools

Enable package management

https://learn.microsoft.com/en-us/machine-learning-server/what-is-happening-to-machine-learning-server


2. Run the following command, providing appropriate arguments for your
environment:

RegisterRExt.exe /install pkgmgmt [/instance:name] [/user:username]

[/password:*|password]

This command creates instance-level objects on the SQL Server computer that are
required for package management. It also restarts the Launchpad for the instance.

If you do not specify an instance, the default instance is used. If you do not specify
a user, the current security context is used. For example, the following command
enables package management on the default instance, using the credentials of the
user who opened the command prompt:

REgisterRExt.exe /install pkgmgmt

3. To add package management to a specific database, run the following command
from an elevated command prompt:

RegisterRExt.exe /install pkgmgmt /database:databasename [/instance:name]

[/user:username] [/password:*|password]

This command creates some database artifacts, including the following database
roles that are used for controlling user permissions: rpkgs-users , rpkgs-private ,
and rpkgs-shared .

For example, the following command enables package management on the
database, on the default instance. If you do not specify a user, the current security
context is used.

RegisterRExt.exe /install pkgmgmt /database:TestDB

4. Repeat the command for each database where packages must be installed.

5. To verify that the new roles have been successfully created, in SQL Server
Management Studio, click the database, expand Security, and expand Database
Roles.

You can also run a query on sys.database_principals such as the following:

SQL

SELECT pr.principal_id, pr.name, pr.type_desc,    
    pr.authentication_type_desc, pe.state_desc,    
    pe.permission_name, s.name + '.' + o.name AS ObjectName   
FROM sys.database_principals AS pr   



After you have enabled this feature, you can use RevoScaleR function to install or
uninstall packages from a remote R client.

1. From an elevated command prompt, run the RegisterRExt utility again, and disable
package management at the database level:

RegisterRExt.exe /uninstall pkgmgmt /database:databasename [/instance:name]

[/user:username] [/password:*|password]

This command removes database objects related to package management from
the specified database. It also removes all the packages that were installed from
the secured file system location on the SQL Server computer.

2. Repeat this command on each database where package management was used.

3. (Optional) After all databases have been cleared of packages using the preceding
step, run the following command from an elevated command prompt:

RegisterRExt.exe /uninstall pkgmgmt [/instance:name] [/user:username]

[/password:*|password]

This command removes the package management feature from the instance. You
might need to manually restart the Launchpad service once more to see changes.

Use RevoScaleR to install R packages
Get R package information
Tips for using R packages

JOIN sys.database_permissions AS pe   
    ON pe.grantee_principal_id = pr.principal_id   
JOIN sys.objects AS o   
    ON pe.major_id = o.object_id   
JOIN sys.schemas AS s   
    ON o.schema_id = s.schema_id; 

Disable package management

Next steps



R package synchronization for SQL
Server
Article • 02/28/2023

Applies to:  SQL Server 2017 (14.x) only

The version of RevoScaleR included in SQL Server 2017 includes the ability to
synchronize collections of R packages between the file system and the instance and
database where packages are used.

This feature was provided to make it easier to back up R package collections associated
with SQL Server databases. Using this feature, an administrator can restore not just the
database, but any R packages that were used by data scientists working in that
database.

This article describes the package synchronization feature, and how to use the
rxSyncPackages function to perform the following tasks:

Synchronize a list of packages for an entire SQL Server database

Synchronize packages used by an individual user, or by a group of users

If a user moves to a different SQL Server, you can take a backup of the user's
working database and restore it to the new server, and the packages for the user
will be installed into the file system on the new server, as required by R.

For example, you might use package synchronization in these scenarios:

The DBA has restored an instance of SQL Server to a new machine and asks users
to connect from their R clients and run rxSyncPackages  to refresh and restore their
packages.

You think an R package on the file system is corrupted so you run rxSyncPackages
on the SQL Server.

Before you can use package synchronization, you must have the appropriate version of
Microsoft R. This feature is provided in Microsoft R version 9.1.0 or later.

You must also enable the package management feature on the server.

Requirements

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsyncpackages


This feature is available in SQL Server 2017 CTP 2 or later.

To use package synchronization requires that the new package management feature be
enabled on the SQL Server instance, and on individual databases. For more information,
see Enable or disable package management for SQL Server.

1. The server administrator enables the feature for the SQL Server instance.
2. For each database, the administrator grants individual users the ability to install or

share R packages, using database roles.

When this is done, you can use RevoScaleR functions, such as rxInstallPackages to install
packages into a database. Information about users and the packages that they can use
is stored in the SQL Server instance.

Whenever you add a new package using the package management functions, both the
records in SQL Server and the file system are updated. This information can be used to
restore package information for the entire database.

The person who executes the package synchronization function must be a security
principal on the SQL Server instance and database that has the packages.

The caller of the function must be a member of one of these package management
roles: rpkgs-shared or rpkgs-private.

To synchronize packages marked as shared, the person who is running the
function must have membership in the rpkgs-shared role, and the packages that
are being moved must have been installed to a shared scope library.

To synchronize packages marked as private, either the owner of the package or the
administrator must run the function, and the packages must be private.

To synchronize packages on behalf of other users, the owner must be a member of
the db_owner database role.

Determine whether your server supports package
management

Enable the package management feature

Permissions

How package synchronization works

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinstallpackages


To use package synchronization, call rxSyncPackages, which is a new function in
RevoScaleR.

For each call to rxSyncPackages , you must specify a SQL Server instance and database.
Then, either list the packages to synchronize, or specify package scope.

1. Create the SQL Server compute context by using the RxInSqlServer  function. If
you don't specify a compute context, the current compute context is used.

2. Provide the name of a database on the instance in the specified compute context.
Packages are synchronized per database.

3. Specify the packages to synchronize by using the scope argument.

If you use private scope, only packages owned by the specified owner are
synchronized. If you specify shared scope, all non-private packages in the database
are synchronized.

If you run the function without specifying either private or shared scope, all
packages are synchronized.

4. If the command is successful, existing packages in the file system are added to the
database, with the specified scope and owner.

If the file system is corrupted, the packages are restored based on the list
maintained in the database.

If the package management feature is not available on the target database, an
error is raised: "The package management feature is either not enabled on the SQL
Server or version is too old"

This example gets any new packages from the local file system and installs the packages
in the database [TestDB]. Because no owner is specific, the list includes all packages that
have been installed for private and shared scopes.

R

Example 1. Synchronize all package by database

connectionString <- "Driver=SQL 
Server;Server=myServer;Database=TestDB;Trusted_Connection=True;" 
computeContext <- RxInSqlServer(connectionString = connectionString ) 
rxSyncPackages(computeContext=computeContext, verbose=TRUE) 

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxsyncpackages
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler


The following examples synchronize only the packages in the specified scope.

R

The following example demonstrates how to synchronize only the packages that were
installed for a specific user. In this example, the user is identified by the SQL login name,
user1.

R

R package management for SQL Server

Example 2. Restrict synchronized packages by scope

#Shared scope 
rxSyncPackages(computeContext=computeContext, scope="shared", verbose=TRUE) 

#Private scope 
rxSyncPackages(computeContext=computeContext, scope="private", verbose=TRUE) 

Example 3. Restrict synchronized packages by owner

rxSyncPackages(computeContext=computeContext, scope="private", owner = 
"user1", verbose=TRUE)) 

Related resources

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017


Create a local R package repository
using miniCRAN
Article • 08/01/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

This article describes how to install R packages offline by using miniCRAN  to create a
local repository of packages and dependencies. miniCRAN identifies and downloads
packages and dependencies into a single folder that you copy to other computers for
offline R package installation.

You can specify one or more packages, and miniCRAN recursively reads the dependency
tree for these packages. It then downloads only the listed packages and their
dependencies from CRAN or similar repositories.

When it's done, miniCRAN creates an internally consistent repository consisting of the
selected packages and all required dependencies. You can move this local repository to
the server, and proceed to install the packages without an internet connection.

Experienced R users often look for the list of dependent packages in the DESCRIPTION
file of a downloaded package. However, packages listed in Imports might have second-
level dependencies. For this reason, we recommend miniCRAN for assembling the full
collection of required packages.

The goal of creating a local package repository is to provide a single location that a
server administrator or other users in the organization can use to install new R packages
on a server, especially one that does not have internet access. After creating the
repository, you can modify it by adding new packages or upgrading the version of
existing packages.

Package repositories are useful in these scenarios:

Security: Many R users are accustomed to downloading and installing new R
packages at will, from CRAN or one of its mirror sites. However, for security
reasons, production servers running SQL Server typically do not have internet
connectivity.

Easier offline installation: To install a package to an offline server requires that you
also download all package dependencies. Using miniCRAN makes it easier to get

Why create a local repository

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://cran.r-project.org/web/packages/miniCRAN/index.html


all dependencies in the correct format and avoid dependency errors.

Improved version management: In a multi-user environment, there are good
reasons to avoid unrestricted installation of multiple package versions on the
server. Use a local repository to provide a consistent set of packages for your users.

The miniCRAN package itself is dependent on 18 other CRAN packages, among which is
the RCurl package, which has a system dependency on the curl-devel package. Similarly,
package XML has a dependency on libxml2-devel. To resolve dependencies, we
recommend that you build your local repository initially on a machine with full internet
access.

Run the following commands on a computer with a base R, R tools, and internet
connection. It's assumed that this is not your SQL Server computer. The following
commands install the miniCRAN package and the igraph package. This example checks
whether the package is already installed, but you can bypass the if  statements and
install the packages directly.

R

Specify a mirror site to use in getting packages. For example, you could use the MRAN
site, or any other site in your region that contains the packages you need. If a download
fails, try another mirror site .

R

Create a local folder in which to store the collected packages. If you repeat this often,
you might want to use a descriptive name, such as "miniCRANZooPackages" or
"miniCRANMyRPackageV2".

Install miniCRAN

if(!require("miniCRAN")) install.packages("miniCRAN") 
if(!require("igraph")) install.packages("igraph") 
library("miniCRAN")

Set the CRAN mirror and MRAN snapshot

CRAN_mirror <- c(CRAN = "https://mirrors.nics.utk.edu/cran/")

Create a local folder

https://cran.r-project.org/mirrors.html


Specify the folder as the local repo. R syntax uses a forward slash for path names, which
is opposite from Windows conventions.

R

After miniCRAN is installed and loaded, create a list that specifies the additional
packages you want to download.

Do not add dependencies to this initial list. The igraph package used by miniCRAN
generates the list of dependencies automatically. For more information about how to
use the generated dependency graph, see Using miniCRAN to identify package
dependencies .

1. Add target packages "zoo" and "forecast" to a variable.

R

2. Optionally, plot the dependency graph. This is not necessary, but it can be
informative.

R

3. Create the local repo. Be sure to change the R version, if necessary, to the version
installed on your SQL Server instance. If you did a component upgrade, your
version might be newer than the original version. For more information, see Get R
package information.

R

From this information, the miniCRAN package creates the folder structure that you
need to copy the packages to the SQL Server later.

local_repo <- "C:/miniCRANZooPackages"

Add packages to the local repo

pkgs_needed <- c("zoo", "forecast")

plot(makeDepGraph(pkgs_needed))

pkgs_expanded <- pkgDep(pkgs_needed, repos = CRAN_mirror);
makeRepo(pkgs_expanded, path = local_repo, repos = CRAN_mirror, type = 
"win.binary", Rversion = "3.3");

https://cran.r-project.org/web/packages/miniCRAN/vignettes/miniCRAN-dependency-graph.html


At this point you should have a folder containing the packages you need and any
additional packages that are required. The folder should contain a collection of zipped
packages. Do not unzip the packages or rename any files.

Optionally, run the following code to list the packages contained in the local miniCRAN
repository.

R

After you have a local repository with the packages you need, move the package
repository to the SQL Server computer. The following procedure describes how to install
the packages using R tools.

1. Copy the folder containing the miniCRAN repository, in its entirety, to the server
where you plan to install the packages. The folder typically has this structure:

<miniCRAN root>/bin/windows/contrib/version/<all packages>

In this procedure, we assume a folder off the root drive.

2. Open an R tool associated with the instance (for example, you could use Rgui.exe).
Right-click and select Run as administrator to allow the tool to make updates to
your system.

For example, the file location for RGUI is C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES\bin\x64 .

3. Get the path for the instance library, and add it to the list of library paths.

For example,

R

pdb <- as.data.frame(pkgAvail(local_repo, type = "win.binary", Rversion = 
"3.3"), stringsAsFactors = FALSE);
head(pdb);
pdb$Package;
pdb[, c("Package", "Version", "License")]

Add packages to the instance library

outputlib <- "C:/Program Files/Microsoft SQL 
Server/MSSQL14.MSSQLSERVER/R_SERVICES/library"



4. Specify the new location on the server where you copied the miniCRAN repository
as server_repo .

In this example, we assume that you copied the repository to a temporary folder
on the server.

R

5. Since you're working in a new R workspace on the server, you must also furnish the
list of packages to install.

R

6. Install the packages, providing the path to the local copy of the miniCRAN repo.

R

7. From the instance library, you can view the installed packages using a command
like the following:

R

Get R package information
R tutorials

inputlib <- "C:/miniCRANZooPackages"

mypackages <- c("zoo", "forecast")

install.packages(mypackages, repos = file.path("file://", 
normalizePath(inputlib, winslash = "/")), lib = outputlib, type = 
"win.binary", dependencies = TRUE);

installed.packages()

Next steps



Tips for using R packages
Article • 08/01/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

This article provides helpful tips on using R packages in SQL Server. These tips are for
DBAs who are unfamiliar with R, and experienced R developers who are unfamiliar with
package access in a SQL Server instance.

As an administrator installing R packages for the first time, knowing a few basics about
R package management can help you get started.

R packages frequently depend on multiple other packages, some of which might not be
available in the default R library used by the instance. Sometimes a package requires a
different version of a dependent package than what's already installed. Package
dependencies are noted in a DESCRIPTION file embedded in the package, but are
sometimes incomplete. You can use a package called iGraph  to fully articulate the
dependency graph.

If you need to install multiple packages, or want to ensure that everyone in your
organization gets the correct package type and version, we recommend that you use
the miniCRAN  package to analyze the complete dependency chain. miniCRAN creates
a local repository that can be shared among multiple users or computers.

There are multiple sources for R packages, such as CRAN  and Bioconductor . The
official site for the R language (https://www.r-project.org/ ) lists many of these
resources. Many packages are published to GitHub, where developers can obtain the
source code.

R packages run on multiple computing platforms. Be sure that the versions you install
are Windows binaries.

If you're new to R

Package dependencies

Package sources, versions, and formats

Know which library you're installing to and which
packages are already installed

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://igraph.org/r/
https://cran.r-project.org/web/packages/miniCRAN
https://cran.r-project.org/
https://www.bioconductor.org/
https://www.r-project.org/


If you have previously modified the R environment on the computer, before installing
anything ensure that the R environment variable .libPath  uses just one path.

This path should point to the R_SERVICES folder for the instance. For more information,
including how to determine which packages are already installed, see Get R package
information.

As an R developer working on code executing on SQL Server, the security policies
protecting the server constrain your ability to control the R environment. The following
tips describe typical situations and provide suggestions for working in this environment.

R developers who need to install new R packages are accustomed to installing packages
at will, using a private, user library whenever the default library is not available, or when
the developer is not an administrator on the computer. For example, in a typical R
development environment, the user would add the location of the package to the R
environment variable libPath , or reference the full package path, like this:

R

This does not work when running R solutions in SQL Server, because R packages must
be installed to a specific default library that is associated with the instance. When a
package is not available in the default library, you get this error when you try to call the
package:

Error in library(xxx) : there is no package called 'package-name'

For information on how to install R packages in SQL Server, see Install new R packages
on SQL Server Machine Learning Services or SQL Server R Services.

Using the following guidelines will help you avoid "package not found" errors.

Eliminate dependencies on user libraries.

If you're new to SQL Server

R user libraries: not supported on SQL Server

library("c:/Users/<username>/R/win-library/packagename")

How to avoid "package not found" errors

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-r-packages-on-sql-server?view=sql-server-2017


It's a bad development practice to install required R packages to a custom user
library. This can lead to errors if a solution is run by another user who does not
have access to the library location.

Also, if a package is installed in the default library, the R runtime loads the package
from the default library, even if you specify a different version in the R code.

Make sure your code is able to run in a shared environment.

Avoid installing packages as part of a solution. If you don't have permissions to
install packages, the code will fail. Even if you do have permissions to install
packages, you should do so separately from other code that you want to execute.

Check your code to make sure that there are no calls to uninstalled packages.

Update your code to remove direct references to the paths of R packages or R
libraries.

Know which package library is associated with the instance. For more information,
see Get R package information.

Install packages with R tools

See also



Monitor Python and R script execution
using custom reports in SQL Server
Management Studio
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

Use custom reports in SQL Server Management Studio (SSMS) to monitor the execution
of external scripts (Python and R), resources used, diagnose problems, and tune
performance in SQL Server Machine Learning Services.

In these reports, you can view details such as:

Active Python or R sessions
Configuration settings for the instance
Execution statistics for machine learning jobs
Extended events for R Services
Python or R packages installed on the current instance

This article explains how to install and use the custom reports provided for SQL Server
Machine Learning Services.

For more information on reports in SQL Server Management Studio, see Custom reports
in Management Studio.

The reports are designed using SQL Server Reporting Services, but can be used directly
from SQL Server Management Studio. Reporting Services does not have to be installed
on your SQL Server instance.

To use these reports, follow these steps:

1. Download the SSMS Custom Reports  for SQL Server Machine Learning Services
from GitHub.

2. Copy the reports to Management Studio

a. Locate the custom reports folder used by SQL Server Management Studio. By
default, custom reports are stored in this folder (where user_name is your
Windows user name):

How to install the reports

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/ssms/object/custom-reports-in-management-studio?view=sql-server-2017
https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/machine-learning-services/ssms-custom-reports


C:\Users\user_name\Documents\SQL Server Management Studio\Custom Reports

You can also specify a different folder, or create subfolders.

b. Copy the *.RDL files you downloaded to the custom reports folder.

3. Run the reports in Management Studio

a. In Management Studio, right-click the Databases node for the instance where
you want to run the reports.

b. Click Reports, and then click Custom Reports.

c. In the Open File dialog box, locate the custom reports folder.

d. Select one of the RDL files you downloaded, and then click Open.

The SSMS Custom Reports repository in GitHub  includes the following reports:

Report Description

Active
Sessions

Users who are currently connected to the SQL Server instance and running a
Python or R script.

Configuration Installation settings of Machine Learning Services and properties of the Python or
R runtime.

Configure
Instance

Configure Machine Learning Services.

Execution
Statistics

Execution statistics of Machine Learning services. For example, you can get the
total number of external scripts executions and number of parallel executions.

Extended
Events

Extended events that are available to get more insights into external scripts
execution.

Packages List the R or Python packages installed on the SQL Server instance and their
properties, such as version and name.

Resource
Usage

View the CPU, Memory, IO consumption of SQL Server, and external scripts
execution. You can also view the memory setting for external resource pools.

Reports

Next steps

https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/machine-learning-services/ssms-custom-reports


Monitor SQL Server Machine Learning Services using dynamic management views
(DMVs)
Monitor Python and R scripts with extended events in SQL Server Machine
Learning Services



Monitor SQL Server Machine Learning
Services using dynamic management
views (DMVs)
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

Use dynamic management views (DMVs) to monitor the execution of external scripts
(Python and R), resources used, diagnose problems, and tune performance in SQL Server
Machine Learning Services.

In this article, you will find the DMVs that are specific for SQL Server Machine Learning
Services. You will also find example queries that show:

Settings and configuration options for machine learning
Active sessions running external Python or R scripts
Execution statistics for the external runtime for Python and R
Performance counters for external scripts
Memory usage for the OS, SQL Server, and external resource pools
Memory configuration for SQL Server and external resource pools
Resource Governor resource pools, including external resource pools
Installed packages for Python and R

For more general information about DMVs, see System Dynamic Management Views.

The following dynamic management views can be used when monitoring machine
learning workloads in SQL Server. To query the DMVs, you need VIEW SERVER STATE
permission on the instance.

Dynamic management view Type Description

 Tip

You can also use the custom reports to monitor SQL Server Machine Learning
Services. For more information, see Monitor machine learning using custom
reports in Management Studio.

Dynamic management views

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-2017


Dynamic management view Type Description

sys.dm_external_script_requests Execution Returns a row for each
active worker account
that is running an
external script.

sys.dm_external_script_execution_stats Execution Returns one row for each
type of external script
request.

sys.dm_os_performance_counters Execution Returns a row per
performance counter
maintained by the
server. If you use the
search condition WHERE
object_name LIKE

'%External Scripts%' ,
you can use this
information to see how
many scripts ran, which
scripts were run using
which authentication
mode, or how many R or
Python calls were issued
on the instance overall.

sys.dm_resource_governor_external_resource_pools Resource
Governor

Returns information
about the current
external resource pool
state in Resource
Governor, the current
configuration of
resource pools, and
resource pool statistics.

sys.dm_resource_governor_external_resource_pool_affinity Resource
Governor

Returns CPU affinity
information about the
current external resource
pool configuration in
Resource Governor.
Returns one row per
scheduler in SQL Server
where each scheduler is
mapped to an individual
processor. Use this view
to monitor the condition
of a scheduler or to
identify runaway tasks.

https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-external-script-requests?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-external-script-execution-stats?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-performance-counters-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-resource-governor-external-resource-pools?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-resource-governor-external-resource-pool-affinity-transact-sql?view=sql-server-2017


For information about monitoring SQL Server instances, see Catalog Views and Resource
Governor Related Dynamic Management Views.

View the Machine Learning Services installation setting and configuration options.

Run the query below to get this output. For more information on the views and
functions used, see sys.dm_server_registry, sys.configurations, and SERVERPROPERTY.

SQL

The query returns the following columns:

Column Description

IsMLServicesInstalled Returns 1 if SQL Server Machine Learning Services is installed for
the instance. Otherwise, returns 0.

ExternalScriptsEnabled Returns 1 if external scripts is enabled for the instance.
Otherwise, returns 0.

ImpliedAuthenticationEnabled Returns 1 if implied authentication is enabled. Otherwise, returns
0. The configuration for implied authentication is checked by
verifying if a login exists for SQLRUserGroup.

Settings and configuration

SELECT CAST(SERVERPROPERTY('IsAdvancedAnalyticsInstalled') AS INT) AS 
IsMLServicesInstalled 
    , CAST(value_in_use AS INT) AS ExternalScriptsEnabled 
    , COALESCE(SIGN(SUSER_ID(CONCAT ( 
                    CAST(SERVERPROPERTY('MachineName') AS NVARCHAR(128)) 
                    , '\SQLRUserGroup' 
                    , CAST(serverproperty('InstanceName') AS NVARCHAR(128)) 
                    ))), 0) AS ImpliedAuthenticationEnabled 
    , COALESCE(( 
            SELECT CAST(r.value_data AS INT) 
            FROM sys.dm_server_registry AS r 
            WHERE r.registry_key LIKE 'HKLM\Software\Microsoft\Microsoft SQL 
Server\%\SuperSocketNetLib\Tcp' 
            AND r.value_name = 'Enabled' 
            ), - 1) AS IsTcpEnabled 
FROM sys.configurations 
WHERE name = 'external scripts enabled'; 

https://learn.microsoft.com/en-us/sql/relational-databases/system-catalog-views/catalog-views-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/resource-governor-related-dynamic-management-views-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-server-registry-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-configurations-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql?view=sql-server-2017


Column Description

IsTcpEnabled Returns 1 if the TCP/IP protocol is enabled for the instance.
Otherwise, returns 0. For more information, see Default SQL
Server Network Protocol Configuration.

View the active sessions running external scripts.

Run the query below to get this output. For more information on the dynamic
management views used, see sys.dm_exec_requests, sys.dm_external_script_requests,
and sys.dm_exec_sessions.

SQL

The query returns the following columns:

Column Description

session_id Identifies the session associated with each active primary connection.

blocking_session_id ID of the session that is blocking the request. If this column is NULL, the
request is not blocked, or the session information of the blocking session
is not available (or cannot be identified).

status Status of the request.

database_name Name of the current database for each session.

login_name SQL Server login name under which the session is currently executing.

Active sessions

SELECT r.session_id, r.blocking_session_id, r.status, DB_NAME(s.database_id) 
AS database_name 
    , s.login_name, r.wait_time, r.wait_type, r.last_wait_type, 
r.total_elapsed_time, r.cpu_time 
    , r.reads, r.logical_reads, r.writes, er.language, 
er.degree_of_parallelism, er.external_user_name 
FROM sys.dm_exec_requests AS r 
INNER JOIN sys.dm_external_script_requests AS er 
ON r.external_script_request_id = er.external_script_request_id 
INNER JOIN sys.dm_exec_sessions AS s 
ON s.session_id = r.session_id; 

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/default-sql-server-network-protocol-configuration?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-external-script-requests?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-configurations-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-sessions-transact-sql?view=sql-server-2017


Column Description

wait_time If the request is currently blocked, this column returns the duration in
milliseconds, of the current wait. Is not nullable.

wait_type If the request is currently blocked, this column returns the type of wait.
For information about types of waits, see sys.dm_os_wait_stats.

last_wait_type If this request has previously been blocked, this column returns the type
of the last wait.

total_elapsed_time Total time elapsed in milliseconds since the request arrived.

cpu_time CPU time in milliseconds that is used by the request.

reads Number of reads performed by this request.

logical_reads Number of logical reads that have been performed by the request.

writes Number of writes performed by this request.

language Keyword that represents a supported script language.

degree_of_parallelism Number indicating the number of parallel processes that were created.
This value might be different from the number of parallel processes that
were requested.

external_user_name The Windows worker account under which the script was executed.

View the execution statistics for the external runtime for R and Python. Only statistics of
RevoScaleR, revoscalepy, or microsoftml package functions are currently available.

Run the query below to get this output. For more information on the dynamic
management view used, see sys.dm_external_script_execution_stats. The query only
returns functions that have been executed more than once.

SQL

Execution statistics

SELECT language, counter_name, counter_value 
FROM sys.dm_external_script_execution_stats 
WHERE counter_value > 0 
ORDER BY language, counter_name; 

https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-external-script-execution-stats?view=sql-server-2017


The query returns the following columns:

Column Description

language Name of the registered external script language.

counter_name Name of a registered external script function.

counter_value Total number of instances that the registered external script function has been
called on the server. This value is cumulative, beginning with the time that the
feature was installed on the instance, and cannot be reset.

View the performance counters related to the execution of external scripts.

Run the query below to get this output. For more information on the dynamic
management view used, see sys.dm_os_performance_counters.

SQL

sys.dm_os_performance_counters outputs the following performance counters for
external scripts:

Counter Description

Total
Executions

Number of external processes started by local or remote calls.

Parallel
Executions

Number of times that a script included the @parallel specification and that SQL
Server was able to generate and use a parallel query plan.

Streaming
Executions

Number of times that the streaming feature has been invoked.

Performance counters

SELECT counter_name, cntr_value 
FROM sys.dm_os_performance_counters  
WHERE object_name LIKE '%External Scripts%' 

https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-performance-counters-transact-sql?view=sql-server-2017


Counter Description

SQL CC
Executions

Number of external scripts run where the call was instantiated remotely and SQL
Server was used as the compute context.

Implied
Auth.
Logins

Number of times that an ODBC loopback call was made using implied
authentication; that is, the SQL Server executed the call on behalf of the user
sending the script request.

Total
Execution
Time (ms)

Time elapsed between the call and completion of call.

Execution
Errors

Number of times scripts reported errors. This count does not include R or Python
errors.

View information about the memory used by the OS, SQL Server, and the external pools.

Run the query below to get this output. For more information on the dynamic
management views used, see sys.dm_resource_governor_external_resource_pools and
sys.dm_os_sys_info.

SQL

The query returns the following columns:

Column Description

physical_memory_kb The total amount of physical memory on the machine.

committed_kb The committed memory in kilobytes (KB) in the memory
manager. Does not include reserved memory in the memory
manager.

external_pool_peak_memory_kb The sum of the maximum amount of memory used, in
kilobytes, for all external resource pools.

Memory usage

SELECT physical_memory_kb, committed_kb 
    , (SELECT SUM(peak_memory_kb) 
        FROM sys.dm_resource_governor_external_resource_pools AS ep 
        ) AS external_pool_peak_memory_kb 
FROM sys.dm_os_sys_info; 

https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-resource-governor-external-resource-pools?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-sys-info-transact-sql?view=sql-server-2017


View information about the maximum memory configuration in percentage of SQL
Server and external resource pools. If SQL Server is running with the default value of max
server memory (MB) , it is considered as 100% of the OS memory.

Run the query below to get this output. For more information on the views used, see
sys.configurations and sys.dm_resource_governor_external_resource_pools.

SQL

The query returns the following columns:

Column Description

name Name of the external resource pool or SQL Server.

max_memory_percent The maximum memory that SQL Server or the external resource pool can
use.

In SQL Server Resource Governor, a resource pool represents a subset of the physical
resources of an instance. You can specify limits on the amount of CPU, physical IO, and
memory that incoming application requests, including execution of external scripts, can
use within the resource pool. View the resource pools used for SQL Server and external
scripts.

Memory configuration

SELECT 'SQL Server' AS name 
    , CASE CAST(c.value AS BIGINT) 
        WHEN 2147483647 THEN 100 
        ELSE (SELECT CAST(c.value AS BIGINT) / (physical_memory_kb / 1024.0) 
* 100 FROM sys.dm_os_sys_info) 
        END AS max_memory_percent 
FROM sys.configurations AS c 
WHERE c.name LIKE 'max server memory (MB)' 
UNION ALL 
SELECT CONCAT ('External Pool - ', ep.name) AS pool_name, 
ep.max_memory_percent 
FROM sys.dm_resource_governor_external_resource_pools AS ep; 

Resource pools

https://learn.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-configurations-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-resource-governor-external-resource-pools?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor-resource-pool?view=sql-server-2017


Run the query below to get this output. For more information on the dynamic
management views used, see sys.dm_resource_governor_resource_pools and
sys.dm_resource_governor_external_resource_pools.

SQL

The query returns the following columns:

Column Description

pool_name Name of the resource pool. SQL Server resource pools are prefixed
with SQL Server  and external resource pools are prefixed with
External Pool .

total_cpu_usage_hours The cumulative CPU usage in milliseconds since the Resource
Governor statistics were reset.

read_io_completed_total The total read IOs completed since the Resource Governor statistics
were reset.

write_io_completed_total The total write IOs completed since the Resource Governor statistics
were reset.

You can to view the R and Python packages that are installed in SQL Server Machine
Learning Services by executing an R or Python script that outputs these.

View the R packages installed in SQL Server Machine Learning Services.

SELECT CONCAT ('SQL Server - ', p.name) AS pool_name 
    , p.total_cpu_usage_ms, p.read_io_completed_total, 
p.write_io_completed_total 
FROM sys.dm_resource_governor_resource_pools AS p 
UNION ALL 
SELECT CONCAT ('External Pool - ', ep.name) AS pool_name 
    , ep.total_cpu_user_ms, ep.read_io_count, ep.write_io_count 
FROM sys.dm_resource_governor_external_resource_pools AS ep; 

Installed packages

Installed packages for R

https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-resource-governor-resource-pools-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-resource-governor-external-resource-pools?view=sql-server-2017


Run the query below to get this output. The query use an R script to determine R
packages installed with SQL Server.

SQL

The columns returned are:

Column Description

Package Name of the installed package.

Version Version of the package.

Depends Lists the package(s) that the installed package depends on.

License License for the installed package.

LibPath Directory where you can find the package.

View the Python packages installed in SQL Server Machine Learning Services.

EXECUTE sp_execute_external_script @language = N'R' 
, @script = N' 
OutputDataSet <- data.frame(installed.packages()[,c("Package", "Version", 
"Depends", "License", "LibPath")]);' 
WITH result sets((Package NVARCHAR(255), Version NVARCHAR(100), Depends 
NVARCHAR(4000) 
    , License NVARCHAR(1000), LibPath NVARCHAR(2000))); 

Installed packages for Python



Run the query below to get this output. The query use an Python script to determine the
Python packages installed with SQL Server.

SQL

The columns returned are:

Column Description

Package Name of the installed package.

Version Version of the package.

Location Directory where you can find the package.

Extended events for machine learning
Resource Governor Related Dynamic Management Views
System Dynamic Management Views
Monitor machine learning using custom reports in Management Studio

EXECUTE sp_execute_external_script @language = N'Python' 
, @script = N' 
import pkg_resources 
import pandas 
OutputDataSet = pandas.DataFrame(sorted([(i.key, i.version, i.location) for 
i in pkg_resources.working_set]))' 
WITH result sets((Package NVARCHAR(128), Version NVARCHAR(128), Location 
NVARCHAR(1000))); 

Next steps

https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/resource-governor-related-dynamic-management-views-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-2017




Monitor Python and R scripts with
extended events in SQL Server Machine
Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

Learn how to use extended events to monitor and troubleshooting operations related to
the SQL Server Machine Learning Services, SQL Server Launchpad, and Python or R jobs
external scripts.

To view a list of events related to SQL Server Machine Learning Services, run the
following query from Azure Data Studio or SQL Server Management Studio.

SQL

For more information about how to use extended events, see Extended Events Tools.

Additional extended events are available for components that are related to and used
by SQL Server Machine Learning Services, such as the SQL Server Launchpad, and
BXLServer, and the satellite process that starts the Python or R runtime. These additional
extended events are fired from the external processes; therefore, they must be captured
using an external utility.

For more information about how to do this, see the section, Collecting events from
external processes.

Extended events for SQL Server Machine
Learning Services

SELECT o.name AS event_name, o.description 
FROM sys.dm_xe_objects o 
JOIN sys.dm_xe_packages p 
ON o.package_guid = p.guid 
WHERE o.object_type = 'event' 
AND p.name = 'SQLSatellite'; 

Additional events specific to Machine Learning
Services

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events-tools?view=sql-server-2017


Event Description Notes

connection_accept Occurs when
a new
connection is
accepted. This
event serves
to log all
connection
attempts.

failed_launching Launching
failed.

Indicates an error.

satellite_abort_connection Abort
connection
record

satellite_abort_received Fires when an
abort
message is
received over
a satellite
connection.

satellite_abort_sent Fires when an
abort
message is
sent over
satellite
connection.

satellite_authentication_completion Fires when
authentication
completes for
a connection
over TCP or
Named pipe.

satellite_authorization_completion Fires when
authorization
completes for
a connection
over TCP or
Named pipe.

Table of extended events



Event Description Notes

satellite_cleanup Fires when
satellite calls
cleanup.

Fired only from external process. See
instructions on collecting events from
external processes.

satellite_data_chunk_sent Fires when
the satellite
connection
finishes
sending a
single data
chunk.

The event reports the number of rows
sent, the number of columns, the
number of SNI packets used and time
elapsed in milliseconds while sending
the chunk. The information can help
you understand how much time is
spent passing different types of data,
and how many packets are used.

satellite_data_receive_completion Fires when all
the required
data by a
query is
received over
the satellite
connection.

Fired only from external process. See
instructions on collecting events from
external processes.

satellite_data_send_completion Fires when all
required data
for a session
is sent over
the satellite
connection.

satellite_data_send_start Fires when
data
transmission
starts.

Data transmission starts just before the
first data chunk is sent.

satellite_error Used for
tracing sql
satellite error

satellite_invalid_sized_message Message's
size is not
valid

satellite_message_coalesced Used for
tracing
message
coalescing at
networking
layer



Event Description Notes

satellite_message_ring_buffer_record message ring
buffer record

satellite_message_summary summary
information
about
messaging

satellite_message_version_mismatch Message's
version field is
not matched

satellite_messaging Used for
tracing
messaging
event (bind,
unbind, etc.)

satellite_partial_message Used for
tracing partial
message at
networking
layer

satellite_schema_received Fires when
schema
message is
received and
read by SQL.

satellite_schema_sent Fires when
schema
message is
sent by the
satellite.

Fired only from external process. See
instructions on collecting events from
external processes.

satellite_service_start_posted Fires when
service start
message is
posted to
launchpad.

This tells Launchpad to start the
external process, and contains an ID
for the new session.

satellite_unexpected_message_received Fires when an
unexpected
message is
received.

Indicates an error.



Event Description Notes

stack_trace Occurs when
a memory
dump of the
process is
requested.

Indicates an error.

trace_event Used for
tracing
purposes

These events can contain SQL Server,
Launchpad, and external process trace
messages. This includes output to
stdout and stderr from R.

launchpad_launch_start Fires when
launchpad
starts
launching a
satellite.

Fired only from Launchpad. See
instructions on collecting events from
launchpad.exe.

launchpad_resume_sent Fires when
launchpad
has launched
the satellite
and sent a
resume
message to
SQL Server.

Fired only from Launchpad. See
instructions on collecting events from
launchpad.exe.

satellite_data_chunk_sent Fires when
the satellite
connection
finishes
sending a
single data
chunk.

Contains information about the
number of columns, number of rows,
number of packets, and time elapsed
sending the chunk.

satellite_sessionId_mismatch Message's
session ID is
not expected

SQL Server Machine Learning Services starts some services that run outside of the SQL
Server process. To capture events related to these external processes, you must create
an events trace configuration file and place the file in the same directory as the
executable for the process.

SQL Server Launchpad

Collecting events from external processes



To capture events related to the Launchpad, place the .xml file in the Binn directory
for the SQL Server instance. In a default installation, this would be:

C:\Program Files\Microsoft SQL

Server\MSSQL_version_number.MSSQLSERVER\MSSQL\Binn .

BXLServer is the satellite process that supports SQL extensibility with external
script languages, such as R or Python. A separate instance of BxlServer is launched
for each external language instance.

To capture events related to BXLServer, place the .xml file in the R or Python
installation directory. In a default installation, this would be:

R: C:\Program Files\Microsoft SQL
Server\MSSQL_version_number.MSSQLSERVER\R_SERVICES\library\RevoScaleR\rxLibs\x

64 .

Python: C:\Program Files\Microsoft SQL
Server\MSSQL_version_number.MSSQLSERVER\PYTHON_SERVICES\Lib\site-

packages\revoscalepy\rxLibs .

The configuration file must be named the same as the executable, using the format "
[name].xevents.xml". In other words, the files must be named as follows:

Launchpad.xevents.xml

bxlserver.xevents.xml

The configuration file itself has the following format:

XML

<?xml version="1.0" encoding="utf-8"?>   
<event_sessions>   
<event_session name="[session name]" maxMemory="1" dispatchLatency="1" 
MaxDispatchLatency="2 SECONDS">   
    <description owner="you">Xevent for launchpad or bxl server.
</description>   
    <event package="SQLSatellite" name="[XEvent Name 1]" />   
    <event package="SQLSatellite" name="[XEvent Name 2]" />   
    <target package="package0" name="event_file">   
      <parameter name="filename" value="[SessionName].xel" />   
      <parameter name="max_file_size" value="10" />   
      <parameter name="max_rollover_files" value="10" />   
    </target>   
  </event_session>   
</event_sessions>   



To configure the trace, edit the session name placeholder, the placeholder for the
filename ([SessionName].xel ), and the names of the events you want to capture,
For example, [XEvent Name 1] , [XEvent Name 1] ).
Any number of event package tags may appear, and will be collected as long as
the name attribute is correct.

The following example shows the definition of an event trace for the Launchpad service:

XML

Place the .xml file in the Binn directory for the SQL Server instance.
This file must be named Launchpad.xevents.xml .

The following example shows the definition of an event trace for the BXLServer
executable.

XML

Example: Capturing Launchpad events

<?xml version="1.0" encoding="utf-8"?>   
<event_sessions>   
<event_session name="sqlsatelliteut" maxMemory="1" dispatchLatency="1" 
MaxDispatchLatency="2 SECONDS">   
    <description owner="hay">Xevent for sql tdd runner.</description>   
    <event package="SQLSatellite" name="launchpad_launch_start" />   
    <event package="SQLSatellite" name="launchpad_resume_sent" />   
    <target package="package0" name="event_file">   
      <parameter name="filename" value="launchpad_session.xel" />   
      <parameter name="max_file_size" value="10" />   
      <parameter name="max_rollover_files" value="10" />   
    </target>   
  </event_session>   
</event_sessions>   

Example: Capturing BXLServer events

<?xml version="1.0" encoding="utf-8"?>   
<event_sessions>   
 <event_session name="sqlsatelliteut" maxMemory="1" dispatchLatency="1" 
MaxDispatchLatency="2 SECONDS">   
    <description owner="hay">Xevent for sql tdd runner.</description>   
    <event package="SQLSatellite" name="satellite_abort_received" />   
    <event package="SQLSatellite" name="satellite_authentication_completion" 
/>   
    <event package="SQLSatellite" name="satellite_cleanup" />   
    <event package="SQLSatellite" name="satellite_data_receive_completion" 



Place the .xml file in the same directory as the BXLServer executable.
This file must be named bxlserver.xevents.xml .

Monitor Python and R script execution using custom reports in SQL Server
Management Studio
Monitor SQL Server Machine Learning Services using dynamic management views
(DMVs)

/>   
    <event package="SQLSatellite" name="satellite_data_send_completion" />   
    <event package="SQLSatellite" name="satellite_data_send_start" />   
    <event package="SQLSatellite" name="satellite_schema_sent" />    
    <event package="SQLSatellite" 
name="satellite_unexpected_message_received" />     
    <event package="SQLSatellite" name="satellite_data_chunk_sent" />    
    <target package="package0" name="event_file">   
      <parameter name="filename" value="satellite_session.xel" />   
      <parameter name="max_file_size" value="10" />   
      <parameter name="max_rollover_files" value="10" />   
    </target>   
  </event_session>   
</event_sessions>   

Next steps



Monitor PREDICT T-SQL statements
with extended events in SQL Server
Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2017 (14.x) and later  Azure SQL Managed Instance

Learn how to use extended events to monitor and troubleshooting PREDICT T-SQL
statements in SQL Server Machine Learning Services.

The following extended events are available in all versions of SQL Server that support
the PREDICT T-SQL statement.

name object_type description

predict_function_completed event Builtin execution time breakdown

predict_model_cache_hit event Occurs when a model is retrieved from the
PREDICT function model cache. Use this event
along with other predict_model_cache_* events to
troubleshoot issues caused by the PREDICT
function model cache.

predict_model_cache_insert event Occurs when a model is insert into the PREDICT
function model cache. Use this event along with
other predict_model_cache_* events to
troubleshoot issues caused by the PREDICT
function model cache.

predict_model_cache_miss event Occurs when a model is not found in the PREDICT
function model cache. Frequent occurrences of
this event could indicate that SQL Server needs
more memory. Use this event along with other
predict_model_cache_* events to troubleshoot
issues caused by the PREDICT function model
cache.

predict_model_cache_remove event Occurs when a model is removed from model
cache for PREDICT function. Use this event along
with other predict_model_cache_* events to
troubleshoot issues caused by the PREDICT
function model cache.

Table of extended events

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/queries/predict-transact-sql?view=sql-server-2017


To view a list of all columns returned for these events, run the following query in SQL
Server Management Studio:

SQL

To capture information about performance of a scoring session using PREDICT:

1. Create a new extended event session, using Management Studio or another
supported tool.

2. Add the events predict_function_completed  and predict_model_cache_hit  to the
session.

3. Start the extended event session.
4. Run the query that uses PREDICT.

In the results, review these columns:

The value for predict_function_completed  shows how much time the query spent
on loading the model and scoring.
The boolean value for predict_model_cache_hit  indicates whether the query used
a cached model or not.

In addition to the events specific to PREDICT, you can use the following queries to get
more information about the cached model and cache usage:

View the native scoring model cache:

SQL

View the objects in the model cache:

Query for related events

SELECT * 
FROM sys.dm_xe_object_columns 
WHERE object_name LIKE 'predict%' 

Examples

Native scoring model cache

SELECT * 
FROM sys.dm_os_memory_clerks 
WHERE type = 'CACHESTORE_NATIVESCORING'; 

https://learn.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events-tools?view=sql-server-2017


SQL

For more information about extended events (sometimes called XEvents), and how to
track events in a session, see these articles:

Monitor Python and R scripts with extended events in SQL Server Machine
Learning Services
Extended Events concepts and architecture
Set up event capture in SSMS
Manage event sessions in the Object Explorer

SELECT * 
FROM sys.dm_os_memory_objects 
WHERE TYPE = 'MEMOBJ_NATIVESCORING'; 

Next steps

https://learn.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/extended-events/quick-start-extended-events-in-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/extended-events/manage-event-sessions-in-the-object-explorer?view=sql-server-2017


Scale concurrent execution of external
scripts in SQL Server Machine Learning
Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

Learn about worker accounts for SQL Server Machine Learning Services and how to
change the default configuration to scale the number of concurrent execution of
external scripts.

As part of the installation process for Machine Learning Services, a new Windows user
account pool is created to support execution of tasks by the SQL Server Launchpad
service. The purpose of these worker accounts is to isolate concurrent execution of
external scripts by different SQL Server users.

A Windows account group is created by SQL Server setup for each instance on which
machine learning is installed and enabled.

In a default instance, the group name is SQLRUserGroup. The name is the same
whether you use Python or R or both.
In a named instance, the default group name is suffixed with the instance name:
for example, SQLRUserGroupMyInstanceName.

By default, the user account pool contains 20 user accounts. In most cases, 20 is more
than adequate to support machine learning tasks, but you can change the number of
accounts. The maximum number of accounts is 100.

In a default instance, the individual accounts are named MSSQLSERVER01 through
MSSQLSERVER20.

７ Note

In SQL Server 2019, SQLRUserGroup only has one member which is now the single
SQL Server Launchpad service account instead of multiple worker accounts. This
article describes the worker accounts for SQL Server 2016 and 2017.

Worker account group



For a named instance, the individual accounts are named after the instance name:
for example, MyInstanceName01 through MyInstanceName20.

If more than one instance uses machine learning, the computer will have multiple user
groups. A group cannot be shared across instances.

To modify the number of users in the account pool, you must edit the properties of the
SQL Server Launchpad service as described below.

Passwords associated with each user account are generated at random, but you can
change them later, after the accounts have been created.

1. Open SQL Server Configuration Manager and select SQL Server Services.
2. Double-click the SQL Server Launchpad service and stop the service if it is running.
3. On the Service tab, make sure that the Start Mode is set to Automatic. External

scripts cannot start when the Launchpad is not running.
4. Click the Advanced tab and edit the value of External Users Count if necessary.

This setting controls how many different SQL users can run external script sessions
concurrently. The default is 20 accounts. The maximum number of users is 100.

5. Optionally, you can set the option Reset External Users Password to Yes if your
organization has a policy that requires changing passwords on a regular basis.
Doing this will regenerate the encrypted passwords that Launchpad maintains for
the user accounts. For more information, see Enforcing Password Policy.

6. Restart the Launchpad service.

The number of accounts in this pool determines how many external script sessions can
be active simultaneously. By default, 20 accounts are created, meaning that 20 different
users can have active Python or R sessions at one time. You can increase the number of
worker accounts, if you expect to run more than 20 concurrent scripts.

When the same user executes multiple external scripts concurrently, all the sessions run
by that user use the same worker account. For example, a single user might have 100
different Python or R scripts running concurrently, as long as resources permit, but all
scripts would run using a single worker account.

The number of worker accounts that you can support, and the number of concurrent
sessions that any single user can run, is limited only by server resources. Typically,

Number of worker accounts

Managing workloads



memory is the first bottleneck that you will encounter when using the Python or R
runtime.

The resources that can be used by Python or R scripts are governed by SQL Server. We
recommend that you monitor resource usage using SQL Server DMVs, or look at
performance counters on the associated Windows job object, and adjust server memory
use accordingly. If you have SQL Server Enterprise Edition, you can allocate resources
used for running external scripts by configuring an external resource pool.

Monitor Python and R script execution using custom reports in SQL Server
Management Studio
Monitor SQL Server Machine Learning Services using dynamic management views
(DMVs)

Next steps



Manage Python and R workloads with
Resource Governor in SQL Server
Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

Learn how to use Resource Governor to manage CPU, physical IO, and memory
resources allocation for Python and R workloads in SQL Server Machine Learning
Services.

Machine learning algorithms in Python and R are computed intensive. Depending on
your workload priorities, you might need to increase or decrease the resources available
for Machine Learning Services.

For more general information, see Resource Governor.

By default, the external script runtimes for machine learning are limited to no more than
20% of total machine memory. It depends on your system, but in general, you might
find this limit inadequate for serious machine learning tasks such as training a model or
predicting on many rows of data.

By default, external processes use up to 20% of total host memory on the local server.
You can modify the default resource pool to make server-wide changes, with R and
Python processes using whatever capacity you make available to external processes.

Optionally, you can create custom external resource pools, with associated workload
groups and classifiers, to determine resource allocation for requests originating from
specific programs, hosts, or other criteria that you provide. An external resource pool is

７ Note

Resource Governor is an Enterprise Edition feature.

Default allocations

Manage resources with Resource Governor

https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-2017


a type of resource pool introduced in SQL Server 2016 (13.x) to help manage the R and
Python processes external to the database engine.

1. Enable resource governance (it's off by default).

2. Run CREATE EXTERNAL RESOURCE POOL to create and configure the resource
pool, followed by ALTER RESOURCE GOVERNOR to implement it.

3. Create a workload group for granular allocations, for example between training
and scoring.

4. Create a classifier to intercept calls for external processing.

5. Execute queries and procedures using the objects you created.

For a walkthrough, see Create a resource pool for SQL Server Machine Learning Services
for step-by-step instructions.

For an introduction to terminology and general concepts, see Resource Governor
Resource Pool.

You can use an external resource pool to manage the resources used by the following
executables on a database engine instance:

Rterm.exe when called locally from SQL Server or called remotely with SQL Server
as the remote compute context
Python.exe when called locally from SQL Server or called remotely with SQL Server
as the remote compute context
BxlServer.exe and satellite processes
Satellite processes launched by Launchpad, such as PythonLauncher.dll

Processes under resource governance

７ Note

Direct management of the Launchpad service by using Resource Governor is not
supported. Launchpad is a trusted service that can only host launchers provided by
Microsoft. Trusted launchers are explicitly configured to avoid consuming excessive
resources.

Next steps

https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/enable-resource-governor?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-external-resource-pool-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/statements/alter-resource-governor-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor-resource-pool?view=sql-server-2017


Create a resource pool for machine learning
Resource Governor resource pools

https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor-resource-pool?view=sql-server-2017


Create a resource pool for SQL Server Machine Learning
Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

Learn how you can create and use a resource pool for managing Python and R workloads in SQL Server Machine Learning Services.

The process includes multiple steps:

1. Review status of any existing resource pools. It's important that you understand what services are using existing resources.
2. Modify server resource pools.
3. Create a new resource pool for external processes.
4. Create a classification function to identify external script requests.
5. Verify that the new external resource pool is capturing R or Python jobs from the specified clients or accounts.

1. Use a statement such as the following to check the resources assigned to the default pool for the server.

SQL

Sample results

pool_id name min_cpu_percent max_cpu_percent min_memory_percent max_memory_percent cap_cpu_percent min_iops_per_volume

2 default 0 100 0 100 100 0

2. Check the resources assigned to the default external resource pool.

SQL

Sample results

external_pool_id name max_cpu_percent max_memory_percent max_processes version

2 default 100 20 0 2

3. Under these server default settings, the external runtime will probably have insufficient resources to complete most tasks. To improve
resources, you must modify the server resource usage as follows:

Reduce the maximum computer memory that can be used by the database engine.

Increase the maximum computer memory that can be used by the external process.

1. In Management Studio, run the following statement to limit SQL Server memory usage to 60% of the value in the 'max server
memory' setting.

SQL

2. Run the following statement to limit the use of memory by external processes to 40% of total computer resources.

SQL

Review the status of existing resource pools

SELECT * FROM sys.resource_governor_resource_pools WHERE name = 'default' 

SELECT * FROM sys.resource_governor_external_resource_pools WHERE name = 'default' 

Modify server resource usage

ALTER RESOURCE POOL "default" WITH (max_memory_percent = 60); 

ALTER EXTERNAL RESOURCE POOL "default" WITH (max_memory_percent = 40); 



3. To enforce these changes, you must reconfigure and restart Resource Governor as follows:

SQL

1. All changes to the configuration of Resource Governor are enforced across the server as a whole. The changes affect workloads that
use the default pools for the server, as well as workloads that use the external pools.

To provide more fine-grained control over which workloads should have precedence, you can create a new user-defined external
resource pool. Define a classification function and assign it to the external resource pool. The EXTERNAL keyword is new.

Create a new user-defined external resource pool. In the following example, the pool is named ds_ep.

SQL

2. Create a workload group named ds_wg  to use in managing session requests. For SQL queries you'll use the default pool; for all
external process queries will use the ds_ep  pool.

SQL

Requests are assigned to the default group whenever the request can't be classified, or if there's any other classification failure.

For more information, see Resource Governor Workload Group and CREATE WORKLOAD GROUP (Transact-SQL).

A classification function examines incoming tasks. It determines whether the task is one that can be run using the current resource pool.
Tasks that do not meet the criteria of the classification function are assigned back to the server's default resource pool.

1. Begin by specifying that a classifier function should be used by Resource Governor to determine resource pools. You can assign a null
as a placeholder for the classifier function.

SQL

For more information, see ALTER RESOURCE GOVERNOR (Transact-SQL).

2. In the classifier function for each resource pool, define the type of statements or incoming requests that should be assigned to the
resource pool.

For example, the following function returns the name of the schema assigned to the user-defined external resource pool if the
application that sent the request is either 'Microsoft R Host', 'RStudio', or 'Mashup'; otherwise it returns the default resource pool.

SQL

ALTER RESOURCE GOVERNOR RECONFIGURE; 

７ Note

These are just suggested settings to start with; you should evaluate your machine learning tasks in light of other server processes
to determine the correct balance for your environment and workload.

Create a user-defined external resource pool

CREATE EXTERNAL RESOURCE POOL ds_ep WITH (max_memory_percent = 40); 

CREATE WORKLOAD GROUP ds_wg WITH (importance = medium) USING "default", EXTERNAL "ds_ep"; 

Create a classification function for machine learning

ALTER RESOURCE GOVERNOR WITH (classifier_function = NULL); 
ALTER RESOURCE GOVERNOR RECONFIGURE; 

USE master 
GO 
CREATE FUNCTION is_ds_apps() 
RETURNS sysname 
WITH schemabinding 
AS 
BEGIN 

https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor-workload-group?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/statements/alter-resource-governor-transact-sql?view=sql-server-2017


3. When the function has been created, reconfigure the resource group to assign the new classifier function to the external resource
group that you defined earlier.

SQL

Check the server memory configuration and CPU for each of the workload groups. Verify the instance resource changes have been made,
by reviewing:

the default pool for the SQL Server server
the default resource pool for external processes
the user-defined pool for external processes

1. Run the following statement to view all workload groups:

SQL

Sample results

group_id name importance request_max_memory_grant_percent request_max_cpu_time_sec request_memory_grant_timeout_sec max_dop

1 internal Medium 25 0 0 0

2 default Medium 25 0 0 0

256 ds_wg Medium 25 0 0 0

2. Use the new catalog view, sys.resource_governor_external_resource_pools (Transact-SQL), to view all external resource pools.

SQL

Sample results

external_pool_id name max_cpu_percent max_memory_percent max_processes version

2 default 100 20 0 2

256 ds_ep 100 40 0 1

For more information, see Resource Governor Catalog Views (Transact-SQL).

3. Run the following statement to return information about the computer resources that are affinitized to the external resource pool, if
applicable:

SQL

No information will be displayed because the pools were created with an affinity of AUTO. For more information, see
sys.dm_resource_governor_resource_pool_affinity (Transact-SQL).

    IF program_name() in ('Microsoft R Host', 'RStudio', 'Mashup') RETURN 'ds_wg'; 
    RETURN 'default' 
    END; 
GO 

ALTER RESOURCE GOVERNOR WITH  (classifier_function = dbo.is_ds_apps); 
ALTER RESOURCE GOVERNOR RECONFIGURE; 
GO 

Verify new resource pools and affinity

SELECT * FROM sys.resource_governor_workload_groups; 

SELECT * FROM sys.resource_governor_external_resource_pools; 

SELECT * FROM sys.resource_governor_external_resource_pool_affinity; 

Next steps

https://learn.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-resource-governor-external-resource-pools-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-catalog-views/resource-governor-catalog-views-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-resource-governor-resource-pool-affinity-transact-sql?view=sql-server-2017


For more information about managing server resources, see:

Resource Governor
Resource Governor Related Dynamic Management Views (Transact-SQL)

For an overview of resource governance for machine learning, see:

Manage Python and R workloads with Resource Governor in SQL Server Machine Learning Services

https://learn.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/resource-governor-related-dynamic-management-views-transact-sql?view=sql-server-2017


Grant database users permission to
execute Python and R scripts with SQL
Server Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later  Azure SQL Managed Instance

Learn how you can give a database user permission to run external Python and R scripts
in SQL Server Machine Learning Services and give read, write, or data definition
language (DDL) permissions to databases.

For more information, see the permissions section in Security overview for the
extensibility framework.

For each user who runs Python or R scripts with SQL Server Machine Learning Services,
and who are not an administrator, you must grant them the permission to run external
scripts in each database where the language is used.

To grant permission to a database user to execute external script, run the following
script:

SQL

While a database user is running scripts, the database user might need to read data
from other databases. The database user might also need to create new tables to store

Permission to run scripts

USE <database_name> 
GO 
GRANT EXECUTE ANY EXTERNAL SCRIPT TO [UserName] 

７ Note

Permissions are not specific to the supported script language. In other words, there
are not separate permission levels for R script versus Python script.

Grant database permissions

https://learn.microsoft.com/en-us/sql/sql-server/sql-docs-navigation-guide?view=sql-server-2017#applies-to
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/create-a-database-user?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/create-a-database-user?view=sql-server-2017


results, and write data into tables.

For each database user account or SQL login that is running R or Python scripts, ensure
that it has the appropriate permissions on the specific database:

db_datareader  to read data.
db_datawriter  to save objects to the database.
db_ddladmin  to create objects such as stored procedures or tables containing
trained and serialized data.

For example, the following Transact-SQL statement gives the SQL login MySQLLogin the
rights to run T-SQL queries in the ML_Samples database. To run this statement, the SQL
login must already exist in the security context of the server. For more information, see
sp_addrolemember (Transact-SQL).

SQL

For more information about the permissions included in each role, see Database-level
roles.

USE ML_Samples 
GO 
EXEC sp_addrolemember 'db_datareader', 'MySQLLogin' 

Next steps

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addrolemember-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-server-2017


SQL Server Launchpad service
configuration
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

The SQL Server Launchpad is a service that manages and executes external scripts,
similar to the way that the full-text indexing and query service launches a separate host
for processing full-text queries.

For more information, see the Launchpad sections in Extensibility architecture in SQL
Server Machine Learning Services and Security overview for the extensibility framework
in SQL Server Machine Learning Services.

By default, SQL Server Launchpad is configured to run under NT
Service\MSSQLLaunchpad, which is provisioned with all necessary permissions to run
external scripts. Removing permissions from this account can result in Launchpad failing
to start or to access the SQL Server instance where external scripts should be run.

If you modify the service account, be sure to use the Local Security Policy console.

Permissions required for this account are listed in the following table.

Group policy setting Constant name

Adjust memory quotas for a process SeIncreaseQuotaPrivilege

Bypass traverse checking SeChangeNotifyPrivilege

Log on as a service SeServiceLogonRight

Replace a process-level token SeAssignPrimaryTokenPrivilege

For more information about permissions required to run SQL Server services, see
Configure Windows Service Accounts and Permissions.

Typically, there is no reason to modify service configuration. Properties that could be
changed include the service account, the count of external processes (20 by default), or

Account permissions

Configuration properties

https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/how-to-configure-security-policy-settings
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/adjust-memory-quotas-for-a-process
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/bypass-traverse-checking
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/log-on-as-a-service
https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/replace-a-process-level-token
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-windows-service-accounts-and-permissions?view=sql-server-2017


the password reset policy for worker accounts.

1. Open SQL Server Configuration Manager.

2. Under SQL Server Services, right-click SQL Server Launchpad and select Properties.

To change the service account, click the Log On tab.
To increase the number of users, click the Advanced tab and change the Security
Contexts Count.

A few properties can only be changed by using the Launchpad's configuration file, which
might be useful in limited cases, such as debugging. The configuration file is created
during the SQL Server setup and by default is saved as a plain text file in <instance
path>\binn\rlauncher.config .

You must be an administrator on the computer that is running SQL Server to make
changes to this file. If you edit the file, we recommend that you make a backup copy
before saving changes.

The following table lists the advanced settings for SQL Server, with the permissible
values.

Setting name Type Description

JOB_CLEANUP_ON_EXIT Integer This is an internal setting only - do not change this value.  

Specifies whether the temporary working folder created for
each external runtime session should be cleaned up after the
session is completed. This setting is useful for debugging.  

Supported values are 0 (Disabled) or 1 (Enabled).  

The default is 1, meaning log files are removed on exit.

７ Note

In early versions of SQL Server 2016 R Services, you could change some properties
of the service by editing the R Services (In-Database) configuration file. This file is
no longer used for changing configurations. SQL Server Configuration Manager is
the right approach for changes to service configuration, such as the service account
and number of users.

Debug settings

https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-configuration-manager?view=sql-server-2017


Setting name Type Description

TRACE_LEVEL Integer Configures the trace verbosity level of MSSQLLAUNCHPAD
for debugging purposes. This affects trace files in the path
specified by the LOG_DIRECTORY setting.  

Supported values are: 1 (Error), 2 (Performance), 3 (Warning),
4 (Information).  

The default is 1, meaning output errors only.

All settings take the form of a key-value pair, with each setting on a separate line. For
example, to change the trace level, you would add the line Default: TRACE_LEVEL=4 .

If your organization has a policy that requires changing passwords on a regular basis,
you may need to force the Launchpad service to regenerate the encrypted passwords
that Launchpad maintains for its worker accounts.

To enable this setting and force password refresh, open the Properties pane for the
Launchpad service in SQL Server Configuration Manager, click Advanced, and change
Reset External Users Password to Yes. When you apply this change, the passwords will
immediately be regenerated for all user accounts. To run an external script after this
change, you must restart the Launchpad service, at which time it will read the newly
generated passwords.

To reset passwords at regular intervals, you can either set this flag manually or use a
script.

Extensibility framework
Security overview

Enforcing password policy

Next steps



Firewall configuration for SQL Server
Machine Learning Services
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article lists firewall configuration considerations that the administrator or architect
should bear in mind when using SQL Server Machine Learning Services .

By default, the SQL Server Setup disables outbound connections by creating firewall
rules.

In SQL Server 2016 and 2017, these rules are based on local user accounts, where Setup
created one outbound rule for SQLRUserGroup that denied network access to its
members (each worker account was listed as a local principal subject to the rule. For
more information about SQLRUserGroup, see Security overview for the extensibility
framework in SQL Server Machine Learning Services.

In SQL Server 2019, as part of the move to AppContainers, there are new firewall rules
based on AppContainer SIDs: one for each of the 20 AppContainers created by SQL
Server Setup. Naming conventions for the firewall rule name are Block network access
for AppContainer-00 in SQL Server instance MSSQLSERVER, where 00 is the number of
the AppContainer (00-20 by default), and MSSQLSERVER is the name of the SQL Server
instance.

In a default installation, a Windows firewall rule is used to block all outbound network
access from external runtime processes. Firewall rules should be created to prevent the
external runtime processes from downloading packages or from making other network
calls that could potentially be malicious.

Default firewall rules

７ Note

If network calls are required, you can disable the outbound rules in Windows
Firewall.

Restrict network access



If you are using a different firewall program, you can also create rules to block outbound
network connection for external runtimes, by setting rules for the local user accounts or
for the group represented by the user account pool.

We strongly recommend that you turn on Windows Firewall (or another firewall of your
choice) to prevent unrestricted network access by the R or Python runtimes.

Configure Windows firewall for in-bound connections

Next steps

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-a-windows-firewall-for-database-engine-access?view=sql-server-2017


Create a login for SQLRUserGroup
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x) and later versions

Create a login in SQL Server for SQLRUserGroup when a loop back connection in your
script specifies a trusted connection, and the identity used to execute an object contains
your code is a Windows user account.

Trusted connections are those having Trusted_Connection=True  in the connection string.
When SQL Server receives a request specifying a trusted connection, it checks whether
the identity of the current Windows user has a login. For external processes executing as
a worker account (such as MSSQLSERVER01 from SQLRUserGroup), the request fails
because those accounts do not have a login by default.

You can work around the connection error by creating a login for SQLRUserGroup. For
more information about identities and external processes, see Security overview for the
extensibility framework.

1. In SQL Server Management Studio, in Object Explorer, expand Security, right-click
Logins, and select New Login.

2. In the Login - New dialog box, select Search. (Don't type anything in the box yet.)

７ Note

Make sure that SQLRUserGroup has "Allow Log on locally" permissions. By default,
this right is given to all new local users, but some organizations stricter group
policies might disable this right.

Create a login

https://learn.microsoft.com/en-us/sql/relational-databases/security/authentication-access/create-a-login?view=sql-server-2017


3. In the Select User or Group box, click the Object Types button.

4. In the Object Types dialog box, select Groups. Clear all other check boxes.



5. Click Advanced, verify that the location to search is the current computer, and then
click Find Now.

6. Scroll through the list of group accounts on the server until you find one
beginning with SQLRUserGroup .



The name of the group that's associated with the Launchpad service for the
default instance is always SQLRUserGroup, regardless of whether you
installed R or Python or both. Select this account for the default instance
only.
If you are using a named instance, the instance name is appended to the
name of the default worker group name, SQLRUserGroup . For example, if your
instance is named "MLTEST", the default user group name for this instance
would be SQLRUserGroupMLTest.

7. Click OK to close the advanced search dialog box.

） Important

Be sure you've selected the correct account for the instance. Each instance can
use only its own Launchpad service and the group created for that service.
Instances cannot share a Launchpad service or worker accounts.



8. Click OK once more to close the Select User or Group dialog box.

9. In the Login - New dialog box, click OK. By default, the login is assigned to the
public role and has permission to connect to the database engine.

Security overview
Extensibility framework

Next steps



Performance tuning and data
optimization for R
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article discusses performance optimizations for R or Python scripts that run in SQL
Server. You can use these methods to update your R code, both to boost performance
and to avoid known issues.

In SQL Server, you can use either the local or SQL compute context when running R or
Python script.

When using the local compute context, analysis is performed on your computer and not
on the server. Therefore, if you are getting data from SQL Server to use in your code, the
data must be fetched over the network. The performance hit incurred for this network
transfer depends on the size of the data transferred, speed of the network, and other
network transfers occurring at the same time.

When using the SQL Server compute context, the code is executed on the server. If you
are getting data from SQL Server, the data should be local to the server running the
analysis, and therefore no network overhead is introduced. If you need to import data
from other sources, consider arranging ETL beforehand.

When working with large data sets, you should always use the SQL compute context.

The R language has the concept of factors, which are special variable for categorical
data. Data scientists often use factor variables in their formula, because handling
categorical variables as factors ensures that the data is processed properly by machine
learning functions.

By design, factor variables can be converted from strings to integers and back again for
storage or processing. The R data.frame  function handles all strings as factor variables,
unless the argument stringsAsFactors is set to False. What this means is that strings are
automatically converted to an integer for processing, and then mapped back to the
original string.

Choosing a compute context

Factors



If the source data for factors is stored as an integer, performance can suffer, because R
converts the factor integers to strings at run time, and then performs its own internal
string-to-integer conversion.

To avoid such run-time conversions, consider storing the values as integers in the SQL
Server table, and using the colInfo argument to specify the levels for the column used as
factor. Most data source objects in RevoScaleR take the parameter colInfo. You use this
parameter to name the variables used by the data source, specify their type, and define
the variables levels or transformations on the column values.

For example, the following R function call gets the integers 1, 2, and 3 from a table, but
maps the values to a factor with levels "apple", "orange", and "banana".

R

When the source column contains strings, it is always more efficient to specify the levels
ahead of time using the colInfo parameter. For example, the following R code treats the
strings as factors as they are being read.

R

If there is no semantic difference in the model generation, then the latter approach can
lead to better performance.

Data scientists often use transformation functions written in R as part of the analysis.
The transformation function is applied to each row retrieved from the table. In SQL
Server, such transformations are applied to all rows retrieved in a batch, which requires
communication between the R interpreter and the analytics engine. To perform the
transformation, the data moves from SQL to the analytics engine and then to the R
interpreter process and back.

For this reason, using transformations as part of your R code can have a significant
adverse effect on the performance of the algorithm, depending on the amount of data
involved.

c("fruit" = c(type = "factor", levels=as.character(c(1:3)), 
newLevels=c("apple", "orange", "banana"))) 

c("fruit" = c(type = "factor", levels= c("apple", "orange", "banana"))) 

Data transformations



It is more efficient to have all necessary columns in the table or view before performing
analysis, and avoid transformations during the computation. If it is not possible to add
additional columns to existing tables, consider creating another table or view with the
transformed columns and use an appropriate query to retrieve the data.

If you use a SQL Server data source (RxSqlServerData ) in your code, we recommend that
you try using the parameter rowsPerRead to specify batch size. This parameter defines
the number of rows that are queried and then sent to the external script for processing.
At run time, the algorithm sees only the specified number of rows in each batch.

The ability to control the amount of data that is processed at a time can help you solve
or avoid problems. For example, if your input dataset is very wide (has many columns),
or if the dataset has a few large columns (such as free text), you can reduce the batch
size to avoid paging data out of memory.

By default, the value of this parameter is set to 50000, to ensure decent performance
even on machines with low memory. If the server has enough available memory,
increasing this value to 500,000 or even a million can yield better performance,
especially for large tables.

The benefits of increasing batch size become evident on a large data set, and in a task
that can run on multiple processes. However, increasing this value does not always
produce the best results. We recommend that you experiment with your data and
algorithm to determine the optimal value.

To improve the performance of rx analytic functions, you can leverage the ability of SQL
Server to execute tasks in parallel using available cores on the server computer.

There are two ways to achieve parallelization with R in SQL Server:

Use @parallel. When using the sp_execute_external_script  stored procedure to
run an R script, set the @parallel  parameter to 1 . This is the best method if your R
script does not use RevoScaleR functions, which have other mechanisms for
processing. If your script uses RevoScaleR functions (generally prefixed with "rx"),
parallel processing is performed automatically and you do not need to explicitly
set @parallel  to 1 .

Batch row reads

Parallel processing



If the R script can be parallelized, and if the SQL query can be parallelized, then the
database engine creates multiple parallel processes. The maximum number of
processes that can be created is equal to the maximum degree of parallelism
(MAXDOP) setting for the instance. All processes then run the same script, but
receive only a portion of the data.

Thus, this method is not useful with scripts that must see all the data, such as when
training a model. However, it is useful when performing tasks such as batch
prediction in parallel. For more information on using parallelism with
sp_execute_external_script , see the Advanced tips: parallel processing section of
Using R Code in Transact-SQL.

Use numTasks =1. When using rx functions in a SQL Server compute context, set
the value of the numTasks parameter to the number of processes that you would
like to create. The number of processes created can never be more than MAXDOP;
however, the actual number of processes created is determined by the database
engine and may be less than you requested.

If the R script can be parallelized, and if the SQL query can be parallelized, then
SQL Server creates multiple parallel processes when running the rx functions. The
actual number of processes that are created depends on a variety of factors. These
include resource governance, current usage of resources, other sessions, and the
query execution plan for the query used with the R script.

In Microsoft R, you can work with SQL Server data sources by defining your data as an
RxSqlServerData data source object.

Creates a data source based on an entire table or view:

R

Creates a data source based on a SQL query:

R

Query parallelization

RxSqlServerData(table= "airline", connectionString = sqlConnString) 

RxSqlServerData(sqlQuery= "SELECT [ArrDelay],[CRSDepTime],[DayOfWeek] FROM  
airlineWithIndex WHERE rowNum <= 100000", connectionString = sqlConnString) 



To ensure that the data can be analyzed in parallel, the query used to retrieve the data
should be framed in such a way that the database engine can create a parallel query
plan. If the code or algorithm uses large volumes of data, make sure that the query
given to RxSqlServerData  is optimized for parallel execution. A query that does not
result in a parallel execution plan can result in a single process for computation.

If you need to work with large datasets, use Management Studio or another SQL query
analyzer before you run your R code, to analyze the execution plan. Then, take any
recommended steps to improve the performance of the query. For example, a missing
index on a table can affect the time taken to execute a query. For more information, see
Monitor and Tune for Performance.

Another common mistake that can affect performance is that a query retrieves more
columns than are required. For example, if a formula is based on only three columns, but
your source table has 30 columns, you are moving data unnecessarily.

Avoid using SELECT * !
Take some time to review the columns in the dataset and identify only the ones
needed for analysis
Remove from your queries any columns that contain data types that are
incompatible with R code, such as GUIDS and rowguids
Check for unsupported date and time formats
Rather than load a table, create a view that selects certain values or casts columns
to avoid conversion errors

This section provides miscellaneous tips and resources that are specific to RevoScaleR
and other options in Microsoft R.

７ Note

If a table is specified in the data source instead of a query, R Services uses internal
heuristics to determines the necessary columns to fetch from the table; however,
this approach is unlikely to result in parallel execution.

Optimizing the machine learning algorithm

 Tip

A general discussion of R optimization is out of the scope of this article. However, if
you need to make your code faster, we recommend the popular article, The R
Inferno . It covers programming constructs in R and common pitfalls in vivid

https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitor-and-tune-for-performance?view=sql-server-2017
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf


Many RevoScaleR algorithms support parameters to control how the trained model is
generated. While the accuracy and correctness of the model is important, the
performance of the algorithm might be equally important. To get the right balance
between accuracy and training time, you can modify parameters to increase the speed
of computation, and in many cases, improve performance without reducing the accuracy
or correctness.

rxDTree

rxDTree  supports the maxDepth  parameter, which controls the depth of the
decision tree. As maxDepth  is increased, performance can degrade, so it is
important to analyze the benefits of increasing the depth vs. hurting performance.

You can also control the balance between time complexity and prediction accuracy
by adjusting parameters such as maxNumBins , maxDepth , maxComplete , and
maxSurrogate . Increasing the depth to beyond 10 or 15 can make the computation
very expensive.

rxLinMod

Try using the cube  argument if the first dependent variable in the formula is a
factor variable.

When cube  is set to TRUE , the regression is performed using a partitioned inverse,
which might be faster and use less memory than standard regression computation.
If the formula has a large number of variables, the performance gain can be
significant.

rxLogit

Use the cube  argument if the first dependent variable is a factor variable.

When cube  is set to TRUE , the algorithm uses a partitioned inverse, which might be
faster and use less memory. If the formula has a large number of variables, the
performance gain can be significant.

For more information on optimization of RevoScaleR, see these articles:

language and detail, and provides many specific examples of R programming
techniques.

Optimizations for RevoScaleR

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxdtree
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxlinmod
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxlogit


Support article: Performance tuning options for rxDForest and rxDTree

Methods for controlling model fit in a boosted tree model: Estimating Models
Using Stochastic Gradient Boosting

Overview of how RevoScaleR moves and processes data: Write custom chunking
algorithms in ScaleR

Programming model for RevoScaleR: Managing threads in RevoScaleR

Function reference for rxDForest

Function reference for rxBTrees

We also recommend that you look into the new MicrosoftML package, which provides
scalable machine learning algorithms that can use the compute contexts and
transformations provided by RevoScaleR.

Get started with MicrosoftML

How to choose a MicrosoftML algorithm

For R functions you can use to improve the performance of your R code, see Use R
code profiling functions to improve performance.

For more complete information about performance tuning on SQL Server, see
Performance Center for SQL Server Database Engine and Azure SQL Database.

Use MicrosoftML

Next steps

https://support.microsoft.com/kb/3104235
https://learn.microsoft.com/en-us/r-server/r/how-to-revoscaler-boosting
https://learn.microsoft.com/en-us/r-server/r/how-to-developer-write-chunking-algorithms
https://learn.microsoft.com/en-us/r-server/r/how-to-developer-manage-threads
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxdforest
https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/rxbtrees
https://learn.microsoft.com/en-us/r-server/r/concept-what-is-the-microsoftml-package
https://learn.microsoft.com/en-us/r-server/r/how-to-choose-microsoftml-algorithms-cheatsheet
https://learn.microsoft.com/en-us/sql/relational-databases/performance/performance-center-for-sql-server-database-engine-and-azure-sql-database?view=sql-server-2017


Use R code profiling functions to
improve performance
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article describes performance tools provided by R packages to get information
about internal function calls. You can use this information to improve the performance
of your code.

rprof  is a function included in the base package utils , which is loaded by default.

In general, the rprof function works by writing out the call stack to a file, at specified
intervals. You can then use the summaryRprof  function to process the output file. One
advantage of rprof is that it performs sampling, thus lessening the performance load
from monitoring.

To use R profiling in your code, you call this function and specify its parameters,
including the name of the location of the log file that will be written. Profiling can be
turned on and off in your code. The following syntax illustrates basic usage:

R

 Tip

This article provides basic resources to get you started. For expert guidance, we
recommend the Performance section in "Advanced R" by Hadley Wickham .

Using RPROF

# Specify profiling output file. 
varOutputFile <- "C:/TEMP/run001.log") 
Rprof(varOutputFile) 

# Turn off profiling 
Rprof(NULL) 
     
# Restart profiling 
Rprof(append=TRUE) 

７ Note

https://www.rdocumentation.org/packages/utils/versions/3.5.1/topics/Rprof
https://www.rdocumentation.org/packages/utils/versions/3.5.1/topics/PkgUtils
https://www.rdocumentation.org/packages/utils/versions/3.5.1/topics/summaryRprof
http://adv-r.had.co.nz/


The R language includes many base package functions for returning the contents of
system variables. For example, as part of your R code, you might use Sys.timezone  to
get the current time zone, or Sys.Time  to get the system time from R.

To get information about individual R system functions, type the function name as the
argument to the R help()  function from an R command prompt.

R

The documentation for Microsoft R Open, which is installed by default, includes a
manual on developing extensions for the R language that discusses profiling and
debugging  in detail.

For more information about optimizing R scripts in SQL Server, see Performance
tuning and data optimization for R.
For more complete information about performance tuning on SQL Server, see
Performance Center for SQL Server Database Engine and Azure SQL Database.
For more information on the utils package, see The R Utils Package .
For in-depth discussions of R programming, see "Advanced R" by Hadley
Wickham .

Using this function requires that Windows Perl be installed on the computer where
code is run. Therefore, we recommend that you profile code during development in
an R environment, and then deploy the debugged code to SQL Server.

R System Functions

help("Sys.time") 

Debugging and Profiling in R

Next steps

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Debugging
https://learn.microsoft.com/en-us/sql/relational-databases/performance/performance-center-for-sql-server-database-engine-and-azure-sql-database?view=sql-server-2017
https://www.rdocumentation.org/packages/utils/versions/3.5.1/topics/PkgUtils
http://adv-r.had.co.nz/


Machine Learning Server: manage web
services with azureml-model-
management-sdk
Article • 02/28/2023

Applies to: Machine Learning Server, SQL Server 2017

'azureml-model-management-sdk' is a custom Python package developed by Microsoft.
This package provides the classes and functions to deploy and interact with analytic web
services. These web services are backed by code block and scripts in Python or R.

This topic is a high-level description of package functionality. These classes and
functions can be called directly. For syntax and other details, see the individual function
help topics in the table of contents.

Package details Information

Current version: 1.0.1b7

Built on: Anaconda  distribution of Python 3.5

Package distribution: Machine Learning Server 9.x  
SQL Server 2017 Machine Learning Server (Standalone)

The azureml-model-management-sdk package is installed as part of Machine Learning
Server and SQL Server 2017 Machine Learning Server (Standalone) when you add
Python to your installation. It is also available locally on Windows. When you install
these products, you get the full collection of proprietary packages plus a Python
distribution with its modules and interpreters.

You can use any Python IDE to write Python scripts that call the classes and functions in
azureml-model-management-sdk. However, the script must run on a computer having
Machine Learning Server or SQL Server 2017 Machine Learning Server (Standalone) with
Python.

How to use this package

Use cases

https://www.anaconda.com/
https://www.python.org/doc
https://learn.microsoft.com/en-us/machine-learning-server/what-is-machine-learning-server
https://learn.microsoft.com/en-us/machine-learning-server/install/python-libraries-interpreter


There are three primary use cases for this release:

Adding authentication logic to your Python script
Deploying standard or real-time Python web services
Managing and consuming these web services

DeployClient

MLServer

Operationalization

OperationalizationDefinition

ServiceDefinition

RealtimeDefinition

Service

ServiceResponse

Batch

BatchResponse

Add both Python modules to your computer by running setup:

Set up Machine Learning Server for Python or Python Machine Learning Services.

Next, follow this quickstart to try it yourself:

Quickstart: How to deploy Python model as a service

Or, read this how-to article:

How to publish and manage web services in Python

Library Reference

Main classes and functions

Next steps

See also

https://learn.microsoft.com/en-us/machine-learning-server/install/machine-learning-server-install
https://learn.microsoft.com/en-us/machine-learning-server/operationalize/python/quickstart-deploy-python-web-service
https://learn.microsoft.com/en-us/machine-learning-server/operationalize/python/how-to-deploy-manage-web-services
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/introducing-python-package-reference


Install Machine Learning Server

Install the Python interpreter and libraries on Windows

How to authenticate in Python with this package

How to list, get, and consume services in Python with this package

https://learn.microsoft.com/en-us/machine-learning-server/what-is-machine-learning-server
https://learn.microsoft.com/en-us/machine-learning-server/install/python-libraries-interpreter
https://learn.microsoft.com/en-us/machine-learning-server/operationalize/python/how-to-authenticate-in-python
https://learn.microsoft.com/en-us/machine-learning-server/operationalize/python/how-to-consume-web-services


Class DeployClient
Article • 02/28/2023

Defines the factory for creating Deployment Clients.

Basic Usage Module implementation plugin with use  property:

Find and Load module from an import reference:

Find and Load module as defined by use from namespace str:

Find and Load module from a file/path tuple:

Create a new Deployment Client.

azureml.deploy.DeployClient(host, auth=None, use=None) 

from azureml.deploy import DeployClient 
from azureml.deploy.server import MLServer 

host = 'http://localhost:12800' 
ctx = ('username', 'password') 
mls_client = DeployClient(host, use=MLServer, auth=ctx) 

host = 'http://localhost:12800' 
ctx = ('username', 'password') 

mls_client = DeployClient(host, use=MLServer, auth=ctx) 
mls_client = DeployClient(host, use='azureml.deploy.server.MLServer', 
auth=ctx) 

host = 'http://localhost:12800' 
ctx = ('username', 'password') 

use = ('azureml.deploy.server.MLServer', '/path/to/mlserver.py') 
mls_client = DeployClient(host, use=use, auth=ctx) 



Server HTTP/HTTPS endpoint, including the port number.

(optional) Authentication context. Not all deployment clients require authentication. The
auth is required for MLServer

(required) Deployment implementation to use (ex) use='MLServer' to use The ML Server.

Arguments

host

auth

use



Class MLServer
Article • 02/28/2023

Python

Bases: azureml.deploy.operationalization.Operationalization

This module provides a service implementation for the ML Server.

Python

Override

Authentication lifecycle method called by the framework. Invokes the authentication
entry-point for the class hierarchy.

ML Server supports two forms of authentication contexts:

LDAP: tuple (username, password)

Azure Active Directory (AAD): dict {…}

access-token: str =4534535

The authentication context: LDAP, Azure Active Directory (AAD), or existing access-token
string.

MLServer

azureml.deploy.server.MLServer 

authentication

authentication(context) 

Arguments

context

HttpException



If an HTTP fault occurred calling the ML Server.

Python

Creates or updates the pool for the published web service, with given initial and
maximum pool sizes on the ML Server by name and version.

Example:

Python

The unique web service name.

The web service version.

The initial pool size for the web service.

The max pool size for the web service. This cannot be less than initial_pool_size.

create_or_update_service_pool

 create_or_update_service_pool(name, version, initial_pool_size, 
max_pool_size, **opts) 

>>> client.create_or_update_service_pool( 
        'regression', 
        version = 'v1.0.0', 
        initial_pool_size = 1, 
        maximum_pool_size = 10) 
<Response [200]> 
>>> 

Arguments

name

version

initial_pool_size

max_pool_size



requests.models.Response: HTTP Status indicating if the request was submitted
successfully or not.

If an HTTP fault occurred calling the ML Server.

Python

Delete a web service.

Python

The web service name.

The web service version (version='v1.0.1).

A bool  indicating the service deletion was succeeded.

If an HTTP fault occurred calling the ML Server.

Returns

HttpException

delete_service

delete_service(name, **opts) 

success = client.delete_service('example', version='v1.0.1') 
print(success) 
True 

Arguments

name

opts

Returns

HttpException



Python

Delete the pool for the published web service on the ML Server by name and version.

Example:

Python

The unique web service name.

The web service version.

requests.models.Response: HTTP Status if the pool was deleted for the service.

If an HTTP fault occurred calling the ML Server.

Python

delete_service_pool

delete_service_pool(name, version, **opts) 

>>> client.delete_service_pool('regression', version = 'v1.0.0') 
<Response [200]> 
>>> 

Arguments

name

version

Returns

HttpException

deploy_realtime

deploy_realtime(name, **opts) 



Publish a new real-time web service on the ML Server by name and version.

All input and output types are defined as a pandas.DataFrame .

Example:

Python

The web service name.

The service properties to publish as a dict . The opts supports the following optional
properties:

version (str) - Defines a unique alphanumeric web service version. If the version is
left blank, a unique guid is generated in its place. Useful during service
development before the author is ready to officially publish a semantic version to
share.

description (str) - The service description.

alias (str) - The consume function name. Defaults to consume.

model = rx_serialize_model(model, realtime_scoring_only=True) 
opts = { 
    'version': 'v1.0.0', 
    'description': 'Real-time service description.', 
    'serialized_model': model 
} 

service = client.deploy_realtime('scoring', **opts) 
df = movie_reviews.as_df() 
res = service.consume(df) 
answer = res.outputs 

７ Note

Using deploy_realtime() in this fashion is identical to publishing a service using the
fluent APIS deploy()

Arguments

name

opts



A new instance of Service representing the real-time service redeployed.

If an HTTP fault occurred calling the ML Server.

Python

Publish a new web service on the ML Server by name and version.

Example:

Python

Returns

HttpException

deploy_service

deploy_service(name, **opts) 

opts = { 
   'version': 'v1.0.0',
   'description': 'Service description.', 
   'code_fn': run, 
   'init_fn': init, 
   'objects': {'local_obj': 50}, 
   'models': {'model': 100}, 
   'inputs': {'x': int}, 
   'outputs': {'answer': float}, 
   'artifacts': ['histogram.png'], 
   'alias': 'consume_service_fn_alias' 
 } 

 service = client.deploy('regression', **opts) 
 res = service.consume_service_fn_alias(100) 
 answer = res.output('answer') 
 histogram = res.artifact('histogram.png') 

７ Note

Using deploy_service()  in this fashion is identical to publishing a service using the
fluent APIS deploy().

Arguments



The unique web service name.

The service properties to publish. opts dict supports the following optional properties:

version (str) - Defines a unique alphanumeric web service version. If the version is
left blank, a unique guid is generated in its place. Useful during service
development before the author is ready to officially publish a semantic version to
share.

description (str) - The service description.

code_str (str) - A block of python code to run and evaluate.

init_str (str) - A block of python code to initialize service.

code_fn (function) - A Function to run and evaluate.

init_fn (function) - A Function to initialize service.

objects (dict) - Name and value of objects to include.

models (dict) - Name and value of models to include.

inputs (dict) - Service input schema by name and type. The following types are
supported:

int

float

str

bool

numpy.array

numpy.matrix

pandas.DataFrame

outputs (dict) - Defines the web service output schema. If empty, the service will
not return a response value. outputs are defined as a dictionary {'x'=int}  or {'x':

name

opts



'int'}  that describes the output parameter names and their corresponding data
types. The following types are supported:

int

float

str

bool

numpy.array

numpy.matrix

pandas.DataFrame

artifacts (list) - A collection of file artifacts to return. File content is encoded as a
Base64 String.

alias (str) - The consume function name. Defaults to consume. If code_fn function is
provided, then it will use that function name by default.

A new instance of Service representing the service deployed.

If an HTTP fault occurred calling the ML Server.

Python

Override

Destroy lifecycle method called by the framework. Invokes destructors for the class
hierarchy.

Returns

HttpException

destructor

destructor() 

get_service



Python

Get a web service for consumption.

Python

The web service name.

The optional web service version. If version=None  the most recent service will be
returned.

A new instance of Service.

If an HTTP fault occurred calling the ML Server.

Python

get_service(name, **opts) 

service = client.get_service('example', version='v1.0.1') 
print(service) 
<ExampleService> 
   ... 
   ... 
   ... 

Arguments

name

opts

Returns

HttpException

get_service_pool_status

get_service_pool_status(name, version, **opts) 



Get status of pool on each compute node of the ML Server for the published services
with the provided name and version.

Example:

Python

The unique web service name.

The web service version.

str: json representing the status of pool on each compute node for the deployed service.

If an HTTP fault occurred calling the ML Server.

Python

Override

>>> client.create_or_update_service_pool( 
        'regression', 
        version = 'v1.0.0', 
        initial_pool_size = 5, 
        maximum_pool_size = 5) 
<Response [200]> 
>>> client.get_service_pool_status('regression', version = 'v1.0.0') 
[{'computeNodeEndpoint': 'http://localhost:12805/', 'status': 'Pending'}] 
>>> client.get_service_pool_status('regression', version = 'v1.0.0') 
[{'computeNodeEndpoint': 'http://localhost:12805/', 'status': 'Success'}] 

Arguments

name

version

Returns

HttpException

initializer(http_client, config, adapters=None) 



Init lifecycle method called by the framework, invoked during construction. Sets up
attributes and invokes initializers for the class hierarchy.

The http request session to manage and persist settings across requests (auth, proxies).

The global configuration.

A dict  of transport adapters by url.

Python

List the different published web services on the ML Server.

The service name and service version are optional. This call allows you to retrieve service
information regarding:

All services published

All versioned services for a specific named service

A specific version for a named service

Users can use this information along with the [get_service()](#getservice)  operation
to interact with and consume the web service.

Example:

Python

Arguments

http_client

config

adapters

list_services

list_services(name=None, **opts) 

all_services = client.list_services() 
all_versions_of_add_service = client.list_services('add-service') 



The web service name.

The optional web service version.

A list  of service metadata.

If an HTTP fault occurred calling the ML Server.

Python

Begin fluent API chaining of properties for defining a real-time web service.

Example:

Python

add_service_v1 = client.list_services('add-service', version='v1') 

Arguments

name

opts

Returns

HttpException

realtime_service

realtime_service(name) 

client.realtime_service('scoring') 
   .description('A new real-time web service') 
   .version('v1.0.0') 

Arguments

name



The web service name.

A RealtimeDefinition instance for fluent API chaining.

Python

Updates properties on an existing real-time web service on the Server by name and
version. If version=None  the most recent service will be updated.

All input and output types are defined as a pandas.DataFrame .

Example:

Python

Returns

redeploy_realtime

redeploy_realtime(name, **opts) 

model = rx_serialize_model(model, realtime_scoring_only=True) 
opts = { 
    'version': 'v1.0.0', 
    'description': 'Real-time service description.', 
    'serialized_model': model 
 } 

 service = client.redeploy_realtime('scoring', **opts) 
 df = movie_reviews.as_df() 
 res = service.consume(df) 
 answer = res.outputs 

７ Note

Using redeploy_realtime() in this fashion is identical to updating a service using the
fluent APIS redeploy()

Arguments

name



The web service name.

The service properties to update as a dict . The opts supports the following optional
properties:

version (str) - Defines the web service version.

description (str) - The service description.

alias (str) - The consume function name. Defaults to consume.

A new instance of Service representing the real-time service redeployed.

If an HTTP fault occurred calling the ML Server.

Python

Updates properties on an existing web service on the ML Server by name and version. If
version=None  the most recent service will be updated.

Example:

Python

opts

Returns

HttpException

redeploy_service

redeploy_service(name, **opts) 

opts = { 
   'version': 'v1.0.0',
   'description': 'Service description.', 
   'code_fn': run, 
   'init_fn': init, 
   'objects': {'local_obj': 50}, 
   'models': {'model': 100}, 
   'inputs': {'x': int}, 
   'outputs': {'answer': float}, 
   'artifacts': ['histogram.png'], 
   'alias': 'consume_service_fn_alias' 



The web service name.

The service properties to update as a dict . The opts supports the following optional
properties:

version (str) - Defines a unique alphanumeric web service version. If the version is
left blank, a unique guid is generated in its place. Useful during service
development before the author is ready to officially publish a semantic version to
share.

description (str) - The service description.

code_str (str) - A block of python code to run and evaluate.

init_str (str) - A block of python code to initialize service.

code_fn (function) - A Function to run and evaluate.

init_fn (function) - A Function to initialize service.

objects (dict) - Name and value of objects to include.

models (dict) - Name and value of models to include.

inputs (dict) - Service input schema by name and type. The following types are
supported: - int - float - str - bool - numpy.array - numpy.matrix -

 } 

 service = client.redeploy('regression', **opts) 
 res = service.consume_service_fn_alias(100) 
 answer = res.output('answer') 
 histogram = res.artifact('histogram.png') 

７ Note

Using redeploy_service() in this fashion is identical to updating a service using the
fluent APIS redeploy()

Arguments

name

opts



pandas.DataFrame

outputs (dict) - Defines the web service output schema. If empty, the service will
not return a response value. outputs are defined as a dictionary {'x'=int}  or {'x':
'int'}  that describes the output parameter names and their corresponding data
types. The following types are supported: - int - float - str - bool - numpy.array -
numpy.matrix - pandas.DataFrame

artifacts (list) - A collection of file artifacts to return. File content is encoded as a
Base64 String.

alias (str) - The consume function name. Defaults to consume. If code_fn function is
provided, then it will use that function name by default.

A new instance of Service representing the service deployed.

If an HTTP fault occurred calling the ML Server.

Python

Begin fluent API chaining of properties for defining a standard web service.

Example:

Python

Returns

HttpException

service

service(name) 

client.service('scoring') 
   .description('A new web service') 
   .version('v1.0.0') 

Arguments

name



The web service name.

A ServiceDefinition instance for fluent API chaining.

Returns



Class Operationalization
Article • 03/24/2023

Operationalization is designed to be a low-level abstract foundation class from which
other service operationalization attribute classes in the mldeploy package can be
derived. It provides a standard template for creating attribute-based operationalization
lifecycle phases providing a consistent init(), del() sequence that chains initialization
(initializer), authentication (authentication), and destruction (destructor) methods for the
class hierarchy.

Python

Authentication lifecycle method. Invokes the authentication entry-point for the class
hierarchy.

An optional noonp method where subclass implementers MAY provide this method
definition by overriding.

Sub-class should override and implement.

The optional authentication context as defined in the implementing sub-class.

Operationalization

azureml.deploy.operationalization.Operationalization 

authentication

authentication(context) 

Arguments

context

delete_service



Python

Sub-class should override and implement.

Python

Sub-class should override and implement.

Python

Sub-class should override and implement.

Python

Destroy lifecycle method. Invokes destructors for the class hierarchy.

An optional noonp method where subclass implementers MAY provide this method
definition by overriding.

Sub-class should override and implement.

Python

delete_service(name, **opts) 

deploy_realtime

deploy_realtime(name, **opts) 

deploy_service

deploy_service(name, **opts) 

destructor

destructor() 

get_service

get_service(name, **opts) 



Retrieve service metadata from the name source and return a new service instance.

Sub-class should override and implement.

Python

Init lifecycle method, invoked during construction. Sets up attributes and invokes
initializers for the class hierarchy.

An optional noonp method where subclass implementers MAY provide this method
definition by overriding.

Sub-class should override and implement.

Python

Sub-class should override and implement.

Python

Begin fluent API chaining of properties for defining a real-time web service.

Example:

initializer

initializer(api_client, config, adapters=None) 

list_services

list_services(name=None, **opts) 

realtime_service

realtime_service(name) 

client.realtime_service('scoring') 
   .description('A new real-time web service') 
   .version('v1.0.0') 



The web service name.

A RealtimeDefinition instance for fluent API chaining.

Sub-class should override and implement.

Python

Sub-class should override and implement.

Python

Begin fluent API chaining of properties for defining a standard web service.

Example:

Arguments

name

Returns

redeploy_realtime(name, force=False, **opts) 

redeploy_service

redeploy_service(name, force=False, **opts) 

service

service(name) 

client.service('scoring') 
   .description('A new web service') 
   .version('v1.0.0') 



The web service name.

A ServiceDefinition instance for fluent API chaining.

Arguments

name

Returns



Class OperationalizationDefinition
Article • 02/28/2023

Base abstract class defining a service's properties.

Create a new publish definition.

The web service name.

A reference to the deploy client instance.

A mixin of subclass specific definitions.

Python

Set the optional service function name alias to use in order to consume the service.

Example:

OperationalizationDefinition

azureml.deploy.operationalization.OperationalizationDefinition(name, op, 
    defs_extent={}) 

Arguments

name

op

defs_extent

alias(alias) 

service = client.service('score-service').alias('score').deploy() 



The service function name alias to use in order to consume the service.

Self OperationalizationDefinition for fluent API.

Python

Bundle up the definition properties and publish the service.

To be implemented by subclasses.

A new instance of Service representing the service deployed.

Python

Set the service's optional description.

# `score()` is the function that will call the `score-service` 
result = service.score() 

Arguments

alias

Returns

deploy

deploy() 

Returns

description

description(description) 

Arguments

description



The description of the service.

Self OperationalizationDefinition for fluent API.

Python

Bundle up the definition properties and update the service.

To be implemented by subclasses.

A new instance of Service representing the service deployed.

Python

Set the service's optional version.

The version of the service.

Self OperationalizationDefinition for fluent API.

Returns

redeploy

redeploy(force=False) 

Returns

version

version(version) 

Arguments

version

Returns



ServiceDefinition
Article • 02/28/2023

Bases: azureml.deploy.operationalization.OperationalizationDefinition

Service class defining a standard service's properties for publishing.

Python

Set the optional service function name alias to use in order to consume the service.

Example:

The service function name alias to use in order to consume the service.

Self OperationalizationDefinition for fluent API.

Class ServiceDefinition

azureml.deploy.operationalization.ServiceDefinition(name, op) 

alias(alias) 

service = client.service('score-service').alias('score').deploy() 

# `score()` is the function that will call the `score-service` 
result = service.score() 

Arguments

alias

Returns

artifact



Python

Define a service's optional supported file artifact by name. A convenience to calling
.artifacts(['file.png'])  with a list of one.

A single file artifact by name.

Self OperationalizationDefinition for fluent API chaining.

Python

Defines a service's optional supported file artifacts by name.

A list  of file artifacts by name.

Self OperationalizationDefinition for fluent API chaining.

Python

artifact(artifact) 

Arguments

artifact

Returns

artifacts

artifacts(artifacts) 

Arguments

artifacts

Returns

code_fn



Set the service consume function as a function.

Example:

A function handle as a reference to run python code.

An optional function handle as a reference to initialize the service.

Self OperationalizationDefinition for fluent API chaining.

Python

Set the service consume function as a block of python code as a str .

code_fn(code, init=None) 

def init(): 
    pass 

def score(df): 
    pass 

.code_fn(score, init) 

Arguments

code

init

Returns

code_str

code_str(code, init=None) 

init = 'import pandas as pd' 
code = 'print(pd)' 



A block of python code as a str .

An optional block of python code as a str  to initialize the service.

A ServiceDefinition for fluent API chaining.

Python

Bundle up the definition properties and publish the service.

A new instance of Service representing the service deployed.

Python

Set the service's optional description.

.code_str(code, init) 

Arguments

code

init

Returns

deploy

deploy() 

Returns

description

description(description) 

Arguments



The description of the service.

Self OperationalizationDefinition for fluent API.

Python

Defines a service's optional supported inputs by name and type.

Example:

The inputs by name and type.

Self OperationalizationDefinition for fluent API chaining.

Python

Include any model(s) used for this service.

description

Returns

inputs

inputs(**inputs) 

.inputs(a=float, b=int, c=str, d=bool, e='pandas.DataFrame') 

Arguments

inputs

Returns

models

models(**models) 



Example:

Any models by name and value.

Self OperationalizationDefinition for fluent API chaining.

Python

Include any object(s) used for this service.

Example:

Any objects by name and value.

cars_model = rx_lin_mod(formula="am ~ hp + wt",data=mtcars) 

.models(cars_model=cars_model) 

Arguments

models

Returns

objects

objects(**objects) 

x = 5 
y = 'hello' 

.objects(x=x, y=y) 

Arguments

objects



Self OperationalizationDefinition for fluent API chaining.

Python

Defines a service's optional supported outputs by name and type.

Example:

The outputs by name and type.

Self OperationalizationDefinition for fluent API chaining.

Python

Bundle up the definition properties and update the service.

A new instance of Service representing the service deployed.

Returns

outputs

outputs(**outputs) 

.outputs(a=float, b=int, c=str, d=bool, e='pandas.DataFrame') 

Arguments

outputs

Returns

redeploy

redeploy(force=False) 

Returns



Python

Set the service's optional version.

The version of the service.

Self OperationalizationDefinition for fluent API.

version

version(version) 

Arguments

version

Returns



Class RealtimeDefinition
Article • 02/28/2023

Bases: azureml.deploy.operationalization.OperationalizationDefinition

Real-time class defining a real-time service's properties for publishing.

Python

Set the optional service function name alias to use in order to consume the service.

Example:

The service function name alias to use in order to consume the service.

Self OperationalizationDefinition for fluent API.

RealtimeDefinition

azureml.deploy.operationalization.RealtimeDefinition(name, op) 

alias(alias) 

service = client.service('score-service').alias('score').deploy() 

# `score()` is the function that will call the `score-service` 
result = service.score() 

Arguments

alias

Returns

deploy



Python

Bundle up the definition properties and publish the service.

A new instance of Service representing the service deployed.

Python

Set the service's optional description.

The description of the service.

Self OperationalizationDefinition for fluent API.

Python

Bundle up the definition properties and update the service.

A new instance of Service representing the service deployed.

deploy() 

Returns

description

description(description) 

Arguments

description

Returns

redeploy

redeploy(force=False) 

Returns



Python

Serialized model.

The required serialized model used for this real-time service.

Self OperationalizationDefinition for fluent API chaining.

Python

Set the service's optional version.

The version of the service.

Self OperationalizationDefinition for fluent API.

serialized_model

serialized_model(model) 

Arguments

model

Returns

version

version(version) 

Arguments

version

Returns



Class Service
Article • 02/28/2023

Dynamic object for service consumption and batching based on service metadata
attributes.

Register a set of input records for batch execution on this service.

The data.frame or list of input records to execute.

Number of threads used to process entries in the batch. Default value is 10. Please make
sure not to use too high of a number because it might negatively impact performance.

The Batch instance to control this service's batching lifecycle.

Service

azureml.deploy.server.service.Service(service, http_client) 

batch

batch(records, parallel_count=10)

Arguments

records

parallel_count

Returns

capabilities



Python

Provides the following information describing the holdings of this service:

api - The API REST endpoint.

name - The service name.

version - The service version.

published_by - The service publishing author.

runtime - The service runtime context R|Python.

description - The service description.

creation_time - The service publish timestamp.

snapshot_id - The snapshot identifier this service is bound with.

inputs - The input schema name/type definition.

outputs - The output schema name/type definition.

inputs_encoded - The input schema name/type encoded to python.

outputs_encoded - The output schema name/type encoded to python.

artifacts - The supported generated files.

operation_id - The function alias .

swagger - The API REST endpoint to this service's swagger.json document.

A dict  of key/values describing the service.

Python

capabilities() 

Returns

get_batch

get_batch(execution_id) 



Retrieves the service batch based on an execution identifier.

The identifier of the batch execution.

The Batch instance to control this service's batching lifecycle.

Python

Gets all batch execution identifiers currently queued for this service.

A list  of execution identifiers.

Python

Retrieves the swagger.json for this service (see http://swagger.io/ ).

The swagger document for this service as a json str .

Arguments

execution_id

Returns

list_executions

list_batch_executions() 

Returns

swagger

swagger() 

Returns

http://swagger.io/


Class ServiceResponse
Article • 02/28/2023

Represents the response from a service invocation. The response will contain any
outputs and file artifacts produced in addition to any console output or errors
messages.

Python

Gets the api endpoint.

Python

A convenience function to look up a file artifact by name and optionally base64 decode
it.

The name of the file artifact.

ServiceResponse

azureml.deploy.server.service.ServiceResponse(api, response, output_schema) 

api

api 

artifact

artifact(artifact_name, decode=True, encoding=None) 

Arguments

artifact_name

decode



Whether to decode the Base64 encoded artifact string. The default is True .

The encoding scheme to be used. The default is to apply no encoding. For a list of all
encoding schemes please visit Standard Encodings:
https://docs.python.org/3/library/codecs.html#standard-encodings

The file artifact as a Base64 encoded string if decode=False  otherwise the decoded
string.

Python

Returns a list  of non-decoded response file artifacts if present.

Python

Gets the console output if present.

Python

Gets the error if present.

encoding

Returns

artifacts

artifacts 

console_output

console_output 

error

error 

output

https://docs.python.org/3/library/codecs.html#standard-encodings


Python

A convenience function to look up an output value by name.

The name of the output.

The service output's value.

Python

Gets the response outputs if present.

Python

Gets the raw response outputs if present.

output(output) 

Arguments

output

Returns

outputs

outputs 

raw_outputs

raw_outputs 



Class Batch
Article • 02/28/2023

Manager of a service's batch execution lifecycle.

Python

Gets the api endpoint.

Python

Gets this batch's execution identifier if currently started, otherwise None .

Python

Gets this batch's parallel count of threads.

Batch

azureml.deploy.server.service.Batch(service, records=[], parallel_count=10, 
    execution_id=None) 

api

api 

execution_id

execution_id 

parallel_count

parallel_count 

records 



Gets the batch input records.

Poll for batch results.

To get partial execution results or not. The default is to include partial results.

An instance of BatchResponse.

Python

Starts a batch execution for this service.

An instance of itself Batch.

Python

Get the file artifact for this service batch execution index.

results(show_partial_results=True) 

Arguments

show_partial_results

Returns

start

start() 

Returns

artifacts

artifact(index, file_name) 



Batch execution index.

Artifact filename

A single file artifact.

Python

Cancel this batch execution.

Download the file artifact to file-system in the destination.

Batch execution index.

The file artifact name.

Arguments

index

file_name

Returns

cancel

cancel() 

download

download(index, file_name=None, destination=cwd()) 

Arguments

index

file_name



Download location.

A list of downloaded file-paths.

Python

List the file artifact names belonging to this service batch execution index.

Batch execution index.

A list of file artifact names.

Gets this batch's parallel count of threads.

Python

Gets the batch input records.

Python

destination

Returns

list_artifacts

list_artifacts(index) 

Arguments

index

Returns

records

records 

results



Poll batch results.

To get partial execution results or not.

An execution Self BatchResponse.

results(show_partial_results=True) 

Arguments

show_partial_results

Returns



Class BatchResponse
Article • 02/28/2023

Represents a service's entire batch execution response at a particular state in time. Using
this, a batch execution index can be supplied to the execution(index)  function in order
to retrieve the service's ServiceResponse.

Python

Gets the api endpoint.

Python

Returns the number of completed batch results processed thus far.

Python

Extracts the service execution results within the batch at this execution index.

BatchResponse

azureml.deploy.server.service.BatchResponse(api, execution_id, response, 
    output_schema) 

api

api 

completed_item_count

completed_item_count 

execution

execution(index) 



The batch execution index.

The execution results ServiceResponse.

Python

Returns this batch's execution identifier if a batch has been started, otherwise None .

Python

Returns the total number of batch results processed in any state.

Arguments

index

Returns

execution_id

execution_id 

total_item_count

total_item_count 



microsoftml (Python package in SQL
Server Machine Learning Services)
Article • 02/28/2023

Applies to:  SQL Server 2017 (14.x) and later

microsoftml is a Python package from Microsoft that provides high-performance
machine learning algorithms. It includes functions for training and transformations,
scoring, text and image analysis, and feature extraction for deriving values from existing
data. The package is included in SQL Server Machine Learning Services and supports
high performance on big data, using multicore processing, and fast data streaming.

Package details Information

Current version: 9.4

Built on: Anaconda 4.2  distribution of Python 3.7.1

Package distribution: SQL Server Machine Learning Services version 2017 or 2019.

The microsoftml module is installed as part of SQL Server Machine Learning Services
when you add Python to your installation. You get the full collection of proprietary
packages plus a Python distribution with its modules and interpreters. You can use any
Python IDE to write Python script calling functions in microsoftml, but the script must
run on a computer having SQL Server Machine Learning Services with Python.

Microsoftml and revoscalepy are tightly coupled; data sources used in microsoftml are
defined as revoscalepy objects. Compute context limitations in revoscalepy transfer to
microsoftml. Namely, all functionality is available for local operations, but switching to a
remote compute context requires RxSpark or RxInSQLServer.

The microsoftml module is available only when you install one of the following
Microsoft products or downloads:

SQL Server Machine Learning Services
Python client libraries for a data science client

How to use microsoftml

Versions and platforms

https://anaconda.org/conda-forge/opencv/files?version=4.2.0
https://www.python.org/doc
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rxspark
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rxinsqlserver


Algorithms in microsoftml depend on revoscalepy for:

Data source objects - Data consumed by microsoftml functions are created using
revoscalepy functions.
Remote computing (shifting function execution to a remote SQL Server instance) -
The revoscalepy package provides functions for creating and activating a remote
compute context for SQL server.

In most cases, you will load the packages together whenever you are using microsoftml.

This section lists the functions by category to give you an idea of how each one is used.
You can also use the table of contents to find functions in alphabetical order.

Function Description

microsoftml.rx_ensemble Train an ensemble of models.

microsoftml.rx_fast_forest Random Forest.

microsoftml.rx_fast_linear Linear Model. with Stochastic Dual Coordinate Ascent.

microsoftml.rx_fast_trees Boosted Trees.

microsoftml.rx_logistic_regression Logistic Regression.

microsoftml.rx_neural_network Neural Network.

microsoftml.rx_oneclass_svm Anomaly Detection.

７ Note

Full product release versions are Windows-only in SQL Server 2017. Both Windows
and Linux are supported for microsoftml in SQL Server 2019.

Package dependencies

Functions by category

1-Training functions

2-Transform functions

https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017


Function Description

microsoftml.categorical Converts a text column into categories.

microsoftml.categorical_hash Hashes and converts a text column into categories.

Function Description

microsoftml.concat Concatenates multiple columns into a single vector.

microsoftml.drop_columns Drops columns from a dataset.

microsoftml.select_columns Retains columns of a dataset.

Function Description

microsoftml.count_select Feature selection based on counts.

microsoftml.mutualinformation_select Feature selection based on mutual information.

Function Description

microsoftml.featurize_text Converts text columns into numerical features.

microsoftml.get_sentiment Sentiment analysis.

Function Description

microsoftml.load_image Loads an image.

microsoftml.resize_image Resizes an Image.

microsoftml.extract_pixels Extracts pixels from an image.

Categorical variable handling

Schema manipulation

Variable selection

Text analytics

Image analytics



Function Description

microsoftml.featurize_image Converts an image into features.

Function Description

microsoftml.rx_featurize Data transformation for data sources

Function Description

microsoftml.rx_predict Scores using a Microsoft machine learning model

Functions in microsoftml are callable in Python code encapsulated in stored procedures.
Most developers build microsoftml solutions locally, and then migrate finished Python
code to stored procedures as a deployment exercise.

The microsoftml package for Python is installed by default, but unlike revoscalepy, it is
not loaded by default when you start a Python session using the Python executables
installed with SQL Server.

As a first step, import the microsoftml package, and import revoscalepy if you need to
use remote compute contexts or related connectivity or data source objects. Then,
reference the individual functions you need.

Python

Python tutorials
Manage Python packages

Featurization functions

Scoring functions

How to call microsoftml

from microsoftml.modules.logistic_regression.rx_logistic_regression import 
rx_logistic_regression 
from revoscalepy.functions.RxSummary import rx_summary 
from revoscalepy.etl.RxImport import rx_import_datasource 

See also





microsoftml.adadelta_optimizer:
Adaptive learing rate method
Article • 03/03/2023

Adaptive learning rate method.

Decay rate (settings).

Condition constant (settings).

sgd_optimizer

Usage

microsoftml.adadelta_optimizer(decay: numbers.Real = 0.95, 
    cond: numbers.Real = 1e-06) 

Description

Arguments

decay

cond

See also



microsoftml.avx_math: Acceleration with
AVX instructions
Article • 03/03/2023

Implementation accelerated with AVX instructions.

clr_math, gpu_math, mkl_math, sse_math

Usage

microsoftml.avx_math() 

Description

See also



microsoftml.categorical: Converts a text
column into categories
Article • 03/03/2023

Categorical transform that can be performed on data before training a model.

The categorical  transform passes through a data set, operating on text columns, to
build a dictionary of categories. For each row, the entire text string appearing in the
input column is defined as a category. The output of the categorical transform is an
indicator vector. Each slot in this vector corresponds to a category in the dictionary, so
its length is the size of the built dictionary. The categorical transform can be applied to
one or more columns, in which case it builds a separate dictionary for each column that
it is applied to.

categorical  is not currently supported to handle factor data.

A character string or list of variable names to transform. If dict , the keys represent the
names of new variables to be created.

Usage

microsoftml.categorical(cols: [str, dict, list], output_kind: ['Bag', 'Ind', 
    'Key', 'Bin'] = 'Ind', max_num_terms: int = 1000000, 
    terms: int = None, sort: ['Occurrence', 'Value'] = 'Occurrence', 
    text_key_values: bool = False, **kargs) 

Description

Details

Arguments

cols

output_kind



A character string that specifies the kind of output kind.

"Bag" : Outputs a multi-set vector. If the input column is a vector of categories, the
output contains one vector, where the value in each slot is the number of
occurrences of the category in the input vector. If the input column contains a
single category, the indicator vector and the bag vector are equivalent

"Ind" : Outputs an indicator vector. The input column is a vector of categories, and
the output contains one indicator vector per slot in the input column.

"Key" : Outputs an index. The output is an integer ID (between 1 and the number
of categories in the dictionary) of the category.

"Bin" : Outputs a vector which is the binary representation of the category.

The default value is "Ind" .

An integer that specifies the maximum number of categories to include in the
dictionary. The default value is 1000000.

Optional character vector of terms or categories.

A character string that specifies the sorting criteria.

"Occurrence" : Sort categories by occurrences. Most frequent is first.

"Value" : Sort categories by values.

Whether key value metadata should be text, regardless of the actual input type.

Additional arguments sent to compute engine.

max_num_terms

terms

sort

text_key_values

kargs



An object defining the transform.

categorical_hash

Returns

See also

Example

''' 
Example on rx_logistic_regression and categorical. 
''' 
import numpy 
import pandas 
from microsoftml import rx_logistic_regression, categorical, rx_predict 

train_reviews = pandas.DataFrame(data=dict( 
    review=[ 
        "This is great", "I hate it", "Love it", "Do not like it", "Really 
like it", 
        "I hate it", "I like it a lot", "I kind of hate it", "I do like it", 
        "I really hate it", "It is very good", "I hate it a bunch", "I love 
it a bunch", 
        "I hate it", "I like it very much", "I hate it very much.", 
        "I really do love it", "I really do hate it", "Love it!", "Hate 
it!", 
        "I love it", "I hate it", "I love it", "I hate it", "I love it"], 
    like=[True, False, True, False, True, False, True, False, True, False, 
        True, False, True, False, True, False, True, False, True, False, 
True, 
        False, True, False, True])) 
         
test_reviews = pandas.DataFrame(data=dict( 
    review=[ 
        "This is great", "I hate it", "Love it", "Really like it", "I hate 
it", 
        "I like it a lot", "I love it", "I do like it", "I really hate it", 
"I love it"])) 

# Use a categorical transform: the entire string is treated as a category 
out_model = rx_logistic_regression("like ~ reviewCat", 
                data=train_reviews, 
                ml_transforms=[categorical(cols=dict(reviewCat="review"))]) 
                 
# Note that 'I hate it' and 'I love it' (the only strings appearing more 
than once) 
# have non-zero weights. 



Output:

print(out_model.coef_) 

# Use the model to score. 
source_out_df = rx_predict(out_model, data=test_reviews, 
extra_vars_to_write=["review"]) 
print(source_out_df.head()) 

Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Not adding a normalizer. 
Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
LBFGS multi-threading will attempt to load dataset into memory. In case of 
out-of-memory issues, turn off multi-threading by setting trainThreads to 1. 
Warning: Too few instances to use 4 threads, decreasing to 1 thread(s) 
Beginning optimization 
num vars: 20 
improvement criterion: Mean Improvement 
L1 regularization selected 3 of 20 weights. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:01.6550695 
Elapsed time: 00:00:00.2259981 
OrderedDict([('(Bias)', 0.21317288279533386), ('I hate it', 
-0.7937591671943665), ('I love it', 0.19668534398078918)]) 
Beginning processing data. 
Rows Read: 10, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.1385248 
Finished writing 10 rows. 
Writing completed. 
           review PredictedLabel     Score  Probability 
0   This is great           True  0.213173     0.553092 
1       I hate it          False -0.580586     0.358798 
2         Love it           True  0.213173     0.553092 
3  Really like it           True  0.213173     0.553092 
4       I hate it          False -0.580586     0.358798 



microsoftml.categorical_hash: Hashes
and converts a text column into
categories
Article • 03/03/2023

Categorical hash transform that can be performed on data before training a model.

categorical_hash  converts a categorical value into an indicator array by hashing the
value and using the hash as an index in the bag. If the input column is a vector, a single
indicator bag is returned for it. categorical_hash  does not currently support handling
factor data.

A character string or list of variable names to transform. If dict , the keys represent the
names of new variables to be created.

An integer specifying the number of bits to hash into. Must be between 1 and 30,
inclusive. The default value is 16.

Usage

microsoftml.categorical_hash(cols: [str, dict, list], 
    hash_bits: int = 16, seed: int = 314489979, 
    ordered: bool = True, invert_hash: int = 0, 
    output_kind: ['Bag', 'Ind', 'Key', 'Bin'] = 'Bag', **kargs) 

Description

Details

Arguments

cols

hash_bits



An integer specifying the hashing seed. The default value is 314489979.

True  to include the position of each term in the hash. Otherwise, False . The default
value is True .

An integer specifying the limit on the number of keys that can be used to generate the
slot name. 0  means no invert hashing; -1  means no limit. While a zero value gives
better performance, a non-zero value is needed to get meaningful coefficient names.
The default value is 0 .

A character string that specifies the kind of output kind.

"Bag" : Outputs a multi-set vector. If the input column is a vector of categories, the
output contains one vector, where the value in each slot is the number of
occurrences of the category in the input vector. If the input column contains a
single category, the indicator vector and the bag vector are equivalent

"Ind" : Outputs an indicator vector. The input column is a vector of categories, and
the output contains one indicator vector per slot in the input column.

"Key : Outputs an index. The output is an integer ID (between 1 and the number of
categories in the dictionary) of the category.

"Bin : Outputs a vector which is the binary representation of the category.

The default value is "Bag" .

Additional arguments sent to the compute engine.

seed

ordered

invert_hash

output_kind

kargs

Returns



an object defining the transform.

categorical

See also

Example

''' 
Example on rx_logistic_regression and categorical_hash. 
''' 
import numpy 
import pandas 
from microsoftml import rx_logistic_regression, categorical_hash, rx_predict 
from microsoftml.datasets.datasets import get_dataset 

movie_reviews = get_dataset("movie_reviews") 

train_reviews = pandas.DataFrame(data=dict( 
    review=[ 
        "This is great", "I hate it", "Love it", "Do not like it", "Really 
like it", 
        "I hate it", "I like it a lot", "I kind of hate it", "I do like it", 
        "I really hate it", "It is very good", "I hate it a bunch", "I love 
it a bunch", 
        "I hate it", "I like it very much", "I hate it very much.", 
        "I really do love it", "I really do hate it", "Love it!", "Hate 
it!", 
        "I love it", "I hate it", "I love it", "I hate it", "I love it"], 
    like=[True, False, True, False, True, False, True, False, True, False, 
        True, False, True, False, True, False, True, False, True, False, 
True, 
        False, True, False, True])) 
         
test_reviews = pandas.DataFrame(data=dict( 
    review=[ 
        "This is great", "I hate it", "Love it", "Really like it", "I hate 
it", 
        "I like it a lot", "I love it", "I do like it", "I really hate it", 
"I love it"])) 

# Use a categorical hash transform. 
out_model = rx_logistic_regression("like ~ reviewCat", 
                data=train_reviews, 
                ml_transforms=
[categorical_hash(cols=dict(reviewCat="review"))]) 
                 



Output:

# Weights are similar to categorical. 
print(out_model.coef_) 

# Use the model to score. 
source_out_df = rx_predict(out_model, data=test_reviews, 
extra_vars_to_write=["review"]) 
print(source_out_df.head()) 

Not adding a normalizer. 
Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
LBFGS multi-threading will attempt to load dataset into memory. In case of 
out-of-memory issues, turn off multi-threading by setting trainThreads to 1. 
Warning: Too few instances to use 4 threads, decreasing to 1 thread(s) 
Beginning optimization 
num vars: 65537 
improvement criterion: Mean Improvement 
L1 regularization selected 3 of 65537 weights. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.1209392 
Elapsed time: 00:00:00.0190134 
OrderedDict([('(Bias)', 0.2132447361946106), ('f1783', -0.7939924597740173), 
('f38537', 0.1968022584915161)]) 
Beginning processing data. 
Rows Read: 10, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0284223 
Finished writing 10 rows. 
Writing completed. 
           review PredictedLabel     Score  Probability 
0   This is great           True  0.213245     0.553110 
1       I hate it          False -0.580748     0.358761 
2         Love it           True  0.213245     0.553110 
3  Really like it           True  0.213245     0.553110 
4       I hate it          False -0.580748     0.358761 



microsoftml.clr_math: Acceleration with
.NET math
Article • 03/03/2023

Default .NET math.

avx_math, gpu_math, mkl_math, sse_math

Usage

microsoftml.clr_math() 

Description

See also



microsoftml.concat: Concatenates
multiple columns into a single vector
Article • 03/03/2023

Combines several columns into a single vector-valued column.

concat  creates a single vector-valued column from multiple columns. It can be
performed on data before training a model. The concatenation can significantly speed
up the processing of data when the number of columns is as large as hundreds to
thousands.

A character dict or list of variable names to transform. If dict , the keys represent the
names of new variables to be created. Note that all the input variables must be of the
same type. It is possible to produce multiple output columns with the concatenation
transform. In this case, you need to use a list of vectors to define a one-to-one mapping
between input and output variables. For example, to concatenate columns InNameA and
InNameB into column OutName1 and also columns InNameC and InNameD into column
OutName2, use the dict: dict(OutName1 = [InNameA, InNameB], outName2 =
[InNameC, InNameD])

Usage

microsoftml.concat(cols: [dict, list], **kargs) 

Description

Details

Arguments

cols

kargs



Additional arguments sent to the compute engine.

An object defining the concatenation transform.

drop_columns, select_columns.

Returns

See also

Example

''' 
Example on logistic regression and concat. 
''' 
import numpy 
import pandas 
import sklearn 
from microsoftml import rx_logistic_regression, concat, rx_predict 
from microsoftml.datasets.datasets import get_dataset 

iris = get_dataset("iris") 

if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

# We use iris dataset. 
irisdf = iris.as_df() 

# The training features. 
features = ["Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width"] 

# The label. 
label = "Label" 

# microsoftml needs a single dataframe with features and label. 
cols = features + [label] 

# We split into train/test. y_train, y_test are not used. 
data_train, data_test, y_train, y_test = train_test_split(irisdf[cols], 
irisdf[label]) 

# We train a logistic regression.
# A concat transform is added to group features in a single vector column. 
multi_logit_out = rx_logistic_regression( 



Output:

                        formula="Label ~ Features", 
                        method="multiClass", 
                        data=data_train, 
                        ml_transforms=[concat(cols={'Features': features})]) 
                         
# We show the coefficients. 
print(multi_logit_out.coef_) 

# We predict. 
prediction = rx_predict(multi_logit_out, data=data_test) 

print(prediction.head()) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 112, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
LBFGS multi-threading will attempt to load dataset into memory. In case of 
out-of-memory issues, turn off multi-threading by setting trainThreads to 1. 
Beginning optimization 
num vars: 15 
improvement criterion: Mean Improvement 
L1 regularization selected 9 of 15 weights. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.2348578 
Elapsed time: 00:00:00.0197433 
OrderedDict([('0+(Bias)', 1.943994402885437), ('1+(Bias)', 
0.6346845030784607), ('2+(Bias)', -2.57867693901062), ('0+Petal_Width', 
-2.7277402877807617), ('0+Petal_Length', -2.5394322872161865), 
('0+Sepal_Width', 0.4810805320739746), ('1+Sepal_Width', 
-0.5790582299232483), ('2+Petal_Width', 2.547518491744995), 
('2+Petal_Length', 1.6753791570663452)]) 
Beginning processing data. 
Rows Read: 38, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0662932 
Finished writing 38 rows. 
Writing completed. 
    Score.0   Score.1   Score.2 
0  0.320061  0.504115  0.175825 
1  0.761624  0.216213  0.022163 
2  0.754765  0.215548  0.029687 



3  0.182810  0.517855  0.299335 
4  0.018770  0.290014  0.691216 



microsoftml.count_select: Feature
selection based on counts
Article • 03/03/2023

Selects the features for which the count of non-default values is greater than or equal to
a threshold.

When using the count mode in feature selection transform, a feature is selected if the
number of examples have at least the specified count examples of non-default values in
the feature. The count mode feature selection transform is very useful when applied
together with a categorical hash transform (see also, categorical_hash . The count
feature selection can remove those features generated by hash transform that have no
data in the examples.

Specifies character string or list of the names of the variables to select.

The threshold for count based feature selection. A feature is selected if and only if at
least count  examples have non-default value in the feature. The default value is 1.

Usage

microsoftml.count_select(cols: [list, str], count: int = 1, **kargs) 

Description

Details

Arguments

cols

count

kargs



Additional arguments sent to compute engine.

An object defining the transform.

mutualinformation_select

Returns

See also



microsoftml.custom: Removes custom
stopwords
Article • 02/28/2023

Remover with list of stopwords specified by the user.

List of stopwords (settings).

Usage

microsoftml.custom(stopword: list = None) 

Description

Arguments

stopword



microsoftml.drop_columns: Drops
columns from a dataset
Article • 03/03/2023

Specified columns to drop from the dataset.

A character string or list of the names of the variables to drop.

Additional arguments sent to compute engine.

An object defining the transform.

concat, select_columns.

Usage

microsoftml.drop_columns(cols: [list, str], **kargs) 

Description

Arguments

cols

kargs

Returns

See also



microsoftml.extract_pixels: Extracts
pixels from an image
Article • 03/03/2023

Extracts the pixel values from an image.

extract_pixels  extracts the pixel values from an image. The input variables are images
of the same size, typically the output of a resizeImage  transform. The output is pixel
data in vector form that are typically used as features for a learner.

A character string or list of variable names to transform. If dict , the keys represent the
names of new variables to be created.

Specifies whether to use alpha channel. The default value is False .

Usage

microsoftml.extract_pixels(cols: [str, dict, list], 
    use_alpha: bool = False, use_red: bool = True, 
    use_green: bool = True, use_blue: bool = True, 
    interleave_argb: bool = False, convert: bool = True, 
    offset: float = None, scale: float = None, **kargs) 

Description

Details

Arguments

cols

use_alpha

use_red



Specifies whether to use red channel. The default value is True .

Specifies whether to use green channel. The default value is True .

Specifies whether to use blue channel. The default value is True .

Whether to separate each channel or interleave in ARGB order. This might be important,
for example, if you are training a convolutional neural network, since this would affect
the shape of the kernel, stride etc.

Whether to convert to floating point. The default value is False .

Specifies the offset (pre-scale). This requires convert = True . The default value is None.

Specifies the scale factor. This requires convert = True . The default value is None.

Additional arguments sent to compute engine.

An object defining the transform.

load_image, resize_image, featurize_image.

use_green

use_blue

interleave_argb

convert

offset

scale

kargs

Returns

See also



Output:

Example

''' 
Example with images. 
''' 
import numpy 
import pandas 
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear 
from microsoftml import load_image, resize_image, extract_pixels 
from microsoftml.datasets.image import get_RevolutionAnalyticslogo 

train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], 
Label=[True])) 

# Loads the images from variable Path, resizes the images to 1x1 pixels 
# and trains a neural net. 
model1 = rx_neural_network("Label ~ Features", data=train,  
            ml_transforms=[             
                    load_image(cols=dict(Features="Path")),  
                    resize_image(cols="Features", width=1, height=1, 
resizing="Aniso"),  
                    extract_pixels(cols="Features")],  
            ml_transform_vars=["Path"],  
            num_hidden_nodes=1, num_iterations=1) 

# Featurizes the images from variable Path using the default model, and 
trains a linear model on the result. 
# If dnnModel == "AlexNet", the image has to be resized to 227x227. 
model2 = rx_fast_linear("Label ~ Features ", data=train,  
            ml_transforms=[             
                    load_image(cols=dict(Features="Path")),  
                    resize_image(cols="Features", width=224, height=224),  
                    extract_pixels(cols="Features")],  
            ml_transform_vars=["Path"], max_iterations=1) 

# We predict even if it does not make too much sense on this single image. 
print("\nrx_neural_network") 
prediction1 = rx_predict(model1, data=train) 
print(prediction1) 

print("\nrx_fast_linear") 
prediction2 = rx_predict(model2, data=train) 
print(prediction2) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 



Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using: AVX Math 

***** Net definition ***** 
  input Data [3]; 
  hidden H [1] sigmoid { // Depth 1 
    from Data all; 
  } 
  output Result [1] sigmoid { // Depth 0 
    from H all; 
  } 
***** End net definition ***** 
Input count: 3 
Output count: 1 
Output Function: Sigmoid 
Loss Function: LogLoss 
PreTrainer: NoPreTrainer 
___________________________________________________________________ 
Starting training... 
Learning rate: 0.001000 
Momentum: 0.000000 
InitWtsDiameter: 0.100000 
___________________________________________________________________ 
Initializing 1 Hidden Layers, 6 Weights... 
Estimated Pre-training MeanError = 0.707823 
Iter:1/1, MeanErr=0.707823(0.00%), 0.00M WeightUpdates/sec 
Done! 
Estimated Post-training MeanError = 0.707499 
___________________________________________________________________ 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.2716496 
Elapsed time: 00:00:00.0396484 
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using 2 threads to train. 
Automatically choosing a check frequency of 2. 
Auto-tuning parameters: L2 = 5. 
Auto-tuning parameters: L1Threshold (L1/L2) = 1. 



Using model from last iteration. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:01.0508885 
Elapsed time: 00:00:00.0133784 

rx_neural_network 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.1339430 
Finished writing 1 rows. 
Writing completed. 
  PredictedLabel     Score  Probability 
0          False -0.028504     0.492875 

rx_fast_linear 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.4977487 
Finished writing 1 rows. 
Writing completed. 
  PredictedLabel  Score  Probability 
0          False    0.0          0.5 



microsoftml.featurize_image: Converts
an image into features
Article • 03/03/2023

Featurizes an image using a pre-trained deep neural network model.

featurize_image  featurizes an image using the specified pre-trained deep neural
network model. The input variables to this transform must be extracted pixel values.

Input variable containing extracted pixel values. If dict , the keys represent the names of
new variables to be created.

The pre-trained deep neural network. The possible options are:

"Resnet18"

"Resnet50"

"Resnet101"

Usage

microsoftml.featurize_image(cols: [dict, str], dnn_model: ['Resnet18', 
    'Resnet50', 'Resnet101', 'Alexnet'] = 'Resnet18', **kargs) 

Description

Details

Arguments

cols

dnn_model



"Alexnet"

The default value is "Resnet18" . See Deep Residual Learning for Image Recognition
for details about ResNet.

Additional arguments sent to compute engine.

An object defining the transform.

load_image, resize_image, extract_pixels.

kargs

Returns

See also

Example

''' 
Example with images. 
''' 
import numpy 
import pandas 
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear 
from microsoftml import load_image, resize_image, extract_pixels 
from microsoftml.datasets.image import get_RevolutionAnalyticslogo 

train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], 
Label=[True])) 

# Loads the images from variable Path, resizes the images to 1x1 pixels 
# and trains a neural net. 
model1 = rx_neural_network("Label ~ Features", data=train,  
            ml_transforms=[             
                    load_image(cols=dict(Features="Path")),  
                    resize_image(cols="Features", width=1, height=1, 
resizing="Aniso"),  
                    extract_pixels(cols="Features")],  
            ml_transform_vars=["Path"],  
            num_hidden_nodes=1, num_iterations=1) 

# Featurizes the images from variable Path using the default model, and 
trains a linear model on the result. 

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html


Output:

# If dnnModel == "AlexNet", the image has to be resized to 227x227. 
model2 = rx_fast_linear("Label ~ Features ", data=train,  
            ml_transforms=[             
                    load_image(cols=dict(Features="Path")),  
                    resize_image(cols="Features", width=224, height=224),  
                    extract_pixels(cols="Features")],  
            ml_transform_vars=["Path"], max_iterations=1) 

# We predict even if it does not make too much sense on this single image. 
print("\nrx_neural_network") 
prediction1 = rx_predict(model1, data=train) 
print(prediction1) 

print("\nrx_fast_linear") 
prediction2 = rx_predict(model2, data=train) 
print(prediction2) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using: AVX Math 

***** Net definition ***** 
  input Data [3]; 
  hidden H [1] sigmoid { // Depth 1 
    from Data all; 
  } 
  output Result [1] sigmoid { // Depth 0 
    from H all; 
  } 
***** End net definition ***** 
Input count: 3 
Output count: 1 
Output Function: Sigmoid 
Loss Function: LogLoss 
PreTrainer: NoPreTrainer 
___________________________________________________________________ 
Starting training... 
Learning rate: 0.001000 
Momentum: 0.000000 
InitWtsDiameter: 0.100000 



___________________________________________________________________ 
Initializing 1 Hidden Layers, 6 Weights... 
Estimated Pre-training MeanError = 0.707823 
Iter:1/1, MeanErr=0.707823(0.00%), 0.01M WeightUpdates/sec 
Done! 
Estimated Post-training MeanError = 0.707499 
___________________________________________________________________ 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0751759 
Elapsed time: 00:00:00.0080433 
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using 2 threads to train. 
Automatically choosing a check frequency of 2. 
Auto-tuning parameters: L2 = 5. 
Auto-tuning parameters: L1Threshold (L1/L2) = 1. 
Using model from last iteration. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:01.0104773 
Elapsed time: 00:00:00.0106935 

rx_neural_network 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0420328 
Finished writing 1 rows. 
Writing completed. 
  PredictedLabel     Score  Probability 
0          False -0.028504     0.492875 

rx_fast_linear 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.4449623 
Finished writing 1 rows. 
Writing completed. 
  PredictedLabel  Score  Probability 
0          False    0.0          0.5 



microsoftml.featurize_text: Converts text
columns into numerical features
Article • 03/03/2023

Text transforms that can be performed on data before training a model.

The featurize_text  transform produces a bag of counts of sequences of consecutive
words, called n-grams, from a given corpus of text. There are two ways it can do this:

build a dictionary of n-grams and use the ID in the dictionary as the index in the
bag;

hash each n-gram and use the hash value as the index in the bag.

The purpose of hashing is to convert variable-length text documents into equal-length
numeric feature vectors, to support dimensionality reduction and to make the lookup of
feature weights faster.

The text transform is applied to text input columns. It offers language detection,
tokenization, stopwords removing, text normalization and feature generation. It
supports the following languages by default: English, French, German, Dutch, Italian,
Spanish and Japanese.

Usage

microsoftml.featurize_text(cols: [str, dict, list], language: ['AutoDetect', 
    'English', 'French', 'German', 'Dutch', 'Italian', 'Spanish', 
    'Japanese'] = 'English', stopwords_remover=None, case: ['Lower', 
    'Upper', 'None'] = 'Lower', keep_diacritics: bool = False, 
    keep_punctuations: bool = True, keep_numbers: bool = True, 
    dictionary: dict = None, word_feature_extractor={'Name': 'NGram', 
    'Settings': {'Weighting': 'Tf', 'MaxNumTerms': [10000000], 
    'NgramLength': 1, 'AllLengths': True, 'SkipLength': 0}}, 
    char_feature_extractor=None, vector_normalizer: ['None', 'L1', 'L2', 
    'LInf'] = 'L2', **kargs) 

Description

Details



The n-grams are represented as count vectors, with vector slots corresponding either to
n-grams (created using n_gram ) or to their hashes (created using n_gram_hash ).
Embedding ngrams in a vector space allows their contents to be compared in an
efficient manner. The slot values in the vector can be weighted by the following factors:

term frequency - The number of occurrences of the slot in the text

inverse document frequency - A ratio (the logarithm of inverse relative slot
frequency) that measures the information a slot provides by determining how
common or rare it is across the entire text.

term frequency-inverse document frequency - the product term frequency and the
inverse document frequency.

A character string or list of variable names to transform. If dict , the keys represent the
names of new variables to be created.

Specifies the language used in the data set. The following values are supported:

"AutoDetect" : for automatic language detection.

"English"

"French"

"German"

"Dutch"

"Italian"

"Spanish"

"Japanese"

Arguments

cols

language

stopwords_remover



Specifies the stopwords remover to use. There are three options supported:

None: No stopwords remover is used.

predefined : A precompiled language-specific list of stop words is used that
includes the most common words from Microsoft Office.

custom : A user-defined list of stopwords. It accepts the following option: stopword .

The default value is None.

Text casing using the rules of the invariant culture. Takes the following values:

"Lower"

"Upper"

"None"

The default value is "Lower" .

False  to remove diacritical marks; True  to retain diacritical marks. The default value is
False .

False  to remove punctuation; True  to retain punctuation. The default value is True .

False  to remove numbers; True  to retain numbers. The default value is True .

A dictionary of allowlisted terms which accepts the following options:

term : An optional character vector of terms or categories.

dropUnknowns : Drop items.

case

keep_diacritics

keep_punctuations

keep_numbers

dictionary



sort : Specifies how to order items when vectorized. Two orderings are supported:
"occurrence" : items appear in the order encountered.
"value" : items are sorted according to their default comparison. For example,
text sorting will be case sensitive (e.g., 'A' then 'Z' then 'a').

The default value is None. Note that the stopwords list takes precedence over the
dictionary allowlist as the stopwords are removed before the dictionary terms are
allowlisted.

Specifies the word feature extraction arguments. There are two different feature
extraction mechanisms:

n_gram() : Count-based feature extraction (equivalent to WordBag). It accepts the
following options: max_num_terms  and weighting .

n_gram_hash() : Hashing-based feature extraction (equivalent to WordHashBag). It
accepts the following options: hash_bits , seed , ordered  and invert_hash .

The default value is n_gram .

Specifies the char feature extraction arguments. There are two different feature
extraction mechanisms:

n_gram() : Count-based feature extraction (equivalent to WordBag). It accepts the
following options: max_num_terms  and weighting .

n_gram_hash() : Hashing-based feature extraction (equivalent to WordHashBag). It
accepts the following options: hash_bits , seed , ordered  and invert_hash .

The default value is None.

Normalize vectors (rows) individually by rescaling them to unit norm. Takes one of the
following values:

"None"

"L2"

word_feature_extractor

char_feature_extractor

vector_normalizer



"L1"

"LInf"

The default value is "L2" .

Additional arguments sent to compute engine.

An object defining the transform.

n_gram, n_gram_hash, n_gram, n_gram_hash, get_sentiment.

kargs

Returns

See also

Example

''' 
Example with featurize_text and rx_logistic_regression. 
''' 
import numpy 
import pandas 
from microsoftml import rx_logistic_regression, featurize_text, rx_predict 
from microsoftml.entrypoints._stopwordsremover_predefined import predefined 

train_reviews = pandas.DataFrame(data=dict( 
    review=[ 
        "This is great", "I hate it", "Love it", "Do not like it", "Really 
like it", 
        "I hate it", "I like it a lot", "I kind of hate it", "I do like it", 
        "I really hate it", "It is very good", "I hate it a bunch", "I love 
it a bunch", 
        "I hate it", "I like it very much", "I hate it very much.", 
        "I really do love it", "I really do hate it", "Love it!", "Hate 
it!", 
        "I love it", "I hate it", "I love it", "I hate it", "I love it"], 
    like=[True, False, True, False, True, False, True, False, True, False, 
        True, False, True, False, True, False, True, False, True, False, 
True, 
        False, True, False, True])) 



Output:

         
test_reviews = pandas.DataFrame(data=dict( 
    review=[ 
        "This is great", "I hate it", "Love it", "Really like it", "I hate 
it", 
        "I like it a lot", "I love it", "I do like it", "I really hate it", 
"I love it"])) 

out_model = rx_logistic_regression("like ~ review_tran", 
                    data=train_reviews, 
                    ml_transforms=[ 
                        featurize_text(cols=dict(review_tran="review"), 
                            stopwords_remover=predefined(), 
                            keep_punctuations=False)]) 
                             
# Use the model to score. 
score_df = rx_predict(out_model, data=test_reviews, extra_vars_to_write=
["review"]) 
print(score_df.head()) 

Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Not adding a normalizer. 
Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 25, Read Time: 0, Transform Time: 0 
Beginning processing data. 
LBFGS multi-threading will attempt to load dataset into memory. In case of 
out-of-memory issues, turn off multi-threading by setting trainThreads to 1. 
Warning: Too few instances to use 4 threads, decreasing to 1 thread(s) 
Beginning optimization 
num vars: 11 
improvement criterion: Mean Improvement 
L1 regularization selected 3 of 11 weights. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.3725934 
Elapsed time: 00:00:00.0131199 
Beginning processing data. 
Rows Read: 10, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0635453 
Finished writing 10 rows. 
Writing completed. 



microsoftml.n_gram: Converts text into features using n-grams

microsoftml.n_gram_hash: Converts text into features using hashed n-grams

microsoftml.custom: Removes custom stopwords

microsoftml.predefined: Removes predefined stopwords

           review PredictedLabel     Score  Probability 
0   This is great           True  0.443986     0.609208 
1       I hate it          False -0.668449     0.338844 
2         Love it           True  0.994339     0.729944 
3  Really like it           True  0.443986     0.609208 
4       I hate it          False -0.668449     0.338844 

N-grams extractors

Stopwords removers



microsoftml.get_sentiment: Sentiment
analysis
Article • 03/03/2023

Scores natural language text and assesses the probability the sentiments are positive.

The get_sentiment  transform returns the probability that the sentiment of a natural text
is positive. Currently supports only the English language.

A character string or list of variable names to transform. If dict , the names represent
the names of new variables to be created.

Additional arguments sent to compute engine.

An object defining the transform.

Usage

microsoftml.get_sentiment(cols: [str, dict, list], **kargs) 

Description

Details

Arguments

cols

kargs

Returns

See also



featurize_text.

Output:

Example

''' 
Example with get_sentiment and rx_logistic_regression. 
''' 
import numpy 
import pandas 
from microsoftml import rx_logistic_regression, rx_featurize, rx_predict, 
get_sentiment 

# Create the data 
customer_reviews = pandas.DataFrame(data=dict(review=[ 
            "I really did not like the taste of it", 
            "It was surprisingly quite good!", 
            "I will never ever ever go to that place again!!"])) 
             
# Get the sentiment scores 
sentiment_scores = rx_featurize( 
    data=customer_reviews, 
    ml_transforms=[get_sentiment(cols=dict(scores="review"))]) 
     
# Let's translate the score to something more meaningful 
sentiment_scores["eval"] = sentiment_scores.scores.apply( 
            lambda score: "AWESOMENESS" if score > 0.6 else "BLAH") 
print(sentiment_scores) 

Beginning processing data. 
Rows Read: 3, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:02.4327924 
Finished writing 3 rows. 
Writing completed. 
                                            review    scores         eval 
0            I really did not like the taste of it  0.461790         BLAH 
1                  It was surprisingly quite good!  0.960192  AWESOMENESS 
2  I will never ever ever go to that place again!!  0.310344         BLAH 



microsoftml.gpu_math: Acceleration
with NVidia CUDA
Article • 03/03/2023

NVidia CUDA implementation.

GPU device id (settings).

Use cuDNN on GPU (settings).

cuDNN optimization options (settings).

avx_math, clr_math, mkl_math, sse_math

Usage

microsoftml.gpu_math(gpu_id: numbers.Real = -1, 
    cu_dnn: bool = False, cu_dnn_algo: str = 'ImplicitPrecompGemm') 

Description

Arguments

gpu_id

cu_dnn

cu_dnn_algo

See also



microsoftml.hinge_loss: Hinge loss
function
Article • 03/03/2023

Hinge loss.

Margin value (settings).

log_loss, smoothed_hinge_loss, squared_loss

Usage

microsoftml.hinge_loss(margin: numbers.Real = 1.0) 

Description

Arguments

margin

See also



microsoftml.load_image: Loads an
image
Article • 03/03/2023

Loads image data.

load_image  loads images from paths.

A character string or list of variable names to transform. If dict , the keys represent the
names of new variables to be created.

Additional arguments sent to compute engine.

An object defining the transform.

Usage

microsoftml.load_image(cols: [str, dict, list], **kargs) 

Description

Details

Arguments

cols

kargs

Returns

See also



resize_image, extract_pixels, featurize_image.

Output:

Example

''' 
Example with images. 
''' 
import numpy 
import pandas 
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear 
from microsoftml import load_image, resize_image, extract_pixels 
from microsoftml.datasets.image import get_RevolutionAnalyticslogo 

train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], 
Label=[True])) 

# Loads the images from variable Path, resizes the images to 1x1 pixels 
# and trains a neural net. 
model1 = rx_neural_network("Label ~ Features", data=train,  
            ml_transforms=[             
                    load_image(cols=dict(Features="Path")),  
                    resize_image(cols="Features", width=1, height=1, 
resizing="Aniso"),  
                    extract_pixels(cols="Features")],  
            ml_transform_vars=["Path"],  
            num_hidden_nodes=1, num_iterations=1) 

# Featurizes the images from variable Path using the default model, and 
trains a linear model on the result. 
# If dnnModel == "AlexNet", the image has to be resized to 227x227. 
model2 = rx_fast_linear("Label ~ Features ", data=train,  
            ml_transforms=[             
                    load_image(cols=dict(Features="Path")),  
                    resize_image(cols="Features", width=224, height=224),  
                    extract_pixels(cols="Features")],  
            ml_transform_vars=["Path"], max_iterations=1) 

# We predict even if it does not make too much sense on this single image. 
print("\nrx_neural_network") 
prediction1 = rx_predict(model1, data=train) 
print(prediction1) 

print("\nrx_fast_linear") 
prediction2 = rx_predict(model2, data=train) 
print(prediction2) 



Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using: AVX Math 

***** Net definition ***** 
  input Data [3]; 
  hidden H [1] sigmoid { // Depth 1 
    from Data all; 
  } 
  output Result [1] sigmoid { // Depth 0 
    from H all; 
  } 
***** End net definition ***** 
Input count: 3 
Output count: 1 
Output Function: Sigmoid 
Loss Function: LogLoss 
PreTrainer: NoPreTrainer 
___________________________________________________________________ 
Starting training... 
Learning rate: 0.001000 
Momentum: 0.000000 
InitWtsDiameter: 0.100000 
___________________________________________________________________ 
Initializing 1 Hidden Layers, 6 Weights... 
Estimated Pre-training MeanError = 0.707823 
Iter:1/1, MeanErr=0.707823(0.00%), 0.01M WeightUpdates/sec 
Done! 
Estimated Post-training MeanError = 0.707499 
___________________________________________________________________ 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0891958 
Elapsed time: 00:00:00.0095013 
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using 2 threads to train. 



Automatically choosing a check frequency of 2. 
Auto-tuning parameters: L2 = 5. 
Auto-tuning parameters: L1Threshold (L1/L2) = 1. 
Using model from last iteration. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:01.0541236 
Elapsed time: 00:00:00.0113811 

rx_neural_network 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0401500 
Finished writing 1 rows. 
Writing completed. 
  PredictedLabel     Score  Probability 
0          False -0.028504     0.492875 

rx_fast_linear 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.4957253 
Finished writing 1 rows. 
Writing completed. 
  PredictedLabel  Score  Probability 
0          False    0.0          0.5 



microsoftml.log_loss: Log loss function
Article • 03/03/2023

Log loss.

hinge_loss, smoothed_hinge_loss, squared_loss

Usage

microsoftml.log_loss() 

Description

See also



microsoftml.mkl_math: Acceleration
with Intel MKL
Article • 03/03/2023

Intel MKL implementation.

Max cache size (settings).

avx_math, clr_math, gpu_math, sse_math

Usage

microsoftml.mkl_math(max_cache_size: numbers.Real = -1) 

Description

Arguments

max_cache_size

See also



microsoftml.mutualinformation_select:
Feature selection based on mutual
information
Article • 03/03/2023

Selects the top k features across all specified columns ordered by their mutual
information with the label column.

The mutual information of two random variables X  and Y  is a measure of the mutual
dependence between the variables. Formally, the mutual information can be written as:

I(X;Y) = E[log(p(x,y)) - log(p(x)) - log(p(y))]

where the expectation is taken over the joint distribution of X  and Y . Here p(x,y)  is the
joint probability density function of X  and Y , p(x)  and p(y)  are the marginal
probability density functions of X  and Y  respectively. In general, a higher mutual
information between the dependent variable (or label) and an independent variable (or
feature) means that the label has higher mutual dependence over that feature.

The mutual information feature selection mode selects the features based on the mutual
information. It keeps the top num_features_to_keep  features with the largest mutual
information with the label.

Usage

microsoftml.mutualinformation_select(cols: [list, str], label: str, 
    num_features_to_keep: int = 1000, num_bins: int = 256, **kargs) 

Description

Details

Arguments



Specifies character string or list of the names of the variables to select.

Specifies the name of the label.

If the number of features to keep is specified to be n , the transform picks the n  features
that have the highest mutual information with the dependent variable. The default value
is 1000.

Maximum number of bins for numerical values. Powers of 2 are recommended. The
default value is 256.

Additional arguments sent to compute engine.

An object defining the transform.

count_select

Wikipedia: Mutual Information

cols

label

num_features_to_keep

num_bins

kargs

Returns

See also

References

https://en.wikipedia.org/wiki/Mutual_information


microsoftml.n_gram: Converts text into
features using n-grams
Article • 02/28/2023

Extracts NGrams from text and convert them to vector using dictionary.

Ngram length (settings).

Maximum number of tokens to skip when constructing an ngram (settings).

Whether to include all ngram lengths up to NgramLength or only NgramLength
(settings).

Maximum number of ngrams to store in the dictionary (settings).

Usage

microsoftml.n_gram(ngram_length: numbers.Real = 1, 
    skip_length: numbers.Real = 0, all_lengths: bool = True, 
    max_num_terms: list = [10000000], weighting: str = 'Tf') 

Description

Arguments

ngram_length

skip_length

all_lengths

max_num_terms

weighting



The weighting criteria (settings).

n_gram_hash, featurize_text

See also



microsoftml.n_gram_hash: Converts text
into features using hashed n-grams
Article • 03/03/2023

Extracts NGrams from text and convert them to vector using hashing trick.

Number of bits to hash into. Must be between 1 and 30, inclusive. (settings).

Ngram length (settings).

Maximum number of tokens to skip when constructing an ngram (settings).

Whether to include all ngram lengths up to ngramLength or only ngramLength
(settings).

Usage

microsoftml.n_gram_hash(hash_bits: numbers.Real = 16, 
    ngram_length: numbers.Real = 1, skip_length: numbers.Real = 0, 
    all_lengths: bool = True, seed: numbers.Real = 314489979, 
    ordered: bool = True, invert_hash: numbers.Real = 0) 

Description

Arguments

hash_bits

ngram_length

skip_length

all_lengths

seed



Hashing seed (settings).

Whether the position of each source column should be included in the hash (when there
are multiple source columns). (settings).

Limit the number of keys used to generate the slot name to this many. 0 means no
invert hashing, -1 means no limit. (settings).

n_gram, featurize_text

ordered

invert_hash

See also



microsoftml.predefined: Removes
predefined stopwords
Article • 02/28/2023

Remover with predefined list of stop words.

Usage

microsoftml.predefined() 

Description



microsoftml.resize_image: Resizes an
Image
Article • 03/03/2023

Resizes an image to a specified dimension using a specified resizing method.

resize_image  resizes an image to the specified height and width using a specified
resizing method. The input variables to this transform must be images, typically the
result of the load_image  transform.

A character string or list of variable names to transform. If dict , the keys represent the
names of new variables to be created.

Specifies the width of the scaled image in pixels. The default value is 224.

Specifies the height of the scaled image in pixels. The default value is 224.

Usage

microsoftml.resize_image(cols: [str, dict, list], width: int = 224, 
    height: int = 224, resizing_option: ['IsoPad', 'IsoCrop', 
    'Aniso'] = 'IsoCrop', **kargs) 

Description

Details

Arguments

cols

width

height



Specified the resizing method to use. Note that all methods are using bilinear
interpolation. The options are:

"IsoPad" : The image is resized such that the aspect ratio is preserved. If needed,
the image is padded with black to fit the new width or height.

"IsoCrop" : The image is resized such that the aspect ratio is preserved. If needed,
the image is cropped to fit the new width or height.

"Aniso" : The image is stretched to the new width and height, without preserving
the aspect ratio.

The default value is "IsoPad" .

Additional arguments sent to compute engine.

An object defining the transform.

load_image, extract_pixels, featurize_image.

resizing_option

kargs

Returns

See also

Example

''' 
Example with images. 
''' 
import numpy 
import pandas 
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear 
from microsoftml import load_image, resize_image, extract_pixels 
from microsoftml.datasets.image import get_RevolutionAnalyticslogo 

train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], 
Label=[True])) 



Output:

# Loads the images from variable Path, resizes the images to 1x1 pixels 
# and trains a neural net. 
model1 = rx_neural_network("Label ~ Features", data=train,  
            ml_transforms=[             
                    load_image(cols=dict(Features="Path")),  
                    resize_image(cols="Features", width=1, height=1, 
resizing="Aniso"),  
                    extract_pixels(cols="Features")],  
            ml_transform_vars=["Path"],  
            num_hidden_nodes=1, num_iterations=1) 

# Featurizes the images from variable Path using the default model, and 
trains a linear model on the result. 
# If dnnModel == "AlexNet", the image has to be resized to 227x227. 
model2 = rx_fast_linear("Label ~ Features ", data=train,  
            ml_transforms=[             
                    load_image(cols=dict(Features="Path")),  
                    resize_image(cols="Features", width=224, height=224),  
                    extract_pixels(cols="Features")],  
            ml_transform_vars=["Path"], max_iterations=1) 

# We predict even if it does not make too much sense on this single image. 
print("\nrx_neural_network") 
prediction1 = rx_predict(model1, data=train) 
print(prediction1) 

print("\nrx_fast_linear") 
prediction2 = rx_predict(model2, data=train) 
print(prediction2) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Using: AVX Math 

***** Net definition ***** 
  input Data [3]; 
  hidden H [1] sigmoid { // Depth 1 
    from Data all; 
  } 
  output Result [1] sigmoid { // Depth 0 



    from H all; 
  } 
***** End net definition ***** 
Input count: 3 
Output count: 1 
Output Function: Sigmoid 
Loss Function: LogLoss 
PreTrainer: NoPreTrainer 
___________________________________________________________________ 
Starting training... 
Learning rate: 0.001000 
Momentum: 0.000000 
InitWtsDiameter: 0.100000 
___________________________________________________________________ 
Initializing 1 Hidden Layers, 6 Weights... 
Estimated Pre-training MeanError = 0.707823 
Iter:1/1, MeanErr=0.707823(0.00%), 0.01M WeightUpdates/sec 
Done! 
Estimated Post-training MeanError = 0.707499 
___________________________________________________________________ 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0820600 
Elapsed time: 00:00:00.0090292 
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using 2 threads to train. 
Automatically choosing a check frequency of 2. 
Auto-tuning parameters: L2 = 5. 
Auto-tuning parameters: L1Threshold (L1/L2) = 1. 
Using model from last iteration. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:01.0852660 
Elapsed time: 00:00:00.0132126 

rx_neural_network 
Beginning processing data. 
Rows Read: 1, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0441601 
Finished writing 1 rows. 
Writing completed. 
  PredictedLabel     Score  Probability 
0          False -0.028504     0.492875 

rx_fast_linear 
Beginning processing data. 



Rows Read: 1, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.5196788 
Finished writing 1 rows. 
Writing completed. 
  PredictedLabel  Score  Probability 
0          False    0.0          0.5 



microsoftml.rx_ensemble: Combine
models into a single one
Article • 02/28/2023

Train an ensemble of models.

rx_ensemble  is a function that trains a number of models of various kinds to obtain
better predictive performance than could be obtained from a single model.

Usage

microsoftml.rx_ensemble(formula: str, 
    data: [<class 'revoscalepy.datasource.RxDataSource.RxDataSource'>, 
    <class 'pandas.core.frame.DataFrame'>, <class 'list'>], 
    trainers: typing.List[microsoftml.modules.base_learner.BaseLearner], 
    method: str = None, model_count: int = None, 
    random_seed: int = None, replace: bool = False, 
    samp_rate: float = None, combine_method: ['Average', 'Median', 
    'Vote'] = 'Median', max_calibration: int = 100000, 
    split_data: bool = False, ml_transforms: list = None, 
    ml_transform_vars: list = None, row_selection: str = None, 
    transforms: dict = None, transform_objects: dict = None, 
    transform_function: str = None, 
    transform_variables: list = None, 
    transform_packages: list = None, 
    transform_environment: dict = None, blocks_per_read: int = None, 
    report_progress: int = None, verbose: int = 1, 
    compute_context: 
revoscalepy.computecontext.RxComputeContext.RxComputeContext = None) 

Description

Details

Arguments

formula



A symbolic or mathematical formula in valid Python syntax, enclosed in double quotes.
A symbolic formula might reference objects in the data source, such as "creditScore ~
yearsEmploy" . Interaction terms (creditScore * yearsEmploy ) and expressions
(creditScore == 1 ) are not currently supported.

A data source object or a character string specifying a .xdf file or a data frame object.
Alternatively, it can be a list of data sources indicating each model should be trained
using one of the data sources in the list. In this case, the length of the data list must be
equal to model_count.

A list of trainers with their arguments. The trainers are created by using FastTrees ,
FastForest , FastLinear , LogisticRegression , NeuralNetwork , or OneClassSvm .

A character string that specifies the type of ensemble: "anomaly"  for Anomaly Detection,
"binary"  for Binary Classification, multiClass  for Multiclass Classification, or
"regression"  for Regression.

Specifies the random seed. The default value is None .

Specifies the number of models to train. If this number is greater than the length of the
trainers list, the trainers list is duplicated to match model_count .

A logical value specifying if the sampling of observations should be done with or
without replacement. The default value is False .

data

trainers

method

random_seed

model_count

replace

samp_rate



A scalar of positive value specifying the percentage of observations to sample for each
trainer. The default is 1.0  for sampling with replacement (i.e., replace=True ) and 0.632
for sampling without replacement (i.e., replace=False ). When split_data  is True , the
default of samp_rate  is 1.0  (no sampling is done before splitting).

A logical value specifying whether or not to train the base models on non-overlapping
partitions. The default is False . It is available only for RxSpark  compute context and
ignored for others.

Specifies the method used to combine the models:

"Median" : to compute the median of the individual model outputs,

"Average" : to compute the average of the individual model outputs and

"Vote" : to compute (pos-neg) / the total number of models, where 'pos' is the
number of positive outputs and 'neg' is the number of negative outputs.

Specifies the maximum number of examples to use for calibration. This argument is
ignored for all tasks other than binary classification.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or None if no transforms are to be performed. Transforms that require an additional pass
over the data (such as featurize_text , categorical  are not allowed. These
transformations are performed after any specified R transformations. The default value is
None.

Specifies a character vector of variable names to be used in ml_transforms or None if
none are to be used. The default value is None.

split_data

combine_method

max_calibration

ml_transforms

ml_transform_vars



NOT SUPPORTED. Specifies the rows (observations) from the data set that are to be
used by the model with the name of a logical variable from the data set (in quotes) or
with a logical expression using variables in the data set. For example:

rowSelection = "old"  will only use observations in which the value of the variable
old  is True .

rowSelection = (age > 20) & (age < 65) & (log(income) > 10)  only uses
observations in which the value of the age  variable is between 20 and 65 and the
value of the log  of the income  variable is greater than 10.

The row selection is performed after processing any data transformations (see the
arguments transforms  or transform_func ). As with all expressions, row_selection  can
be defined outside of the function call using the expression  function.

NOT SUPPORTED. An expression of the form that represents the first round of variable
transformations. As with all expressions, transforms  (or row_selection ) can be defined
outside of the function call using the expression  function.

NOT SUPPORTED. A named list that contains objects that can be referenced by
transforms , transform_function , and row_selection .

The variable transformation function.

A character vector of input data set variables needed for the transformation function.

NOT SUPPORTED. A character vector specifying additional Python packages (outside of
those specified in RxOptions.get_option("transform_packages") ) to be made available

row_selection

transforms

transform_objects

transform_function

transform_variables

transform_packages



and preloaded for use in variable transformation functions. For example, those explicitly
defined in revoscalepy functions via their transforms  and transform_function
arguments or those defined implicitly via their formula  or row_selection  arguments.
The transform_packages  argument may also be None, indicating that no packages
outside RxOptions.get_option("transform_packages")  are preloaded.

NOT SUPPORTED. A user-defined environment to serve as a parent to all environments
developed internally and used for variable data transformation. If transform_environment
= None , a new "hash" environment with parent revoscalepy.baseenv  is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
revoscalepy.RxComputeContext . Currently local and revoscalepy.RxSpark compute
contexts are supported. When revoscalepy.RxSpark is specified, the training of the

transform_environment

blocks_per_read

report_progress

verbose

compute_context

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxSpark
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxSpark


models is done in a distributed way, and the ensembling is done locally. Note that the
compute context cannot be non-waiting.

A rx_ensemble  object with the trained ensemble model.

Returns



microsoftml.rx_fast_forest: Random
Forest
Article • 03/03/2023

Machine Learning Fast Forest

Decision trees are non-parametric models that perform a sequence of simple tests on
inputs. This decision procedure maps them to outputs found in the training dataset
whose inputs were similar to the instance being processed. A decision is made at each
node of the binary tree data structure based on a measure of similarity that maps each
instance recursively through the branches of the tree until the appropriate leaf node is
reached and the output decision returned.

Decision trees have several advantages:

Usage

microsoftml.rx_fast_forest(formula: str, 
    data: [revoscalepy.datasource.RxDataSource.RxDataSource, 
    pandas.core.frame.DataFrame], method: ['binary', 
    'regression'] = 'binary', num_trees: int = 100, 
    num_leaves: int = 20, min_split: int = 10, 
    example_fraction: float = 0.7, feature_fraction: float = 1, 
    split_fraction: float = 1, num_bins: int = 255, 
    first_use_penalty: float = 0, gain_conf_level: float = 0, 
    train_threads: int = 8, random_seed: int = None, 
    ml_transforms: list = None, ml_transform_vars: list = None, 
    row_selection: str = None, transforms: dict = None, 
    transform_objects: dict = None, transform_function: str = None, 
    transform_variables: list = None, 
    transform_packages: list = None, 
    transform_environment: dict = None, blocks_per_read: int = None, 
    report_progress: int = None, verbose: int = 1, 
    ensemble: microsoftml.modules.ensemble.EnsembleControl = None, 
    compute_context: 
revoscalepy.computecontext.RxComputeContext.RxComputeContext = None) 

Description

Details



They are efficient in both computation and memory usage during training and
prediction.

They can represent non-linear decision boundaries.

They perform integrated feature selection and classification.

They are resilient in the presence of noisy features.

Fast forest regression is a random forest and quantile regression forest implementation
using the regression tree learner in rx_fast_trees. The model consists of an ensemble of
decision trees. Each tree in a decision forest outputs a Gaussian distribution by way of
prediction. An aggregation is performed over the ensemble of trees to find a Gaussian
distribution closest to the combined distribution for all trees in the model.

This decision forest classifier consists of an ensemble of decision trees. Generally,
ensemble models provide better coverage and accuracy than single decision trees. Each
tree in a decision forest outputs a Gaussian distribution.

The formula as described in revoscalepy.rx_formula. Interaction terms and F()  are not
currently supported in microsoftml.

A data source object or a character string specifying a .xdf file or a data frame object.

A character string denoting Fast Tree type:

"binary"  for the default Fast Tree Binary Classification or

"regression"  for Fast Tree Regression.

Specifies the total number of decision trees to create in the ensemble.By creating more
decision trees, you can potentially get better coverage, but the training time increases.

Arguments

formula

data

method

num_trees



The default value is 100.

The maximum number of leaves (terminal nodes) that can be created in any tree. Higher
values potentially increase the size of the tree and get better precision, but risk
overfitting and requiring longer training times. The default value is 20.

Minimum number of training instances required to form a leaf. That is, the minimal
number of documents allowed in a leaf of a regression tree, out of the sub-sampled
data. A 'split' means that features in each level of the tree (node) are randomly divided.
The default value is 10.

The fraction of randomly chosen instances to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use on each split. The default value is 0.7.

Maximum number of distinct values (bins) per feature. The default value is 255.

The feature first use penalty coefficient. The default value is 0.

Tree fitting gain confidence requirement (should be in the range [0,1] ). The default
value is 0.

num_leaves

min_split

example_fraction

feature_fraction

split_fraction

num_bins

first_use_penalty

gain_conf_level



The number of threads to use in training. If None is specified, the number of threads to
use is determined internally. The default value is None.

Specifies the random seed. The default value is None.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or None if no transforms are to be performed. See featurize_text, categorical, and
categorical_hash, for transformations that are supported. These transformations are
performed after any specified Python transformations. The default value is None.

Specifies a character vector of variable names to be used in ml_transforms  or None if
none are to be used. The default value is None.

NOT SUPPORTED. Specifies the rows (observations) from the data set that are to be
used by the model with the name of a logical variable from the data set (in quotes) or
with a logical expression using variables in the data set. For example:

row_selection = "old"  will only use observations in which the value of the variable
old  is True .

row_selection = (age > 20) & (age < 65) & (log(income) > 10)  only uses
observations in which the value of the age  variable is between 20 and 65 and the
value of the log  of the income  variable is greater than 10.

The row selection is performed after processing any data transformations (see the
arguments transforms  or transform_function ). As with all expressions, row_selection
can be defined outside of the function call using the expression  function.

train_threads

random_seed

ml_transforms

ml_transform_vars

row_selection

transforms



NOT SUPPORTED. An expression of the form that represents the first round of variable
transformations. As with all expressions, transforms  (or row_selection ) can be defined
outside of the function call using the expression  function.

NOT SUPPORTED. A named list that contains objects that can be referenced by
transforms , transform_function , and row_selection .

The variable transformation function.

A character vector of input data set variables needed for the transformation function.

NOT SUPPORTED. A character vector specifying additional Python packages (outside of
those specified in RxOptions.get_option("transform_packages") ) to be made available
and preloaded for use in variable transformation functions. For example, those explicitly
defined in revoscalepy functions via their transforms  and transform_function
arguments or those defined implicitly via their formula  or row_selection  arguments.
The transform_packages  argument may also be None, indicating that no packages
outside RxOptions.get_option("transform_packages")  are preloaded.

NOT SUPPORTED. A user-defined environment to serve as a parent to all environments
developed internally and used for variable data transformation. If transform_environment
= None , a new "hash" environment with parent revoscalepy.baseenv is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

transform_objects

transform_function

transform_variables

transform_packages

transform_environment

blocks_per_read

report_progress

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
RxComputeContext . Currently local and RxInSqlServer  compute contexts are supported.

Control parameters for ensembling.

A FastForest object with the trained model.

This algorithm is multi-threaded and will always attempt to load the entire dataset into
memory.

rx_fast_trees, rx_predict

verbose

compute_context

ensemble

Returns

Note

See also

References

https://learn.microsoft.com/en-us/sql/machine-learning/python/reference/microsoftml/learners-object?view=sql-server-2017


Wikipedia: Random forest

Quantile regression forest

From Stumps to Trees to Forests

Output:

Binary classification example

''' 
Binary Classification. 
''' 
import numpy 
import pandas 
from microsoftml import rx_fast_forest, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

infert = get_dataset("infert") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

infertdf = infert.as_df() 
infertdf["isCase"] = infertdf.case == 1 
data_train, data_test, y_train, y_test = train_test_split(infertdf, 
infertdf.isCase) 

forest_model = rx_fast_forest( 
    formula=" isCase ~ age + parity + education + spontaneous + induced ", 
    data=data_train) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(forest_model, data=data_test, 
                     extra_vars_to_write=["isCase", "Score"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

Not adding a normalizer. 
Making per-feature arrays 
Changing data from row-wise to column-wise 

https://en.wikipedia.org/wiki/Random_forest
http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf
https://learn.microsoft.com/en-us/archive/blogs/machinelearning/from-stumps-to-trees-to-forests


Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Processed 186 instances 
Binning and forming Feature objects 
Reserved memory for tree learner: 7176 bytes 
Starting to train ... 
Not training a calibrator because a valid calibrator trainer was not 
provided. 
Elapsed time: 00:00:00.2704185 
Elapsed time: 00:00:00.0443884 
Beginning processing data. 
Rows Read: 62, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0253862 
Finished writing 62 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: Less than .001 
seconds  
  isCase PredictedLabel      Score 
0  False          False -36.205067 
1   True          False -40.396084 
2  False          False -33.242531 
3  False          False -87.212494 
4   True          False -13.100666 

Regression example

''' 
Regression. 
''' 
import numpy 
import pandas 
from microsoftml import rx_fast_forest, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

airquality = get_dataset("airquality") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

airquality = airquality.as_df() 

###################################################################### 
# Estimate a regression fast forest 



Output:

# Use the built-in data set 'airquality' to create test and train data 

df = airquality[airquality.Ozone.notnull()] 
df["Ozone"] = df.Ozone.astype(float) 

data_train, data_test, y_train, y_test = train_test_split(df, df.Ozone) 

airFormula = " Ozone ~ Solar_R + Wind + Temp " 

# Regression Fast Forest for train data 
ff_reg = rx_fast_forest(airFormula, method="regression", data=data_train) 

# Put score and model variables in data frame 
score_df = rx_predict(ff_reg, data=data_test, write_model_vars=True) 
print(score_df.head()) 

# Plot actual versus predicted values with smoothed line 
# Supported in the next version. 
# rx_line_plot(" Score ~ Ozone ", type=["p", "smooth"], data=score_df) 

Not adding a normalizer. 
Making per-feature arrays 
Changing data from row-wise to column-wise 
Beginning processing data. 
Rows Read: 87, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Warning: Skipped 4 instances with missing features during training 
Processed 83 instances 
Binning and forming Feature objects 
Reserved memory for tree learner: 21372 bytes 
Starting to train ... 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0644269 
Elapsed time: 00:00:00.0109290 
Beginning processing data. 
Rows Read: 29, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0314390 
Finished writing 29 rows. 
Writing completed. 
   Solar_R  Wind  Temp      Score
0    190.0   7.4  67.0  26.296144
1     20.0  16.6  63.0  14.274153
2    320.0  16.6  73.0  23.421144
3    187.0   5.1  87.0  80.662109
4    175.0   7.4  89.0  67.570549



microsoftml.rx_fast_linear: Linear Model
with Stochastic Dual Coordinate Ascent
Article • 03/03/2023

A Stochastic Dual Coordinate Ascent (SDCA) optimization trainer for linear binary
classification and regression.

rx_fast_linear  is a trainer based on the Stochastic Dual Coordinate Ascent (SDCA)
method, a state-of-the-art optimization technique for convex objective functions. The
algorithm can be scaled for use on large out-of-memory data sets due to a semi-
asynchronized implementation that supports multi-threading. Convergence is
underwritten by periodically enforcing synchronization between primal and dual
updates in a separate thread. Several choices of loss functions are also provided. The
SDCA method combines several of the best properties and capabilities of logistic
regression and SVM algorithms. For more information on SDCA, see the citations in the
reference section.

Traditional optimization algorithms, such as stochastic gradient descent (SGD), optimize
the empirical loss function directly. The SDCA chooses a different approach that
optimizes the dual problem instead. The dual loss function is parametrized by per-
example weights. In each iteration, when a training example from the training data set is
read, the corresponding example weight is adjusted so that the dual loss function is
optimized with respect to the current example. No learning rate is needed by SDCA to
determine step size as is required by various gradient descent methods.

rx_fast_linear  supports binary classification with three types of loss functions
currently: Log loss, hinge loss, and smoothed hinge loss. Linear regression also supports
with squared loss function. Elastic net regularization can be specified by the l2_weight

Usage

microsoftml.rx_fast_linear() 

Description

Details



and l1_weight  parameters. Note that the l2_weight  has an effect on the rate of
convergence. In general, the larger the l2_weight , the faster SDCA converges.

Note that rx_fast_linear  is a stochastic and streaming optimization algorithm. The
results depend on the order of the training data. For reproducible results, it is
recommended that one sets shuffle  to False  and train_threads  to 1 .

The formula described in revoscalepy.rx_formula. Interaction terms and F()  are not
currently supported in microsoftml.

A data source object or a character string specifying a .xdf file or a data frame object.

Specifies the model type with a character string: "binary"  for the default binary
classification or "regression"  for linear regression.

Specifies the empirical loss function to optimize. For binary classification, the following
choices are available:

log_loss: The log-loss. This is the default.

hinge_loss: The SVM hinge loss. Its parameter represents the margin size.

smooth_hinge_loss : The smoothed hinge loss. Its parameter represents the
smoothing constant.

For linear regression, squared loss squared_loss is currently supported. When this
parameter is set to None, its default value depends on the type of learning:

log_loss for binary classification.

squared_loss for linear regression.

Arguments

formula

data

method

loss_function



The following example changes the loss_function to hinge_loss: rx_fast_linear(...,
loss_function=hinge_loss()) .

Specifies the L1 regularization weight. The value must be either non-negative or None. If
None is specified, the actual value is automatically computed based on data set. None is
the default value.

Specifies the L2 regularization weight. The value must be either non-negative or None. If
None is specified, the actual value is automatically computed based on data set. None is
the default value.

Specifies how many concurrent threads can be used to run the algorithm. When this
parameter is set to None, the number of threads used is determined based on the
number of logical processors available to the process as well as the sparsity of data. Set
it to 1  to run the algorithm in a single thread.

Specifies the tolerance threshold used as a convergence criterion. It must be between 0
and 1. The default value is 0.1 . The algorithm is considered to have converged if the
relative duality gap, which is the ratio between the duality gap and the primal loss, falls
below the specified convergence tolerance.

Specifies an upper bound on the number of training iterations. This parameter must be
positive or None. If None is specified, the actual value is automatically computed based
on data set. Each iteration requires a complete pass over the training data. Training
terminates after the total number of iterations reaches the specified upper bound or
when the loss function converges, whichever happens earlier.

l1_weight

l2_weight

train_threads

convergence_tolerance

max_iterations

shuffle



Specifies whether to shuffle the training data. Set True  to shuffle the data; False  not to
shuffle. The default value is True . SDCA is a stochastic optimization algorithm. If
shuffling is turned on, the training data is shuffled on each iteration.

The number of iterations after which the loss function is computed and checked to
determine whether it has converged. The value specified must be a positive integer or
None. If None, the actual value is automatically computed based on data set. Otherwise,
for example, if checkFrequency = 5  is specified, then the loss function is computed and
convergence is checked every 5 iterations. The computation of the loss function requires
a separate complete pass over the training data.

Specifies the type of automatic normalization used:

"Auto" : if normalization is needed, it is performed automatically. This is the default
choice.

"No" : no normalization is performed.

"Yes" : normalization is performed.

"Warn" : if normalization is needed, a warning message is displayed, but
normalization is not performed.

Normalization rescales disparate data ranges to a standard scale. Feature scaling insures
the distances between data points are proportional and enables various optimization
methods such as gradient descent to converge much faster. If normalization is
performed, a MaxMin  normalizer is used. It normalizes values in an interval [a, b] where
-1 <= a <= 0  and 0 <= b <= 1  and b - a = 1 . This normalizer preserves sparsity by
mapping zero to zero.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or None if no transforms are to be performed. See featurize_text, categorical, and
categorical_hash, for transformations that are supported. These transformations are
performed after any specified Python transformations. The default value is None.

check_frequency

normalize

ml_transforms



Specifies a character vector of variable names to be used in ml_transforms  or None if
none are to be used. The default value is None.

NOT SUPPORTED. Specifies the rows (observations) from the data set that are to be
used by the model with the name of a logical variable from the data set (in quotes) or
with a logical expression using variables in the data set. For example:

row_selection = "old"  will only use observations in which the value of the variable
old  is True .

row_selection = (age > 20) & (age < 65) & (log(income) > 10)  only uses
observations in which the value of the age  variable is between 20 and 65 and the
value of the log  of the income  variable is greater than 10.

The row selection is performed after processing any data transformations (see the
arguments transforms  or transform_function ). As with all expressions, row_selection
can be defined outside of the function call using the expression  function.

NOT SUPPORTED. An expression of the form that represents the first round of variable
transformations. As with all expressions, transforms  (or row_selection ) can be defined
outside of the function call using the expression  function.

NOT SUPPORTED. A named list that contains objects that can be referenced by
transforms , transform_function , and row_selection .

The variable transformation function.

A character vector of input data set variables needed for the transformation function.

ml_transform_vars

row_selection

transforms

transform_objects

transform_function

transform_variables



NOT SUPPORTED. A character vector specifying additional Python packages (outside of
those specified in RxOptions.get_option("transform_packages") ) to be made available
and preloaded for use in variable transformation functions. For example, those explicitly
defined in revoscalepy functions via their transforms  and transform_function
arguments or those defined implicitly via their formula  or row_selection  arguments.
The transform_packages  argument may also be None, indicating that no packages
outside RxOptions.get_option("transform_packages")  are preloaded.

NOT SUPPORTED. A user-defined environment to serve as a parent to all environments
developed internally and used for variable data transformation. If transform_environment
= None , a new "hash" environment with parent revoscalepy.baseenv is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

transform_packages

transform_environment

blocks_per_read

report_progress

verbose

compute_context

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


Sets the context in which computations are executed, specified with a valid
revoscalepy.RxComputeContext. Currently local and revoscalepy.RxInSqlServer compute
contexts are supported.

Control parameters for ensembling.

A FastLinear object with the trained model.

This algorithm is multi-threaded and will not attempt to load the entire dataset into
memory.

hinge_loss, log_loss, smoothed_hinge_loss, squared_loss, rx_predict

Scaling Up Stochastic Dual Coordinate Ascent

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization

ensemble

Returns

Note

See also

References

Binary classification example

''' 
Binary Classification. 
''' 
import numpy 
import pandas 
from microsoftml import rx_fast_linear, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

infert = get_dataset("infert") 

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxInSqlServer
https://learn.microsoft.com/en-us/sql/machine-learning/python/reference/microsoftml/learners-object?view=sql-server-2017
https://research.microsoft.com/en-us/um/people/mbilenko/papers/15-sasdca.pdf
https://jmlr.csail.mit.edu/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf


Output:

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

infertdf = infert.as_df() 
infertdf["isCase"] = infertdf.case == 1 
data_train, data_test, y_train, y_test = train_test_split(infertdf, 
infertdf.isCase) 

forest_model = rx_fast_linear( 
    formula=" isCase ~ age + parity + education + spontaneous + induced ", 
    data=data_train) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(forest_model, data=data_test, 
                     extra_vars_to_write=["isCase", "Score"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using 2 threads to train. 
Automatically choosing a check frequency of 2. 
Auto-tuning parameters: maxIterations = 8064. 
Auto-tuning parameters: L2 = 2.666837E-05. 
Auto-tuning parameters: L1Threshold (L1/L2) = 0. 
Using best model from iteration 568. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.5810985 
Elapsed time: 00:00:00.0084876 
Beginning processing data. 
Rows Read: 62, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0292334 
Finished writing 62 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: Less than .001 



Output:

seconds  
  isCase PredictedLabel     Score  Probability 
0   True           True  0.990544     0.729195 
1  False          False -2.307120     0.090535 
2  False          False -0.608565     0.352387 
3   True           True  1.028217     0.736570 
4   True          False -3.913066     0.019588 

Regression example

''' 
Regression. 
''' 
import numpy 
import pandas 
from microsoftml import rx_fast_linear, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

attitude = get_dataset("attitude") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

attitudedf = attitude.as_df() 
data_train, data_test = train_test_split(attitudedf) 

model = rx_fast_linear( 
    formula="rating ~ complaints + privileges + learning + raises + critical 
+ advance", 
    method="regression", 
    data=data_train) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(model, data=data_test, 
                     extra_vars_to_write=["rating"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 



microsoftml.hinge_loss: Hinge loss function

microsoftml.log_loss: Log loss function

microsoftml.smoothed_hinge_loss: Smoothed hinge loss function

microsoftml.squared_loss: Squared loss function

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 22, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 22, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 22, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using 2 threads to train. 
Automatically choosing a check frequency of 2. 
Auto-tuning parameters: maxIterations = 68180. 
Auto-tuning parameters: L2 = 0.01. 
Auto-tuning parameters: L1Threshold (L1/L2) = 0. 
Using best model from iteration 54. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.1114324 
Elapsed time: 00:00:00.0090901 
Beginning processing data. 
Rows Read: 8, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0330772 
Finished writing 8 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: Less than .001 
seconds  
   rating      Score 
0    71.0  72.630440 
1    67.0  56.995350 
2    67.0  52.958641 
3    72.0  80.894539 
4    50.0  38.375427 

loss functions



microsoftml.rx_fast_trees: Boosted Trees
Article • 03/03/2023

Machine Learning Fast Tree

rx_fast_trees is an implementation of FastRank. FastRank is an efficient implementation
of the MART gradient boosting algorithm. Gradient boosting is a machine learning
technique for regression problems. It builds each regression tree in a step-wise fashion,
using a predefined loss function to measure the error for each step and corrects for it in
the next. So this prediction model is actually an ensemble of weaker prediction models.
In regression problems, boosting builds a series of such trees in a step-wise fashion and
then selects the optimal tree using an arbitrary differentiable loss function.

Usage

microsoftml.rx_fast_trees(formula: str, 
    data: [revoscalepy.datasource.RxDataSource.RxDataSource, 
    pandas.core.frame.DataFrame], method: ['binary', 
    'regression'] = 'binary', num_trees: int = 100, 
    num_leaves: int = 20, learning_rate: float = 0.2, 
    min_split: int = 10, example_fraction: float = 0.7, 
    feature_fraction: float = 1, split_fraction: float = 1, 
    num_bins: int = 255, first_use_penalty: float = 0, 
    gain_conf_level: float = 0, unbalanced_sets: bool = False, 
    train_threads: int = 8, random_seed: int = None, 
    ml_transforms: list = None, ml_transform_vars: list = None, 
    row_selection: str = None, transforms: dict = None, 
    transform_objects: dict = None, transform_function: str = None, 
    transform_variables: list = None, 
    transform_packages: list = None, 
    transform_environment: dict = None, blocks_per_read: int = None, 
    report_progress: int = None, verbose: int = 1, 
    ensemble: microsoftml.modules.ensemble.EnsembleControl = None, 
    compute_context: 
revoscalepy.computecontext.RxComputeContext.RxComputeContext = None) 

Description

Details



MART learns an ensemble of regression trees, which is a decision tree with scalar values
in its leaves. A decision (or regression) tree is a binary tree-like flow chart, where at each
interior node one decides which of the two child nodes to continue to based on one of
the feature values from the input. At each leaf node, a value is returned. In the interior
nodes, the decision is based on the test "x <= v" , where x  is the value of the feature in
the input sample and v  is one of the possible values of this feature. The functions that
can be produced by a regression tree are all the piece-wise constant functions.

The ensemble of trees is produced by computing, in each step, a regression tree that
approximates the gradient of the loss function, and adding it to the previous tree with
coefficients that minimize the loss of the new tree. The output of the ensemble
produced by MART on a given instance is the sum of the tree outputs.

In case of a binary classification problem, the output is converted to a probability
by using some form of calibration.

In case of a regression problem, the output is the predicted value of the function.

In case of a ranking problem, the instances are ordered by the output value of the
ensemble.

If method  is set to "regression" , a regression version of FastTree is used. If set to
"ranking" , a ranking version of FastTree is used. In the ranking case, the instances
should be ordered by the output of the tree ensemble. The only difference in the
settings of these versions is in the calibration settings, which are needed only for
classification.

The formula as described in revoscalepy.rx_formula. Interaction terms and F()  are not
currently supported in microsoftml.

A data source object or a character string specifying a .xdf file or a data frame object.

Arguments

formula

data

method



A character string that specifies the type of Fast Tree: "binary"  for the default Fast Tree
Binary Classification or "regression"  for Fast Tree Regression.

Specifies the total number of decision trees to create in the ensemble.By creating more
decision trees, you can potentially get better coverage, but the training time increases.
The default value is 100.

The maximum number of leaves (terminal nodes) that can be created in any tree. Higher
values potentially increase the size of the tree and get better precision, but risk
overfitting and requiring longer training times. The default value is 20.

Determines the size of the step taken in the direction of the gradient in each step of the
learning process. This determines how fast or slow the learner converges on the optimal
solution. If the step size is too big, you might overshoot the optimal solution. If the step
size is too small, training takes longer to converge to the best solution.

Minimum number of training instances required to form a leaf. That is, the minimal
number of documents allowed in a leaf of a regression tree, out of the sub-sampled
data. A 'split' means that features in each level of the tree (node) are randomly divided.
The default value is 10. Only the number of instances is counted even if instances are
weighted.

The fraction of randomly chosen instances to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use for each tree. The default value is 1.

num_trees

num_leaves

learning_rate

min_split

example_fraction

feature_fraction

split_fraction



The fraction of randomly chosen features to use on each split. The default value is 1.

Maximum number of distinct values (bins) per feature. If the feature has fewer values
than the number indicated, each value is placed in its own bin. If there are more values,
the algorithm creates numBins  bins.

The feature first use penalty coefficient. This is a form of regularization that incurs a
penalty for using a new feature when creating the tree. Increase this value to create
trees that don't use many features. The default value is 0.

Tree fitting gain confidence requirement (should be in the range [0,1)). The default value
is 0.

If True , derivatives optimized for unbalanced sets are used. Only applicable when type
equal to "binary" . The default value is False .

The number of threads to use in training. The default value is 8.

Specifies the random seed. The default value is None.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or None if no transforms are to be performed. See featurize_text, categorical, and
categorical_hash, for transformations that are supported. These transformations are
performed after any specified Python transformations. The default value is None.

num_bins

first_use_penalty

gain_conf_level

unbalanced_sets

train_threads

random_seed

ml_transforms



Specifies a character vector of variable names to be used in ml_transforms  or None if
none are to be used. The default value is None.

NOT SUPPORTED. Specifies the rows (observations) from the data set that are to be
used by the model with the name of a logical variable from the data set (in quotes) or
with a logical expression using variables in the data set. For example:

row_selection = "old"  will only use observations in which the value of the variable
old  is True .

row_selection = (age > 20) & (age < 65) & (log(income) > 10)  only uses
observations in which the value of the age  variable is between 20 and 65 and the
value of the log  of the income  variable is greater than 10.

The row selection is performed after processing any data transformations (see the
arguments transforms  or transform_function ). As with all expressions, row_selection
can be defined outside of the function call using the expression  function.

NOT SUPPORTED. An expression of the form that represents the first round of variable
transformations. As with all expressions, transforms  (or row_selection ) can be defined
outside of the function call using the expression  function.

NOT SUPPORTED. A named list that contains objects that can be referenced by
transforms , transform_function , and row_selection .

The variable transformation function.

A character vector of input data set variables needed for the transformation function.

ml_transform_vars

row_selection

transforms

transform_objects

transform_function

transform_variables



NOT SUPPORTED. A character vector specifying additional Python packages (outside of
those specified in RxOptions.get_option("transform_packages") ) to be made available
and preloaded for use in variable transformation functions. For example, those explicitly
defined in revoscalepy functions via their transforms  and transform_function
arguments or those defined implicitly via their formula  or row_selection  arguments.
The transform_packages  argument may also be None, indicating that no packages
outside RxOptions.get_option("transform_packages")  are preloaded.

NOT SUPPORTED. A user-defined environment to serve as a parent to all environments
developed internally and used for variable data transformation. If transform_environment
= None , a new "hash" environment with parent revoscalepy.baseenv is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

transform_packages

transform_environment

blocks_per_read

report_progress

verbose

compute_context

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


Sets the context in which computations are executed, specified with a valid
revoscalepy.RxComputeContext. Currently local and revoscalepy.RxInSqlServer compute
contexts are supported.

Control parameters for ensembling.

A FastTrees object with the trained model.

This algorithm is multi-threaded and will always attempt to load the entire dataset into
memory.

rx_fast_forest, rx_predict

Wikipedia: Gradient boosting (Gradient tree boosting)

Greedy function approximation: A gradient boosting machine.

ensemble

Returns

Note

See also

References

Binary Classification example

''' 
Binary Classification. 
''' 
import numpy 
import pandas 
from microsoftml import rx_fast_trees, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

infert = get_dataset("infert") 

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxInSqlServer
https://learn.microsoft.com/en-us/sql/machine-learning/python/reference/microsoftml/learners-object?view=sql-server-2017
https://en.wikipedia.org/wiki/Gradient_boosting
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451


Output:

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

infertdf = infert.as_df() 
infertdf["isCase"] = infertdf.case == 1 
data_train, data_test, y_train, y_test = train_test_split(infertdf, 
infertdf.isCase) 

trees_model = rx_fast_trees( 
    formula=" isCase ~ age + parity + education + spontaneous + induced ", 
    data=data_train) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(trees_model, data=data_test, 
                     extra_vars_to_write=["isCase", "Score"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

Not adding a normalizer. 
Making per-feature arrays 
Changing data from row-wise to column-wise 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Processed 186 instances 
Binning and forming Feature objects 
Reserved memory for tree learner: 7020 bytes 
Starting to train ... 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0949161 
Elapsed time: 00:00:00.0112103 
Beginning processing data. 
Rows Read: 62, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0230457 
Finished writing 62 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds  
  isCase PredictedLabel      Score  Probability 
0  False          False  -4.722279     0.131369 
1  False          False -11.550012     0.009757 
2  False          False  -7.312314     0.050935 
3   True           True   3.889991     0.825778 
4  False          False  -6.361800     0.072782 



Output:

Regression example

''' 
Regression. 
''' 
import numpy 
import pandas 
from microsoftml import rx_fast_trees, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

airquality = get_dataset("airquality") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

airquality = airquality.as_df() 

###################################################################### 
# Estimate a regression fast forest 
# Use the built-in data set 'airquality' to create test and train data 

df = airquality[airquality.Ozone.notnull()] 
df["Ozone"] = df.Ozone.astype(float) 

data_train, data_test, y_train, y_test = train_test_split(df, df.Ozone) 

airFormula = " Ozone ~ Solar_R + Wind + Temp " 

# Regression Fast Forest for train data 
ff_reg = rx_fast_trees(airFormula, method="regression", data=data_train) 

# Put score and model variables in data frame 
score_df = rx_predict(ff_reg, data=data_test, write_model_vars=True) 
print(score_df.head()) 

# Plot actual versus predicted values with smoothed line 
# Supported in the next version. 
# rx_line_plot(" Score ~ Ozone ", type=["p", "smooth"], data=score_df) 

'unbalanced_sets' ignored for method 'regression' 
Not adding a normalizer. 



Making per-feature arrays 
Changing data from row-wise to column-wise 
Beginning processing data. 
Rows Read: 87, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Warning: Skipped 4 instances with missing features during training 
Processed 83 instances 
Binning and forming Feature objects 
Reserved memory for tree learner: 21528 bytes 
Starting to train ... 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0512720 
Elapsed time: 00:00:00.0094435 
Beginning processing data. 
Rows Read: 29, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0229873 
Finished writing 29 rows. 
Writing completed. 
   Solar_R  Wind  Temp      Score
0    115.0   7.4  76.0  26.003876
1    307.0  12.0  66.0  18.057747
2    230.0  10.9  75.0  10.896211
3    259.0   9.7  73.0  13.726607
4     92.0  15.5  84.0  37.972855



microsoftml.rx_featurize: Data
transformation for data sources
Article • 03/03/2023

Transforms data from an input data set to an output data set.

A revoscalepy data source object, a data frame, or the path to a .xdf  file.

Output text or xdf file name or an RxDataSource  with write capabilities in which to store
transformed data. If None, a data frame is returned. The default value is None.

Usage

microsoftml.rx_featurize(data: 
typing.Union[revoscalepy.datasource.RxDataSource.RxDataSource, 
    pandas.core.frame.DataFrame],
    output_data: 
typing.Union[revoscalepy.datasource.RxDataSource.RxDataSource, 
    str] = None, overwrite: bool = False, 
    data_threads: int = None, random_seed: int = None, 
    max_slots: int = 5000, ml_transforms: list = None, 
    ml_transform_vars: list = None, row_selection: str = None, 
    transforms: dict = None, transform_objects: dict = None, 
    transform_function: str = None, 
    transform_variables: list = None, 
    transform_packages: list = None, 
    transform_environment: dict = None, blocks_per_read: int = None, 
    report_progress: int = None, verbose: int = 1, 
    compute_context: 
revoscalepy.computecontext.RxComputeContext.RxComputeContext = None) 

Description

Arguments

data

output_data

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


If True , an existing output_data  is overwritten; if False  an existing output_data  is not
overwritten. The default value is False .

An integer specifying the desired degree of parallelism in the data pipeline. If None, the
number of threads used is determined internally. The default value is None.

Specifies the random seed. The default value is None.

Max slots to return for vector valued columns (<=0 to return all).

Specifies a list of MicrosoftML transforms to be performed on the data before training
or None if no transforms are to be performed. See featurize_text, categorical, and
categorical_hash, for transformations that are supported. These transformations are
performed after any specified Python transformations. The default value is None.

Specifies a character vector of variable names to be used in ml_transforms  or None if
none are to be used. The default value is None.

NOT SUPPORTED. Specifies the rows (observations) from the data set that are to be
used by the model with the name of a logical variable from the data set (in quotes) or
with a logical expression using variables in the data set. For example:

row_selection = "old"  will only use observations in which the value of the variable
old  is True .

overwrite

data_threads

random_seed

max_slots

ml_transforms

ml_transform_vars

row_selection



row_selection = (age > 20) & (age < 65) & (log(income) > 10)  only uses
observations in which the value of the age  variable is between 20 and 65 and the
value of the log  of the income  variable is greater than 10.

The row selection is performed after processing any data transformations (see the
arguments transforms  or transform_function ). As with all expressions, row_selection
can be defined outside of the function call using the expression  function.

NOT SUPPORTED. An expression of the form that represents the first round of variable
transformations. As with all expressions, transforms  (or row_selection ) can be defined
outside of the function call using the expression  function. The default value is None.

NOT SUPPORTED. A named list that contains objects that can be referenced by
transforms , transform_function , and row_selection . The default value is None.

The variable transformation function. The default value is None.

A character vector of input data set variables needed for the transformation function.
The default value is None.

NOT SUPPORTED. A character vector specifying additional Python packages (outside of
those specified in RxOptions.get_option("transform_packages") ) to be made available
and preloaded for use in variable transformation functions. For example, those explicitly
defined in revoscalepy functions via their transforms  and transform_function
arguments or those defined implicitly via their formula  or row_selection  arguments.
The transform_packages  argument may also be None, indicating that no packages
outside RxOptions.get_option("transform_packages")  are preloaded.

transforms

transform_objects

transform_function

transform_variables

transform_packages

transform_environment

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


NOT SUPPORTED. A user-defined environment to serve as a parent to all environments
developed internally and used for variable data transformation. If transform_environment
= None , a new "hash" environment with parent revoscalepy.baseenv is used instead The
default value is None.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

The default value is 1 .

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information. The default value is 1 .

Sets the context in which computations are executed, specified with a valid
revoscalepy.RxComputeContext. Currently local and revoscalepy.RxInSqlServer compute
contexts are supported.

A data frame or an revoscalepy.RxDataSource object representing the created output
data.

blocks_per_read

report_progress

verbose

compute_context

Returns

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxInSqlServer
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxDataSource


rx_predict, revoscalepy.rx_data_step, revoscalepy.rx_import.

Output:

See also

Example

''' 
Example with rx_featurize. 
''' 
import numpy 
import pandas 
from microsoftml import rx_featurize, categorical 

# rx_featurize basically allows you to access data from the MicrosoftML 
transforms 
# In this example we'll look at getting the output of the categorical 
transform 
# Create the data 
categorical_data = pandas.DataFrame(data=dict(places_visited=[ 
                "London", "Brunei", "London", "Paris", "Seria"]), 
                dtype="category")
                 
print(categorical_data) 

# Invoke the categorical transform 
categorized = rx_featurize(data=categorical_data, 
                           ml_transforms=
[categorical(cols=dict(xdatacat="places_visited"))]) 

# Now let's look at the data 
print(categorized) 

  places_visited 
0         London 
1         Brunei 
2         London 
3          Paris 
4          Seria 
Beginning processing data. 
Rows Read: 5, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 5, Read Time: 0, Transform Time: 0 
Beginning processing data. 

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-data-step
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-import


Elapsed time: 00:00:00.0521300 
Finished writing 5 rows. 
Writing completed. 
  places_visited  xdatacat.London  xdatacat.Brunei  xdatacat.Paris  \ 
0         London              1.0              0.0             0.0    
1         Brunei              0.0              1.0             0.0    
2         London              1.0              0.0             0.0    
3          Paris              0.0              0.0             1.0    
4          Seria              0.0              0.0             0.0    

   xdatacat.Seria   
0             0.0   
1             0.0   
2             0.0   
3             0.0   
4             1.0   



microsoftml.rx_logistic_regression:
Logistic Regression
Article • 03/03/2023

Machine Learning Logistic Regression

Logistic Regression is a classification method used to predict the value of a categorical
dependent variable from its relationship to one or more independent variables assumed
to have a logistic distribution. If the dependent variable has only two possible values
(success/failure), then the logistic regression is binary. If the dependent variable has
more than two possible values (blood type given diagnostic test results), then the
logistic regression is multinomial.

Usage

microsoftml.rx_logistic_regression(formula: str, 
    data: [revoscalepy.datasource.RxDataSource.RxDataSource, 
    pandas.core.frame.DataFrame], method: ['binary', 
    'multiClass'] = 'binary', l2_weight: float = 1, 
    l1_weight: float = 1, opt_tol: float = 1e-07, 
    memory_size: int = 20, init_wts_diameter: float = 0, 
    max_iterations: int = 2147483647, 
    show_training_stats: bool = False, sgd_init_tol: float = 0, 
    train_threads: int = None, dense_optimizer: bool = False, 
    normalize: ['No', 'Warn', 'Auto', 'Yes'] = 'Auto', 
    ml_transforms: list = None, ml_transform_vars: list = None, 
    row_selection: str = None, transforms: dict = None, 
    transform_objects: dict = None, transform_function: str = None, 
    transform_variables: list = None, 
    transform_packages: list = None, 
    transform_environment: dict = None, blocks_per_read: int = None, 
    report_progress: int = None, verbose: int = 1, 
    ensemble: microsoftml.modules.ensemble.EnsembleControl = None, 
    compute_context: 
revoscalepy.computecontext.RxComputeContext.RxComputeContext = None) 

Description

Details



The optimization technique used for rx_logistic_regression  is the limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). Both the L-BFGS and regular BFGS
algorithms use quasi-Newtonian methods to estimate the computationally intensive
Hessian matrix in the equation used by Newton's method to calculate steps. But the L-
BFGS approximation uses only a limited amount of memory to compute the next step
direction, so that it is especially suited for problems with a large number of variables.
The memory_size  parameter specifies the number of past positions and gradients to
store for use in the computation of the next step.

This learner can use elastic net regularization: a linear combination of L1 (lasso) and L2
(ridge) regularizations. Regularization is a method that can render an ill-posed problem
more tractable by imposing constraints that provide information to supplement the data
and that prevents overfitting by penalizing models with extreme coefficient values. This
can improve the generalization of the model learned by selecting the optimal
complexity in the bias-variance tradeoff. Regularization works by adding the penalty
that is associated with coefficient values to the error of the hypothesis. An accurate
model with extreme coefficient values would be penalized more, but a less accurate
model with more conservative values would be penalized less. L1 and L2 regularization
have different effects and uses that are complementary in certain respects.

l1_weight : can be applied to sparse models, when working with high-dimensional
data. It pulls small weights associated features that are relatively unimportant
towards 0.

l2_weight : is preferable for data that is not sparse. It pulls large weights towards
zero.

Adding the ridge penalty to the regularization overcomes some of lasso's limitations. It
can improve its predictive accuracy, for example, when the number of predictors is
greater than the sample size. If x = l1_weight  and y = l2_weight , ax + by = c  defines
the linear span of the regularization terms. The default values of x and y are both 1 . An
aggressive regularization can harm predictive capacity by excluding important variables
out of the model. So choosing the optimal values for the regularization parameters is
important for the performance of the logistic regression model.

The formula as described in revoscalepy.rx_formula Interaction terms and F()  are not
currently supported in microsoftml.

Arguments

formula



A data source object or a character string specifying a .xdf file or a data frame object.

A character string that specifies the type of Logistic Regression: "binary"  for the default
binary classification logistic regression or "multiClass"  for multinomial logistic
regression.

The L2 regularization weight. Its value must be greater than or equal to 0  and the
default value is set to 1 .

The L1 regularization weight. Its value must be greater than or equal to 0  and the
default value is set to 1 .

Threshold value for optimizer convergence. If the improvement between iterations is
less than the threshold, the algorithm stops and returns the current model. Smaller
values are slower, but more accurate. The default value is 1e-07 .

Memory size for L-BFGS, specifying the number of past positions and gradients to store
for the computation of the next step. This optimization parameter limits the amount of
memory that is used to compute the magnitude and direction of the next step. When
you specify less memory, training is faster but less accurate. Must be greater than or
equal to 1  and the default value is 20 .

Sets the maximum number of iterations. After this number of steps, the algorithm stops
even if it has not satisfied convergence criteria.

data

method

l2_weight

l1_weight

opt_tol

memory_size

max_iterations



Specify True  to show the statistics of training data and the trained model; otherwise,
False . The default value is False . For additional information about model statistics, see
summary.ml_model() .

Set to a number greater than 0 to use Stochastic Gradient Descent (SGD) to find the
initial parameters. A non-zero value set specifies the tolerance SGD uses to determine
convergence. The default value is 0  specifying that SGD is not used.

Sets the initial weights diameter that specifies the range from which values are drawn
for the initial weights. These weights are initialized randomly from within this range. For
example, if the diameter is specified to be d , then the weights are uniformly distributed
between -d/2  and d/2 . The default value is 0 , which specifies that all the weights are
initialized to 0 .

The number of threads to use in training the model. This should be set to the number of
cores on the machine. Note that L-BFGS multi-threading attempts to load dataset into
memory. In case of out-of-memory issues, set train_threads  to 1  to turn off multi-
threading. If None the number of threads to use is determined internally. The default
value is None.

If True , forces densification of the internal optimization vectors. If False , enables the
logistic regression optimizer use sparse or dense internal states as it finds appropriate.
Setting denseOptimizer  to True  requires the internal optimizer to use a dense internal
state, which may help alleviate load on the garbage collector for some varieties of larger
problems.

Specifies the type of automatic normalization used:

show_training_stats

sgd_init_tol

init_wts_diameter

train_threads

dense_optimizer

normalize



"Auto" : if normalization is needed, it is performed automatically. This is the default
choice.

"No" : no normalization is performed.

"Yes" : normalization is performed.

"Warn" : if normalization is needed, a warning message is displayed, but
normalization is not performed.

Normalization rescales disparate data ranges to a standard scale. Feature scaling insures
the distances between data points are proportional and enables various optimization
methods such as gradient descent to converge much faster. If normalization is
performed, a MaxMin  normalizer is used. It normalizes values in an interval [a, b] where
-1 <= a <= 0  and 0 <= b <= 1  and b - a = 1 . This normalizer preserves sparsity by
mapping zero to zero.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or None if no transforms are to be performed. See featurize_text, categorical, and
categorical_hash, for transformations that are supported. These transformations are
performed after any specified Python transformations. The default value is None.

Specifies a character vector of variable names to be used in ml_transforms  or None if
none are to be used. The default value is None.

NOT SUPPORTED. Specifies the rows (observations) from the data set that are to be
used by the model with the name of a logical variable from the data set (in quotes) or
with a logical expression using variables in the data set. For example:

row_selection = "old"  will only use observations in which the value of the variable
old  is True .

row_selection = (age > 20) & (age < 65) & (log(income) > 10)  only uses
observations in which the value of the age  variable is between 20 and 65 and the
value of the log  of the income  variable is greater than 10.

ml_transforms

ml_transform_vars

row_selection



The row selection is performed after processing any data transformations (see the
arguments transforms  or transform_function ). As with all expressions, row_selection
can be defined outside of the function call using the expression  function.

NOT SUPPORTED. An expression of the form that represents the first round of variable
transformations. As with all expressions, transforms  (or row_selection ) can be defined
outside of the function call using the expression  function.

NOT SUPPORTED. A named list that contains objects that can be referenced by
transforms , transform_function , and row_selection .

The variable transformation function.

A character vector of input data set variables needed for the transformation function.

NOT SUPPORTED. A character vector specifying additional Python packages (outside of
those specified in RxOptions.get_option("transform_packages") ) to be made available
and preloaded for use in variable transformation functions. For example, those explicitly
defined in revoscalepy functions via their transforms  and transform_function
arguments or those defined implicitly via their formula  or row_selection  arguments.
The transform_packages  argument may also be None, indicating that no packages
outside RxOptions.get_option("transform_packages")  are preloaded.

NOT SUPPORTED. A user-defined environment to serve as a parent to all environments
developed internally and used for variable data transformation. If transform_environment
= None , a new "hash" environment with parent revoscalepy.baseenv is used instead.

transforms

transform_objects

transform_function

transform_variables

transform_packages

transform_environment

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/index


Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
revoscalepy.RxComputeContext. Currently local and revoscalepy.RxInSqlServer compute
contexts are supported.

Control parameters for ensembling.

A LogisticRegression object with the trained model.

blocks_per_read

report_progress

verbose

compute_context

ensemble

Returns

Note

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxInSqlServer
https://learn.microsoft.com/en-us/sql/machine-learning/python/reference/microsoftml/learners-object?view=sql-server-2017


This algorithm will attempt to load the entire dataset into memory when train_threads
> 1  (multi-threading).

rx_predict

Wikipedia: L-BFGS

Wikipedia: Logistic regression

Scalable Training of L1-Regularized Log-Linear Models

Test Run - L1 and L2 Regularization for Machine Learning

See also

References

Binary classification example

''' 
Binary Classification. 
''' 
import numpy 
import pandas 
from microsoftml import rx_logistic_regression, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

infert = get_dataset("infert") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

infertdf = infert.as_df() 
infertdf["isCase"] = infertdf.case == 1 
data_train, data_test, y_train, y_test = train_test_split(infertdf, 
infertdf.isCase) 

model = rx_logistic_regression( 
    formula=" isCase ~ age + parity + education + spontaneous + induced ", 
    data=data_train) 

https://en.wikipedia.org/wiki/L-BFGS
https://en.wikipedia.org/wiki/Logistic_regression
https://research.microsoft.com/apps/pubs/default.aspx?id=78900
https://learn.microsoft.com/en-us/archive/msdn-magazine/2015/february/test-run-l1-and-l2-regularization-for-machine-learning


Output:

print(model.coef_) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(model, data=data_test, 
                     extra_vars_to_write=["isCase", "Score"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 186, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
LBFGS multi-threading will attempt to load dataset into memory. In case of 
out-of-memory issues, turn off multi-threading by setting trainThreads to 1. 
Beginning optimization 
num vars: 6 
improvement criterion: Mean Improvement 
L1 regularization selected 5 of 6 weights. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0646405 
Elapsed time: 00:00:00.0083991 
OrderedDict([('(Bias)', -1.2366217374801636), ('spontaneous', 
1.9391206502914429), ('induced', 0.7497404217720032), ('parity', 
-0.31517016887664795), ('age', -3.162723260174971e-06)]) 
Beginning processing data. 
Rows Read: 62, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0287290 
Finished writing 62 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds  
  isCase PredictedLabel     Score  Probability 
0  False          False -1.341681     0.207234 
1   True           True  0.597440     0.645070 
2  False           True  0.544912     0.632954 
3  False          False -1.289152     0.215996 
4  False          False -1.019339     0.265156 



Output:

MultiClass classification example

''' 
MultiClass Classification 
''' 
import numpy 
import pandas 
from microsoftml import rx_logistic_regression, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

iris = get_dataset("iris") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

irisdf = iris.as_df() 
irisdf["Species"] = irisdf["Species"].astype("category") 
data_train, data_test, y_train, y_test = train_test_split(irisdf, 
irisdf.Species) 

model = rx_logistic_regression( 
    formula="  Species ~ Sepal_Length + Sepal_Width + Petal_Length + 
Petal_Width ", 
    method="multiClass", 
    data=data_train) 

print(model.coef_) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(model, data=data_test, 
                     extra_vars_to_write=["Species", "Score"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 



Beginning processing data. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 
Beginning processing data. 
LBFGS multi-threading will attempt to load dataset into memory. In case of 
out-of-memory issues, turn off multi-threading by setting trainThreads to 1. 
Beginning optimization 
num vars: 15 
improvement criterion: Mean Improvement 
L1 regularization selected 9 of 15 weights. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0493224 
Elapsed time: 00:00:00.0080558 
OrderedDict([('setosa+(Bias)', 2.074636697769165), ('versicolor+(Bias)', 
0.4899507164955139), ('virginica+(Bias)', -2.564580202102661), 
('setosa+Petal_Width', -2.8389241695404053), ('setosa+Petal_Length', 
-2.4824044704437256), ('setosa+Sepal_Width', 0.274869441986084), 
('versicolor+Sepal_Width', -0.2645561397075653), ('virginica+Petal_Width', 
2.6924400329589844), ('virginica+Petal_Length', 1.5976412296295166)]) 
Beginning processing data. 
Rows Read: 38, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0331861 
Finished writing 38 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds  
      Species   Score.0   Score.1   Score.2 
0   virginica  0.044230  0.364927  0.590843 
1      setosa  0.767412  0.210586  0.022002 
2      setosa  0.756523  0.221933  0.021543 
3      setosa  0.767652  0.211191  0.021157 
4  versicolor  0.116369  0.498615  0.385016 



microsoftml.rx_neural_network: Neural
Network
Article • 03/03/2023

Neural networks for regression modeling and for Binary and multi-class classification.

A neural network is a class of prediction models inspired by the human brain. A neural
network can be represented as a weighted directed graph. Each node in the graph is

Usage

microsoftml.rx_neural_network(formula: str, 
    data: [revoscalepy.datasource.RxDataSource.RxDataSource, 
    pandas.core.frame.DataFrame], method: ['binary', 'multiClass', 
    'regression'] = 'binary', num_hidden_nodes: int = 100, 
    num_iterations: int = 100, 
    optimizer: [<function adadelta_optimizer at 0x0000007156EAC048>, 
    <function sgd_optimizer at 0x0000007156E9FB70>] = {'Name': 
'SgdOptimizer', 
    'Settings': {}}, net_definition: str = None, 
    init_wts_diameter: float = 0.1, max_norm: float = 0, 
    acceleration: [<function avx_math at 0x0000007156E9FEA0>, 
    <function clr_math at 0x0000007156EAC158>, 
    <function gpu_math at 0x0000007156EAC1E0>, 
    <function mkl_math at 0x0000007156EAC268>, 
    <function sse_math at 0x0000007156EAC2F0>] = {'Name': 'AvxMath', 
    'Settings': {}}, mini_batch_size: int = 1, normalize: ['No', 
    'Warn', 'Auto', 'Yes'] = 'Auto', ml_transforms: list = None, 
    ml_transform_vars: list = None, row_selection: str = None, 
    transforms: dict = None, transform_objects: dict = None, 
    transform_function: str = None, 
    transform_variables: list = None, 
    transform_packages: list = None, 
    transform_environment: dict = None, blocks_per_read: int = None, 
    report_progress: int = None, verbose: int = 1, 
    ensemble: microsoftml.modules.ensemble.EnsembleControl = None, 
    compute_context: 
revoscalepy.computecontext.RxComputeContext.RxComputeContext = None) 

Description

Details



called a neuron. The neurons in the graph are arranged in layers, where neurons in one
layer are connected by a weighted edge (weights can be 0 or positive numbers) to
neurons in the next layer. The first layer is called the input layer, and each neuron in the
input layer corresponds to one of the features. The last layer of the function is called the
output layer. So in the case of binary neural networks it contains two output neurons,
one for each class, whose values are the probabilities of belonging to each class. The
remaining layers are called hidden layers. The values of the neurons in the hidden layers
and in the output layer are set by calculating the weighted sum of the values of the
neurons in the previous layer and applying an activation function to that weighted sum.
A neural network model is defined by the structure of its graph (namely, the number of
hidden layers and the number of neurons in each hidden layer), the choice of activation
function, and the weights on the graph edges. The neural network algorithm tries to
learn the optimal weights on the edges based on the training data.

Although neural networks are widely known for use in deep learning and modeling
complex problems such as image recognition, they are also easily adapted to regression
problems. Any class of statistical models can be considered a neural network if they use
adaptive weights and can approximate non-linear functions of their inputs. Neural
network regression is especially suited to problems where a more traditional regression
model cannot fit a solution.

The formula as described in revoscalepy.rx_formula. Interaction terms and F()  are not
currently supported in microsoftml.

A data source object or a character string specifying a .xdf file or a data frame object.

A character string denoting Fast Tree type:

"binary"  for the default binary classification neural network.

"multiClass"  for multi-class classification neural network.

"regression"  for a regression neural network.

Arguments

formula

data

method



The default number of hidden nodes in the neural net. The default value is 100.

The number of iterations on the full training set. The default value is 100.

A list specifying either the sgd  or adaptive  optimization algorithm. This list can be
created using sgd_optimizer or adadelta_optimizer. The default value is sgd .

The Net# definition of the structure of the neural network. For more information about
the Net# language, see Reference Guide

Sets the initial weights diameter that specifies the range from which values are drawn
for the initial learning weights. The weights are initialized randomly from within this
range. The default value is 0.1.

Specifies an upper bound to constrain the norm of the incoming weight vector at each
hidden unit. This can be very important in max out neural networks as well as in cases
where training produces unbounded weights.

Specifies the type of hardware acceleration to use. Possible values are "sse_math" and
"gpu_math". For GPU acceleration, it is recommended to use a miniBatchSize greater
than one. If you want to use the GPU acceleration, there are additional manual setup
steps are required:

Download and install NVidia CUDA Toolkit 6.5 (CUDA Toolkit ).

Download and install NVidia cuDNN v2 Library (cudnn Library ).

num_hidden_nodes

num_iterations

optimizer

net_definition

init_wts_diameter

max_norm

acceleration

https://learn.microsoft.com/en-us/azure/machine-learning/classic/azure-ml-netsharp-reference-guide
https://developer.nvidia.com/cuda-toolkit-65
https://developer.nvidia.com/rdp/cudnn-archive


Find the libs directory of the microsoftml package by calling import microsoftml,
os , os.path.join(microsoftml.__path__[0], "mxLibs") .

Copy cublas64_65.dll, cudart64_65.dll and cusparse64_65.dll from the CUDA Toolkit
6.5 into the libs directory of the microsoftml package.

Copy cudnn64_65.dll from the cuDNN v2 Library into the libs directory of the
microsoftml package.

Sets the mini-batch size. Recommended values are between 1 and 256. This parameter
is only used when the acceleration is GPU. Setting this parameter to a higher value
improves the speed of training, but it might negatively affect the accuracy. The default
value is 1.

Specifies the type of automatic normalization used:

"Warn" : if normalization is needed, it is performed automatically. This is the default
choice.

"No" : no normalization is performed.

"Yes" : normalization is performed.

"Auto" : if normalization is needed, a warning message is displayed, but
normalization is not performed.

Normalization rescales disparate data ranges to a standard scale. Feature scaling insures
the distances between data points are proportional and enables various optimization
methods such as gradient descent to converge much faster. If normalization is
performed, a MaxMin  normalizer is used. It normalizes values in an interval [a, b] where
-1 <= a <= 0  and 0 <= b <= 1  and b - a = 1 . This normalizer preserves sparsity by
mapping zero to zero.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or None if no transforms are to be performed. See featurize_text, categorical, and

mini_batch_size

normalize

ml_transforms



categorical_hash, for transformations that are supported. These transformations are
performed after any specified Python transformations. The default value is None.

Specifies a character vector of variable names to be used in ml_transforms  or None if
none are to be used. The default value is None.

NOT SUPPORTED. Specifies the rows (observations) from the data set that are to be
used by the model with the name of a logical variable from the data set (in quotes) or
with a logical expression using variables in the data set. For example:

row_selection = "old"  will only use observations in which the value of the variable
old  is True .

row_selection = (age > 20) & (age < 65) & (log(income) > 10)  only uses
observations in which the value of the age  variable is between 20 and 65 and the
value of the log  of the income  variable is greater than 10.

The row selection is performed after processing any data transformations (see the
arguments transforms  or transform_function ). As with all expressions, row_selection
can be defined outside of the function call using the expression  function.

NOT SUPPORTED. An expression of the form that represents the first round of variable
transformations. As with all expressions, transforms  (or row_selection ) can be defined
outside of the function call using the expression  function.

NOT SUPPORTED. A named list that contains objects that can be referenced by
transforms , transform_function , and row_selection .

The variable transformation function.

ml_transform_vars

row_selection

transforms

transform_objects

transform_function



A character vector of input data set variables needed for the transformation function.

NOT SUPPORTED. A character vector specifying additional Python packages (outside of
those specified in RxOptions.get_option("transform_packages") ) to be made available
and preloaded for use in variable transformation functions. For example, those explicitly
defined in revoscalepy functions via their transforms  and transform_function
arguments or those defined implicitly via their formula  or row_selection  arguments.
The transform_packages  argument may also be None, indicating that no packages
outside RxOptions.get_option("transform_packages")  are preloaded.

NOT SUPPORTED. A user-defined environment to serve as a parent to all environments
developed internally and used for variable data transformation. If transform_environment
= None , a new "hash" environment with parent revoscalepy.baseenvis used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of

transform_variables

transform_packages

transform_environment

blocks_per_read

report_progress

verbose

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


information.

Sets the context in which computations are executed, specified with a valid
revoscalepy.RxComputeContext. Currently local and revoscalepy.RxInSqlServer compute
contexts are supported.

Control parameters for ensembling.

A NeuralNetwork object with the trained model.

This algorithm is single-threaded and will not attempt to load the entire dataset into
memory.

adadelta_optimizer, sgd_optimizer, avx_math, clr_math, gpu_math, mkl_math, sse_math,
rx_predict.

Wikipedia: Artificial neural network

compute_context

ensemble

Returns

Note

See also

References

Binary classification example

''' 
Binary Classification. 
''' 
import numpy 
import pandas 
from microsoftml import rx_neural_network, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxInSqlServer
https://learn.microsoft.com/en-us/sql/machine-learning/python/reference/microsoftml/learners-object?view=sql-server-2017
https://en.wikipedia.org/wiki/Artificial_neural_network


Output:

from microsoftml.datasets.datasets import get_dataset 

infert = get_dataset("infert") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

infertdf = infert.as_df() 
infertdf["isCase"] = infertdf.case == 1 
data_train, data_test, y_train, y_test = train_test_split(infertdf, 
infertdf.isCase) 

forest_model = rx_neural_network(
    formula=" isCase ~ age + parity + education + spontaneous + induced ", 
    data=data_train) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(forest_model, data=data_test, 
                     extra_vars_to_write=["isCase", "Score"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using: AVX Math 

***** Net definition ***** 
  input Data [5]; 
  hidden H [100] sigmoid { // Depth 1 
    from Data all; 
  } 
  output Result [1] sigmoid { // Depth 0 
    from H all; 
  } 
***** End net definition ***** 
Input count: 5 



Output count: 1 
Output Function: Sigmoid 
Loss Function: LogLoss 
PreTrainer: NoPreTrainer 
___________________________________________________________________ 
Starting training... 
Learning rate: 0.001000 
Momentum: 0.000000 
InitWtsDiameter: 0.100000 
___________________________________________________________________ 
Initializing 1 Hidden Layers, 701 Weights... 
Estimated Pre-training MeanError = 0.742343 
Iter:1/100, MeanErr=0.680245(-8.37%), 119.87M WeightUpdates/sec 
Iter:2/100, MeanErr=0.637843(-6.23%), 122.52M WeightUpdates/sec 
Iter:3/100, MeanErr=0.635404(-0.38%), 122.24M WeightUpdates/sec 
Iter:4/100, MeanErr=0.634980(-0.07%), 73.36M WeightUpdates/sec 
Iter:5/100, MeanErr=0.635287(0.05%), 128.26M WeightUpdates/sec 
Iter:6/100, MeanErr=0.634572(-0.11%), 131.05M WeightUpdates/sec 
Iter:7/100, MeanErr=0.634827(0.04%), 124.27M WeightUpdates/sec 
Iter:8/100, MeanErr=0.635359(0.08%), 123.69M WeightUpdates/sec 
Iter:9/100, MeanErr=0.635244(-0.02%), 119.35M WeightUpdates/sec 
Iter:10/100, MeanErr=0.634712(-0.08%), 127.80M WeightUpdates/sec 
Iter:11/100, MeanErr=0.635105(0.06%), 122.69M WeightUpdates/sec 
Iter:12/100, MeanErr=0.635226(0.02%), 98.61M WeightUpdates/sec 
Iter:13/100, MeanErr=0.634977(-0.04%), 127.88M WeightUpdates/sec 
Iter:14/100, MeanErr=0.634347(-0.10%), 123.25M WeightUpdates/sec 
Iter:15/100, MeanErr=0.634891(0.09%), 124.27M WeightUpdates/sec 
Iter:16/100, MeanErr=0.635116(0.04%), 123.06M WeightUpdates/sec 
Iter:17/100, MeanErr=0.633770(-0.21%), 122.05M WeightUpdates/sec 
Iter:18/100, MeanErr=0.634992(0.19%), 128.79M WeightUpdates/sec 
Iter:19/100, MeanErr=0.634385(-0.10%), 122.95M WeightUpdates/sec 
Iter:20/100, MeanErr=0.634752(0.06%), 127.14M WeightUpdates/sec 
Iter:21/100, MeanErr=0.635043(0.05%), 123.44M WeightUpdates/sec 
Iter:22/100, MeanErr=0.634845(-0.03%), 121.81M WeightUpdates/sec 
Iter:23/100, MeanErr=0.634850(0.00%), 125.11M WeightUpdates/sec 
Iter:24/100, MeanErr=0.634617(-0.04%), 122.18M WeightUpdates/sec 
Iter:25/100, MeanErr=0.634675(0.01%), 125.69M WeightUpdates/sec 
Iter:26/100, MeanErr=0.634911(0.04%), 122.44M WeightUpdates/sec 
Iter:27/100, MeanErr=0.634311(-0.09%), 121.90M WeightUpdates/sec 
Iter:28/100, MeanErr=0.634798(0.08%), 123.54M WeightUpdates/sec 
Iter:29/100, MeanErr=0.634674(-0.02%), 127.53M WeightUpdates/sec 
Iter:30/100, MeanErr=0.634546(-0.02%), 100.96M WeightUpdates/sec 
Iter:31/100, MeanErr=0.634859(0.05%), 124.40M WeightUpdates/sec 
Iter:32/100, MeanErr=0.634747(-0.02%), 128.21M WeightUpdates/sec 
Iter:33/100, MeanErr=0.634842(0.02%), 125.82M WeightUpdates/sec 
Iter:34/100, MeanErr=0.634703(-0.02%), 77.48M WeightUpdates/sec 
Iter:35/100, MeanErr=0.634804(0.02%), 122.21M WeightUpdates/sec 
Iter:36/100, MeanErr=0.634690(-0.02%), 112.48M WeightUpdates/sec 
Iter:37/100, MeanErr=0.634654(-0.01%), 119.18M WeightUpdates/sec 
Iter:38/100, MeanErr=0.634885(0.04%), 137.19M WeightUpdates/sec 
Iter:39/100, MeanErr=0.634723(-0.03%), 113.80M WeightUpdates/sec 
Iter:40/100, MeanErr=0.634714(0.00%), 127.50M WeightUpdates/sec 
Iter:41/100, MeanErr=0.634794(0.01%), 129.54M WeightUpdates/sec 
Iter:42/100, MeanErr=0.633835(-0.15%), 133.05M WeightUpdates/sec 
Iter:43/100, MeanErr=0.634401(0.09%), 128.95M WeightUpdates/sec 



Iter:44/100, MeanErr=0.634575(0.03%), 123.42M WeightUpdates/sec 
Iter:45/100, MeanErr=0.634673(0.02%), 123.78M WeightUpdates/sec 
Iter:46/100, MeanErr=0.634692(0.00%), 119.04M WeightUpdates/sec 
Iter:47/100, MeanErr=0.634476(-0.03%), 122.95M WeightUpdates/sec 
Iter:48/100, MeanErr=0.634583(0.02%), 97.87M WeightUpdates/sec 
Iter:49/100, MeanErr=0.634706(0.02%), 121.41M WeightUpdates/sec 
Iter:50/100, MeanErr=0.634564(-0.02%), 120.58M WeightUpdates/sec 
Iter:51/100, MeanErr=0.634118(-0.07%), 120.17M WeightUpdates/sec 
Iter:52/100, MeanErr=0.634699(0.09%), 127.27M WeightUpdates/sec 
Iter:53/100, MeanErr=0.634123(-0.09%), 110.51M WeightUpdates/sec 
Iter:54/100, MeanErr=0.634390(0.04%), 123.74M WeightUpdates/sec 
Iter:55/100, MeanErr=0.634461(0.01%), 113.66M WeightUpdates/sec 
Iter:56/100, MeanErr=0.634415(-0.01%), 118.61M WeightUpdates/sec 
Iter:57/100, MeanErr=0.634453(0.01%), 114.99M WeightUpdates/sec 
Iter:58/100, MeanErr=0.634478(0.00%), 104.53M WeightUpdates/sec 
Iter:59/100, MeanErr=0.634010(-0.07%), 124.62M WeightUpdates/sec 
Iter:60/100, MeanErr=0.633901(-0.02%), 118.93M WeightUpdates/sec 
Iter:61/100, MeanErr=0.634088(0.03%), 40.46M WeightUpdates/sec 
Iter:62/100, MeanErr=0.634046(-0.01%), 94.65M WeightUpdates/sec 
Iter:63/100, MeanErr=0.634233(0.03%), 27.18M WeightUpdates/sec 
Iter:64/100, MeanErr=0.634596(0.06%), 123.94M WeightUpdates/sec 
Iter:65/100, MeanErr=0.634185(-0.06%), 125.01M WeightUpdates/sec 
Iter:66/100, MeanErr=0.634469(0.04%), 119.41M WeightUpdates/sec 
Iter:67/100, MeanErr=0.634333(-0.02%), 124.11M WeightUpdates/sec 
Iter:68/100, MeanErr=0.634203(-0.02%), 112.68M WeightUpdates/sec 
Iter:69/100, MeanErr=0.633854(-0.05%), 118.62M WeightUpdates/sec 
Iter:70/100, MeanErr=0.634319(0.07%), 123.59M WeightUpdates/sec 
Iter:71/100, MeanErr=0.634423(0.02%), 122.51M WeightUpdates/sec 
Iter:72/100, MeanErr=0.634388(-0.01%), 126.15M WeightUpdates/sec 
Iter:73/100, MeanErr=0.634230(-0.02%), 126.51M WeightUpdates/sec 
Iter:74/100, MeanErr=0.634011(-0.03%), 128.32M WeightUpdates/sec 
Iter:75/100, MeanErr=0.634294(0.04%), 127.48M WeightUpdates/sec 
Iter:76/100, MeanErr=0.634372(0.01%), 123.51M WeightUpdates/sec 
Iter:77/100, MeanErr=0.632020(-0.37%), 122.12M WeightUpdates/sec 
Iter:78/100, MeanErr=0.633770(0.28%), 119.55M WeightUpdates/sec 
Iter:79/100, MeanErr=0.633504(-0.04%), 124.21M WeightUpdates/sec 
Iter:80/100, MeanErr=0.634154(0.10%), 125.94M WeightUpdates/sec 
Iter:81/100, MeanErr=0.633491(-0.10%), 120.83M WeightUpdates/sec 
Iter:82/100, MeanErr=0.634212(0.11%), 128.60M WeightUpdates/sec 
Iter:83/100, MeanErr=0.634138(-0.01%), 73.58M WeightUpdates/sec 
Iter:84/100, MeanErr=0.634244(0.02%), 124.08M WeightUpdates/sec 
Iter:85/100, MeanErr=0.634065(-0.03%), 96.43M WeightUpdates/sec 
Iter:86/100, MeanErr=0.634174(0.02%), 124.28M WeightUpdates/sec 
Iter:87/100, MeanErr=0.633966(-0.03%), 125.24M WeightUpdates/sec 
Iter:88/100, MeanErr=0.633989(0.00%), 130.31M WeightUpdates/sec 
Iter:89/100, MeanErr=0.633767(-0.04%), 115.73M WeightUpdates/sec 
Iter:90/100, MeanErr=0.633831(0.01%), 122.81M WeightUpdates/sec 
Iter:91/100, MeanErr=0.633219(-0.10%), 114.91M WeightUpdates/sec 
Iter:92/100, MeanErr=0.633589(0.06%), 93.29M WeightUpdates/sec 
Iter:93/100, MeanErr=0.634086(0.08%), 123.31M WeightUpdates/sec 
Iter:94/100, MeanErr=0.634075(0.00%), 120.99M WeightUpdates/sec 
Iter:95/100, MeanErr=0.634071(0.00%), 122.49M WeightUpdates/sec 
Iter:96/100, MeanErr=0.633523(-0.09%), 116.48M WeightUpdates/sec 
Iter:97/100, MeanErr=0.634103(0.09%), 128.85M WeightUpdates/sec 
Iter:98/100, MeanErr=0.633836(-0.04%), 123.87M WeightUpdates/sec 



Iter:99/100, MeanErr=0.633772(-0.01%), 128.17M WeightUpdates/sec 
Iter:100/100, MeanErr=0.633684(-0.01%), 123.65M WeightUpdates/sec 
Done! 
Estimated Post-training MeanError = 0.631268 
___________________________________________________________________ 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.2454094 
Elapsed time: 00:00:00.0082325 
Beginning processing data. 
Rows Read: 62, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0297006 
Finished writing 62 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds  
  isCase PredictedLabel     Score  Probability 
0   True          False -0.689636     0.334114 
1   True          False -0.710219     0.329551 
2   True          False -0.712912     0.328956 
3  False          False -0.700765     0.331643 
4   True          False -0.689783     0.334081 

MultiClass classification example

''' 
MultiClass Classification. 
''' 
import numpy 
import pandas 
from microsoftml import rx_neural_network, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

iris = get_dataset("iris") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

irisdf = iris.as_df() 
irisdf["Species"] = irisdf["Species"].astype("category") 
data_train, data_test, y_train, y_test = train_test_split(irisdf, 
irisdf.Species) 

model = rx_neural_network( 
    formula="  Species ~ Sepal_Length + Sepal_Width + Petal_Length + 
Petal_Width ", 
    method="multiClass", 



Output:

    data=data_train) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(model, data=data_test, 
                     extra_vars_to_write=["Species", "Score"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 112, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using: AVX Math 

***** Net definition ***** 
  input Data [4]; 
  hidden H [100] sigmoid { // Depth 1 
    from Data all; 
  } 
  output Result [3] softmax { // Depth 0 
    from H all; 
  } 
***** End net definition ***** 
Input count: 4 
Output count: 3 
Output Function: SoftMax 
Loss Function: LogLoss 
PreTrainer: NoPreTrainer 
___________________________________________________________________ 
Starting training... 
Learning rate: 0.001000 
Momentum: 0.000000 
InitWtsDiameter: 0.100000 
___________________________________________________________________ 
Initializing 1 Hidden Layers, 803 Weights... 
Estimated Pre-training MeanError = 1.949606 
Iter:1/100, MeanErr=1.937924(-0.60%), 98.43M WeightUpdates/sec 
Iter:2/100, MeanErr=1.921153(-0.87%), 96.21M WeightUpdates/sec 
Iter:3/100, MeanErr=1.920000(-0.06%), 95.55M WeightUpdates/sec 
Iter:4/100, MeanErr=1.917267(-0.14%), 81.25M WeightUpdates/sec 
Iter:5/100, MeanErr=1.917611(0.02%), 102.44M WeightUpdates/sec 



Iter:6/100, MeanErr=1.918476(0.05%), 106.16M WeightUpdates/sec 
Iter:7/100, MeanErr=1.916096(-0.12%), 97.85M WeightUpdates/sec 
Iter:8/100, MeanErr=1.919486(0.18%), 77.99M WeightUpdates/sec 
Iter:9/100, MeanErr=1.916452(-0.16%), 95.67M WeightUpdates/sec 
Iter:10/100, MeanErr=1.916024(-0.02%), 102.06M WeightUpdates/sec 
Iter:11/100, MeanErr=1.917155(0.06%), 99.21M WeightUpdates/sec 
Iter:12/100, MeanErr=1.918543(0.07%), 99.25M WeightUpdates/sec 
Iter:13/100, MeanErr=1.919120(0.03%), 85.38M WeightUpdates/sec 
Iter:14/100, MeanErr=1.917713(-0.07%), 103.00M WeightUpdates/sec 
Iter:15/100, MeanErr=1.917675(0.00%), 98.70M WeightUpdates/sec 
Iter:16/100, MeanErr=1.917982(0.02%), 99.10M WeightUpdates/sec 
Iter:17/100, MeanErr=1.916254(-0.09%), 103.41M WeightUpdates/sec 
Iter:18/100, MeanErr=1.915691(-0.03%), 102.00M WeightUpdates/sec 
Iter:19/100, MeanErr=1.914844(-0.04%), 86.64M WeightUpdates/sec 
Iter:20/100, MeanErr=1.919268(0.23%), 94.68M WeightUpdates/sec 
Iter:21/100, MeanErr=1.918748(-0.03%), 108.11M WeightUpdates/sec 
Iter:22/100, MeanErr=1.917997(-0.04%), 96.33M WeightUpdates/sec 
Iter:23/100, MeanErr=1.914987(-0.16%), 82.84M WeightUpdates/sec 
Iter:24/100, MeanErr=1.916550(0.08%), 99.70M WeightUpdates/sec 
Iter:25/100, MeanErr=1.915401(-0.06%), 96.69M WeightUpdates/sec 
Iter:26/100, MeanErr=1.916092(0.04%), 101.62M WeightUpdates/sec 
Iter:27/100, MeanErr=1.916381(0.02%), 98.81M WeightUpdates/sec 
Iter:28/100, MeanErr=1.917414(0.05%), 102.29M WeightUpdates/sec 
Iter:29/100, MeanErr=1.917316(-0.01%), 100.17M WeightUpdates/sec 
Iter:30/100, MeanErr=1.916507(-0.04%), 82.09M WeightUpdates/sec 
Iter:31/100, MeanErr=1.915786(-0.04%), 98.33M WeightUpdates/sec 
Iter:32/100, MeanErr=1.917581(0.09%), 101.70M WeightUpdates/sec 
Iter:33/100, MeanErr=1.913680(-0.20%), 79.94M WeightUpdates/sec 
Iter:34/100, MeanErr=1.917264(0.19%), 102.54M WeightUpdates/sec 
Iter:35/100, MeanErr=1.917377(0.01%), 100.67M WeightUpdates/sec 
Iter:36/100, MeanErr=1.912060(-0.28%), 70.37M WeightUpdates/sec 
Iter:37/100, MeanErr=1.917009(0.26%), 80.80M WeightUpdates/sec 
Iter:38/100, MeanErr=1.916216(-0.04%), 94.56M WeightUpdates/sec 
Iter:39/100, MeanErr=1.916362(0.01%), 28.22M WeightUpdates/sec 
Iter:40/100, MeanErr=1.910658(-0.30%), 100.87M WeightUpdates/sec 
Iter:41/100, MeanErr=1.916375(0.30%), 85.99M WeightUpdates/sec 
Iter:42/100, MeanErr=1.916257(-0.01%), 102.06M WeightUpdates/sec 
Iter:43/100, MeanErr=1.914505(-0.09%), 99.86M WeightUpdates/sec 
Iter:44/100, MeanErr=1.914638(0.01%), 103.11M WeightUpdates/sec 
Iter:45/100, MeanErr=1.915141(0.03%), 107.62M WeightUpdates/sec 
Iter:46/100, MeanErr=1.915119(0.00%), 99.65M WeightUpdates/sec 
Iter:47/100, MeanErr=1.915379(0.01%), 107.03M WeightUpdates/sec 
Iter:48/100, MeanErr=1.912565(-0.15%), 104.78M WeightUpdates/sec 
Iter:49/100, MeanErr=1.915466(0.15%), 110.43M WeightUpdates/sec 
Iter:50/100, MeanErr=1.914038(-0.07%), 98.44M WeightUpdates/sec 
Iter:51/100, MeanErr=1.915015(0.05%), 96.28M WeightUpdates/sec 
Iter:52/100, MeanErr=1.913771(-0.06%), 89.27M WeightUpdates/sec 
Iter:53/100, MeanErr=1.911621(-0.11%), 72.67M WeightUpdates/sec 
Iter:54/100, MeanErr=1.914969(0.18%), 111.17M WeightUpdates/sec 
Iter:55/100, MeanErr=1.913894(-0.06%), 98.68M WeightUpdates/sec 
Iter:56/100, MeanErr=1.914871(0.05%), 95.41M WeightUpdates/sec 
Iter:57/100, MeanErr=1.912898(-0.10%), 80.72M WeightUpdates/sec 
Iter:58/100, MeanErr=1.913334(0.02%), 103.71M WeightUpdates/sec 
Iter:59/100, MeanErr=1.913362(0.00%), 99.57M WeightUpdates/sec 
Iter:60/100, MeanErr=1.913915(0.03%), 106.21M WeightUpdates/sec 



Iter:61/100, MeanErr=1.913310(-0.03%), 112.27M WeightUpdates/sec 
Iter:62/100, MeanErr=1.913395(0.00%), 50.86M WeightUpdates/sec 
Iter:63/100, MeanErr=1.912814(-0.03%), 58.91M WeightUpdates/sec 
Iter:64/100, MeanErr=1.911468(-0.07%), 72.06M WeightUpdates/sec 
Iter:65/100, MeanErr=1.912313(0.04%), 86.34M WeightUpdates/sec 
Iter:66/100, MeanErr=1.913320(0.05%), 114.39M WeightUpdates/sec 
Iter:67/100, MeanErr=1.912914(-0.02%), 105.97M WeightUpdates/sec 
Iter:68/100, MeanErr=1.909881(-0.16%), 105.73M WeightUpdates/sec 
Iter:69/100, MeanErr=1.911649(0.09%), 105.23M WeightUpdates/sec 
Iter:70/100, MeanErr=1.911192(-0.02%), 110.24M WeightUpdates/sec 
Iter:71/100, MeanErr=1.912480(0.07%), 106.86M WeightUpdates/sec 
Iter:72/100, MeanErr=1.909881(-0.14%), 97.28M WeightUpdates/sec 
Iter:73/100, MeanErr=1.911678(0.09%), 109.57M WeightUpdates/sec 
Iter:74/100, MeanErr=1.911137(-0.03%), 91.01M WeightUpdates/sec 
Iter:75/100, MeanErr=1.910706(-0.02%), 99.41M WeightUpdates/sec 
Iter:76/100, MeanErr=1.910869(0.01%), 84.18M WeightUpdates/sec 
Iter:77/100, MeanErr=1.911643(0.04%), 105.07M WeightUpdates/sec 
Iter:78/100, MeanErr=1.911438(-0.01%), 110.12M WeightUpdates/sec 
Iter:79/100, MeanErr=1.909590(-0.10%), 84.16M WeightUpdates/sec 
Iter:80/100, MeanErr=1.911181(0.08%), 92.30M WeightUpdates/sec 
Iter:81/100, MeanErr=1.910534(-0.03%), 110.60M WeightUpdates/sec 
Iter:82/100, MeanErr=1.909340(-0.06%), 54.07M WeightUpdates/sec 
Iter:83/100, MeanErr=1.908275(-0.06%), 104.08M WeightUpdates/sec 
Iter:84/100, MeanErr=1.910364(0.11%), 107.19M WeightUpdates/sec 
Iter:85/100, MeanErr=1.910286(0.00%), 102.55M WeightUpdates/sec 
Iter:86/100, MeanErr=1.909155(-0.06%), 79.72M WeightUpdates/sec 
Iter:87/100, MeanErr=1.909384(0.01%), 102.37M WeightUpdates/sec 
Iter:88/100, MeanErr=1.907751(-0.09%), 105.48M WeightUpdates/sec 
Iter:89/100, MeanErr=1.910164(0.13%), 102.53M WeightUpdates/sec 
Iter:90/100, MeanErr=1.907935(-0.12%), 105.03M WeightUpdates/sec 
Iter:91/100, MeanErr=1.909510(0.08%), 99.97M WeightUpdates/sec 
Iter:92/100, MeanErr=1.907405(-0.11%), 100.03M WeightUpdates/sec 
Iter:93/100, MeanErr=1.905757(-0.09%), 113.21M WeightUpdates/sec 
Iter:94/100, MeanErr=1.909167(0.18%), 107.86M WeightUpdates/sec 
Iter:95/100, MeanErr=1.907593(-0.08%), 106.09M WeightUpdates/sec 
Iter:96/100, MeanErr=1.908358(0.04%), 111.25M WeightUpdates/sec 
Iter:97/100, MeanErr=1.906484(-0.10%), 95.81M WeightUpdates/sec 
Iter:98/100, MeanErr=1.908239(0.09%), 105.89M WeightUpdates/sec 
Iter:99/100, MeanErr=1.908508(0.01%), 103.05M WeightUpdates/sec 
Iter:100/100, MeanErr=1.904747(-0.20%), 106.81M WeightUpdates/sec 
Done! 
Estimated Post-training MeanError = 1.896338 
___________________________________________________________________ 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.1620840 
Elapsed time: 00:00:00.0096627 
Beginning processing data. 
Rows Read: 38, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0312987 
Finished writing 38 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: Less than .001 
seconds  
      Species   Score.0   Score.1   Score.2 



Output:

0  versicolor  0.350161  0.339557  0.310282 
1      setosa  0.358506  0.336593  0.304901 
2   virginica  0.346957  0.340573  0.312470 
3   virginica  0.346685  0.340748  0.312567 
4   virginica  0.348469  0.340113  0.311417 

Regression example

''' 
Regression. 
''' 
import numpy 
import pandas 
from microsoftml import rx_neural_network, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

attitude = get_dataset("attitude") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

attitudedf = attitude.as_df() 
data_train, data_test = train_test_split(attitudedf) 

model = rx_neural_network( 
    formula="rating ~ complaints + privileges + learning + raises + critical 
+ advance", 
    method="regression", 
    data=data_train) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(model, data=data_test, 
                     extra_vars_to_write=["rating"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 



Rows Read: 22, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 22, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 22, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Using: AVX Math 

***** Net definition ***** 
  input Data [6]; 
  hidden H [100] sigmoid { // Depth 1 
    from Data all; 
  } 
  output Result [1] linear { // Depth 0 
    from H all; 
  } 
***** End net definition ***** 
Input count: 6 
Output count: 1 
Output Function: Linear 
Loss Function: SquaredLoss 
PreTrainer: NoPreTrainer 
___________________________________________________________________ 
Starting training... 
Learning rate: 0.001000 
Momentum: 0.000000 
InitWtsDiameter: 0.100000 
___________________________________________________________________ 
Initializing 1 Hidden Layers, 801 Weights... 
Estimated Pre-training MeanError = 4458.793673 
Iter:1/100, MeanErr=1624.747024(-63.56%), 27.30M WeightUpdates/sec 
Iter:2/100, MeanErr=139.267390(-91.43%), 30.50M WeightUpdates/sec 
Iter:3/100, MeanErr=116.382316(-16.43%), 29.16M WeightUpdates/sec 
Iter:4/100, MeanErr=114.947244(-1.23%), 32.06M WeightUpdates/sec 
Iter:5/100, MeanErr=112.886818(-1.79%), 32.96M WeightUpdates/sec 
Iter:6/100, MeanErr=112.406547(-0.43%), 30.29M WeightUpdates/sec 
Iter:7/100, MeanErr=110.502757(-1.69%), 30.92M WeightUpdates/sec 
Iter:8/100, MeanErr=111.499645(0.90%), 31.20M WeightUpdates/sec 
Iter:9/100, MeanErr=111.895816(0.36%), 32.46M WeightUpdates/sec 
Iter:10/100, MeanErr=110.171443(-1.54%), 34.61M WeightUpdates/sec 
Iter:11/100, MeanErr=106.975524(-2.90%), 22.14M WeightUpdates/sec 
Iter:12/100, MeanErr=107.708220(0.68%), 7.73M WeightUpdates/sec 
Iter:13/100, MeanErr=105.345097(-2.19%), 28.99M WeightUpdates/sec 
Iter:14/100, MeanErr=109.937833(4.36%), 31.04M WeightUpdates/sec 
Iter:15/100, MeanErr=106.672340(-2.97%), 30.04M WeightUpdates/sec 
Iter:16/100, MeanErr=108.474555(1.69%), 32.41M WeightUpdates/sec 
Iter:17/100, MeanErr=109.449054(0.90%), 31.60M WeightUpdates/sec 
Iter:18/100, MeanErr=105.911830(-3.23%), 34.05M WeightUpdates/sec 
Iter:19/100, MeanErr=106.045172(0.13%), 33.80M WeightUpdates/sec 
Iter:20/100, MeanErr=108.360427(2.18%), 33.60M WeightUpdates/sec 
Iter:21/100, MeanErr=106.506436(-1.71%), 33.77M WeightUpdates/sec 
Iter:22/100, MeanErr=99.167335(-6.89%), 32.26M WeightUpdates/sec 
Iter:23/100, MeanErr=108.115797(9.02%), 25.86M WeightUpdates/sec 



Iter:24/100, MeanErr=106.292283(-1.69%), 31.03M WeightUpdates/sec 
Iter:25/100, MeanErr=99.397875(-6.49%), 31.33M WeightUpdates/sec 
Iter:26/100, MeanErr=104.805299(5.44%), 31.57M WeightUpdates/sec 
Iter:27/100, MeanErr=101.385085(-3.26%), 22.92M WeightUpdates/sec 
Iter:28/100, MeanErr=100.064656(-1.30%), 35.01M WeightUpdates/sec 
Iter:29/100, MeanErr=100.519013(0.45%), 32.74M WeightUpdates/sec 
Iter:30/100, MeanErr=99.273143(-1.24%), 35.12M WeightUpdates/sec 
Iter:31/100, MeanErr=100.465649(1.20%), 33.68M WeightUpdates/sec 
Iter:32/100, MeanErr=102.402320(1.93%), 33.79M WeightUpdates/sec 
Iter:33/100, MeanErr=97.517196(-4.77%), 32.32M WeightUpdates/sec 
Iter:34/100, MeanErr=102.597511(5.21%), 32.46M WeightUpdates/sec 
Iter:35/100, MeanErr=96.187788(-6.25%), 32.32M WeightUpdates/sec 
Iter:36/100, MeanErr=101.533507(5.56%), 21.44M WeightUpdates/sec 
Iter:37/100, MeanErr=99.339624(-2.16%), 21.53M WeightUpdates/sec 
Iter:38/100, MeanErr=98.049306(-1.30%), 15.27M WeightUpdates/sec 
Iter:39/100, MeanErr=97.508282(-0.55%), 23.21M WeightUpdates/sec 
Iter:40/100, MeanErr=99.894288(2.45%), 27.94M WeightUpdates/sec 
Iter:41/100, MeanErr=95.190566(-4.71%), 32.47M WeightUpdates/sec 
Iter:42/100, MeanErr=91.234977(-4.16%), 31.29M WeightUpdates/sec 
Iter:43/100, MeanErr=98.824414(8.32%), 32.35M WeightUpdates/sec 
Iter:44/100, MeanErr=96.759533(-2.09%), 22.37M WeightUpdates/sec 
Iter:45/100, MeanErr=95.275106(-1.53%), 32.09M WeightUpdates/sec 
Iter:46/100, MeanErr=95.749031(0.50%), 26.49M WeightUpdates/sec 
Iter:47/100, MeanErr=96.267879(0.54%), 31.81M WeightUpdates/sec 
Iter:48/100, MeanErr=97.383752(1.16%), 31.01M WeightUpdates/sec 
Iter:49/100, MeanErr=96.605199(-0.80%), 32.05M WeightUpdates/sec 
Iter:50/100, MeanErr=96.927400(0.33%), 32.42M WeightUpdates/sec 
Iter:51/100, MeanErr=96.288491(-0.66%), 28.89M WeightUpdates/sec 
Iter:52/100, MeanErr=92.751171(-3.67%), 33.68M WeightUpdates/sec 
Iter:53/100, MeanErr=88.655001(-4.42%), 34.53M WeightUpdates/sec 
Iter:54/100, MeanErr=90.923513(2.56%), 32.00M WeightUpdates/sec 
Iter:55/100, MeanErr=91.627261(0.77%), 25.74M WeightUpdates/sec 
Iter:56/100, MeanErr=91.132907(-0.54%), 30.00M WeightUpdates/sec 
Iter:57/100, MeanErr=95.294092(4.57%), 33.13M WeightUpdates/sec 
Iter:58/100, MeanErr=90.219024(-5.33%), 31.70M WeightUpdates/sec 
Iter:59/100, MeanErr=92.727605(2.78%), 30.71M WeightUpdates/sec 
Iter:60/100, MeanErr=86.910488(-6.27%), 33.07M WeightUpdates/sec 
Iter:61/100, MeanErr=92.350984(6.26%), 32.46M WeightUpdates/sec 
Iter:62/100, MeanErr=93.208298(0.93%), 31.08M WeightUpdates/sec 
Iter:63/100, MeanErr=90.784723(-2.60%), 21.19M WeightUpdates/sec 
Iter:64/100, MeanErr=88.685225(-2.31%), 33.17M WeightUpdates/sec 
Iter:65/100, MeanErr=91.668555(3.36%), 30.65M WeightUpdates/sec 
Iter:66/100, MeanErr=82.607568(-9.88%), 29.72M WeightUpdates/sec 
Iter:67/100, MeanErr=88.787842(7.48%), 32.98M WeightUpdates/sec 
Iter:68/100, MeanErr=88.793186(0.01%), 34.67M WeightUpdates/sec 
Iter:69/100, MeanErr=88.918795(0.14%), 14.09M WeightUpdates/sec 
Iter:70/100, MeanErr=87.121434(-2.02%), 33.02M WeightUpdates/sec 
Iter:71/100, MeanErr=86.865602(-0.29%), 34.87M WeightUpdates/sec 
Iter:72/100, MeanErr=87.261979(0.46%), 32.34M WeightUpdates/sec 
Iter:73/100, MeanErr=87.812460(0.63%), 31.35M WeightUpdates/sec 
Iter:74/100, MeanErr=87.818462(0.01%), 32.54M WeightUpdates/sec 
Iter:75/100, MeanErr=87.085672(-0.83%), 34.80M WeightUpdates/sec 
Iter:76/100, MeanErr=85.773668(-1.51%), 35.39M WeightUpdates/sec 
Iter:77/100, MeanErr=85.338703(-0.51%), 34.59M WeightUpdates/sec 
Iter:78/100, MeanErr=79.370105(-6.99%), 30.14M WeightUpdates/sec 



microsoftml.adadelta_optimizer: Adaptive learning rate method

microsoftml.sgd_optimizer: Stochastic gradient descent

Iter:79/100, MeanErr=83.026209(4.61%), 32.32M WeightUpdates/sec 
Iter:80/100, MeanErr=89.776417(8.13%), 33.14M WeightUpdates/sec 
Iter:81/100, MeanErr=85.447100(-4.82%), 32.32M WeightUpdates/sec 
Iter:82/100, MeanErr=83.991969(-1.70%), 22.12M WeightUpdates/sec 
Iter:83/100, MeanErr=85.065064(1.28%), 30.41M WeightUpdates/sec 
Iter:84/100, MeanErr=83.762008(-1.53%), 31.29M WeightUpdates/sec 
Iter:85/100, MeanErr=84.217726(0.54%), 34.92M WeightUpdates/sec 
Iter:86/100, MeanErr=82.395181(-2.16%), 34.26M WeightUpdates/sec 
Iter:87/100, MeanErr=82.979145(0.71%), 22.87M WeightUpdates/sec 
Iter:88/100, MeanErr=83.656685(0.82%), 28.51M WeightUpdates/sec 
Iter:89/100, MeanErr=81.132468(-3.02%), 32.43M WeightUpdates/sec 
Iter:90/100, MeanErr=81.311106(0.22%), 30.91M WeightUpdates/sec 
Iter:91/100, MeanErr=81.953897(0.79%), 31.98M WeightUpdates/sec 
Iter:92/100, MeanErr=79.018074(-3.58%), 33.13M WeightUpdates/sec 
Iter:93/100, MeanErr=78.220412(-1.01%), 31.47M WeightUpdates/sec 
Iter:94/100, MeanErr=80.833884(3.34%), 25.16M WeightUpdates/sec 
Iter:95/100, MeanErr=81.550135(0.89%), 32.64M WeightUpdates/sec 
Iter:96/100, MeanErr=77.785628(-4.62%), 32.54M WeightUpdates/sec 
Iter:97/100, MeanErr=76.438158(-1.73%), 34.34M WeightUpdates/sec 
Iter:98/100, MeanErr=79.471621(3.97%), 33.12M WeightUpdates/sec 
Iter:99/100, MeanErr=76.038475(-4.32%), 33.01M WeightUpdates/sec 
Iter:100/100, MeanErr=75.349164(-0.91%), 32.68M WeightUpdates/sec 
Done! 
Estimated Post-training MeanError = 75.768932 
___________________________________________________________________ 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.1178557 
Elapsed time: 00:00:00.0088299 
Beginning processing data. 
Rows Read: 8, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0293893 
Finished writing 8 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds  
   rating      Score 
0    82.0  70.120613 
1    64.0  66.344688 
2    68.0  68.862373 
3    58.0  68.241341 
4    63.0  67.196869 

optimizers

math



microsoftml.avx_math: Acceleration with AVX instructions

microsoftml.clr_math: Acceleration with .NET math

microsoftml.gpu_math: Acceleration with NVidia CUDA

microsoftml.mkl_math: Acceleration with Intel MKL

microsoftml.sse_math: Acceleration with SSE instructions



microsoftml.rx_oneclass_svm: Anomaly
Detection
Article • 03/03/2023

Machine Learning One Class Support Vector Machines

One-class SVM is an algorithm for anomaly detection. The goal of anomaly detection is
to identify outliers that do not belong to some target class. This type of SVM is one-
class because the training set contains only examples from the target class. It infers what
properties are normal for the objects in the target class and from these properties
predicts which examples are unlike the normal examples. This is useful for anomaly
detection because the scarcity of training examples is the defining character of

Usage

microsoftml.rx_oneclass_svm(formula: str, 
    data: [revoscalepy.datasource.RxDataSource.RxDataSource, 
    pandas.core.frame.DataFrame], cache_size: float = 100, 
    kernel: [<function linear_kernel at 0x0000007156EAC8C8>, 
    <function polynomial_kernel at 0x0000007156EAC950>, 
    <function rbf_kernel at 0x0000007156EAC7B8>, 
    <function sigmoid_kernel at 0x0000007156EACA60>] = {'Name': 'RbfKernel', 
    'Settings': {}}, epsilon: float = 0.001, nu: float = 0.1, 
    shrink: bool = True, normalize: ['No', 'Warn', 'Auto', 
    'Yes'] = 'Auto', ml_transforms: list = None, 
    ml_transform_vars: list = None, row_selection: str = None, 
    transforms: dict = None, transform_objects: dict = None, 
    transform_function: str = None, 
    transform_variables: list = None, 
    transform_packages: list = None, 
    transform_environment: dict = None, blocks_per_read: int = None, 
    report_progress: int = None, verbose: int = 1, 
    ensemble: microsoftml.modules.ensemble.EnsembleControl = None, 
    compute_context: 
revoscalepy.computecontext.RxComputeContext.RxComputeContext = None) 

Description

Details



anomalies: typically there are very few examples of network intrusion, fraud, or other
types of anomalous behavior.

The formula as described in revoscalepy.rx_formula. Interaction terms and F()  are not
currently supported in microsoftml.

A data source object or a character string specifying a .xdf file or a data frame object.

The maximal size in MB of the cache that stores the training data. Increase this for large
training sets. The default value is 100 MB.

A character string representing the kernel used for computing inner products. For more
information, see ma_kernel() . The following choices are available:

rbf_kernel : Radial basis function kernel. Its parameter representsgamma  in the term
exp(-gamma|x-y|^2 . If not specified, it defaults to 1  divided by the number of
features used. For example, rbf_kernel(gamma = .1) . This is the default value.

linear_kernel : Linear kernel.

polynomial_kernel : Polynomial kernel with parameter names a , bias , and deg  in
the term (a*<x,y> + bias)^deg . The bias , defaults to 0 . The degree, deg , defaults
to 3 . If a  is not specified, it is set to 1  divided by the number of features.

sigmoid_kernel : Sigmoid kernel with parameter names gamma  and coef0  in the
term tanh(gamma*<x,y> + coef0) . gamma , defaults to 1  divided by the number of
features. The parameter coef0  defaults to 0 . For example, sigmoid_kernel(gamma =
.1, coef0 = 0) .

Arguments

formula

data

cache_size

kernel

epsilon



The threshold for optimizer convergence. If the improvement between iterations is less
than the threshold, the algorithm stops and returns the current model. The value must
be greater than or equal to numpy.finfo(double).eps . The default value is 0.001.

The trade-off between the fraction of outliers and the number of support vectors
(represented by the Greek letter nu). Must be between 0 and 1, typically between 0.1
and 0.5. The default value is 0.1.

Uses the shrinking heuristic if True . In this case, some samples will be "shrunk" during
the training procedure, which may speed up training. The default value is True .

Specifies the type of automatic normalization used:

"Auto" : if normalization is needed, it is performed automatically. This is the default
choice.

"No" : no normalization is performed.

"Yes" : normalization is performed.

"Warn" : if normalization is needed, a warning message is displayed, but
normalization is not performed.

Normalization rescales disparate data ranges to a standard scale. Feature scaling insures
the distances between data points are proportional and enables various optimization
methods such as gradient descent to converge much faster. If normalization is
performed, a MaxMin  normalizer is used. It normalizes values in an interval [a, b] where
-1 <= a <= 0  and 0 <= b <= 1  and b - a = 1 . This normalizer preserves sparsity by
mapping zero to zero.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or None if no transforms are to be performed. See featurize_text, categorical, and

nu

shrink

normalize

ml_transforms



categorical_hash, for transformations that are supported. These transformations are
performed after any specified Python transformations. The default value is None.

Specifies a character vector of variable names to be used in ml_transforms  or None if
none are to be used. The default value is None.

NOT SUPPORTED. Specifies the rows (observations) from the data set that are to be
used by the model with the name of a logical variable from the data set (in quotes) or
with a logical expression using variables in the data set. For example:

row_selection = "old"  will only use observations in which the value of the variable
old  is True .

row_selection = (age > 20) & (age < 65) & (log(income) > 10)  only uses
observations in which the value of the age  variable is between 20 and 65 and the
value of the log  of the income  variable is greater than 10.

The row selection is performed after processing any data transformations (see the
arguments transforms  or transform_function ). As with all expressions, row_selection
can be defined outside of the function call using the expression  function.

NOT SUPPORTED. An expression of the form that represents the first round of variable
transformations. As with all expressions, transforms  (or row_selection ) can be defined
outside of the function call using the expression  function.

NOT SUPPORTED. A named list that contains objects that can be referenced by
transforms , transform_function , and row_selection .

The variable transformation function.

ml_transform_vars

row_selection

transforms

transform_objects

transform_function



A character vector of input data set variables needed for the transformation function.

NOT SUPPORTED. A character vector specifying additional Python packages (outside of
those specified in RxOptions.get_option("transform_packages") ) to be made available
and preloaded for use in variable transformation functions. For example, those explicitly
defined in revoscalepy functions via their transforms  and transform_function
arguments or those defined implicitly via their formula  or row_selection  arguments.
The transform_packages  argument may also be None, indicating that no packages
outside RxOptions.get_option("transform_packages")  are preloaded.

NOT SUPPORTED. A user-defined environment to serve as a parent to all environments
developed internally and used for variable data transformation. If transform_environment
= None , a new "hash" environment with parent revoscalepy.baseenv is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of

transform_variables

transform_packages

transform_environment

blocks_per_read

report_progress

verbose

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


information.

Sets the context in which computations are executed, specified with a valid
revoscalepy.RxComputeContext. Currently local and revoscalepy.RxInSqlServer compute
contexts are supported.

Control parameters for ensembling.

A OneClassSvm object with the trained model.

This algorithm is single-threaded and will always attempt to load the entire dataset into
memory.

linear_kernel , polynomial_kernel , rbf_kernel , sigmoid_kernel , rx_predict.

Wikipedia: Anomaly detection

Microsoft Azure Machine Learning Studio (classic): One-Class Support Vector Machine

Estimating the Support of a High-Dimensional Distribution

New Support Vector Algorithms

LIBSVM: A Library for Support Vector Machines

compute_context

ensemble

Returns

Note

See also

References

Example

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxInSqlServer
https://learn.microsoft.com/en-us/sql/machine-learning/python/reference/microsoftml/learners-object?view=sql-server-2017
https://en.wikipedia.org/wiki/Anomaly_detection
https://learn.microsoft.com/en-us/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://research.microsoft.com/pubs/69731/tr-99-87.pdf
http://www.stat.purdue.edu/~yuzhu/stat598m3/Papers/NewSVM.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf


Output:

''' 
Anomaly Detection. 
''' 
import numpy 
import pandas 
from microsoftml import rx_oneclass_svm, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

iris = get_dataset("iris") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

irisdf = iris.as_df() 
data_train, data_test = train_test_split(irisdf) 

# Estimate a One-Class SVM model 
model = rx_oneclass_svm( 
            formula= "~ Sepal_Length + Sepal_Width + Petal_Length + 
Petal_Width", 
            data=data_train) 

# Add additional non-iris data to the test data set 
data_test["isIris"] = 1.0 
not_iris = pandas.DataFrame(data=dict(Sepal_Length=[2.5, 2.6],  
        Sepal_Width=[.75, .9], Petal_Length=[2.5, 2.5],  
        Petal_Width=[.8, .7], Species=["not iris", "not iris"],  
        isIris=[0., 0.])) 

merged_test = pandas.concat([data_test, not_iris]) 

scoresdf = rx_predict(model, data=merged_test, extra_vars_to_write=
["isIris"]) 

# Look at the last few observations 
print(scoresdf.tail()) 

Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 112, Read Time: 0, Transform Time: 0 
Beginning processing data. 



Using these libsvm parameters: svm_type=2, nu=0.1, cache_size=100, 
eps=0.001, shrinking=1, kernel_type=2, gamma=0.25, degree=0, coef0=0 
Reconstructed gradient. 
optimization finished, #iter = 15
obj = 52.905421, rho = 9.506052 
nSV = 12, nBSV = 9 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0555122 
Elapsed time: 00:00:00.0212389 
Beginning processing data. 
Rows Read: 40, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0349974 
Finished writing 40 rows. 
Writing completed. 
    isIris     Score 
35     1.0 -0.142141 
36     1.0 -0.531449 
37     1.0 -0.189874 
38     0.0  0.635845 
39     0.0  0.555602 



microsoftml.rx_predict: Scores using a
Microsoft machine learning model
Article • 03/03/2023

Reports per-instance scoring results in a data frame or revoscalepy data source using a
trained Microsoft ML Machine Learning model with arevoscalepydata source.

The following items are reported in the output by default: scoring on three variables for
the binary classifiers: PredictedLabel, Score, and Probability; the Score for oneClassSvm
and regression classifiers; PredictedLabel for Multi-class classifiers, plus a variable for
each category prepended by the Score.

Usage

microsoftml.rx_predict(model, 
    data: typing.Union[revoscalepy.datasource.RxDataSource.RxDataSource, 
    pandas.core.frame.DataFrame],
    output_data: 
typing.Union[revoscalepy.datasource.RxDataSource.RxDataSource, 
    str] = None, write_model_vars: bool = False, 
    extra_vars_to_write: list = None, suffix: str = None, 
    overwrite: bool = False, data_threads: int = None, 
    blocks_per_read: int = None, report_progress: int = None, 
    verbose: int = 1, 
    compute_context: 
revoscalepy.computecontext.RxComputeContext.RxComputeContext = None, 
    **kargs) 

Description

Details

Arguments

model



A model information object returned from a microsoftml model. For example, an object
returned from rx_fast_trees  or rx_logistic_regression .

A revoscalepy data source object, a data frame, or the path to a .xdf  file.

Output text or xdf file name or an RxDataSource  with write capabilities in which to store
transformed data. If None, a data frame is returned. The default value is None.

If True , variables in the model are written to the output data set in addition to the
scoring variables. If variables from the input data set are transformed in the model, the
transformed variables are also included. The default value is False .

None  or character vector of additional variables names from the input data to include in
the output_data . If write_model_vars  is True , model variables are included as well. The
default value is None .

A character string specifying suffix to append to the created scoring variable(s) or None
in there is no suffix. The default value is None .

If True , an existing output_data  is overwritten; if False  an existing output_data  is not
overwritten. The default value is False .

An integer specifying the desired degree of parallelism in the data pipeline. If None, the
number of threads used is determined internally. The default value is None.

data

output_data

write_model_vars

extra_vars_to_write

suffix

overwrite

data_threads

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/index


Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

1 : the number of processed rows is printed and updated.

2 : rows processed and timings are reported.

3 : rows processed and all timings are reported.

The default value is 1 .

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information. The default value is 1 .

Sets the context in which computations are executed, specified with a valid
revoscalepy.RxComputeContext. Currently local and revoscalepy.RxInSqlServer compute
contexts are supported.

Additional arguments sent to compute engine.

A data frame or an revoscalepy.RxDataSource object representing the created output
data. By default, output from scoring binary classifiers include three variables:
PredictedLabel , Score , and Probability ; rx_oneclass_svm  and regression include one
variable: Score ; and multi-class classifiers include PredictedLabel  plus a variable for

blocks_per_read

report_progress

verbose

compute_context

kargs

Returns

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxInSqlServer
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/RxDataSource


each category prepended by Score . If a suffix  is provided, it is added to the end of
these output variable names.

rx_featurize, revoscalepy.rx_data_step, revoscalepy.rx_import.

Output:

See also

Binary classification example

''' 
Binary Classification. 
''' 
import numpy 
import pandas 
from microsoftml import rx_fast_linear, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

infert = get_dataset("infert") 

import sklearn 
if sklearn.__version__ < "0.18": 
    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

infertdf = infert.as_df() 
infertdf["isCase"] = infertdf.case == 1 
data_train, data_test, y_train, y_test = train_test_split(infertdf, 
infertdf.isCase) 

forest_model = rx_fast_linear( 
    formula=" isCase ~ age + parity + education + spontaneous + induced ", 
    data=data_train) 
     
# RuntimeError: The type (RxTextData) for file is not supported. 
score_ds = rx_predict(forest_model, data=data_test, 
                     extra_vars_to_write=["isCase", "Score"]) 
                      
# Print the first five rows 
print(rx_data_step(score_ds, number_rows_read=5)) 

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-data-step
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-import


Automatically adding a MinMax normalization transform, use 'norm=Warn' or 
'norm=No' to turn this behavior off. 
Beginning processing data. 
Rows Read: 186, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 186, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Beginning processing data. 
Rows Read: 186, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Using 2 threads to train. 
Automatically choosing a check frequency of 2. 
Auto-tuning parameters: maxIterations = 8064. 
Auto-tuning parameters: L2 = 2.666837E-05. 
Auto-tuning parameters: L1Threshold (L1/L2) = 0. 
Using best model from iteration 590. 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.6058289 
Elapsed time: 00:00:00.0084728 
Beginning processing data. 
Rows Read: 62, Read Time: 0, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0302359 
Finished writing 62 rows. 
Writing completed. 
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds  
  isCase PredictedLabel     Score  Probability 
0  False           True  0.576775     0.640325 
1  False          False -2.929549     0.050712 
2   True          False -2.370090     0.085482 
3  False          False -1.700105     0.154452 
4  False          False -0.110981     0.472283 

Regression example

''' 
Regression. 
''' 
import numpy 
import pandas 
from microsoftml import rx_fast_trees, rx_predict 
from revoscalepy.etl.RxDataStep import rx_data_step 
from microsoftml.datasets.datasets import get_dataset 

airquality = get_dataset("airquality") 

import sklearn 
if sklearn.__version__ < "0.18": 



Output:

    from sklearn.cross_validation import train_test_split 
else: 
    from sklearn.model_selection import train_test_split 

airquality = airquality.as_df() 

###################################################################### 
# Estimate a regression fast forest 
# Use the built-in data set 'airquality' to create test and train data 

df = airquality[airquality.Ozone.notnull()] 
df["Ozone"] = df.Ozone.astype(float) 

data_train, data_test, y_train, y_test = train_test_split(df, df.Ozone) 

airFormula = " Ozone ~ Solar_R + Wind + Temp " 

# Regression Fast Forest for train data 
ff_reg = rx_fast_trees(airFormula, method="regression", data=data_train) 

# Put score and model variables in data frame 
score_df = rx_predict(ff_reg, data=data_test, write_model_vars=True) 
print(score_df.head()) 

# Plot actual versus predicted values with smoothed line 
# Supported in the next version. 
# rx_line_plot(" Score ~ Ozone ", type=["p", "smooth"], data=score_df) 

'unbalanced_sets' ignored for method 'regression' 
Not adding a normalizer. 
Making per-feature arrays 
Changing data from row-wise to column-wise 
Beginning processing data. 
Rows Read: 87, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Warning: Skipped 4 instances with missing features during training 
Processed 83 instances 
Binning and forming Feature objects 
Reserved memory for tree learner: 22620 bytes 
Starting to train ... 
Not training a calibrator because it is not needed. 
Elapsed time: 00:00:00.0390764 
Elapsed time: 00:00:00.0080750 
Beginning processing data. 
Rows Read: 29, Read Time: 0.001, Transform Time: 0 
Beginning processing data. 
Elapsed time: 00:00:00.0221875 
Finished writing 29 rows. 



Writing completed. 
   Solar_R  Wind  Temp      Score
0    290.0   9.2  66.0  33.195541
1    259.0  15.5  77.0  20.906796
2    276.0   5.1  88.0  76.594643
3    139.0  10.3  81.0  31.668842
4    236.0  14.9  81.0  43.590839



microsoftml.select_columns: Retains
columns of a dataset
Article • 03/03/2023

Selects a set of columns to retrain, dropping all others.

A character string or list of the names of the variables to keep.

Additional arguments sent to compute engine.

An object defining the transform.

concat, drop_columns.

Usage

microsoftml.select_columns(cols: [list, str], **kargs) 

Description

Arguments

cols

kargs

Returns

See also



microsoftml.sgd_optimizer: Stochastic
gradient descent
Article • 03/03/2023

Stochastic gradient descent optimizer.

Learning rate (settings).

Momentum Term (settings).

Use Nesterov's accelerated gradient (settings).

Weight decay (settings).

Usage

microsoftml.sgd_optimizer(learning_rate: numbers.Real = None, 
    momentum: numbers.Real = None, nag: bool = None, 
    weight_decay: numbers.Real = None, 
    l_rate_red_ratio: numbers.Real = None, 
    l_rate_red_freq: numbers.Real = None, 
    l_rate_red_error_ratio: numbers.Real = None) 

Description

Arguments

learning_rate

momentum

nag

weight_decay



Learning rate reduction ratio (settings).

Learning rate reduction ratio (settings).

Relative error reduction criterion for learning rate reduction (settings).

adadelta_optimizer

l_rate_red_ratio

l_rate_red_freq

l_rate_red_error_ratio

See also



microsoftml.smoothed_hinge_loss:
Smoothed hinge loss function
Article • 03/03/2023

Smoothed Hinge loss.

Smoothing constant (settings).

hinge_loss, log_loss, squared_loss

Usage

microsoftml.smoothed_hinge_loss(smoothing_const: numbers.Real = 1.0) 

Description

Arguments

smoothing_const

See also



microsoftml.squared_loss: Squared loss
function
Article • 03/03/2023

Squared loss.

hinge_loss, log_loss, smoothed_hinge_loss

Usage

microsoftml.squared_loss() 

Description

See also



microsoftml.sse_math: Acceleration with
SSE instructions
Article • 03/03/2023

Implementation accelerated with SSE instructions.

avx_math, clr_math, gpu_math, mkl_math

Usage

microsoftml.sse_math() 

Description

See also



revoscalepy (Python package in SQL
Server Machine Learning Services)
Article • 02/28/2023

Applies to:  SQL Server 2017 (14.x) and later

revoscalepy is a Python package from Microsoft that supports distributed computing,
remote compute contexts, and high-performance data science algorithms. The package
is included in SQL Server Machine Learning Services.

The package offers the following functionality:

Local and remote compute contexts on systems having the same version of
revoscalepy
Data transformation and visualization functions
Data science functions, scalable through distributed or parallel processing
Improved performance, including use of the Intel math libraries

Data sources and compute contexts that you create in revoscalepy can also be used in
machine learning algorithms. For an introduction to these algorithms, see microsoftml
Python module in SQL Server.

The revoscalepy package is distributed in multiple Microsoft products, but usage is the
same whether you get the package in SQL Server or another product. Because the
functions are the same, documentation for individual revoscalepy functions is published
to just one location under the Python reference. Should any product-specific behaviors
exist, discrepancies will be noted in the function help page.

The revoscalepy module is based on Python 3.5 and available only when you install one
of the following Microsoft products or downloads:

SQL Server Machine Learning Services
Python client libraries for a data science client

Full reference documentation

Versions and platforms

７ Note

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/introducing-python-package-reference


This section lists the functions by category to give you an idea of how each one is used.
You can also use the table of contents to find functions in alphabetical order.

revoscalepy includes functions for creating data sources and setting the location, or
compute context, of where computations are performed. Functions relevant to SQL
Server scenarios are listed in the table below.

SQL Server and Python use different data types in some cases. For a list of mappings
between SQL and Python data types, see Python-to-SQL data types.

Function Description

RxInSqlServer Create a SQL Server compute context object to push computations to a remote
instance. Several revoscalepy functions take compute context as an argument.
For a context-switch example, see Create a model using revoscalepy.

RxSqlServerData Create a data object based on a SQL Server query or table.

RxOdbcData Create a data source based on an ODBC connection.

RxXdfData Create a data source based on a local XDF file. XDF files are often used to
offload in-memory data to disk. An XDF file can be useful when working with
more data than can be transferred from the database in one batch, or more
data than can fit in memory. For example, if you regularly move large amounts
of data from a database to a local workstation, rather than query the database
repeatedly for each R operation, you can use the XDF file as a kind of cache to
save the data locally and then work with it in your R workspace.

Full product release versions are Windows-only in SQL Server 2017. Both Windows
and Linux are supported for revoscalepy in SQL Server 2019 and later.

Functions by category

1-Data source and compute

 Tip

If you are new to the idea of data sources or compute contexts, we recommend
that you start with the article Distributed computing.

2-Data manipulation (ETL)

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/introducing-python-package-reference
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rxinsqlserver
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rxsqlserverdata
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rxodbcdata
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rxxdfdata
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/r/how-to-revoscaler-distributed-computing


Function DescriptionFunction Description

rx_import Import data into a .xdf file or data frame.

rx_data_step Transform data from an input data set to an output data set.

Function Description

rx_btrees Fit stochastic gradient boosted decision trees

rx_dforest Fit classification and regression decision forests

rx_dtree Fit classification and regression trees

rx_lin_mod Create a linear regression model

rx_logit Create a logistic regression model

rx_summary Produce univariate summaries of objects in revoscalepy.

You should also review the functions in microsoftml for additional approaches.

Function Description

rx_predict Generate predictions from a trained model and can be used for real-time
scoring.

rx_predict_default Compute predicted values and residuals using rx_lin_mod and rx_logit
objects.

rx_predict_rx_dforest Calculate predicted or fitted values for a data set from an rx_dforest or
rx_btrees object.

rx_predict_rx_dtree Calculate predicted or fitted values for a data set from an rx_dtree object.

Functions in revoscalepy are callable in Python code encapsulated in stored procedures.
Most developers build revoscalepy solutions locally, and then migrate finished Python
code to stored procedures as a deployment exercise.

3-Training and summarization

4-Scoring functions

How to work with revoscalepy

https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-import
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-data-step
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-btrees
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-dforest
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-dtree
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-lin-mod
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-logit
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-summary
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-predict
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-predict-default
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-predict-rx-dforest
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/rx-predict-rx-dtree


When running locally, you typically run a Python script from the command line, or from
a Python development environment, and specify a SQL Server compute context using
one of the revoscalepy functions. You can use the remote compute context for the
entire code, or for individual functions. For example, you might want to offload model
training to the server to use the latest data and avoid data movement.

When you are ready to encapsulate Python script inside a stored procedure,
sp_execute_external_script, we recommend rewriting the code as a single function that
has clearly defined inputs and outputs.

Inputs and outputs must be pandas data frames. When this is done, you can call the
stored procedure from any client that supports T-SQL, easily pass SQL queries as inputs,
and save the results to SQL tables. For an example, see Learn in-database Python
analytics for SQL developers.

The Python functions for microsoftml are integrated with the compute contexts and
data sources that are provided in revoscalepy. When calling functions from microsoftml,
for example when defining and training a model, use the revoscalepy functions to
execute the Python code either locally or in a SQL Server remote compute context.

The following example shows the syntax for importing modules in your Python code.
You can then reference the individual functions you need.

Python

Python tutorials
Python Reference

Using revoscalepy with microsoftml

from microsoftml.modules.logistic_regression.rx_logistic_regression import 
rx_logistic_regression 
from revoscalepy.functions.RxSummary import rx_summary 
from revoscalepy.etl.RxImport import rx_import_datasource 

See also

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/introducing-python-package-reference


RevoScaleR (R package in SQL Server
Machine Learning Services)
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x) and later versions

RevoScaleR is an R package from Microsoft that supports distributed computing,
remote compute contexts, and high-performance data science algorithms. It also
supports data import, data transformation, summarization, visualization, and analysis.
The package is included in SQL Server Machine Learning Services and SQL Server 2016 R
Services.

In contrast with base R functions, RevoScaleR operations can be performed against large
datasets, in parallel, and on distributed file systems. Functions can operate over datasets
that do not fit in memory by using chunking and by reassembling results when
operations are complete.

RevoScaleR functions are denoted with a rx** or Rx prefix to make them easy to identify.

RevoScaleR serves as a platform for distributed data science. For example, you can use
the RevoScaleR compute contexts and transformations with the state-of-the-art
algorithms in MicrosoftML. You can also use rxExec to run base R functions in parallel.

The RevoScaleR package is distributed in multiple Microsoft products, but usage is the
same whether you get the package in SQL Server or another product. Because the
functions are the same, documentation for individual RevoScaleR functions is published
to just one location under the R reference. Should any product-specific behaviors exist,
discrepancies will be noted in the function help page.

The RevoScaleR package is based on R 3.4.3 and available only when you install one of
the following Microsoft products or downloads:

SQL Server 2016 R Services
SQL Server Machine Learning Services
Microsoft R client

Full reference documentation

Versions and platforms

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/r/concept-what-is-the-microsoftml-package
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxexec
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/introducing-r-server-r-package-reference
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-r-services-windows-install?view=sql-server-2017


This section lists the functions by category to give you an idea of how each one is used.
You can also use the table of contents to find functions in alphabetical order.

RevoScaleR includes functions for creating data sources and setting the location, or
compute context, of where computations are performed. A data source object is a
container that specifies a connection string together with the set of data that you want,
defined either as a table, view, or query. Stored procedure calls are not supported.
Functions relevant to SQL Server scenarios are listed in the table below.

SQL Server and R use different data types in some cases. For a list of mappings between
SQL and R data types, see R-to-SQL data types.

Function Description

RxInSqlServer Create a SQL Server compute context object to push computations to a
remote instance. Several RevoScaleR functions take compute context as
an argument.

rxGetComputeContext
/
rxSetComputeContext

Get or set the active compute context.

RxSqlServerData Create a data object based on a SQL Server query or table.

RxOdbcData Create a data source based on an ODBC connection.

RxXdfData Create a data source based on a local XDF file. XDF files are often used
to offload in-memory data to disk. An XDF file can be useful when
working with more data than can be transferred from the database in
one batch, or more data than can fit in memory. For example, if you
regularly move large amounts of data from a database to a local
workstation, rather than query the database repeatedly for each R
operation, you can use the XDF file as a kind of cache to save the data
locally and then work with it in your R workspace.

７ Note

Full product release versions are Windows-only in SQL Server 2017. Both Windows
and Linux are supported for RevoScaleR in SQL Server 2019.

Functions by category

1-Data source and compute

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/introducing-r-server-r-package-reference
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxinsqlserver
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsetcomputecontext
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsqlserverdata
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxodbcdata
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxxdfdata
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017


You can execute DDL statements from R, if you have the necessary permissions on the
instance and database. The following functions use ODBC calls to execute DDL
statements or retrieve the database schema.

Function Description

rxSqlServerTableExists
and
rxSqlServerDropTable

Drop a SQL Server table, or check for the existence of a database table or
object.

rxExecuteSQLDDL Execute a Data Definition Language (DDL) command that defines or
manipulates database objects. This function cannot return data, and is
used only to retrieve or modify the object schema or metadata.

After you have created a data source object, you can use the object to load data into it,
transform data, or write new data to the specified destination. Depending on the size of
the data in the source, you can also define the batch size as part of the data source and
move data in chunks.

Function Description

rxOpen-
methods

Check whether a data source is available, open or close a data source, read data
from a source, write data to the target, and close a data source.

rxImport Move data from a data source into file storage or into a data frame.

rxDataStep Transform data while moving it between data sources.

Function name Description

rxHistogram Creates a histogram from data.

 Tip

If you are new to the idea of data sources or compute contexts, we recommend
that you start with the article Distributed computing.

Perform DDL statements

2-Data manipulation (ETL)

3-Graphing functions

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsqlserverdroptable
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxexecutesqlddl
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxopen-methods
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rximport
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxdatastep
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxhistogram
https://learn.microsoft.com/en-us/machine-learning-server/r/how-to-revoscaler-distributed-computing


Function name Description

rxLinePlot Creates a line plot from data.

rxLorenz Computes a Lorenz curve, which can be plotted.

rxRocCurve Computes and plots ROC curves from actual and predicted data.

Function name Description

rxQuantile Computes approximate quantiles for .xdf files and data frames without
sorting.

rxSummary Basic summary statistics of data, including computations by group. Writing
by group computations to .xdf file not supported.

rxCrossTabs Formula-based cross-tabulation of data.

rxCube Alternative formula-based cross-tabulation designed for efficient
representation returning cube results. Writing output to .xdf file not
supported.

rxMarginals Marginal summaries of cross-tabulations.

as.xtabs Converts cross tabulation results to an xtabs object.

rxChiSquaredTest Performs Chi-squared Test on xtabs object. Used with small data sets and
does not chunk data.

rxFisherTest Performs Fisher's Exact Test on xtabs object. Used with small data sets and
does not chunk data.

rxKendallCor Computes Kendall's Tau Rank Correlation Coefficient using xtabs object.

rxPairwiseCrossTab Apply a function to pairwise combinations of rows and columns of an xtabs
object.

rxRiskRatio Calculate the relative risk on a two-by-two xtabs object.

rxOddsRatio Calculate the odds ratio on a two-by-two xtabs object.

 Signifies the most popular functions in this category.

4-Descriptive statistics

*

*

*

*

*

5-Prediction functions

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxlineplot
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxlorenz
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxroc
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxquantile
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxsummary
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxcrosstabs
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxcube
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxmarginals
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/as.xtabs
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxchisquaredtest
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxchisquaredtest
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxchisquaredtest
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxpairwisecrosstab
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxriskratio
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxriskratio


Function
name

DescriptionFunction
name

Description

rxLinMod Fits a linear model to data.

rxLogit Fits a logistic regression model to data.

rxGlm Fits a generalized linear model to data.

rxCovCor Calculate the covariance, correlation, or sum of squares / cross-product matrix for
a set of variables.

rxDTree Fits a classification or regression tree to data.

rxBTrees Fits a classification or regression decision forest to data using a stochastic
gradient boosting algorithm.

rxDForest Fits a classification or regression decision forest to data.

rxPredict Calculates predictions for fitted models. Output must be an XDF data source.

rxKmeans Performs k-means clustering.

rxNaiveBayes Performs Naive Bayes classification.

rxCov Calculate the covariance matrix for a set of variables.

rxCor Calculate the correlation matrix for a set of variables.

rxSSCP Calculate the sum of squares / cross-product matrix for a set of variables.

rxRoc Receiver Operating Characteristic (ROC) computations using actual and predicted
values from binary classifier system.

 Signifies the most popular functions in this category.

Functions in RevoScaleR are callable in R code encapsulated in stored procedures. Most
developers build RevoScaleR solutions locally, and then migrate finished R code to
stored procedures as a deployment exercise.

When running locally, you typically run an R script from the command line, or from an R
development environment, and specify a SQL Server compute context using one of the
RevoScaleR functions. You can use the remote compute context for the entire code, or
for individual functions. For example, you might want to offload model training to the
server to use the latest data and avoid data movement.

*

*

*

*

*

*

*

*

*

*

*

How to work with RevoScaleR

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxlinmod
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxlogit
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxglm
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxcovcor
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxdtree
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxbtrees
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxdforest
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxPredict
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxkmeans
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxnaivebayes
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxcovcor
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxcovcor
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxcovcor
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxroc


When you are ready to encapsulate R script inside a stored procedure,
sp_execute_external_script, we recommend rewriting the code as a single function that
has clearly defined inputs and outputs.

R tutorials
Learn to use compute contexts
R for SQL developers: Train and operationalize a model
Microsoft product samples on GitHub
R reference

See also

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017
https://github.com/Microsoft/SQL-Server-R-Services-Samples
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/introducing-r-server-r-package-reference


MicrosoftML (R package in SQL Server
Machine Learning Services)
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x) and later versions

MicrosoftML is an R package from Microsoft that provides high-performance machine
learning algorithms. It includes functions for training and transformations, scoring, text
and image analysis, and feature extraction for deriving values from existing data. The
package is included in SQL Server Machine Learning Services and SQL Server 2016 R
Services and supports high performance on big data, using multicore processing, and
fast data streaming. MicrosoftML also includes numerous transformations for text and
image processing.

The MicrosoftML package is distributed in multiple Microsoft products, but usage is the
same whether you get the package in SQL Server or another product. Because the
functions are the same, documentation for individual RevoScaleR functions is published
to just one location under the R reference. Should any product-specific behaviors exist,
discrepancies will be noted in the function help page.

The MicrosoftML package is based on R 3.5.2 and available only when you install one of
the following Microsoft products or downloads:

SQL Server 2016 R Services
SQL Server Machine Learning Services
Microsoft R client

Full reference documentation

Versions and platforms

７ Note

Full product release versions are Windows-only in SQL Server 2017. Both Windows
and Linux are supported for MicrosoftML in SQL Server 2019.

Package dependencies

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/revoscaler
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/introducing-r-server-r-package-reference
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-r-services-windows-install?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning?view=sql-server-2017


Algorithms in MicrosoftML depend on RevoScaleR for:

Data source objects. Data consumed by MicrosoftML functions are created using
RevoScaleR functions.
Remote computing (shifting function execution to a remote SQL Server instance).
The RevoScaleR package provides functions for creating and activating a remote
compute context for SQL server.

In most cases, you will load the packages together whenever you are using
MicrosoftML.

This section lists the functions by category to give you an idea of how each one is used.
You can also use the table of contents to find functions in alphabetical order.

Function name Description

rxFastTrees An implementation of FastRank, an efficient implementation of the MART
gradient boosting algorithm.

rxFastForest A random forest and Quantile regression forest implementation using
rxFastTrees.

rxLogisticRegression Logistic regression using L-BFGS.

rxOneClassSvm One class support vector machines.

rxNeuralNet Binary, multi-class, and regression neural net.

rxFastLinear Stochastic dual coordinate ascent optimization for linear binary
classification and regression.

rxEnsemble Trains a number of models of various kinds to obtain better predictive
performance than could be obtained from a single model.

Function name Description

concat Transformation to create a single vector-valued column from multiple columns.

categorical Create indicator vector using categorical transform with dictionary.

Functions by category

1-Machine learning algorithms

2-Transformation functions

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/introducing-r-server-r-package-reference


Function name Description

categoricalHash Converts the categorical value into an indicator array by hashing.

featurizeText Produces a bag of counts of sequences of consecutive words, called n-grams,
from a given corpus of text. It offers language detection, tokenization,
stopwords removing, text normalization, and feature generation.

getSentiment Scores natural language text and creates a column that contains probabilities
that the sentiments in the text are positive.

ngram allows defining arguments for count-based and hash-based feature extraction.

selectColumns Selects a set of columns to retrain, dropping all others.

selectFeatures Selects features from the specified variables using a specified mode.

loadImage Loads image data.

resizeImage Resizes an image to a specified dimension using a specified resizing method.

extractPixels Extracts the pixel values from an image.

featurizeImage Featurizes an image using a pre-trained deep neural network model.

Function name Description

rxPredict.mlModel Runs the scoring library either from SQL Server, using the stored procedure,
or from R code enabling real-time scoring to provide much faster prediction
performance.

rxFeaturize Transforms data from an input data set to an output data set.

mlModel Provides a summary of a Microsoft R Machine Learning model.

Function name Description

expLoss Specifications for exponential classification loss function.

logLoss Specifications for log classification loss function.

hingeLoss Specifications for hinge classification loss function.

3-Scoring and training functions

4-Loss functions for classification and
regression



Function name Description

smoothHingeLoss Specifications for smooth hinge classification loss function.

poissonLoss Specifications for poisson regression loss function.

squaredLoss Specifications for squared regression loss function.

Function name Description

minCount Specification for feature selection in count mode.

mutualInformation Specification for feature selection in mutual information mode.

Function name Description

fastTrees Creates a list containing the function name and arguments to train a Fast Tree
model with rxEnsemble.

fastForest Creates a list containing the function name and arguments to train a Fast
Forest model with rxEnsemble.

fastLinear Creates a list containing the function name and arguments to train a Fast
Linear model with rxEnsemble.

logisticRegression Creates a list containing the function name and arguments to train a Logistic
Regression model with rxEnsemble.

oneClassSvm Creates a list containing the function name and arguments to train a
OneClassSvm model with rxEnsemble.

Function
name

Description

optimizer Specifies optimization algorithms for the rxNeuralNet machine learning
algorithm.

5-Feature selection functions

6-Ensemble modeling functions

7-Neural networking functions

8-Package state functions



Function name Description

rxHashEnv An environment object used to store package-wide state.

Functions in MicrosoftML are callable in R code encapsulated in stored procedures.
Most developers build MicrosoftML solutions locally, and then migrate finished R code
to stored procedures as a deployment exercise.

The MicrosoftML package for R is installed "out-of-the-box" in SQL Server 2017.

The package is not loaded by default. As a first step, load the MicrosoftML package, and
then load RevoScaleR if you need to use remote compute contexts or related
connectivity or data source objects. Then, reference the individual functions you need.

R

R tutorials
Learn to use compute contexts
R for SQL developers: Train and operationalize a model
Microsoft product samples on GitHub
R reference

How to use MicrosoftML

library(microsoftml); 
library(RevoScaleR); 
logisticRegression(args); 

See also

https://github.com/Microsoft/SQL-Server-R-Services-Samples
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/introducing-r-server-r-package-reference


categorical: Machine Learning
Categorical Data Transform
Article • 02/28/2023

Categorical transform that can be performed on data before training a model.

A character vector or list of variable names to transform. If named, the names represent
the names of new variables to be created.

A character string that specifies the kind of output kind.

"ind" : Outputs an indicator vector. The input column is a vector of categories, and
the output contains one indicator vector per slot in the input column.
"bag" : Outputs a multi-set vector. If the input column is a vector of categories, the
output contains one vector, where the value in each slot is the number of
occurrences of the category in the input vector. If the input column contains a
single category, the indicator vector and the bag vector are equivalent
"key" : Outputs an index. The output is an integer ID (between 1 and the number
of categories in the dictionary) of the category. 
The default value is "ind" .

Usage

  categorical(vars, outputKind = "ind", maxNumTerms = 1e+06, terms = "", 
    ...) 

Arguments

vars

outputKind

maxNumTerms



An integer that specifies the maximum number of categories to include in the
dictionary. The default value is 1000000.

Optional character vector of terms or categories.

Additional arguments sent to compute engine.

The categorical  transform passes through a data set, operating on text columns, to
build a dictionary of categories. For each row, the entire text string appearing in the
input column is defined as a category. The output of the categorical transform is an
indicator vector. Each slot in this vector corresponds to a category in the dictionary, so
its length is the size of the built dictionary. The categorical transform can be applied to
one or more columns, in which case it builds a separate dictionary for each column that
it is applied to.

categorical  is not currently supported to handle factor data.

A maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

rxFastTrees, rxFastForest, rxNeuralNet, rxOneClassSvm, rxLogisticRegression.

terms

...

Details

Value

Author(s)

See also

Examples

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


 trainReviews <- data.frame(review = c(  
         "This is great", 
         "I hate it", 
         "Love it", 
         "Do not like it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I kind of hate it", 
         "I do like it", 
         "I really hate it", 
         "It is very good", 
         "I hate it a bunch", 
         "I love it a bunch", 
         "I hate it", 
         "I like it very much", 
         "I hate it very much.", 
         "I really do love it", 
         "I really do hate it", 
         "Love it!", 
         "Hate it!", 
         "I love it", 
         "I hate it", 
         "I love it", 
         "I hate it", 
         "I love it"), 
      like = c(TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,  
         FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE 
     ) 

     testReviews <- data.frame(review = c( 
         "This is great", 
         "I hate it", 
         "Love it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I love it", 
         "I do like it", 
         "I really hate it", 
         "I love it"), stringsAsFactors = FALSE) 

 # Use a categorical transform: the entire string is treated as a category 
 outModel1 <- rxLogisticRegression(like~reviewCat, data = trainReviews,  
     mlTransforms = list(categorical(vars = c(reviewCat = "review")))) 
 # Note that 'I hate it' and 'I love it' (the only strings appearing more 
than once) 
 # have non-zero weights 
 summary(outModel1) 



 # Use the model to score 
 scoreOutDF1 <- rxPredict(outModel1, data = testReviews,  
     extraVarsToWrite = "review")
 scoreOutDF1 



categoricalHash: Machine Learning
Categorical HashData Transform
Article • 02/28/2023

Categorical hash transform that can be performed on data before training a model.

A character vector or list of variable names to transform. If named, the names represent
the names of new variables to be created.

An integer specifying the number of bits to hash into. Must be between 1 and 30,
inclusive. The default value is 16.

An integer specifying the hashing seed. The default value is 314489979.

TRUE  to include the position of each term in the hash. Otherwise, FALSE . The default
value is TRUE .

Usage

  categoricalHash(vars, hashBits = 16, seed = 314489979, ordered = TRUE, 
    invertHash = 0, outputKind = "Bag", ...) 

Arguments

vars

hashBits

seed

ordered

invertHash



An integer specifying the limit on the number of keys that can be used to generate the
slot name. 0  means no invert hashing; -1  means no limit. While a zero value gives
better performance, a non-zero value is needed to get meaningful coefficient names.
The default value is 0 .

A character string that specifies the kind of output kind.

"ind" : Outputs an indicator vector. The input column is a vector of categories, and
the output contains one indicator vector per slot in the input column.
"bag" : Outputs a multi-set vector. If the input column is a vector of categories, the
output contains one vector, where the value in each slot is the number of
occurrences of the category in the input vector. If the input column contains a
single category, the indicator vector and the bag vector are equivalent
"key" : Outputs an index. The output is an integer ID (between 1 and the number
of categories in the dictionary) of the category. 
The default value is "Bag" .

Additional arguments sent to the compute engine.

categoricalHash  converts a categorical value into an indicator array by hashing the
value and using the hash as an index in the bag. If the input column is a vector, a single
indicator bag is returned for it.

categoricalHash  does not currently support handling factor data.

a maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

outputKind

...

Details

Value

Author(s)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


rxFastTrees, rxFastForest, rxNeuralNet, rxOneClassSvm, rxLogisticRegression.

See also

Examples

 trainReviews <- data.frame(review = c(  
         "This is great", 
         "I hate it", 
         "Love it", 
         "Do not like it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I kind of hate it", 
         "I do like it", 
         "I really hate it", 
         "It is very good", 
         "I hate it a bunch", 
         "I love it a bunch", 
         "I hate it", 
         "I like it very much", 
         "I hate it very much.", 
         "I really do love it", 
         "I really do hate it", 
         "Love it!", 
         "Hate it!", 
         "I love it", 
         "I hate it", 
         "I love it", 
         "I hate it", 
         "I love it"), 
      like = c(TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,  
         FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE 
     ) 

     testReviews <- data.frame(review = c( 
         "This is great", 
         "I hate it", 
         "Love it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I love it", 
         "I do like it", 
         "I really hate it", 
         "I love it"), stringsAsFactors = FALSE) 



 # Use a categorical hash transform 
 outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews,  
     mlTransforms = list(categoricalHash(vars = c(reviewCatHash = 
"review")))) 
 # Weights are similar to categorical 
 summary(outModel2) 

 # Use the model to score 
 scoreOutDF2 <- rxPredict(outModel2, data = testReviews,  
     extraVarsToWrite = "review")
 scoreOutDF2 



concat: Machine Learning Concat
Transform
Article • 02/28/2023

Combines several columns into a single vector-valued column.

A named list of character vectors of input variable names and the name of the output
variable. Note that all the input variables must be of the same type. It is possible to
produce multiple output columns with the concatenation transform. In this case, you
need to use a list of vectors to define a one-to-one mapping between input and output
variables. For example, to concatenate columns InNameA and InNameB into column
OutName1 and also columns InNameC and InNameD into column OutName2, use the
list: (list(OutName1 = c(InNameA, InNameB), outName2 = c(InNameC, InNameD)))

Additional arguments sent to the compute engine

concat  creates a single vector-valued column from multiple 
columns. It can be performed on data before training a model. The concatenation 
can significantly speed up the processing of data when the number of columns is as
large as hundreds to thousands.

Usage

  concat(vars, ...) 

Arguments

vars

...

Details



A maml  object defining the concatenation transform.

Microsoft Corporation Microsoft Technical Support

featurizeText, categorical, categoricalHash, rxFastTrees, rxFastForest, rxNeuralNet,
rxOneClassSvm, rxLogisticRegression.

Value

Author(s)

See also

Examples

 testObs <- rnorm(nrow(iris)) > 0
 testIris <- iris[testObs,] 
 trainIris <- iris[!testObs,] 

 multiLogitOut <- rxLogisticRegression( 
         formula = Species~Features, type = "multiClass", data = trainIris, 
         mlTransforms = list(concat(vars = list( 
             Features = c("Sepal.Length", "Sepal.Width", "Petal.Length", 
"Petal.Width") 
           )))) 
 summary(multiLogitOut) 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


dropColumns: Drops columns from the
dataset
Article • 02/28/2023

Specified columns to drop from the dataset.

A character vector or list of the names of the variables to drop.

Additional arguments sent to compute engine.

A maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

Usage

  dropColumns(vars, ...) 
  

Arguments

vars

...

Value

Author(s)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


ensembleControl: ensembleControl
Article • 02/28/2023

Control the parameters used to create an ensemble.

Specifies the random seed. The default value is NULL .

Specifies the number of models to train. The default value is 1 , meaning no ensembling
occurs.

A logical value specifying if the sampling of observations should be done with or
without replacement. The default value is FALSE .

a scalar of positive value specifying the percentage of observations to sample for each
trainer. The default is 1.0 for sampling with replacement (i.e., replace=TRUE) and 0.632
for sampling without replacement (i.e., replace=FALSE).

Usage

  ensembleControl(randomSeed = NULL, modelCount = 1, replace = FALSE, 
    sampRate = ifelse(replace, 1, 0.632), splitData = FALSE, 
    combineMethod = NULL, ...) 
  

Arguments

randomSeed

modelCount

replace

sampRate

splitData



A logical value that specifies whether or not to train the base models on non-
overlapping partitions. The default is FALSE . It is available only for RxSpark  compute
context and is ignored for others.

Specifies the method used to combine the models:

median  to compute the median of the individual model outputs,
average  to compute the average of the individual model outputs and
vote  to compute (pos-neg) / the total number of models, where 'pos' is the
number of positive outputs and 'neg' is the number of negative outputs. The
default value is median .

Not used currently.

A list of ensemble parameters.

combineMethod

...

Value



extractPixels: Machine Learning Extract
Pixel Data Transform
Article • 02/28/2023

Extracts the pixel values from an image.

A named list of character vectors of input variable names and the name of the output
variable. Note that the input variables must be of the same type. For one-to-one
mappings between input and output variables, a named character vector can be used.

Specifies whether to use alpha channel. The default value is FALSE .

Specifies whether to use red channel. The default value is TRUE .

Specifies whether to use green channel. The default value is TRUE .

Usage

  extractPixels(vars, useAlpha = FALSE, useRed = TRUE, useGreen = TRUE, 
    useBlue = TRUE, interleaveARGB = FALSE, convert = TRUE, offset = NULL, 
    scale = NULL) 

Arguments

vars

useAlpha

useRed

useGreen

useBlue



Specifies whether to use blue channel. The default value is TRUE .

Whether to separate each channel or interleave in ARGB order. This might be important,
for example, if you are training a convolutional neural network, since this would affect
the shape of the kernel, stride etc.

Whether to convert to floating point. The default value is FALSE .

Specifies the offset (pre-scale). This requires convert = TRUE . The default value is NULL .

Specifies the scale factor. This requires convert = TRUE . The default value is NULL .

extractPixels  extracts the pixel values from an image. The input variables are images of
the same size, typically the output of a resizeImage  transform. The output is pixel data
in vector form that are typically used as features for a learner.

A maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

interleaveARGB

convert

offset

scale

Details

Value

Author(s)

Examples

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


 train <- data.frame(Path = 
c(system.file("help/figures/RevolutionAnalyticslogo.png", package = 
"MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE) 

 # Loads the images from variable Path, resizes the images to 1x1 pixels and 
trains a neural net. 
 model <- rxNeuralNet( 
     Label ~ Features, 
     data = train, 
     mlTransforms = list( 
         loadImage(vars = list(Features = "Path")), 
         resizeImage(vars = "Features", width = 1, height = 1, resizing = 
"Aniso"), 
         extractPixels(vars = "Features") 
         ), 
     mlTransformVars = "Path", 
     numHiddenNodes = 1, 
     numIterations = 1) 

 # Featurizes the images from variable Path using the default model, and 
trains a linear model on the result. 
 model <- rxFastLinear( 
     Label ~ Features, 
     data = train, 
     mlTransforms = list( 
         loadImage(vars = list(Features = "Path")), 
         resizeImage(vars = "Features", width = 224, height = 224), # If 
dnnModel == "AlexNet", the image has to be resized to 227x227. 
         extractPixels(vars = "Features"), 
         featurizeImage(var = "Features") 
         ), 
     mlTransformVars = "Path") 



fastForest: fastForest
Article • 02/28/2023

Creates a list containing the function name and arguments to train a FastForest model
with rxEnsemble.

Specifies the total number of decision trees to create in the ensemble. By creating more
decision trees, you can potentially get better coverage, but the training time increases.
The default value is 100.

The maximum number of leaves (terminal nodes) that can be created in any tree. Higher
values potentially increase the size of the tree and get better precision, but risk
overfitting and requiring longer training times. The default value is 20.

Minimum number of training instances required to form a leaf. That is, the minimal
number of documents allowed in a leaf of a regression tree, out of the sub-sampled
data. A 'split' means that features in each level of the tree (node) are randomly divided.
The default value is 10.

Usage

  fastForest(numTrees = 100, numLeaves = 20, minSplit = 10, 
    exampleFraction = 0.7, featureFraction = 0.7, splitFraction = 0.7, 
    numBins = 255, firstUsePenalty = 0, gainConfLevel = 0, 
    trainThreads = 8, randomSeed = NULL, ...) 
  

Arguments

numTrees

numLeaves

minSplit

exampleFraction



The fraction of randomly chosen instances to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use on each split. The default value is 0.7.

Maximum number of distinct values (bins) per feature. The default value is 255.

The feature first use penalty coefficient. The default value is 0.

Tree fitting gain confidence requirement (should be in the range [0,1)). The default value
is 0.

The number of threads to use in training. If NULL is specified, the number of threads to
use is determined internally. The default value is NULL .

Specifies the random seed. The default value is NULL .

Additional arguments.

featureFraction

splitFraction

numBins

firstUsePenalty

gainConfLevel

trainThreads

randomSeed

...



fastLinear: fastLinear
Article • 02/28/2023

Creates a list containing the function name and arguments to train a Fast Linear model
with rxEnsemble.

Specifies the empirical loss function to optimize. For binary classification, the following
choices are available:

logLoss: The log-loss. This is the default.
hingeLoss: The SVM hinge loss. Its parameter represents the margin size.
smoothHingeLoss: The smoothed hinge loss. Its parameter represents the
smoothing constant. 
For linear regression, squared loss squaredLoss is currently supported. When this
parameter is set to NULL , its default value depends on the type of learning:
logLoss for binary classification.
squaredLoss for linear regression.

Specifies the L2 regularization weight. The value must be either non-negative or NULL . If
NULL  is specified, the actual value is automatically computed based on data set. NULL  is
the default value.

Usage

  fastLinear(lossFunction = NULL, l2Weight = NULL, l1Weight = NULL, 
    trainThreads = NULL, convergenceTolerance = 0.1, maxIterations = NULL, 
    shuffle = TRUE, checkFrequency = NULL, ...) 
  

Arguments

lossFunction

l2Weight

l1Weight



Specifies the L1 regularization weight. The value must be either non-negative or NULL . If
NULL  is specified, the actual value is automatically computed based on data set. NULL  is
the default value.

Specifies how many concurrent threads can be used to run the algorithm. When this
parameter is set to NULL , the number of threads used is determined based on the
number of logical processors available to the process as well as the sparsity of data. Set
it to 1  to run the algorithm in a single thread.

Specifies the tolerance threshold used as a convergence criterion. It must be between 0
and 1. The default value is 0.1 . The algorithm is considered to have converged if the
relative duality gap, which is the ratio between the duality gap and the primal loss, falls
below the specified convergence tolerance.

Specifies an upper bound on the number of training iterations. This parameter must be
positive or NULL . If NULL  is specified, the actual value is automatically computed based
on data set. Each iteration requires a complete pass over the training data. Training
terminates after the total number of iterations reaches the specified upper bound or
when the loss function converges, whichever happens earlier.

Specifies whether to shuffle the training data. Set TRUE  to shuffle the data; FALSE  not to
shuffle. The default value is TRUE . SDCA is a stochastic optimization algorithm. If
shuffling is turned on, the training data is shuffled on each iteration.

The number of iterations after which the loss function is computed and checked to
determine whether it has converged. The value specified must be a positive integer or
NULL . If NULL , the actual value is automatically computed based on data set. Otherwise,
for example, if checkFrequency = 5  is specified, then the loss function is computed and

trainThreads

convergenceTolerance

maxIterations

shuffle

checkFrequency



convergence is checked every 5 iterations. The computation of the loss function requires
a separate complete pass over the training data.

Additional arguments.

...



fastTrees: fastTrees
Article • 02/28/2023

Creates a list containing the function name and arguments to train a FastTree model
with rxEnsemble.

Specifies the total number of decision trees to create in the ensemble. By creating more
decision trees, you can potentially get better coverage, but the training time increases.
The default value is 100.

The maximum number of leaves (terminal nodes) that can be created in any tree. Higher
values potentially increase the size of the tree and get better precision, but risk
overfitting and requiring longer training times. The default value is 20.

Determines the size of the step taken in the direction of the gradient in each step of the
learning process. This determines how fast or slow the learner converges on the optimal
solution. If the step size is too big, you might overshoot the optimal solution. If the step
size is too small, training takes longer to converge to the best solution.

Usage

  fastTrees(numTrees = 100, numLeaves = 20, learningRate = 0.2, 
    minSplit = 10, exampleFraction = 0.7, featureFraction = 1, 
    splitFraction = 1, numBins = 255, firstUsePenalty = 0, 
    gainConfLevel = 0, unbalancedSets = FALSE, trainThreads = 8, 
    randomSeed = NULL, ...) 
  

Arguments

numTrees

numLeaves

learningRate

minSplit



Minimum number of training instances required to form a leaf. That is, the minimal
number of documents allowed in a leaf of a regression tree, out of the sub-sampled
data. A 'split' means that features in each level of the tree (node) are randomly divided.
The default value is 10. Only the number of instances is counted even if instances are
weighted.

The fraction of randomly chosen instances to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use for each tree. The default value is 1.

The fraction of randomly chosen features to use on each split. The default value is 1.

Maximum number of distinct values (bins) per feature. If the feature has fewer values
than the number indicated, each value is placed in its own bin. If there are more values,
the algorithm creates numBins  bins.

The feature first use penalty coefficient. This is a form of regularization that incurs a
penalty for using a new feature when creating the tree. Increase this value to create
trees that don't use many features. The default value is 0.

Tree fitting gain confidence requirement (should be in the range [0,1)). The default value
is 0.

If TRUE , derivatives optimized for unbalanced sets are used. Only applicable when type
equal to "binary" . The default value is FALSE .

exampleFraction

featureFraction

splitFraction

numBins

firstUsePenalty

gainConfLevel

unbalancedSets



The number of threads to use in training. The default value is 8.

Specifies the random seed. The default value is NULL .

Additional arguments.

trainThreads

randomSeed

...



featurizeImage: Machine Learning
Image Featurization Transform
Article • 02/28/2023

Featurizes an image using a pre-trained deep neural network model.

Input variable containing extracted pixel values.

The prefix of the output variables containing the image features. If null, the input
variable name will be used. The default value is NULL .

The pre-trained deep neural network. The possible options are:

"resnet18"

"resnet50"

"resnet101"

"alexnet"  
The default value is "resnet18" . See Deep Residual Learning for Image
Recognition  for details about ResNet.

Usage

  featurizeImage(var, outVar = NULL, dnnModel = "Resnet18") 

Arguments

var

outVar

dnnModel

Details

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html


featurizeImage  featurizes an image using the specified pre-trained deep neural network
model. The input variables to this transform must be extracted pixel values.

A maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

Value

Author(s)

Examples

 train <- data.frame(Path = 
c(system.file("help/figures/RevolutionAnalyticslogo.png", package = 
"MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE) 

 # Loads the images from variable Path, resizes the images to 1x1 pixels and 
trains a neural net. 
 model <- rxNeuralNet( 
     Label ~ Features, 
     data = train, 
     mlTransforms = list( 
         loadImage(vars = list(Features = "Path")), 
         resizeImage(vars = "Features", width = 1, height = 1, resizing = 
"Aniso"), 
         extractPixels(vars = "Features") 
         ), 
     mlTransformVars = "Path", 
     numHiddenNodes = 1, 
     numIterations = 1) 

 # Featurizes the images from variable Path using the default model, and 
trains a linear model on the result. 
 model <- rxFastLinear( 
     Label ~ Features, 
     data = train, 
     mlTransforms = list( 
         loadImage(vars = list(Features = "Path")), 
         resizeImage(vars = "Features", width = 224, height = 224), # If 
dnnModel == "AlexNet", the image has to be resized to 227x227. 
         extractPixels(vars = "Features"), 
         featurizeImage(var = "Features") 
         ), 
     mlTransformVars = "Path") 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409




stopwordsDefault: Machine Learning
Text Transform
Article • 02/28/2023

Text transforms that can be performed on data before training a model.

character: <string>. Data file containing the terms (short form data).

An optional character vector of terms or categories.

Specifies how to order items when vectorized. Two orderings are supported:

"occurrence" : items appear in the order encountered.
"value" : items are sorted according to their default comparison. For example, text
sorting will be case sensitive (e.g., 'A' then 'Z' then 'a').

Usage

  stopwordsDefault() 

  stopwordsCustom(dataFile = "") 

  termDictionary(terms = "", dataFile = "", sort = "occurrence") 

  featurizeText(vars, language = "English", stopwordsRemover = NULL, 
    case = "lower", keepDiacritics = FALSE, keepPunctuations = TRUE, 
    keepNumbers = TRUE, dictionary = NULL, 
    wordFeatureExtractor = ngramCount(), charFeatureExtractor = NULL, 
    vectorNormalizer = "l2", ...)

Arguments

dataFile

terms

sort



A named list of character vectors of input variable names and the name of the output
variable. Note that the input variables must be of the same type. For one-to-one
mappings between input and output variables, a named character vector can be used.

Specifies the language used in the data set. The following values are supported:

"AutoDetect" : for automatic language detection.
"English" .
"French" .
"German" .
"Dutch" .
"Italian" .
"Spanish" .
"Japanese" .

Specifies the stopwords remover to use. There are three options supported:

NULL  No stopwords remover is used.
stopwordsDefault : A precompiled language-specific list of stop words is used that
includes the most common words from Microsoft Office.
stopwordsCustom : A user-defined list of stopwords. It accepts the following option:
dataFile . 
The default value is NULL .

Text casing using the rules of the invariant culture. Takes the following values:

"lower" .
"upper" .
"none" . 
The default value is "lower" .

vars

language

stopwordsRemover

case

keepDiacritics



FALSE  to remove diacritical marks; TRUE  to retain diacritical marks. The default value is
FALSE .

FALSE  to remove punctuation; TRUE  to retain punctuation. The default value is TRUE .

FALSE  to remove numbers; TRUE  to retain numbers. The default value is TRUE .

A termDictionary  of allowlisted terms which accepts the following options:

terms ,
dataFile , and
sort . 
The default value is NULL . Note that the stopwords list takes precedence over the
dictionary allowlist as the stopwords are removed before the dictionary terms are
allowlisted.

Specifies the word feature extraction arguments. There are two different feature
extraction mechanisms:

ngramCount: Count-based feature extraction (equivalent to WordBag). It accepts
the following options: maxNumTerms  and weighting .
ngramHash: Hashing-based feature extraction (equivalent to WordHashBag). It
accepts the following options: hashBits , seed , ordered  and invertHash . 
The default value is ngramCount .

Specifies the char feature extraction arguments. There are two different feature
extraction mechanisms:

ngramCount: Count-based feature extraction (equivalent to WordBag). It accepts
the following options: maxNumTerms  and weighting .

keepPunctuations

keepNumbers

dictionary

wordFeatureExtractor

charFeatureExtractor



ngramHash: Hashing-based feature extraction (equivalent to WordHashBag). It
accepts the following options: hashBits , seed , ordered  and invertHash . 
The default value is NULL .

Normalize vectors (rows) individually by rescaling them to unit norm. Takes one of the
following values:

"none" .
"l2" .
"l1" .
"linf" . The default value is "l2" .

Additional arguments sent to the compute engine.

The featurizeText  transform produces a bag of counts of 
sequences of consecutive words, called n-grams, from a given corpus of text. There are
two ways it can do this:

build a dictionary of n-grams and use the ID in the dictionary as the index in the bag;

hash each n-gram and use the hash value as the index in the bag.

The purpose of hashing is to convert variable-length text documents into equal-length
numeric feature vectors, to support dimensionality reduction and to make the lookup of
feature weights faster.

The text transform is applied to text input columns. It offers language detection,
tokenization, stopwords removing, text normalization and feature generation. It
supports the following languages by default: English, French, German, Dutch, Italian,
Spanish and Japanese.

The n-grams are represented as count vectors, with vector slots corresponding either to
n-grams (created using ngramCount ) or to their hashes (created using ngramHash ).
Embedding ngrams in a vector space allows their contents to be compared in an
efficient manner. The slot values in the vector can be weighted by the following factors:

vectorNormalizer

...

Details



term frequency - The number of occurrences of the slot in the text

inverse document frequency - A ratio (the logarithm of inverse relative slot frequency)
that measures the information a slot provides by determining how common or rare it is
across the entire text.

term frequency-inverse document frequency - the product term frequency and the
inverse document frequency.

A maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

ngramCount, ngramHash, rxFastTrees, rxFastForest, rxNeuralNet, rxOneClassSvm,
rxLogisticRegression.

Value

Author(s)

See also

Examples

 trainReviews <- data.frame(review = c(  
         "This is great", 
         "I hate it", 
         "Love it", 
         "Do not like it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I kind of hate it", 
         "I do like it", 
         "I really hate it", 
         "It is very good", 
         "I hate it a bunch", 
         "I love it a bunch", 
         "I hate it", 
         "I like it very much", 
         "I hate it very much.", 
         "I really do love it", 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


         "I really do hate it", 
         "Love it!", 
         "Hate it!", 
         "I love it", 
         "I hate it", 
         "I love it", 
         "I hate it", 
         "I love it"), 
      like = c(TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,  
         FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE 
     ) 

     testReviews <- data.frame(review = c( 
         "This is great", 
         "I hate it", 
         "Love it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I love it", 
         "I do like it", 
         "I really hate it", 
         "I love it"), stringsAsFactors = FALSE) 

 outModel <- rxLogisticRegression(like ~ reviewTran, data = trainReviews, 
     mlTransforms = list(featurizeText(vars = c(reviewTran = "review"), 
     stopwordsRemover = stopwordsDefault(), keepPunctuations = FALSE))) 
 # 'hate' and 'love' have non-zero weights 
 summary(outModel) 

 # Use the model to score 
 scoreOutDF5 <- rxPredict(outModel, data = testReviews,  
     extraVarsToWrite = "review")
 scoreOutDF5 



getNetDefinition: Get the Net#
definition from a trained neural network
model
Article • 02/28/2023

Returns the Net# definition from a trained neural network model.

The previously trained neural network model.

If TRUE , the weights are included in the returned Net# definition.

Returns the Net# definition from a trained neural network model. It is useful for
implementing a form of continued training, where the initial weights of the model are
obtained from a previously trained model. Because only the weights are initialized from
the trained model (but not gradients, momentum etc.), the training is not resumed
where it was left at the end of training of the first model.

A character string containing the Net# definition.

Usage

  getNetDefinition(model, getWeights = TRUE) 

Arguments

model

getWeights

Details

Value



Microsoft Corporation Microsoft Technical Support

Author(s)

Examples

 # Train a neural network on the iris dataset for 10 iterations. 
 model1 <- rxNeuralNet( 
     formula = Species~Sepal.Length + Sepal.Width + Petal.Length + 
Petal.Width,  
     data = iris,  
     numHiddenNodes=10,  
     type="multi",  
     numIterations=10,  
     optimizer=adaDeltaSgd()) 

 # Train another neural network on the iris dataset, initializing the 
topology and weights 
 # from the previously trained model. 
 model2 <- rxNeuralNet( 
     formula = Species~Sepal.Length + Sepal.Width + Petal.Length + 
Petal.Width,  
     data = iris,  
     netDefinition=getNetDefinition(model1),  
     type="multi",  
     numIterations=10,  
     optimizer = adaDeltaSgd()) 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


getSampleDataDir: Get Package Sample
Data Location
Article • 02/28/2023

Location where downloaded sample data is stored.

Specifies the path to the location where downloaded sample data is (or is to be) stored
or NULL .

TRUE  to create the directory if it does not exist; FALSE  not to create the directory.

If sampleDataDir  is NULL , the function first checks to see if an option has been set
containing sampleDataDir , i.e. getOption("sampleDataDir") . If that is NULL  too, a
'sampleDataDir' subdirectory of the current working directory is used. If createDir  is
TRUE , the directory is created if it does not exist.

A character string containing the path to the location of the sample data.

Usage

  getSampleDataDir(sampleDataDir = NULL, createDir = TRUE) 

Arguments

sampleDataDir

createDir

Details

Value

Author(s)



Microsoft Corporation Microsoft Technical Support

Examples

 # This example sets the option to be the same as the default 
 options(sampleDataDir = file.path(getwd(), "sampleDataDir")) 

 dataDir <- getSampleDataDir(createDir = FALSE) 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


getSentiment: Machine Learning
Sentiment Analyzer Transform
Article • 02/28/2023

Scores natural language text and creates a column that contains probabilities that the
sentiments in the text are positive.

A character vector or list of variable names to transform. If named, the names represent
the names of new variables to be created.

Additional arguments sent to compute engine.

The getSentiment  transform returns the probability that the sentiment of a natural text
is positive. Currently supports 
only the English language.

A maml  object defining the transform.

Usage

  getSentiment(vars, ...) 

Arguments

vars

...

Details

Value

Author(s)



Microsoft Corporation Microsoft Technical Support

rxFastTrees, rxFastForest, rxNeuralNet, rxOneClassSvm, rxLogisticRegression, rxFastLinear.

See also

Examples

 # Create the data 
 CustomerReviews <- data.frame(Review = c( 
   "I really did not like the taste of it", 
   "It was surprisingly quite good!", 
   "I will never ever ever go to that place again!!"), 
   stringsAsFactors = FALSE) 

 # Get the sentiment scores 
 sentimentScores <- rxFeaturize(data = CustomerReviews,  
                                mlTransforms = getSentiment(vars = 
list(SentimentScore = "Review")))

 # Let's translate the score to something more meaningful 
 sentimentScores$PredictedRating <- ifelse(sentimentScores$SentimentScore > 
0.6,  
                                           "AWESOMENESS", "BLAH") 

 # Let's look at the results 
 sentimentScores 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


kernel: Kernel
Article • 02/28/2023

Kernels supported for use in computing inner products.

The numeric value for a in the term (a*<x,y> + b)^d. If not specified, (1/(number of
features)  is used.

The numeric value for b in the term (a*<x,y> + b)^d .

The integer value for d in the term (a*<x,y> + b)^d .

The numeric value for gamma in the expression tanh(gamma*<x,y> + c ). If not specified,
1/(number of features)  is used.

Usage

  linearKernel(...) 

  polynomialKernel(a = NULL, bias = 0, deg = 3, ...) 

  rbfKernel(gamma = NULL, ...) 

  sigmoidKernel(gamma = NULL, coef0 = 0, ...) 

Arguments

a

bias

deg

gamma

coef0



The numeric value for c in the expression tanh(gamma*<x,y> + c ).

Additional arguments passed to the Microsoft ML compute engine.

These helper functions specify the kernel that is used for training in relevant algorithms.
The kernels that are supported:

linearKernel : linear kernel.

rbfKernel : radial basis function kernel.

polynomialKernel : polynomial kernel.

sigmoidKernel : sigmoid kernel.

A character string defining the kernel.

Microsoft Corporation Microsoft Technical Support

Estimating the Support of a High-Dimensional Distribution

New Support Vector Algorithms

rxOneClassSvm

...

Details

Value

Author(s)

References

See also

Examples

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://research.microsoft.com/pubs/69731/tr-99-87.pdf
http://www.stat.purdue.edu/~yuzhu/stat598m3/Papers/NewSVM.pdf


 # Simulate some simple data 
 set.seed(7) 
 numRows <- 200 
 normalData <- data.frame(day = 1:numRows) 
 normalData$pageViews = runif(numRows, min = 10, max = 1000) + .5 * 
normalData$day 
 testData <- data.frame(day = 1:numRows) 
 # The test data has outliers above 1000 
 testData$pageViews = runif(numRows, min = 10, max = 1400) + .5 * 
testData$day 

 train <- function(kernelFunction, args=NULL) { 
     model <- rxOneClassSvm(formula = ~pageViews + day, data = normalData, 
     kernel = kernelFunction(args)) 
     scores <- rxPredict(model, data = testData, writeModelVars = TRUE) 
     scores$groups = scores$Score > 0 
     scores 
 } 
 display <- function(scores) { 
     print(sum(scores$groups)) 
     rxLinePlot(pageViews ~ day, data = scores, groups = groups, type = "p", 
      symbolColors = c("red", "blue")) 
 } 
 scores <- list() 
 scores$rbfKernel <- train(rbfKernel) 
 scores$linearKernel <- train(linearKernel) 
 scores$polynomialKernel <- train(polynomialKernel, (a = .2)) 
 scores$sigmoidKernel <- train(sigmoidKernel) 
 display(scores$rbfKernel) 
 display(scores$linearKernel) 
 display(scores$polynomialKernel)
 display(scores$sigmoidKernel) 



loadImage: Machine Learning Load
Image Transform
Article • 02/28/2023

Loads image data.

A named list of character vectors of input variable names and the name of the output
variable. Note that the input variables must be of the same type. For one-to-one
mappings between input and output variables, a named character vector can be used.

loadImage  loads images from paths.

A maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

Usage

  loadImage(vars) 

Arguments

vars

Details

Value

Author(s)

Examples

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


 train <- data.frame(Path = 
c(system.file("help/figures/RevolutionAnalyticslogo.png", package = 
"MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE) 

 # Loads the images from variable Path, resizes the images to 1x1 pixels and 
trains a neural net. 
 model <- rxNeuralNet( 
     Label ~ Features, 
     data = train, 
     mlTransforms = list( 
         loadImage(vars = list(Features = "Path")), 
         resizeImage(vars = "Features", width = 1, height = 1, resizing = 
"Aniso"), 
         extractPixels(vars = "Features") 
         ), 
     mlTransformVars = "Path", 
     numHiddenNodes = 1, 
     numIterations = 1) 

 # Featurizes the images from variable Path using the default model, and 
trains a linear model on the result. 
 model <- rxFastLinear( 
     Label ~ Features, 
     data = train, 
     mlTransforms = list( 
         loadImage(vars = list(Features = "Path")), 
         resizeImage(vars = "Features", width = 224, height = 224), # If 
dnnModel == "AlexNet", the image has to be resized to 227x227. 
         extractPixels(vars = "Features"), 
         featurizeImage(var = "Features") 
         ), 
     mlTransformVars = "Path") 



logisticRegression: logisticRegression
Article • 02/28/2023

Creates a list containing the function name and arguments to train a logistic regression
model with rxEnsemble.

The L2 regularization weight. Its value must be greater than or equal to 0  and the
default value is set to 1 .

The L1 regularization weight. Its value must be greater than or equal to 0  and the
default value is set to 1 .

Threshold value for optimizer convergence. If the improvement between iterations is
less than the threshold, the algorithm stops and returns the current model. Smaller
values are slower, but more accurate. The default value is 1e-07 .

Memory size for L-BFGS, specifying the number of past positions and gradients to store
for the computation of the next step. This optimization parameter limits the amount of

Usage

  logisticRegression(l2Weight = 1, l1Weight = 1, optTol = 1e-07, 
    memorySize = 20, initWtsScale = 0, maxIterations = 2147483647, 
    showTrainingStats = FALSE, sgdInitTol = 0, trainThreads = NULL, 
    denseOptimizer = FALSE, ...) 
  

Arguments

l2Weight

l1Weight

optTol

memorySize



memory that is used to compute the magnitude and direction of the next step. When
you specify less memory, training is faster but less accurate. Must be greater than or
equal to 1  and the default value is 20 .

Sets the initial weights diameter that specifies the range from which values are drawn
for the initial weights. These weights are initialized randomly from within this range. For
example, if the diameter is specified to be d , then the weights are uniformly distributed
between -d/2  and d/2 . The default value is 0 , which specifies that all the weights are
initialized to 0 .

Sets the maximum number of iterations. After this number of steps, the algorithm stops
even if it has not satisfied convergence criteria.

Specify TRUE  to show the statistics of training data and the trained model; otherwise,
FALSE . The default value is FALSE . For additional information about model statistics, see
summary.mlModel.

Set to a number greater than 0 to use Stochastic Gradient Descent (SGD) to find the
initial parameters. A non-zero value set specifies the tolerance SGD uses to determine
convergence. The default value is 0  specifying that SGD is not used.

The number of threads to use in training the model. This should be set to the number of
cores on the machine. Note that L-BFGS multi-threading attempts to load dataset into
memory. In case of out-of-memory issues, set trainThreads  to 1  to turn off multi-
threading. If NULL  the number of threads to use is determined internally. The default
value is NULL .

initWtsScale

maxIterations

showTrainingStats

sgdInitTol

trainThreads

denseOptimizer



If TRUE , forces densification of the internal optimization vectors. If FALSE , enables the
logistic regression optimizer use sparse or dense internal states as it finds appropriate.
Setting denseOptimizer  to TRUE  requires the internal optimizer to use a dense internal
state, which may help alleviate load on the garbage collector for some varieties of larger
problems.

Additional arguments.

...



loss functions: Classification and
Regression Loss functions
Article • 02/28/2023

The loss functions for classification and regression.

Specifies the numeric value of beta (dilation). The default value is 1.

Specifies the numeric margin value. The default value is 1.

Specifies the numeric value of the smoothing constant. The default value is 1.

hidden argument.

Usage

  expLoss(beta = 1, ...) 

  hingeLoss(margin = 1, ...) 

  logLoss(...) 

  smoothHingeLoss(smoothingConst = 1, ...) 

  poissonLoss(...) 

  squaredLoss(...) 

Arguments

beta

margin

smoothingConst

...



A loss function measures the discrepancy between the prediction of a machine learning
algorithm and the supervised output and represents the cost of being wrong.

The classification loss functions supported are:

logLoss

expLoss

hingeLoss

smoothHingeLoss

The regression loss functions supported are:

poissonLoss

squaredLoss .

A character string defining the loss function.

Microsoft Corporation Microsoft Technical Support

rxFastLinear, rxNeuralNet

Details

Value

Author(s)

See also

Examples

 train <- function(lossFunction) { 

     result <- rxFastLinear(isCase ~ age + parity + education + spontaneous 
+ induced, 
                   transforms = list(isCase = case == 1), lossFunction = 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


lossFunction, 
                   data = infert,
                   type = "binary") 
     coef(result)[["age"]] 
 } 

 age <- list() 
 age$LogLoss <- train(logLoss()) 
 age$LogLossHinge <- train(hingeLoss()) 
 age$LogLossSmoothHinge <- train(smoothHingeLoss()) 
 age 



minCount: Feature Selection Count
Mode
Article • 02/28/2023

Count mode of feature selection used in the feature selection transform selectFeatures.

The threshold for count-based feature selection. A feature is selected if and only if at
least count  examples have non-default value in the feature. The default value is 1.

Additional arguments to be passed directly to the Microsoft Compute Engine.

When using the count mode in feature selection transform, a feature is selected if the
number of examples have at least the specified count examples of non-default values in
the feature. The count mode feature selection transform is useful when applied together
with a categorical hash transform (see also, categoricalHash. The count feature selection
can remove those features generated by hash transform that have no data in the
examples.

A character string defining the count mode.

Usage

  minCount(count = 1, ...) 

Arguments

count

...

Details

Value



Microsoft Corporation Microsoft Technical Support

mutualInformation selectFeatures

Author(s)

See also

Examples

 trainReviews <- data.frame(review = c(  
         "This is great", 
         "I hate it", 
         "Love it", 
         "Do not like it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I kind of hate it", 
         "I do like it", 
         "I really hate it", 
         "It is very good", 
         "I hate it a bunch", 
         "I love it a bunch", 
         "I hate it", 
         "I like it very much", 
         "I hate it very much.", 
         "I really do love it", 
         "I really do hate it", 
         "Love it!", 
         "Hate it!", 
         "I love it", 
         "I hate it", 
         "I love it", 
         "I hate it", 
         "I love it"), 
      like = c(TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,  
         FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE 
     ) 

     testReviews <- data.frame(review = c( 
         "This is great", 
         "I hate it", 
         "Love it", 
         "Really like it", 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


         "I hate it", 
         "I like it a lot", 
         "I love it", 
         "I do like it", 
         "I really hate it", 
         "I love it"), stringsAsFactors = FALSE) 

 # Use a categorical hash transform which generated 128 features. 
 outModel1 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  
     mlTransforms = list(categoricalHash(vars = c(reviewCatHash = "review"), 
hashBits = 7))) 
 summary(outModel1) 

 # Apply a categorical hash transform and a count feature selection 
transform 
 # which selects only those hash features that has value. 
 outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  
     mlTransforms = list( 
   categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),  
   selectFeatures("reviewCatHash", mode = minCount()))) 
 summary(outModel2) 

 # Apply a categorical hash transform and a mutual information feature 
selection transform 
 # which selects those features appearing with at least a count of 5. 
 outModel3 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  
     mlTransforms = list( 
   categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),  
   selectFeatures("reviewCatHash", mode = minCount(count = 5)))) 
 summary(outModel3) 



summary.mlModel: Summary of a
Microsoft R Machine Learning model.
Article • 02/28/2023

Summary of a Microsoft R Machine Learning model.

A model object returned from a MicrosoftML analysis.

Specifies the count of top coefficients to show in the summary for linear models such as
rxLogisticRegression and rxFastLinear. The bias appears first, followed by other weights,
sorted by their absolute values in descending order. If set to NULL , all non-zero
coefficients are shown. Otherwise, only the first topcoefficients are shown.

Additional arguments to be passed to the summary method.

Provides summary information about the original function call, the 
data set used to train the model, and statistics for coefficients in the model.

Usage

 ## S3 method for class `mlModel': 
summary  (object, top = 20, ...) 

Arguments

object

top

...

Details



The summary  method of the MicrosoftML analysis objects returns a list that includes the
original function call and the underlying parameters used. The coef  method returns a
named vector of weights, processing information from the model object.

For rxLogisticRegression, the following statistics may also present in the summary when
showTrainingStats  is set to TRUE .

The size, in terms of row count, of the data set used to train the model.

The model deviance is given by -2 * ln(L)  where L  is the likelihood of obtaining the
observations with all features incorporated in the model.

The null deviance is given by -2 * ln(L0)  where L0  is the likelihood of obtaining the
observations with no effect from the features. The null model includes the bias if there is
one in the model.

The AIC (Akaike Information Criterion) is defined as 2 * k ``+ deviance , where k  is the
number of coefficients of the model. The bias counts as one of the coefficients. The AIC
is a measure of the relative quality of the model. It deals with the trade-off between the
goodness of fit of the model (measured by deviance) and the complexity of the model
(measured by number of coefficients).

This is a data frame containing the statistics for each coefficient in the model. For each
coefficient, the following statistics are shown. The bias appears in the first row, and the
remaining coefficients in the ascending order of p-value.

EstimateThe estimated coefficient value of the model.

Value

training.size

deviance

null.deviance

aic

coefficients.stats



Std ErrorThis is the square root of the large-sample variance of the estimate of the
coefficient.
z-ScoreWe can test against the null hypothesis, which states that the coefficient
should be zero, concerning the significance of the coefficient by calculating the
ratio of its estimate and its standard error. Under the null hypothesis, if there is no
regularization applied, the estimate of the concerning coefficient follows a normal
distribution with mean 0 and a standard deviation equal to the standard error
computed above. The z-score outputs the ratio between the estimate of a
coefficient and the standard error of the coefficient.
Pr(>|z|) This is the corresponding p-value for the two-sided test of the z-score.
Based on the significance level, a significance indicator is appended to the p-value.
If F(x)  is the CDF of the standard normal distribution N(0, 1) , then P(>|z|) = 2 -
``2 * F(|z|) .

Microsoft Corporation Microsoft Technical Support

rxFastTrees, rxFastForest, rxFastLinear, rxOneClassSvm, rxNeuralNet, rxLogisticRegression.

Author(s)

See also

Examples

 # Estimate a logistic regression model 
 logitModel <- rxLogisticRegression(isCase ~ age + parity + education + 
spontaneous + induced, 
                   transforms = list(isCase = case == 1), 
                   data = infert)
 # Print a summary of the model 
 summary(logitModel) 

 # Score to a data frame 
 scoreDF <- rxPredict(logitModel, data = infert,  
     extraVarsToWrite = "isCase")

 # Compute and plot the Radio Operator Curve and AUC 
 roc1 <- rxRoc(actualVarName = "isCase", predVarNames = "Probability", data 
= scoreDF)  
 plot(roc1) 
 rxAuc(roc1) 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


 
############################################################################
########### 
 # Multi-class logistic regression   
 testObs <- rnorm(nrow(iris)) > 0
 testIris <- iris[testObs,] 
 trainIris <- iris[!testObs,] 
 multiLogit <- rxLogisticRegression( 
     formula = Species~Sepal.Length + Sepal.Width + Petal.Length + 
Petal.Width, 
     type = "multiClass", data = trainIris) 

 # Score the model 
 scoreMultiDF <- rxPredict(multiLogit, data = testIris,  
     extraVarsToWrite = "Species")     
 # Print the first rows of the data frame with scores 
 head(scoreMultiDF) 
 # Look at confusion matrix 
 table(scoreMultiDF$Species, scoreMultiDF$PredictedLabel) 

 # Look at the observations with incorrect predictions 
 badPrediction = scoreMultiDF$Species != scoreMultiDF$PredictedLabel 
 scoreMultiDF[badPrediction,] 



mutualInformation: Feature Selection
Mutual Information Mode
Article • 02/28/2023

Mutual information mode of feature selection used in the feature selection transform
selectFeatures.

If the number of features to keep is specified to be n , the transform picks the n  features
that have the highest mutual information with the dependent variable. The default value
is 1000.

Maximum number of bins for numerical values. Powers of 2 are recommended. The
default value is 256.

Additional arguments to be passed directly to the Microsoft Compute Engine.

The mutual information of two random variables X  and Y  is a measure of the mutual
dependence between the variables. Formally, the mutual information can be written as:

I(X;Y) = E[log(p(x,y)) - log(p(x)) - log(p(y))]

Usage

  mutualInformation(numFeaturesToKeep = 1000, numBins = 256, ...) 

Arguments

numFeaturesToKeep

numBins

...

Details



where the expectation is taken over the joint distribution of X  and Y . Here p(x,y)  is the
joint probability density function of X  and Y , p(x)  and p(y)  are the marginal
probability density functions of X  and Y  respectively. In general, a higher mutual
information between the dependent variable (or label) and an independent variable (or
feature) means that the label has higher mutual dependence over that feature.

The mutual information feature selection mode selects the features based on the mutual
information. It keeps the top numFeaturesToKeep  features with the largest mutual
information with the label.

a character string defining the mode.

Microsoft Corporation Microsoft Technical Support

Wikipedia: Mutual Information

minCount selectFeatures

Value

Author(s)

References

See also

Examples

 trainReviews <- data.frame(review = c(  
         "This is great", 
         "I hate it", 
         "Love it", 
         "Do not like it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I kind of hate it", 
         "I do like it", 
         "I really hate it", 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://en.wikipedia.org/wiki/Mutual_information


         "It is very good", 
         "I hate it a bunch", 
         "I love it a bunch", 
         "I hate it", 
         "I like it very much", 
         "I hate it very much.", 
         "I really do love it", 
         "I really do hate it", 
         "Love it!", 
         "Hate it!", 
         "I love it", 
         "I hate it", 
         "I love it", 
         "I hate it", 
         "I love it"), 
      like = c(TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,  
         FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE 
     ) 

     testReviews <- data.frame(review = c( 
         "This is great", 
         "I hate it", 
         "Love it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I love it", 
         "I do like it", 
         "I really hate it", 
         "I love it"), stringsAsFactors = FALSE) 

 # Use a categorical hash transform which generated 128 features. 
 outModel1 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  
     mlTransforms = list(categoricalHash(vars = c(reviewCatHash = "review"), 
hashBits = 7))) 
 summary(outModel1) 

 # Apply a categorical hash transform and a count feature selection 
transform 
 # which selects only those hash features that has value. 
 outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  
     mlTransforms = list( 
   categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),  
   selectFeatures("reviewCatHash", mode = minCount()))) 
 summary(outModel2) 

 # Apply a categorical hash transform and a mutual information feature 
selection transform 
 # which selects those features appearing with at least a count of 5. 
 outModel3 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  



     mlTransforms = list( 
   categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),  
   selectFeatures("reviewCatHash", mode = minCount(count = 5)))) 
 summary(outModel3) 



neuralNet: neuralNet
Article • 03/01/2023

Creates a list containing the function name and arguments to train a NeuralNet model
with rxEnsemble.

The default number of hidden nodes in the neural net. The default value is 100.

The number of iterations on the full training set. The default value is 100.

A list specifying either the sgd  or adaptive  optimization algorithm. This list can be
created using sgd or adaDeltaSgd. The default value is sgd .

The Net# definition of the structure of the neural network. For more information about
the Net# language, see Reference Guide

Usage

  neuralNet(numHiddenNodes = 100, numIterations = 100, optimizer = sgd(), 
    netDefinition = NULL, initWtsDiameter = 0.1, maxNorm = 0, 
    acceleration = c("sse", "gpu"), miniBatchSize = 1, ...) 
  

Arguments

numHiddenNodes

numIterations

optimizer

netDefinition

initWtsDiameter

https://learn.microsoft.com/en-us/azure/machine-learning/classic/azure-ml-netsharp-reference-guide


Sets the initial weights diameter that specifies the range from which values are drawn
for the initial learning weights. The weights are initialized randomly from within this
range. The default value is 0.1.

Specifies an upper bound to constrain the norm of the incoming weight vector at each
hidden unit. This can be important in maxout neural networks and in cases where
training produces unbounded weights.

Specifies the type of hardware acceleration to use. Possible values are "sse" and "gpu".
For GPU acceleration, it is recommended to use a miniBatchSize greater than one. If you
want to use the GPU acceleration, there are additional manual setup steps are required:

Download and install NVidia CUDA Toolkit 6.5 (CUDA Toolkit ).
Download and install NVidia cuDNN v2 Library (cudnn Library ).
Find the libs directory of the MicrosoftRML package by calling
system.file("mxLibs/x64", package = "MicrosoftML") .
Copy cublas64_65.dll, cudart64_65.dll and cusparse64_65.dll from the CUDA Toolkit
6.5 into the libs directory of the MicrosoftML package.
Copy cudnn64_65.dll from the cuDNN v2 Library into the libs directory of the
MicrosoftML package.

Sets the mini-batch size. Recommended values are between 1 and 256. This parameter
is only used when the acceleration is GPU. Setting this parameter to a higher value
improves the speed of training, but it might negatively affect the accuracy. The default
value is 1.

Additional arguments.

maxNorm

acceleration

miniBatchSize

...

https://developer.nvidia.com/cuda-toolkit-65
https://developer.nvidia.com/rdp/cudnn-archive


ngram: Machine Learning Feature
Extractors
Article • 02/28/2023

Feature Extractors that can be used with mtText.

An integer that specifies the maximum number of tokens to take when constructing an
n-gram. The default value is 1.

An integer that specifies the maximum number of tokens to skip when constructing an
n-gram. If the value specified as skip length is k , then n-grams can contain up to k skips
(not necessarily consecutive). For example, if k=2 , then the 3-grams extracted from the
text "the sky is blue today" are: "the sky is", "the sky blue", "the sky today", "the is blue",
"the is today" and "the blue today". The default value is 0.

An integer that specifies the maximum number of categories to include in the
dictionary. The default value is 10000000.

Usage

  ngramCount(ngramLength = 1, skipLength = 0, maxNumTerms = 1e+07, 
    weighting = "tf") 

  ngramHash(ngramLength = 1, skipLength = 0, hashBits = 16, 
    seed = 314489979, ordered = TRUE, invertHash = 0) 

Arguments

ngramLength

skipLength

maxNumTerms

weighting



A character string that specifies the weighting criteria:

"tf" : to use term frequency.
"idf" : to use inverse document frequency.
"tfidf" : to use both term frequency and inverse document frequency.

integer value. Number of bits to hash into. Must be between 1 and 30, inclusive.

integer value. Hashing seed.

TRUE  to include the position of each term in the hash. Otherwise, FALSE . The default
value is TRUE .

An integer specifying the limit on the number of keys that can be used to generate the
slot name. 0  means no invert hashing; -1  means no limit. While a zero value gives
better performance, a non-zero value is needed to get meaningful coefficient names.

ngramCount  allows defining arguments for count-based feature extraction. It accepts
following options: ngramLength , skipLength , maxNumTerms  and weighting .

ngramHash  allows defining arguments for hashing-based feature extraction. It accepts
the following options: ngramLength , skipLength , hashBits , seed , ordered  and
invertHash .

A character string defining the transform.

hashBits

seed

ordered

invertHash

Details

Value

Author(s)



Microsoft Corporation Microsoft Technical Support

featurizeText.

See also

Examples

  myData <- data.frame(opinion = c( 
     "I love it!", 
     "I love it!", 
     "Love it!", 
     "I love it a lot!", 
     "Really love it!", 
     "I hate it", 
     "I hate it", 
     "I hate it.", 
     "Hate it", 
     "Hate"), 
     like = rep(c(TRUE, FALSE), each = 5), 
     stringsAsFactors = FALSE) 

 outModel1 <- rxLogisticRegression(like~opinionCount, data = myData,  
     mlTransforms = list(featurizeText(vars = c(opinionCount = "opinion"),  
         wordFeatureExtractor = ngramHash(invertHash = -1, hashBits = 3))))  
 summary(outModel1)    

 outModel2 <- rxLogisticRegression(like~opinionCount, data = myData,  
     mlTransforms = list(featurizeText(vars = c(opinionCount = "opinion"),  
         wordFeatureExtractor = ngramCount(maxNumTerms = 5, weighting = 
"tf"))))          
 summary(outModel2) 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


oneClassSvm: oneClassSvm
Article • 02/28/2023

Creates a list containing the function name and arguments to train a OneClassSvm
model with rxEnsemble.

The maximal size in MB of the cache that stores the training data. Increase this for large
training sets. The default value is 100 MB.

A character string representing the kernel used for computing inner products. For more
information, see maKernel. The following choices are available:

rbfKernel() : Radial basis function kernel. Its parameter representsgamma  in the
term exp(-gamma|x-y|^2 . If not specified, it defaults to 1  divided by the number of
features used. For example, rbfKernel(gamma = .1) . This is the default value.
linearKernel() : Linear kernel.
polynomialKernel() : Polynomial kernel with parameter names a , bias , and deg  in
the term (a*<x,y> + bias)^deg . The bias , defaults to 0 . The degree, deg , defaults
to 3 . If a  is not specified, it is set to 1  divided by the number of features. For
example, maKernelPoynomial(bias = 0, deg = `` 3) .
sigmoidKernel() : Sigmoid kernel with parameter names gamma  and coef0  in the
term tanh(gamma*<x,y> + coef0) . gamma , defaults to 1  divided by the number of
features. The parameter coef0  defaults to 0 . For example, sigmoidKernel(gamma =
.1, coef0 = 0) .

Usage

  oneClassSvm(cacheSize = 100, kernel = rbfKernel(), epsilon = 0.001, 
    nu = 0.1, shrink = TRUE, ...)
  

Arguments

cacheSize

kernel



The threshold for optimizer convergence. If the improvement between iterations is less
than the threshold, the algorithm stops and returns the current model. The value must
be greater than or equal to .Machine$double.eps . The default value is 0.001.

The trade-off between the fraction of outliers and the number of support vectors
(represented by the Greek letter nu). Must be between 0 and 1, typically between 0.1
and 0.5. The default value is 0.1.

Uses the shrinking heuristic if TRUE . In this case, some samples will be "shrunk" during
the training procedure, which may speed up training. The default value is TRUE .

Additional arguments to be passed directly to the Microsoft Compute Engine.

epsilon

nu

shrink

...



maOptimizer: Optimization Algorithms
Article • 02/28/2023

Specifies Optimization Algorithms for Neural Net.

Specifies the decay rate applied to gradients when calculating the step in the ADADELTA
adaptive optimization algorithm. This rate is used to ensure that the learning rate
continues to make progress by giving smaller weights to remote gradients in the
calculation of the step size. Mathematically, it replaces the mean square of the gradients
with an exponentially decaying average of the squared gradients in the denominator of
the update rule. The value assigned must be in the range (0,1).

Specifies a conditioning constant for the ADADELTA adaptive optimization algorithm
that is used to condition the step size in regions where the exponentially decaying
average of the squared gradients is small. The value assigned must be in the range (0,1).

Specifies the size of the step taken in the direction of the negative gradient for each
iteration of the learning process. The default value is = 0.001 .

Usage

  adaDeltaSgd(decay = 0.95, conditioningConst = 1e-06) 

  sgd(learningRate = 0.001, momentum = 0, nag = FALSE, weightDecay = 0, 
    lRateRedRatio = 1, lRateRedFreq = 100, lRateRedErrorRatio = 0) 

Arguments

decay

conditioningConst

learningRate

momentum



Specifies weights for each dimension that control the contribution of the previous step
to the size of the next step during training. This modifies the learningRate  to speed up
training. The value must be >= 0  and < 1 .

If TRUE , Nesterov's Accelerated Gradient Descent is used. This method reduces the
oracle complexity of gradient descent and is optimal for smooth convex optimization.

Specifies the scaling weights for the step size. After each weight update, the weights in
the network are scaled by (1 - ``learningRate * weightDecay) . The value must be >= 0
and < 1 .

Specifies the learning rate reduction ratio: the ratio by which the learning rate is reduced
during training. Reducing the learning rate can avoid local minima. The value must be >
0  and <= 1 .

A value of 1.0  means no reduction.
A value of 0.9  means the learning rate is reduced to 90 its current value. 
The reduction can be triggered either periodically, to occur after a fixed number of
iterations, or when a certain error criteria concerning increases or decreases in the
loss function are satisfied.
To trigger a periodic rate reduction, specify the frequency by setting the number of
iterations between reductions with the lRateRedFreq  argument.
To trigger rate reduction based on an error criterion, specify a number in
lRateRedErrorRatio .

Sets the learning rate reduction frequency by specifying number of iterations between
reductions. For example, if 10  is specified, the learning rate is reduced once every 10
iterations.

nag

weightDecay

lRateRedRatio

lRateRedFreq

lRateRedErrorRatio



Specifies the learning rate reduction error criterion. If set to 0 , the learning rate is
reduced if the loss increases between iterations. If set to a fractional value greater
than0 , the learning rate is reduced if the loss decreases by less than that fraction of its
previous value.

These functions can be used for the optimizer  argument in rxNeuralNet.

The sgd  function specifies Stochastic Gradient Descent. maOptimizer

The adaDeltaSgd  function specifies the AdaDelta gradient descent, described in the 2012
paper "ADADELTA: An Adaptive Learning Rate Method" by Matthew D.Zeiler.

A character string that contains the specification for the optimization algorithm.

Microsoft Corporation Microsoft Technical Support

ADADELTA: An Adaptive Learning Rate Method

rxNeuralNet,

Details

Value

Author(s)

References

See also

Examples

 myIris = iris 
 myIris$Setosa <- iris$Species == "setosa" 

 res1 <- rxNeuralNet(formula = Setosa~Sepal.Length + Sepal.Width + 
Petal.Width, 
         data = myIris,  

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://arxiv.org/abs/1212.5701


         optimizer = sgd(learningRate = .002)) 

 res2 <- rxNeuralNet(formula = Setosa~Sepal.Length + Sepal.Width + 
Petal.Width, 
         data = myIris,  
         optimizer = adaDeltaSgd(decay = .9, conditioningConst = 1e-05)) 



resizeImage: Machine Learning Resize
Image Transform
Article • 02/28/2023

Resizes an image to a specified dimension using a specified resizing method.

A named list of character vectors of input variable names and the name of the output
variable. Note that the input variables must be of the same type. For one-to-one
mappings between input and output variables, a named character vector can be used.

Specifies the width of the scaled image in pixels. The default value is 224.

Specifies the height of the scaled image in pixels. The default value is 224.

Specified the resizing method to use. Note that all methods are using bilinear
interpolation. The options are:

"IsoPad" : The image is resized such that the aspect ratio is preserved. If needed,
the image is padded with black to fit the new width or height.

Usage

  resizeImage(vars, width = 224, height = 224, resizingOption = "IsoCrop") 

Arguments

vars

width

height

resizingOption



"IsoCrop" : The image is resized such that the aspect ratio is preserved. If needed,
the image is cropped to fit the new width or height.
"Aniso" : The image is stretched to the new width and height, without preserving
the aspect ratio. The default value is "IsoPad" .

resizeImage  resizes an image to the specified height and width using a specified
resizing method. The input variables to this transform must be images, typically the
result of the loadImage  transform.

A maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

Details

Value

Author(s)

Examples

 train <- data.frame(Path = 
c(system.file("help/figures/RevolutionAnalyticslogo.png", package = 
"MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE) 

 # Loads the images from variable Path, resizes the images to 1x1 pixels and 
trains a neural net. 
 model <- rxNeuralNet( 
     Label ~ Features, 
     data = train, 
     mlTransforms = list( 
         loadImage(vars = list(Features = "Path")), 
         resizeImage(vars = "Features", width = 1, height = 1, resizing = 
"Aniso"), 
         extractPixels(vars = "Features") 
         ), 
     mlTransformVars = "Path", 
     numHiddenNodes = 1, 
     numIterations = 1) 

 # Featurizes the images from variable Path using the default model, and 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


trains a linear model on the result. 
 model <- rxFastLinear( 
     Label ~ Features, 
     data = train, 
     mlTransforms = list( 
         loadImage(vars = list(Features = "Path")), 
         resizeImage(vars = "Features", width = 224, height = 224), # If 
dnnModel == "AlexNet", the image has to be resized to 227x227. 
         extractPixels(vars = "Features"), 
         featurizeImage(var = "Features") 
         ), 
     mlTransformVars = "Path") 



rxEnsemble: Ensembles
Article • 02/28/2023

Train an ensemble of models

The formula as described in rxFormula. Interaction terms and F()  are not currently
supported in the MicrosoftML.

A data source object or a character string specifying a .xdffile or a data frame object.
Alternatively, it can be a list of data sources indicating each model should be trained
using one of the data sources in the list. In this case, the length of the data list must be
equal to modelCount .

A list of trainers with their arguments. The trainers are created by using fastTrees,
fastForest, fastLinear, logisticRegression or neuralNet.

Usage

  rxEnsemble(formula = NULL, data, trainers, type = c("binary", 
"regression", 
    "multiClass", "anomaly"), randomSeed = NULL, 
    modelCount = length(trainers), replace = FALSE, sampRate = NULL, 
    splitData = FALSE, combineMethod = c("median", "average", "vote"), 
    maxCalibration = 1e+05, mlTransforms = NULL, mlTransformVars = NULL, 
    rowSelection = NULL, transforms = NULL, transformObjects = NULL, 
    transformFunc = NULL, transformVars = NULL, transformPackages = NULL, 
    transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 1, 
    computeContext = rxGetOption("computeContext"), ...) 

Arguments

formula

data

trainers



A character string that specifies the type of ensemble: "binary"  for Binary Classification
or "regression"  for Regression.

Specifies the random seed. The default value is NULL .

Specifies the number of models to train. If this number is greater than the length of the
trainers list, the trainers list is duplicated to match modelCount .

A logical value specifying if the sampling of observations should be done with or
without replacement. The default value is /codeFALSE.

a scalar of positive value specifying the percentage of observations to sample for each
trainer. The default is 1.0 for sampling with replacement (i.e., replace=TRUE) and 0.632
for sampling without replacement (i.e., replace=FALSE). When splitData is TRUE, the
default of sampRate is 1.0 (no sampling is done before splitting).

A logical value specifying whether or not to train the base models on non-overlapping
partitions. The default is FALSE . It is available only for RxSpark  compute context and
ignored for others.

Specifies the method used to combine the models:

median  to compute the median of the individual model outputs,
average  to compute the average of the individual model outputs and
vote  to compute (pos-neg) / the total number of models, where 'pos' is the
number of positive outputs and 'neg' is the number of negative outputs.

type

randomSeed

modelCount

replace

sampRate

splitData

combineMethod



Specifies the maximum number of examples to use for calibration. This argument is
ignored for all tasks other than binary classification.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or NULL  if no transforms are to be performed. Transforms that require an additional pass
over the data (such as featurizeText, categorical) are not allowed. These transformations
are performed after any specified R transformations. The default value is NULL .

Specifies a character vector of variable names to be used in mlTransforms  or NULL  if
none are to be used. The default value is NULL .

Specifies the rows (observations) from the data set that are to be used by the model
with the name of a logical variable from the data set (in quotes) or with a logical
expression using variables in the data set. For example, rowSelection = "old"  will only
use observations in which the value of the variable old  is TRUE . rowSelection = (age >
20) & (age < 65) & (log(income) > 10)  only uses observations in which the value of the
age  variable is between 20 and 65 and the value of the log  of the income  variable is
greater than 10. The row selection is performed after processing any data
transformations (see the arguments transforms  or transformFunc ). As with all
expressions, rowSelection  can be defined outside of the function call using the
expression function.

An expression of the form list(name = expression, ``...)  that represents the first
round of variable transformations. As with all expressions, transforms  (or rowSelection )
can be defined outside of the function call using the expression function. The default
value is NULL .

maxCalibration

mlTransforms

mlTransformVars

rowSelection

transforms

transformObjects



A named list that contains objects that can be referenced by transforms ,
transformsFunc , and rowSelection . The default value is NULL .

The variable transformation function. See rxTransform for details. The default value is
NULL .

A character vector of input data set variables needed for the transformation function.
See rxTransform for details. The default value is NULL .

A character vector specifying additional R packages (outside of those specified in
rxGetOption("transformPackages") ) to be made available and preloaded for use in
variable transformation functions. For example, those explicitly defined in RevoScaleR
functions via their transforms  and transformFunc  arguments or those defined implicitly
via their formula  or rowSelection  arguments. The transformPackages  argument may
also be NULL , indicating that no packages outside rxGetOption("transformPackages")
are preloaded. The default value is NULL .

A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL , a new
"hash" environment with parent baseenv()  is used instead. The default value is NULL .

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

transformFunc

transformVars

transformPackages

transformEnvir

blocksPerRead

reportProgress



1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information. The default value is 1 .

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxSpark compute contexts are supported. When
RxSpark is specified, the training of the models is done in a distributed way, and the
ensembling is done locally. Note that the compute context cannot be non-waiting.

Additional arguments to be passed directly to the Microsoft Compute Engine.

/coderxEnsemble is a function that trains a number of models of various kinds to obtain
better predictive performance than could be obtained from a single model.

A rxEnsemble  object with the trained ensemble model.

verbose

computeContext

...

Details

Value

Examples

 # Create an ensemble of regression rxFastTrees models 

 # use xdf data source 
 dataFile <- file.path(rxGetOption("sampleDataDir"), "claims4blocks.xdf") 
 rxGetInfo(dataFile, getVarInfo = TRUE, getBlockSizes = TRUE) 
 form <- cost ~ age + type + number 



 rxSetComputeContext("localpar") 
 rxGetComputeContext() 

 # build an ensemble model that contains three 'rxFastTrees' models with 
different parameters 
 ensemble <- rxEnsemble( 
     formula = form, 
     data = dataFile, 
     type = "regression", 
     trainers = list(fastTrees(), fastTrees(numTrees = 60), 
fastTrees(learningRate = 0.1)), #a list of trainers with their arguments. 
     replace = TRUE # Indicates using a bootstrap sample for each trainer 
     ) 

 # use text data source 
 colInfo <- list(DayOfWeek = list(type = "factor", levels = c("Monday", 
"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"))) 

 source <- system.file("SampleData/AirlineDemoSmall.csv", package = 
"RevoScaleR") 
 data <- RxTextData(source, missingValueString = "M", colInfo = colInfo) 

 # When 'distributed' is TRUE distributed data source is created 
 distributed <- FALSE 
 if (distributed) { 
     bigDataDirRoot <- "/share" 
     inputDir <- file.path(bigDataDirRoot, "AirlineDemoSmall") 
     rxHadoopMakeDir(inputDir) 
     rxHadoopCopyFromLocal(source, inputDir) 
     hdfsFS <- RxHdfsFileSystem()
     data <- RxTextData(file = inputDir, missingValueString = "M", colInfo = 
colInfo, fileSystem = hdfsFS) 
 } 

 # When 'distributed' is TRUE training is distributed 
 if (distributed) { 
     cc <- rxSetComputeContext(RxSpark()) 
 } else { 
     cc <- rxGetComputeContext() 
 } 

 ensemble <- rxEnsemble( 
     formula = ArrDelay ~ DayOfWeek, 
     data = data, 
     type = "regression", 
     trainers = list(fastTrees(), fastTrees(numTrees = 60), 
fastTrees(learningRate = 0.1)), # The ensemble will contain three 
'rxFastTrees' models 
     replace = TRUE # Indicates using a bootstrap sample for each trainer 
     ) 

 # Change the compute context back to previous for scoring 
 rxSetComputeContext(cc) 



 # Put score and model variables in data frame 
 scores <- rxPredict(ensemble, data = data, writeModelVars = TRUE) 

 # Plot actual versus predicted values with smoothed line 
 rxLinePlot(Score ~ ArrDelay, type = c("p", "smooth"), data = scores) 



rxFastForest: Fast Forest
Article • 02/28/2023

Machine Learning Fast Forest

The formula as described in rxFormula. Interaction terms and F()  are not currently
supported in the MicrosoftML.

A data source object or a character string specifying a .xdf file or a data frame object.

A character string denoting Fast Tree type:

"binary"  for the default Fast Tree Binary Classification or
"regression"  for Fast Tree Regression.

Usage

  rxFastForest(formula = NULL, data, type = c("binary", "regression"), 
    numTrees = 100, numLeaves = 20, minSplit = 10, exampleFraction = 0.7, 
    featureFraction = 0.7, splitFraction = 0.7, numBins = 255, 
    firstUsePenalty = 0, gainConfLevel = 0, trainThreads = 8, 
    randomSeed = NULL, mlTransforms = NULL, mlTransformVars = NULL, 
    rowSelection = NULL, transforms = NULL, transformObjects = NULL, 
    transformFunc = NULL, transformVars = NULL, transformPackages = NULL, 
    transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 2, 
    computeContext = rxGetOption("computeContext"), 
    ensemble = ensembleControl(), ...) 

Arguments

formula

data

type



Specifies the total number of decision trees to create in the ensemble. By creating more
decision trees, you can potentially get better coverage, but the training time increases.
The default value is 100.

The maximum number of leaves (terminal nodes) that can be created in any tree. Higher
values potentially increase the size of the tree and get better precision, but risk
overfitting and requiring longer training times. The default value is 20.

Minimum number of training instances required to form a leaf. That is, the minimal
number of documents allowed in a leaf of a regression tree, out of the sub-sampled
data. A 'split' means that features in each level of the tree (node) are randomly divided.
The default value is 10.

The fraction of randomly chosen instances to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use on each split. The default value is 0.7.

Maximum number of distinct values (bins) per feature. The default value is 255.

The feature first use penalty coefficient. The default value is 0.

numTrees

numLeaves

minSplit

exampleFraction

featureFraction

splitFraction

numBins

firstUsePenalty



Tree fitting gain confidence requirement (should be in the range [0,1)). The default value
is 0.

The number of threads to use in training. If NULL is specified, the number of threads to
use is determined internally. The default value is NULL .

Specifies the random seed. The default value is NULL .

Specifies a list of MicrosoftML transforms to be performed on the data before training
or NULL  if no transforms are to be performed. See featurizeText, categorical, and
categoricalHash, for transformations that are supported. These transformations are
performed after any specified R transformations. The default value is NULL .

Specifies a character vector of variable names to be used in mlTransforms  or NULL  if
none are to be used. The default value is NULL .

Specifies the rows (observations) from the data set that are to be used by the model
with the name of a logical variable from the data set (in quotes) or with a logical
expression using variables in the data set. For example, rowSelection = "old"  will only
use observations in which the value of the variable old  is TRUE . rowSelection = (age >
20) & (age < 65) & (log(income) > 10)  only uses observations in which the value of the
age  variable is between 20 and 65 and the value of the log  of the income  variable is
greater than 10. The row selection is performed after processing any data
transformations (see the arguments transforms  or transformFunc ). As with all
expressions, rowSelection  can be defined outside of the function call using the
expression function.

gainConfLevel

trainThreads

randomSeed

mlTransforms

mlTransformVars

rowSelection



An expression of the form list(name = expression, ``...)  that represents the first
round of variable transformations. As with all expressions, transforms  (or rowSelection )
can be defined outside of the function call using the expression function.

A named list that contains objects that can be referenced by transforms ,
transformsFunc , and rowSelection .

The variable transformation function. See rxTransform for details.

A character vector of input data set variables needed for the transformation function.
See rxTransform for details.

A character vector specifying additional R packages (outside of those specified in
rxGetOption("transformPackages") ) to be made available and preloaded for use in
variable transformation functions. For example, those explicitly defined in RevoScaleR
functions via their transforms  and transformFunc  arguments or those defined implicitly
via their formula  or rowSelection  arguments. The transformPackages  argument may
also be NULL , indicating that no packages outside rxGetOption("transformPackages")
are preloaded.

A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL , a new
"hash" environment with parent baseenv()  is used instead.

transforms

transformObjects

transformFunc

transformVars

transformPackages

transformEnvir

blocksPerRead



Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.
1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are supported.

Control parameters for ensembling.

Additional arguments to be passed directly to the Microsoft Compute Engine.

Decision trees are non-parametric models that perform a sequence 
of simple tests on inputs. This decision procedure maps them to outputs found in the
training dataset whose inputs were similar to the instance being processed. A decision is
made at each node of the binary tree data structure based on a measure of similarity
that maps each instance recursively through the branches of the tree until the
appropriate leaf node is reached and the output decision returned.

reportProgress

verbose

computeContext

ensemble

...

Details



Decision trees have several advantages:

They are efficient in both computation and memory usage during training and
prediction.

They can represent non-linear decision boundaries.

They perform integrated feature selection and classification.

They are resilient in the presence of noisy features.

Fast forest regression is a random forest and quantile regression forest implementation
using the regression tree learner in rxFastTrees. The model consists of an ensemble of
decision trees. Each tree in a decision forest outputs a Gaussian distribution by way of
prediction. An aggregation is performed over the ensemble of trees to find a Gaussian
distribution closest to the combined distribution for all trees in the model.

This decision forest classifier consists of an ensemble of decision trees. Generally,
ensemble models provide better coverage and accuracy than single decision trees. Each
tree in a decision forest outputs a Gaussian distribution by way of prediction. An
aggregation is performed over the ensemble of trees to find a Gaussian distribution
closest to the combined distribution for all trees in the model.

rxFastForest : A rxFastForest  object with the trained model.

FastForest : A learner specification object of class maml  for the Fast Forest trainer.

This algorithm is multi-threaded and will always attempt to load the entire dataset into
memory.

Microsoft Corporation Microsoft Technical Support

Wikipedia: Random forest

Value

Notes

Author(s)

References

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://en.wikipedia.org/wiki/Random_forest


Quantile regression forest

From Stumps to Trees to Forests

rxFastTrees, rxFastLinear, rxLogisticRegression, rxNeuralNet, rxOneClassSvm,
featurizeText, categorical, categoricalHash, rxPredict.mlModel.

See also

Examples

 # Estimate a binary classification forest 
 infert1 <- infert 
 infert1$isCase = (infert1$case == 1) 
 forestModel <- rxFastForest(formula = isCase ~ age + parity + education + 
spontaneous + induced, 
         data = infert1) 

 # Create text file with per-instance results using rxPredict 
 txtOutFile <- tempfile(pattern = "scoreOut", fileext = ".txt") 
 txtOutDS <- RxTextData(file = txtOutFile) 
 scoreDS <- rxPredict(forestModel, data = infert1, 
    extraVarsToWrite = c("isCase", "Score"), outData = txtOutDS) 

 # Print the fist ten rows    
 rxDataStep(scoreDS, numRows = 10) 

 # Clean-up 
 file.remove(txtOutFile) 

 ###################################################################### 
 # Estimate a regression fast forest 

 # Use the built-in data set 'airquality' to create test and train data 
 DF <- airquality[!is.na(airquality$Ozone), ]   
 DF$Ozone <- as.numeric(DF$Ozone)
 randomSplit <- rnorm(nrow(DF)) 
 trainAir <- DF[randomSplit >= 0,] 
 testAir <- DF[randomSplit < 0,] 
 airFormula <- Ozone ~ Solar.R + Wind + Temp 

 # Regression Fast Forest for train data 
 rxFastForestReg <- rxFastForest(airFormula, type = "regression",  
     data = trainAir)   

 # Put score and model variables in data frame 
 rxFastForestScoreDF <- rxPredict(rxFastForestReg, data = testAir,  

http://jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf
https://learn.microsoft.com/en-us/archive/blogs/machinelearning/from-stumps-to-trees-to-forests


     writeModelVars = TRUE) 

 # Plot actual versus predicted values with smoothed line 
 rxLinePlot(Score ~ Ozone, type = c("p", "smooth"), data = 
rxFastForestScoreDF) 



rxFastLinear: Fast Linear Model --
Stochastic Dual Coordinate Ascent
Article • 02/28/2023

A Stochastic Dual Coordinate Ascent (SDCA) optimization trainer for linear binary
classification and regression.

rxFastLinear  is a trainer based on the Stochastic Dual Coordinate Ascent (SDCA)
method, a state-of-the-art optimization technique for convex objective functions. The
algorithm can be scaled for use on large out-of-memory data sets due to a semi-
asynchronized implementation that supports multi-threading. primal and dual updates
in a separate thread. Several choices of loss functions are also provided. The SDCA
method combines several of the best properties and capabilities of logistic regression
and SVM algorithms. For more information on SDCA, see the citations in the reference
section.

Traditional optimization algorithms, such as stochastic gradient descent (SGD), optimize
the empirical loss function directly. The SDCA chooses a different approach that
optimizes the dual problem instead. The dual loss function is parametrized by per-
example weights. In each iteration, when a training example from the training data set is
read, the corresponding example weight is adjusted so that the dual loss function is
optimized with respect to the current example. No learning rate is needed by SDCA to
determine step size as is required by various gradient descent methods.

rxFastLinear  supports binary classification with three types of loss functions currently:
Log loss, hinge loss, and smoothed hinge loss. Linear regression also supports with
squared loss function. Elastic net regularization can be specified by the l2Weight  and
l1Weight  parameters. Note that the l2Weight  has an effect on the rate of convergence.
In general, the larger the l2Weight , the faster SDCA converges.

Note that rxFastLinear  is a stochastic and streaming optimization algorithm. The result
depends on the order of the training data. For reproducible results, it is recommended
that one sets shuffle  to FALSE  and trainThreads  to 1 .

Usage

  rxFastLinear(formula = NULL, data, type = c("binary", "regression"), 
    lossFunction = NULL, l2Weight = NULL, l1Weight = NULL, 



The formula described in rxFormula. Interaction terms and F()  are currently not
supported in MicrosoftML.

A data source object or a character string specifying a .xdf file or a data frame object.

Specifies the model type with a character string: "binary"  for the default binary
classification or "regression"  for linear regression.

Specifies the empirical loss function to optimize. For binary classification, the following
choices are available:

logLoss: The log-loss. This is the default.
hingeLoss: The SVM hinge loss. Its parameter represents the margin size.
smoothHingeLoss: The smoothed hinge loss. Its parameter represents the
smoothing constant. 
For linear regression, squared loss squaredLoss is currently supported. When this
parameter is set to NULL , its default value depends on the type of learning:
logLoss for binary classification.
squaredLoss for linear regression.

    trainThreads = NULL, convergenceTolerance = 0.1, maxIterations = NULL, 
    shuffle = TRUE, checkFrequency = NULL, normalize = "auto", 
    mlTransforms = NULL, mlTransformVars = NULL, rowSelection = NULL, 
    transforms = NULL, transformObjects = NULL, transformFunc = NULL, 
    transformVars = NULL, transformPackages = NULL, transformEnvir = NULL, 
    blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 1, 
    computeContext = rxGetOption("computeContext"), 
    ensemble = ensembleControl(), ...) 

Arguments

formula

data

type

lossFunction



Specifies the L2 regularization weight. The value must be either non-negative or NULL . If
NULL  is specified, the actual value is automatically computed based on data set. NULL  is
the default value.

Specifies the L1 regularization weight. The value must be either non-negative or NULL . If
NULL  is specified, the actual value is automatically computed based on data set. NULL  is
the default value.

Specifies how many concurrent threads can be used to run the algorithm. When this
parameter is set to NULL , the number of threads used is determined based on the
number of logical processors available to the process as well as the sparsity of data. Set
it to 1  to run the algorithm in a single thread.

Specifies the tolerance threshold used as a convergence criterion. It must be between 0
and 1. The default value is 0.1 . The algorithm is considered to have converged if the
relative duality gap, which is the ratio between the duality gap and the primal loss, falls
below the specified convergence tolerance.

Specifies an upper bound on the number of training iterations. This parameter must be
positive or NULL . If NULL  is specified, the actual value is automatically computed based
on data set. Each iteration requires a complete pass over the training data. Training
terminates after the total number of iterations reaches the specified upper bound or
when the loss function converges, whichever happens earlier.

Specifies whether to shuffle the training data. Set TRUE  to shuffle the data; FALSE  not to
shuffle. The default value is TRUE . SDCA is a stochastic optimization algorithm. If
shuffling is turned on, the training data is shuffled on each iteration.

l2Weight

l1Weight

trainThreads

convergenceTolerance

maxIterations

shuffle



The number of iterations after which the loss function is computed and checked to
determine whether it has converged. The value specified must be a positive integer or
NULL . If NULL , the actual value is automatically computed based on data set. Otherwise,
for example, if checkFrequency = 5  is specified, then the loss function is computed and
convergence is checked every 5 iterations. The computation of the loss function requires
a separate complete pass over the training data.

Specifies the type of automatic normalization used:

"auto" : if normalization is needed, it is automatically performed. This is the default
value.
"no" : no normalization is performed.
"yes" : normalization is performed.
"warn" : if normalization is needed, a warning message is displayed, but
normalization is not performed. 
Normalization rescales disparate data ranges to a standard scale. Feature scaling
insures the distances between data points are proportional and enables various
optimization methods such as gradient descent to converge much faster. If
normalization is performed, a MaxMin  normalizer is used. It normalizes values in an
interval [a, b] where -1 <= a <= 0and 0 <= b <= 1  and b - a = 1 . This normalizer
preserves sparsity by mapping zero to zero.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or NULL  if no transforms are to be performed. See featurizeText, categorical, and
categoricalHash, for transformations that are supported. These transformations are
performed after any specified R transformations. The default value is NULL .

Specifies a character vector of variable names to be used in mlTransforms  or NULL  if
none are to be used. The default value is NULL .

checkFrequency

normalize

mlTransforms

mlTransformVars

rowSelection



Specifies the rows (observations) from the data set that are to be used by the model
with the name of a logical variable from the data set (in quotes) or with a logical
expression using variables in the data set. For example, rowSelection = "old"  will only
use observations in which the value of the variable old  is TRUE . rowSelection = (age >
20) & (age < 65) & (log(income) > 10)  only uses observations in which the value of the
age  variable is between 20 and 65 and the value of the log  of the income  variable is
greater than 10. The row selection is performed after processing any data
transformations (see the arguments transforms  or transformFunc ). As with all
expressions, rowSelection  can be defined outside of the function call using the
expression function.

An expression of the form list(name = expression, ``...)  that represents the first
round of variable transformations. As with all expressions, transforms  (or rowSelection )
can be defined outside of the function call using the expression function.

A named list that contains objects that can be referenced by transforms ,
transformsFunc , and rowSelection .

The variable transformation function. See rxTransform for details.

A character vector of input data set variables needed for the transformation function.
See rxTransform for details.

A character vector specifying additional R packages (outside of those specified in
rxGetOption("transformPackages") ) to be made available and preloaded for use in
variable transformation functions. For example, those explicitly defined in RevoScaleR
functions via their transforms  and transformFunc  arguments or those defined implicitly
via their formula  or rowSelection  arguments. The transformPackages  argument may

transforms

transformObjects

transformFunc

transformVars

transformPackages



also be NULL , indicating that no packages outside rxGetOption("transformPackages")
are preloaded.

A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL , a new
"hash" environment with parent baseenv()  is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.
1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are supported.

Control parameters for ensembling.

transformEnvir

blocksPerRead

reportProgress

verbose

computeContext

ensemble

...



Additional arguments to be passed directly to the Microsoft Compute Engine.

rxFastLinear : A rxFastLinear  object with the trained model.

FastLinear : A learner specification object of class maml  for the Fast Linear trainer.

This algorithm is multi-threaded and will not attempt to load the entire dataset into
memory.

Microsoft Corporation Microsoft Technical Support

Scaling Up Stochastic Dual Coordinate Ascent

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization

logLoss, hingeLoss, smoothHingeLoss, squaredLoss, rxFastTrees, rxFastForest,
rxLogisticRegression, rxNeuralNet, rxOneClassSvm, featurizeText, categorical,
categoricalHash, rxPredict.mlModel.

Value

Notes

Author(s)

References

See also

Examples

 # Train a binary classiication model with rxFastLinear 
 res1 <- rxFastLinear(isCase ~ age + parity + education + spontaneous + 
induced, 
                   transforms = list(isCase = case == 1), 
                   data = infert,
                   type = "binary") 
 # Print a summary of the model 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://research.microsoft.com/um/people/mbilenko/papers/15-sasdca.pdf
https://jmlr.csail.mit.edu/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf


 summary(res1) 

 # Score to a data frame 
 scoreDF <- rxPredict(res1, data = infert,  
     extraVarsToWrite = "isCase")

 # Compute and plot the Radio Operator Curve and AUC 
 roc1 <- rxRoc(actualVarName = "isCase", predVarNames = "Probability", data 
= scoreDF)  
 plot(roc1) 
 rxAuc(roc1) 

 ######################################################################### 
 # rxFastLinear Regression 

 # Create an xdf file with the attitude data 
 myXdf <- tempfile(pattern = "tempAttitude", fileext = ".xdf") 
 rxDataStep(attitude, myXdf, rowsPerRead = 50, overwrite = TRUE) 
 myXdfDS <- RxXdfData(file = myXdf) 

 attitudeForm <- rating ~ complaints + privileges + learning +  
     raises + critical + advance 

 # Estimate a regression model with rxFastLinear  
 res2 <- rxFastLinear(formula = attitudeForm,  data = myXdfDS,  
     type = "regression") 

 # Score to data frame 
 scoreOut2 <- rxPredict(res2, data = myXdfDS,  
     extraVarsToWrite = "rating")

 # Plot the rating versus the score with a regression line 
 rxLinePlot(rating~Score, type = c("p","r"), data = scoreOut2) 

 # Clean up    
 file.remove(myXdf) 



rxFastTrees: Fast Tree
Article • 02/28/2023

Machine Learning Fast Tree

The formula as described in rxFormula. Interaction terms and F()  are not currently
supported in the MicrosoftML.

A data source object or a character string specifying a .xdf file or a data frame object.

A character string that specifies the type of Fast Tree: "binary"  for the default Fast Tree
Binary Classification or "regression"  for Fast Tree Regression.

Usage

  rxFastTrees(formula = NULL, data, type = c("binary", "regression"), 
    numTrees = 100, numLeaves = 20, learningRate = 0.2, minSplit = 10, 
    exampleFraction = 0.7, featureFraction = 1, splitFraction = 1, 
    numBins = 255, firstUsePenalty = 0, gainConfLevel = 0, 
    unbalancedSets = FALSE, trainThreads = 8, randomSeed = NULL, 
    mlTransforms = NULL, mlTransformVars = NULL, rowSelection = NULL, 
    transforms = NULL, transformObjects = NULL, transformFunc = NULL, 
    transformVars = NULL, transformPackages = NULL, transformEnvir = NULL, 
    blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 2, 
    computeContext = rxGetOption("computeContext"), 
    ensemble = ensembleControl(), ...) 

Arguments

formula

data

type

numTrees



Specifies the total number of decision trees to create in the ensemble. By creating more
decision trees, you can potentially get better coverage, but the training time increases.
The default value is 100.

The maximum number of leaves (terminal nodes) that can be created in any tree. Higher
values potentially increase the size of the tree and get better precision, but risk
overfitting and requiring longer training times. The default value is 20.

Determines the size of the step taken in the direction of the gradient in each step of the
learning process. This determines how fast or slow the learner converges on the optimal
solution. If the step size is too big, you might overshoot the optimal solution. If the step
size is too small, training takes longer to converge to the best solution.

Minimum number of training instances required to form a leaf. That is, the minimal
number of documents allowed in a leaf of a regression tree, out of the sub-sampled
data. A 'split' means that features in each level of the tree (node) are randomly divided.
The default value is 10. Only the number of instances is counted even if instances are
weighted.

The fraction of randomly chosen instances to use for each tree. The default value is 0.7.

The fraction of randomly chosen features to use for each tree. The default value is 1.

The fraction of randomly chosen features to use on each split. The default value is 1.

numLeaves

learningRate

minSplit

exampleFraction

featureFraction

splitFraction

numBins



Maximum number of distinct values (bins) per feature. If the feature has fewer values
than the number indicated, each value is placed in its own bin. If there are more values,
the algorithm creates numBins  bins.

The feature first use penalty coefficient. This is a form of regularization that incurs a
penalty for using a new feature when creating the tree. Increase this value to create
trees that don't use many features. The default value is 0.

Tree fitting gain confidence requirement (should be in the range [0,1)). The default value
is 0.

If TRUE , derivatives optimized for unbalanced sets are used. Only applicable when type
equal to "binary" . The default value is FALSE .

The number of threads to use in training. The default value is 8.

Specifies the random seed. The default value is NULL .

Specifies a list of MicrosoftML transforms to be performed on the data before training
or NULL  if no transforms are to be performed. See featurizeText, categorical, and
categoricalHash, for transformations that are supported. These transformations are
performed after any specified R transformations. The default value is NULL .

Specifies a character vector of variable names to be used in mlTransforms  or NULL  if
none are to be used. The default value is NULL .

firstUsePenalty

gainConfLevel

unbalancedSets

trainThreads

randomSeed

mlTransforms

mlTransformVars



Specifies the rows (observations) from the data set that are to be used by the model
with the name of a logical variable from the data set (in quotes) or with a logical
expression using variables in the data set. For example, rowSelection = "old"  will only
use observations in which the value of the variable old  is TRUE . rowSelection = (age >
20) & (age < 65) & (log(income) > 10)  only uses observations in which the value of the
age  variable is between 20 and 65 and the value of the log  of the income  variable is
greater than 10. The row selection is performed after processing any data
transformations (see the arguments transforms  or transformFunc ). As with all
expressions, rowSelection  can be defined outside of the function call using the
expression function.

An expression of the form list(name = expression, ``...)  that represents the first
round of variable transformations. As with all expressions, transforms  (or rowSelection )
can be defined outside of the function call using the expression function.

A named list that contains objects that can be referenced by transforms ,
transformsFunc , and rowSelection .

The variable transformation function. See rxTransform for details.

A character vector of input data set variables needed for the transformation function.
See rxTransform for details.

A character vector specifying additional R packages (outside of those specified in
rxGetOption("transformPackages") ) to be made available and preloaded for use in
variable transformation functions. For example, those explicitly defined in RevoScaleR
functions via their transforms  and transformFunc  arguments or those defined implicitly

rowSelection

transforms

transformObjects

transformFunc

transformVars

transformPackages



via their formula  or rowSelection  arguments. The transformPackages  argument may
also be NULL , indicating that no packages outside rxGetOption("transformPackages")
are preloaded.

A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL , a new
"hash" environment with parent baseenv()  is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.
1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are supported.

Control parameters for ensembling.

transformEnvir

blocksPerRead

reportProgress

verbose

computeContext

ensemble



Additional arguments to be passed directly to the Microsoft Compute Engine.

rxFastTrees is an implementation of FastRank. FastRank is an efficient implementation of
the MART gradient boosting algorithm. Gradient boosting is a machine learning
technique for regression problems. It builds each regression tree in a step-wise fashion,
using a predefined loss function to measure the error for each step and corrects for it in
the next. So this prediction model is actually an ensemble of weaker prediction models.
In regression problems, boosting builds a series of such trees in a step-wise fashion and
then selects the optimal tree using an arbitrary differentiable loss function.

MART learns an ensemble of regression trees, which is a decision tree with scalar values
in its leaves. A decision (or regression) tree is a binary tree-like flow chart, where at each
interior node one decides which of the two child nodes to continue to based on one of
the feature values from the input. At each leaf node, a value is returned. In the interior
nodes, the decision is based on the test "x <= v" , where x  is the value of the feature in
the input sample and v  is one of the possible values of this feature. The functions that
can be produced by a regression tree are all the piece-wise constant functions.

The ensemble of trees is produced by computing, in each step, a regression tree that
approximates the gradient of the loss function, and adding it to the previous tree with
coefficients that minimize the loss of the new tree. The output of the ensemble
produced by MART on a given instance is the sum of the tree outputs.

In case of a binary classification problem, the output is converted to a probability by
using some form of calibration.

In case of a regression problem, the output is the predicted value of the function.

In case of a ranking problem, the instances are ordered by the output value of the
ensemble.

If type  is set to "regression" , a regression version of FastTree is used. If set to
"ranking" , a ranking version of FastTree is used. In the ranking case, the instances
should be ordered by the output of the tree ensemble. The only difference in the
settings of these versions is in the calibration settings, which are needed only for
classification.

...

Details



rxFastTrees : A rxFastTrees  object with the trained model.

FastTree : A learner specification object of class maml  for the Fast Tree trainer.

This algorithm is multi-threaded and will always attempt to load the entire dataset into
memory.

Microsoft Corporation Microsoft Technical Support

Wikipedia: Gradient boosting (Gradient tree boosting)

Greedy function approximation: A gradient boosting machine.

rxFastForest, rxFastLinear, rxLogisticRegression, rxNeuralNet, rxOneClassSvm,
featurizeText, categorical, categoricalHash, rxPredict.mlModel.

Value

Notes

Author(s)

References

See also

Examples

 # Estimate a binary classification tree 
 infert1 <- infert 
 infert1$isCase = (infert1$case == 1) 
 treeModel <- rxFastTrees(formula = isCase ~ age + parity + education + 
spontaneous + induced, 
         data = infert1) 

 # Create xdf file with per-instance results using rxPredict 
 xdfOut <- tempfile(pattern = "scoreOut", fileext = ".xdf") 
 scoreDS <- rxPredict(treeModel, data = infert1, 
    extraVarsToWrite = c("isCase", "Score"),  
    outData = xdfOut) 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1013203451


 rxDataStep(scoreDS, numRows = 10) 

 # Clean-up 
 file.remove(xdfOut) 

 ###################################################################### 
 # Estimate a regression fast tree 

 # Use the built-in data set 'airquality' to create test and train data 
 DF <- airquality[!is.na(airquality$Ozone), ]   
 DF$Ozone <- as.numeric(DF$Ozone)
 randomSplit <- rnorm(nrow(DF)) 
 trainAir <- DF[randomSplit >= 0,] 
 testAir <- DF[randomSplit < 0,] 
 airFormula <- Ozone ~ Solar.R + Wind + Temp 

 # Regression Fast Tree for train data 
 fastTreeReg <- rxFastTrees(airFormula, type = "regression",  
     data = trainAir)   

 # Put score and model variables in data frame 
 fastTreeScoreDF <- rxPredict(fastTreeReg, data = testAir,  
     writeModelVars = TRUE) 

 # Plot actual versus predicted values with smoothed line 
 rxLinePlot(Score ~ Ozone, type = c("p", "smooth"), data = fastTreeScoreDF) 



rxFeaturize: Data Transformation for
RevoScaleR data sources
Article • 02/28/2023

Transforms data from an input data set to an output data set.

A RevoScaleR data source object, a data frame, or the path to a .xdf  file.

Output text or xdf file name or an RxDataSource  with write capabilities in which to store
transformed data. If NULL , a data frame is returned. The default value is NULL .

If TRUE , an existing outData  is overwritten; if FALSE  an existing outData  is not
overwritten. The default value is /codeFALSE.

Usage

  rxFeaturize(data, outData = NULL, overwrite = FALSE, dataThreads = NULL, 
    randomSeed = NULL, maxSlots = 5000, mlTransforms = NULL, 
    mlTransformVars = NULL, rowSelection = NULL, transforms = NULL, 
    transformObjects = NULL, transformFunc = NULL, transformVars = NULL, 
    transformPackages = NULL, transformEnvir = NULL, 
    blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 1, 
    computeContext = rxGetOption("computeContext"), ...) 

Arguments

data

outData

overwrite

dataThreads



An integer specifying the desired degree of parallelism in the data pipeline. If NULL , the
number of threads used is determined internally. The default value is NULL .

Specifies the random seed. The default value is NULL .

Max slots to return for vector valued columns (<=0 to return all).

Specifies a list of MicrosoftML transforms to be performed on the data before training
or NULL  if no transforms are to be performed. See featurizeText, categorical, and
categoricalHash, for transformations that are supported. These transformations are
performed after any specified R transformations. The default value is NULL .

Specifies a character vector of variable names to be used in mlTransforms  or NULL  if
none are to be used. The default value is NULL .

Specifies the rows (observations) from the data set that are to be used by the model
with the name of a logical variable from the data set (in quotes) or with a logical
expression using variables in the data set. For example, rowSelection = "old"  will only
use observations in which the value of the variable old  is TRUE . rowSelection = (age >
20) & (age < 65) & (log(income) > 10)  only uses observations in which the value of the
age  variable is between 20 and 65 and the value of the log  of the income  variable is
greater than 10. The row selection is performed after processing any data
transformations (see the arguments transforms  or transformFunc ). As with all
expressions, rowSelection  can be defined outside of the function call using the
expression function.

randomSeed

maxSlots

mlTransforms

mlTransformVars

rowSelection

transforms



An expression of the form list(name = expression, ``...)  that represents the first
round of variable transformations. As with all expressions, transforms  (or rowSelection )
can be defined outside of the function call using the expression function. The default
value is NULL .

A named list that contains objects that can be referenced by transforms ,
transformsFunc , and rowSelection . The default value is NULL .

The variable transformation function. See rxTransform for details. The default value is
NULL .

A character vector of input data set variables needed for the transformation function.
See rxTransform for details. The default value is NULL .

A character vector specifying additional R packages (outside of those specified in
rxGetOption("transformPackages") ) to be made available and preloaded for use in
variable transformation functions. For example, those explicitly defined in RevoScaleR
functions via their transforms  and transformFunc  arguments or those defined implicitly
via their formula  or rowSelection  arguments. The transformPackages  argument may
also be NULL , indicating that no packages outside rxGetOption("transformPackages")
are preloaded. The default value is NULL .

A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL , a new
"hash" environment with parent baseenv()  is used instead The default value is NULL .

transformObjects

transformFunc

transformVars

transformPackages

transformEnvir

blocksPerRead



Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.
1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported. 
The default value is 1 .

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information. The default value is 1 .

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are supported.

Additional arguments to be passed directly to the Microsoft Compute Engine.

A data frame or an RxDataSource object representing the created output data.

Microsoft Corporation Microsoft Technical Support

rxDataStep, rxImport, rxTransform.

reportProgress

verbose

computeContext

...

Value

Author(s)

See also

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


Examples

 # rxFeaturize basically allows you to access data from the MicrosoftML 
transforms 
 # In this example we'll look at getting the output of the categorical 
transform 

 # Create the data 
 categoricalData <- data.frame( 
   placesVisited = c( 
     "London", 
     "Brunei", 
     "London", 
     "Paris", 
     "Seria" 
   ), 
   stringsAsFactors = FALSE 
 ) 

 # Invoke the categorical transform 
 categorized <- rxFeaturize( 
   data = categoricalData, 
   mlTransforms = list(categorical(vars = c(xDataCat = "placesVisited"))) 
 ) 

 # Now let's look at the data 
 categorized 



rxHashEnv: An environment object used
to store package-wide state.
Article • 02/28/2023

An environment object used to store package-wide state.

An object of class environment  of length 2.

Usage

  rxHashEnv 
  

Format



rxLogisticRegression: Logistic
Regression
Article • 02/28/2023

Machine Learning Logistic Regression

The formula as described in rxFormula. Interaction terms and F()  are not currently
supported in the MicrosoftML.

A data source object or a character string specifying a .xdf file or a data frame object.

A character string that specifies the type of Logistic Regression: "binary"  for the default
binary classification logistic regression or "multi"  for multinomial logistic regression.

Usage

  rxLogisticRegression(formula = NULL, data, type = c("binary", 
"multiClass"), 
    l2Weight = 1, l1Weight = 1, optTol = 1e-07, memorySize = 20, 
    initWtsScale = 0, maxIterations = 2147483647, showTrainingStats = FALSE, 
    sgdInitTol = 0, trainThreads = NULL, denseOptimizer = FALSE, 
    normalize = "auto", mlTransforms = NULL, mlTransformVars = NULL, 
    rowSelection = NULL, transforms = NULL, transformObjects = NULL, 
    transformFunc = NULL, transformVars = NULL, transformPackages = NULL, 
    transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 1, 
    computeContext = rxGetOption("computeContext"), 
    ensemble = ensembleControl(), ...) 

Arguments

formula

data

type



The L2 regularization weight. Its value must be greater than or equal to 0  and the
default value is set to 1 .

The L1 regularization weight. Its value must be greater than or equal to 0  and the
default value is set to 1 .

Threshold value for optimizer convergence. If the improvement between iterations is
less than the threshold, the algorithm stops and returns the current model. Smaller
values are slower, but more accurate. The default value is 1e-07 .

Memory size for L-BFGS, specifying the number of past positions and gradients to store
for the computation of the next step. This optimization parameter limits the amount of
memory that is used to compute the magnitude and direction of the next step. When
you specify less memory, training is faster but less accurate. Must be greater than or
equal to 1  and the default value is 20 .

Sets the initial weights diameter that specifies the range from which values are drawn
for the initial weights. These weights are initialized randomly from within this range. For
example, if the diameter is specified to be d , then the weights are uniformly distributed
between -d/2  and d/2 . The default value is 0 , which specifies that all the weights are
initialized to 0 .

Sets the maximum number of iterations. After this number of steps, the algorithm stops
even if it has not satisfied convergence criteria.

l2Weight

l1Weight

optTol

memorySize

initWtsScale

maxIterations

showTrainingStats



Specify TRUE  to show the statistics of training data and the trained model; otherwise,
FALSE . The default value is FALSE . For additional information about model statistics, see
summary.mlModel.

Set to a number greater than 0 to use Stochastic Gradient Descent (SGD) to find the
initial parameters. A non-zero value set specifies the tolerance SGD uses to determine
convergence. The default value is 0  specifying that SGD is not used.

The number of threads to use in training the model. This should be set to the number of
cores on the machine. Note that L-BFGS multi-threading attempts to load dataset into
memory. In case of out-of-memory issues, set trainThreads  to 1  to turn off multi-
threading. If NULL  the number of threads to use is determined internally. The default
value is NULL .

If TRUE , forces densification of the internal optimization vectors. If FALSE , enables the
logistic regression optimizer use sparse or dense internal states as it finds appropriate.
Setting denseOptimizer  to TRUE  requires the internal optimizer to use a dense internal
state, which may help alleviate load on the garbage collector for some varieties of larger
problems.

Specifies the type of automatic normalization used:

"auto" : if normalization is needed, it is performed automatically. This is the default
choice.
"no" : no normalization is performed.
"yes" : normalization is performed.
"warn" : if normalization is needed, a warning message is displayed, but
normalization is not performed. 
Normalization rescales disparate data ranges to a standard scale. Feature scaling
insures the distances between data points are proportional and enables various
optimization methods such as gradient descent to converge much faster. If

sgdInitTol

trainThreads

denseOptimizer

normalize



normalization is performed, a MaxMin  normalizer is used. It normalizes values in an
interval [a, b] where -1 <= a <= 0and 0 <= b <= 1  and b - a = 1 . This normalizer
preserves sparsity by mapping zero to zero.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or NULL  if no transforms are to be performed. See featurizeText, categorical, and
categoricalHash, for transformations that are supported. These transformations are
performed after any specified R transformations. The default value is NULL .

Specifies a character vector of variable names to be used in mlTransforms  or NULL  if
none are to be used. The default value is NULL .

Specifies the rows (observations) from the data set that are to be used by the model
with the name of a logical variable from the data set (in quotes) or with a logical
expression using variables in the data set. For example, rowSelection = "old"  will only
use observations in which the value of the variable old  is TRUE . rowSelection = (age >
20) & (age < 65) & (log(income) > 10)  only uses observations in which the value of the
age  variable is between 20 and 65 and the value of the log  of the income  variable is
greater than 10. The row selection is performed after processing any data
transformations (see the arguments transforms  or transformFunc ). As with all
expressions, rowSelection  can be defined outside of the function call using the
expression function.

An expression of the form list(name = expression, ``...)  that represents the first
round of variable transformations. As with all expressions, transforms  (or rowSelection )
can be defined outside of the function call using the expression function.

A named list that contains objects that can be referenced by transforms ,
transformsFunc , and rowSelection .

mlTransforms

mlTransformVars

rowSelection

transforms

transformObjects



The variable transformation function. See rxTransform for details.

A character vector of input data set variables needed for the transformation function.
See rxTransform for details.

A character vector specifying additional R packages (outside of those specified in
rxGetOption("transformPackages") ) to be made available and preloaded for use in
variable transformation functions. For example, those explicitly defined in RevoScaleR
functions via their transforms  and transformFunc  arguments or those defined implicitly
via their formula  or rowSelection  arguments. The transformPackages  argument may
also be NULL , indicating that no packages outside rxGetOption("transformPackages")
are preloaded.

A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL , a new
"hash" environment with parent baseenv()  is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.
1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported.

transformFunc

transformVars

transformPackages

transformEnvir

blocksPerRead

reportProgress



An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are supported.

Control parameters for ensembling.

Additional arguments to be passed directly to the Microsoft Compute Engine.

Logistic Regression is a classification method used to predict the value of a categorical
dependent variable from its relationship to one or more independent variables assumed
to have a logistic distribution. If the dependent variable has only two possible values
(success/failure), then the logistic regression is binary. If the dependent variable has
more than two possible values (blood type given diagnostic test results), then the
logistic regression is multinomial.

The optimization technique used for rxLogisticRegression  is the limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). Both the L-BFGS and regular BFGS
algorithms use quasi-Newtonian methods to estimate the computationally intensive
Hessian matrix in the equation used by Newton's method to calculate steps. But the L-
BFGS approximation uses only a limited amount of memory to compute the next step
direction, so that it is especially suited for problems with a large number of variables.
The memorySize  parameter specifies the number of past positions and gradients to store
for use in the computation of the next step.

This learner can use elastic net regularization: a linear combination of L1 (lasso) and L2
(ridge) regularizations. Regularization is a method that can render an ill-posed problem
more tractable by imposing constraints that provide information to supplement the data

verbose

computeContext

ensemble

...

Details



and that prevents overfitting by penalizing models with extreme coefficient values. This
can improve the generalization of the model learned by selecting the optimal
complexity in the bias-variance tradeoff. Regularization works by adding the penalty
that is associated with coefficient values to the error of the hypothesis. An accurate
model with extreme coefficient values would be penalized more, but a less accurate
model with more conservative values would be penalized less. L1 and L2 regularization
have different effects and uses that are complementary in certain respects.

l1Weight : can be applied to sparse models, when working with high-dimensional data. It
pulls small weights associated features that are relatively unimportant towards 0.

l2Weight : is preferable for data that is not sparse. It pulls large weights towards zero.

Adding the ridge penalty to the regularization overcomes some of lasso's 
limitations. It can improve its predictive accuracy, for example, when the number of
predictors is greater than the sample size. If x = l1Weight  and y = l2Weight , ax + by =
c  defines the linear span of the regularization terms. The default values of x and y are
both 1 . An aggressive regularization can harm predictive capacity by excluding
important variables out of the model. So choosing the optimal values for the
regularization parameters is important for the performance of the logistic regression
model.

rxLogisticRegression : A rxLogisticRegression  object with the trained model.

LogisticReg : A learner specification object of class maml  for the Logistic Reg trainer.

This algorithm will attempt to load the entire dataset into memory when trainThreads >
1  (multi-threading).

Microsoft Corporation Microsoft Technical Support

Wikipedia: L-BFGS

Value

Notes

Author(s)

References

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://en.wikipedia.org/wiki/L-BFGS


regression

Training of L1-Regularized Log-Linear Models

and L2 Regularization for Machine Learning

rxFastTrees, rxFastForest, rxFastLinear, rxNeuralNet, rxOneClassSvm, featurizeText,
categorical, categoricalHash, rxPredict.mlModel.

See also

Examples

 # Estimate a logistic regression model 
 logitModel <- rxLogisticRegression(isCase ~ age + parity + education + 
spontaneous + induced, 
                   transforms = list(isCase = case == 1), 
                   data = infert)
 # Print a summary of the model 
 summary(logitModel) 

 # Score to a data frame 
 scoreDF <- rxPredict(logitModel, data = infert,  
     extraVarsToWrite = "isCase")

 # Compute and plot the Radio Operator Curve and AUC 
 roc1 <- rxRoc(actualVarName = "isCase", predVarNames = "Probability", data 
= scoreDF)  
 plot(roc1) 
 rxAuc(roc1) 

 
############################################################################
########### 
 # Multi-class logistic regression   
 testObs <- rnorm(nrow(iris)) > 0
 testIris <- iris[testObs,] 
 trainIris <- iris[!testObs,] 
 multiLogit <- rxLogisticRegression( 
     formula = Species~Sepal.Length + Sepal.Width + Petal.Length + 
Petal.Width, 
     type = "multiClass", data = trainIris) 

 # Score the model 
 scoreMultiDF <- rxPredict(multiLogit, data = testIris,  
     extraVarsToWrite = "Species")     
 # Print the first rows of the data frame with scores 

https://en.wikipedia.org/wiki/Logistic_regression
https://research.microsoft.com/apps/pubs/default.aspx?id=78900
https://learn.microsoft.com/en-us/archive/msdn-magazine/2015/february/test-run-l1-and-l2-regularization-for-machine-learning


 head(scoreMultiDF) 
 # Look at confusion matrix 
 table(scoreMultiDF$Species, scoreMultiDF$PredictedLabel) 

 # Look at the observations with incorrect predictions 
 badPrediction = scoreMultiDF$Species != scoreMultiDF$PredictedLabel 
 scoreMultiDF[badPrediction,] 



rxNeuralNet: Neural Net
Article • 03/01/2023

Neural networks for regression modeling and for Binary and multi-class classification.

The formula as described in rxFormula. Interaction terms and F()  are not currently
supported in the MicrosoftML.

A data source object or a character string specifying a .xdf file or a data frame object.

A character string denoting Fast Tree type:

"binary"  for the default binary classification neural network.
"multiClass"  for multi-class classification neural network.
"regression"  for a regression neural network.

Usage

  rxNeuralNet(formula = NULL, data, type = c("binary", "multiClass", 
    "regression"), numHiddenNodes = 100, numIterations = 100, 
    optimizer = sgd(), netDefinition = NULL, initWtsDiameter = 0.1, 
    maxNorm = 0, acceleration = c("sse", "gpu"), miniBatchSize = 1, 
    normalize = "auto", mlTransforms = NULL, mlTransformVars = NULL, 
    rowSelection = NULL, transforms = NULL, transformObjects = NULL, 
    transformFunc = NULL, transformVars = NULL, transformPackages = NULL, 
    transformEnvir = NULL, blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 1, 
    computeContext = rxGetOption("computeContext"), 
    ensemble = ensembleControl(), ...) 

Arguments

formula

data

type



The default number of hidden nodes in the neural net. The default value is 100.

The number of iterations on the full training set. The default value is 100.

A list specifying either the sgd  or adaptive  optimization algorithm. This list can be
created using sgd or adaDeltaSgd. The default value is sgd .

The Net# definition of the structure of the neural network. For more information about
the Net# language, see Reference Guide

Sets the initial weights diameter that specifies the range from which values are drawn
for the initial learning weights. The weights are initialized randomly from within this
range. The default value is 0.1.

Specifies an upper bound to constrain the norm of the incoming weight vector at each
hidden unit. This can be very important in maxout neural networks as well as in cases
where training produces unbounded weights.

Specifies the type of hardware acceleration to use. Possible values are "sse" and "gpu".
For GPU acceleration, it is recommended to use a miniBatchSize greater than one. If you
want to use the GPU acceleration, there are additional manual setup steps are required:

Download and install NVidia CUDA Toolkit 6.5 (CUDA Toolkit ).
Download and install NVidia cuDNN v2 Library (cudnn Library ).
Find the libs directory of the MicrosoftRML package by calling
system.file("mxLibs/x64", package = "MicrosoftML") .

numHiddenNodes

numIterations

optimizer

netDefinition

initWtsDiameter

maxNorm

acceleration

https://learn.microsoft.com/en-us/azure/machine-learning/classic/azure-ml-netsharp-reference-guide
https://developer.nvidia.com/cuda-toolkit-65
https://developer.nvidia.com/rdp/cudnn-archive


Copy cublas64_65.dll, cudart64_65.dll and cusparse64_65.dll from the CUDA Toolkit
6.5 into the libs directory of the MicrosoftML package.
Copy cudnn64_65.dll from the cuDNN v2 Library into the libs directory of the
MicrosoftML package.

Sets the mini-batch size. Recommended values are between 1 and 256. This parameter
is only used when the acceleration is GPU. Setting this parameter to a higher value
improves the speed of training, but it might negatively affect the accuracy. The default
value is 1.

Specifies the type of automatic normalization used:

"auto" : if normalization is needed, it is performed automatically. This is the default
choice.
"no" : no normalization is performed.
"yes" : normalization is performed.
"warn" : if normalization is needed, a warning message is displayed, but
normalization is not performed. 
Normalization rescales disparate data ranges to a standard scale. Feature scaling
insures the distances between data points are proportional and enables various
optimization methods such as gradient descent to converge much faster. If
normalization is performed, a MaxMin  normalizer is used. It normalizes values in an
interval [a, b] where -1 <= a <= 0and 0 <= b <= 1  and b - a = 1 . This normalizer
preserves sparsity by mapping zero to zero.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or NULL  if no transforms are to be performed. See featurizeText, categorical, and
categoricalHash, for transformations that are supported. These transformations are
performed after any specified R transformations. The default value is NULL .

Specifies a character vector of variable names to be used in mlTransforms  or NULL  if
none are to be used. The default value is NULL .

miniBatchSize

normalize

mlTransforms

mlTransformVars



Specifies the rows (observations) from the data set that are to be used by the model
with the name of a logical variable from the data set (in quotes) or with a logical
expression using variables in the data set. For example, rowSelection = "old"  will only
use observations in which the value of the variable old  is TRUE . rowSelection = (age >
20) & (age < 65) & (log(income) > 10)  only uses observations in which the value of the
age  variable is between 20 and 65 and the value of the log  of the income  variable is
greater than 10. The row selection is performed after processing any data
transformations (see the arguments transforms  or transformFunc ). As with all
expressions, rowSelection  can be defined outside of the function call using the
expression function.

An expression of the form list(name = expression, ``...)  that represents the first
round of variable transformations. As with all expressions, transforms  (or rowSelection )
can be defined outside of the function call using the expression function.

A named list that contains objects that can be referenced by transforms ,
transformsFunc , and rowSelection .

The variable transformation function. See rxTransform for details.

A character vector of input data set variables needed for the transformation function.
See rxTransform for details.

A character vector specifying additional R packages (outside of those specified in
rxGetOption("transformPackages") ) to be made available and preloaded for use in
variable transformation functions. For example, those explicitly defined in RevoScaleR
functions via their transforms  and transformFunc  arguments or those defined implicitly

rowSelection

transforms

transformObjects

transformFunc

transformVars

transformPackages



via their formula  or rowSelection  arguments. The transformPackages  argument may
also be NULL , indicating that no packages outside rxGetOption("transformPackages")
are preloaded.

A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL , a new
"hash" environment with parent baseenv()  is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.
1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are supported.

Control parameters for ensembling.

transformEnvir

blocksPerRead

reportProgress

verbose

computeContext

ensemble



Additional arguments to be passed directly to the Microsoft Compute Engine.

A neural network is a class of prediction models inspired by the human brain. A neural
network can be represented as a weighted directed graph. Each node in the graph is
called a neuron. The neurons in the graph are arranged in layers, where neurons in one
layer are connected by a weighted edge (weights can be 0 or positive numbers) to
neurons in the next layer. The first layer is called the input layer, and each neuron in the
input layer corresponds to one of the features. The last layer of the function is called the
output layer. So in the case of binary neural networks it contains two output neurons,
one for each class, whose values are the probabilities of belonging to each class. The
remaining layers are called hidden layers. The values of the neurons in the hidden layers
and in the output layer are set by calculating the weighted sum of the values of the
neurons in the previous layer and applying an activation function to that weighted sum.
A neural network model is defined by the structure of its graph (namely, the number of
hidden layers and the number of neurons in each hidden layer), the choice of activation
function, and the weights on the graph edges. The neural network algorithm tries to
learn the optimal weights on the edges based on the training data.

Although neural networks are widely known for use in deep learning and modeling
complex problems such as image recognition, they are also easily adapted to regression
problems. Any class of statistical models can be considered a neural network if they use
adaptive weights and can approximate non-linear functions of their inputs. Neural
network regression is especially suited to problems where a more traditional regression
model cannot fit a solution.

rxNeuralNet : an rxNeuralNet  object with the trained model. 
NeuralNet : a learner specification object of class maml  for the Neural Net trainer.

This algorithm is single-threaded and will not attempt to load the entire dataset into
memory.

...

Details

Value

Notes



Microsoft Corporation Microsoft Technical Support

Wikipedia: Artificial neural network

rxFastTrees, rxFastForest, rxFastLinear, rxLogisticRegression, rxOneClassSvm,
featurizeText, categorical, categoricalHash, rxPredict.mlModel.

Author(s)

References

See also

Examples

 # Estimate a binary neural net 
 rxNeuralNet1 <- rxNeuralNet(isCase ~ age + parity + education + spontaneous 
+ induced, 
                   transforms = list(isCase = case == 1), 
                   data = infert)

 # Score to a data frame 
 scoreDF <- rxPredict(rxNeuralNet1, data = infert,  
     extraVarsToWrite = "isCase",
     outData = NULL) # return a data frame 

 # Compute and plot the Radio Operator Curve and AUC 
 roc1 <- rxRoc(actualVarName = "isCase", predVarNames = "Probability", data 
= scoreDF)  
 plot(roc1) 
 rxAuc(roc1) 

 ######################################################################### 
 # Regression neural net 

 # Create an xdf file with the attitude data 
 myXdf <- tempfile(pattern = "tempAttitude", fileext = ".xdf") 
 rxDataStep(attitude, myXdf, rowsPerRead = 50, overwrite = TRUE) 
 myXdfDS <- RxXdfData(file = myXdf) 

 attitudeForm <- rating ~ complaints + privileges + learning +  
     raises + critical + advance 

 # Estimate a regression neural net  

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
http://en.wikipedia.org/wiki/Artificial_neural_network


 res2 <- rxNeuralNet(formula = attitudeForm,  data = myXdfDS,  
     type = "regression") 

 # Score to data frame 
 scoreOut2 <- rxPredict(res2, data = myXdfDS,  
     extraVarsToWrite = "rating")

 # Plot the rating versus the score with a regression line 
 rxLinePlot(rating~Score, type = c("p","r"), data = scoreOut2) 

 # Clean up    
 file.remove(myXdf)     

 
############################################################################
# 
 # Multi-class neural net 
 multiNN <- rxNeuralNet( 
     formula = Species~Sepal.Length + Sepal.Width + Petal.Length + 
Petal.Width, 
     type = "multiClass", data = iris) 
 scoreMultiDF <- rxPredict(multiNN, data = iris,  
     extraVarsToWrite = "Species", outData = NULL)     
 # Print the first rows of the data frame with scores 
 head(scoreMultiDF) 
 # Compute % of incorrect predictions 
 badPrediction = scoreMultiDF$Species != scoreMultiDF$PredictedLabel 
 sum(badPrediction)*100/nrow(scoreMultiDF) 
 # Look at the observations with incorrect predictions 
 scoreMultiDF[badPrediction,] 



rxOneClassSvm: OneClass SVM
Article • 02/28/2023

Machine Learning One Class Support Vector Machines

The formula as described in rxFormula. Interaction terms and F()  are not currently
supported in the MicrosoftML.

A data source object or a character string specifying a .xdf file or a data frame object.

The maximal size in MB of the cache that stores the training data. Increase this for large
training sets. The default value is 100 MB.

A character string representing the kernel used for computing inner products. For more
information, see maKernel. The following choices are available:

Usage

  rxOneClassSvm(formula = NULL, data, cacheSize = 100, kernel = rbfKernel(), 
    epsilon = 0.001, nu = 0.1, shrink = TRUE, normalize = "auto", 
    mlTransforms = NULL, mlTransformVars = NULL, rowSelection = NULL, 
    transforms = NULL, transformObjects = NULL, transformFunc = NULL, 
    transformVars = NULL, transformPackages = NULL, transformEnvir = NULL, 
    blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 1, 
    computeContext = rxGetOption("computeContext"), 
    ensemble = ensembleControl(), ...) 

Arguments

formula

data

cacheSize

kernel



rbfKernel() : Radial basis function kernel. Its parameter representsgamma  in the
term exp(-gamma|x-y|^2 . If not specified, it defaults to 1  divided by the number of
features used. For example, rbfKernel(gamma = .1) . This is the default value.
linearKernel() : Linear kernel.
polynomialKernel() : Polynomial kernel with parameter names a , bias , and deg  in
the term (a*<x,y> + bias)^deg . The bias , defaults to 0 . The degree, deg , defaults
to 3 . If a  is not specified, it is set to 1  divided by the number of features. For
example, maKernelPoynomial(bias = 0, deg = `` 3) .
sigmoidKernel() : Sigmoid kernel with parameter names gamma  and coef0  in the
term tanh(gamma*<x,y> + coef0) . gamma , defaults to 1  divided by the number of
features. The parameter coef0  defaults to 0 . For example, sigmoidKernel(gamma =
.1, coef0 = 0) .

The threshold for optimizer convergence. If the improvement between iterations is less
than the threshold, the algorithm stops and returns the current model. The value must
be greater than or equal to .Machine$double.eps . The default value is 0.001.

The trade-off between the fraction of outliers and the number of support vectors
(represented by the Greek letter nu). Must be between 0 and 1, typically between 0.1
and 0.5. The default value is 0.1.

Uses the shrinking heuristic if TRUE . In this case, some samples will be "shrunk" during
the training procedure, which may speed up training. The default value is TRUE .

Specifies the type of automatic normalization used:

"auto" : if normalization is needed, it is performed automatically. This is the default
choice.
"no" : no normalization is performed.
"yes" : normalization is performed.

epsilon

nu

shrink

normalize



"warn" : if normalization is needed, a warning message is displayed, but
normalization is not performed. 
Normalization rescales disparate data ranges to a standard scale. Feature scaling
insures the distances between data points are proportional and enables various
optimization methods such as gradient descent to converge much faster. If
normalization is performed, a MaxMin  normalizer is used. It normalizes values in an
interval [a, b] where -1 <= a <= 0and 0 <= b <= 1  and b - a = 1 . This normalizer
preserves sparsity by mapping zero to zero.

Specifies a list of MicrosoftML transforms to be performed on the data before training
or NULL  if no transforms are to be performed. See featurizeText, categorical, and
categoricalHash, for transformations that are supported. These transformations are
performed after any specified R transformations. The default value is NULL .

Specifies a character vector of variable names to be used in mlTransforms  or NULL  if
none are to be used. The default value is NULL .

Specifies the rows (observations) from the data set that are to be used by the model
with the name of a logical variable from the data set (in quotes) or with a logical
expression using variables in the data set. For example, rowSelection = "old"  will only
use observations in which the value of the variable old  is TRUE . rowSelection = (age >
20) & (age < 65) & (log(income) > 10)  only uses observations in which the value of the
age  variable is between 20 and 65 and the value of the log  of the income  variable is
greater than 10. The row selection is performed after processing any data
transformations (see the arguments transforms  or transformFunc ). As with all
expressions, rowSelection  can be defined outside of the function call using the
expression function.

An expression of the form list(name = expression, ``...)  that represents the first
round of variable transformations. As with all expressions, transforms  (or rowSelection )
can be defined outside of the function call using the expression function.

mlTransforms

mlTransformVars

rowSelection

transforms



A named list that contains objects that can be referenced by transforms ,
transformsFunc , and rowSelection .

The variable transformation function. See rxTransform for details.

A character vector of input data set variables needed for the transformation function.
See rxTransform for details.

A character vector specifying additional R packages (outside of those specified in
rxGetOption("transformPackages") ) to be made available and preloaded for use in
variable transformation functions. For example, those explicitly defined in RevoScaleR
functions via their transforms  and transformFunc  arguments or those defined implicitly
via their formula  or rowSelection  arguments. The transformPackages  argument may
also be NULL , indicating that no packages outside rxGetOption("transformPackages")
are preloaded.

A user-defined environment to serve as a parent to all environments developed
internally and used for variable data transformation. If transformEnvir = NULL , a new
"hash" environment with parent baseenv()  is used instead.

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.

transformObjects

transformFunc

transformVars

transformPackages

transformEnvir

blocksPerRead

reportProgress



1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported.

An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information.

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are supported.

Control parameters for ensembling.

Additional arguments to be passed directly to the Microsoft Compute Engine.

detection is to identify outliers that do not belong to some target class. This type of
SVM is one-class because the training set contains only examples from the target class.
It infers what properties are normal for the objects in the target class and from these
properties predicts which examples are unlike the normal examples. This is useful for
anomaly detection because the scarcity of training examples is the defining character of
anomalies: typically there are very few examples of network intrusion, fraud, or other
types of anomalous behavior.

rxOneClassSvm : A rxOneClassSvm  object with the trained model.

OneClassSvm : A learner specification object of class maml  for the OneClass Svm trainer.

verbose

computeContext

ensemble

...

Details

Value



This algorithm is single-threaded and will always attempt to load the entire dataset into
memory.

Microsoft Corporation Microsoft Technical Support

Anomaly detection

Azure Machine Learning Studio (classic): One-Class Support Vector Machine

Support of a High-Dimensional Distribution

Support Vector Algorithms

for Support Vector Machines

rbfKernel, linearKernel, polynomialKernel, sigmoidKernel rxFastTrees, rxFastForest,
rxFastLinear, rxLogisticRegression, rxNeuralNet, featurizeText, categorical,
categoricalHash, rxPredict.mlModel.

Notes

Author(s)

References

See also

Examples

 # Estimate a One-Class SVM model
 trainRows <- c(1:30, 51:80, 101:130) 
 testRows = !(1:150 %in% trainRows) 
 trainIris <- iris[trainRows,] 
 testIris <- iris[testRows,] 

 svmModel <- rxOneClassSvm( 
     formula = ~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, 
     data = trainIris) 

 # Add additional non-iris data to the test data set 
 testIris$isIris <- 1 

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409
https://en.wikipedia.org/wiki/Anomaly_detection
https://learn.microsoft.com/en-us/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://research.microsoft.com/pubs/69731/tr-99-87.pdf
http://www.stat.purdue.edu/~yuzhu/stat598m3/Papers/NewSVM.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf


 notIris <- data.frame( 
     Sepal.Length = c(2.5, 2.6), 
     Sepal.Width = c(.75, .9), 
     Petal.Length = c(2.5, 2.5), 
     Petal.Width = c(.8, .7), 
     Species = c("not iris", "not iris"), 
     isIris = 0) 
 testIris <- rbind(testIris, notIris)   

 scoreDF <- rxPredict(svmModel,  
      data = testIris, extraVarsToWrite = "isIris") 

 # Look at the last few observations 
 tail(scoreDF) 
 # Look at average scores conditioned by 'isIris' 
 rxCube(Score ~ F(isIris), data = scoreDF) 



rxPredict.mlModel: Score using a
Microsoft R Machine Learning model
Article • 02/28/2023

Reports per-instance scoring results in a data frame or RevoScaleR data source using a
trained Microsoft R Machine Learning model with a RevoScaleR data source.

A model information object returned from a MicrosoftML model. For example, an object
returned from rxFastTrees or rxLogisticRegression.

A RevoScaleR data source object, a data frame, or the path to a .xdf  file.

Output text or xdf file name or an RxDataSource  with write capabilities in which to store
predictions. If NULL , a data frame is returned. The default value is NULL .

Usage

 ## S3 method for class `mlModel': 
rxPredict  (modelObject, data, outData = NULL, 
    writeModelVars = FALSE, extraVarsToWrite = NULL, suffix = NULL, 
    overwrite = FALSE, dataThreads = NULL, 
    blocksPerRead = rxGetOption("blocksPerRead"), 
    reportProgress = rxGetOption("reportProgress"), verbose = 1, 
    computeContext = rxGetOption("computeContext"), ...) 

Arguments

modelObject

data

outData

writeModelVars



If TRUE , variables in the model are written to the output data set in addition to the
scoring variables. If variables from the input data set are transformed in the model, the
transformed variables are also included. The default value is FALSE .

NULL  or character vector of additional variables names from the input data to include in
the outData . If writeModelVars  is TRUE , model variables are included as well. The default
value is NULL .

A character string specifying suffix to append to the created scoring variable(s) or NULL
in there is no suffix. The default value is NULL .

If TRUE , an existing outData  is overwritten; if FALSE  an existing outData  is not
overwritten. The default value is FALSE .

An integer specifying the desired degree of parallelism in the data pipeline. If NULL , the
number of threads used is determined internally. The default value is NULL .

Specifies the number of blocks to read for each chunk of data read from the data
source.

An integer value that specifies the level of reporting on the row processing progress:

0 : no progress is reported.
1 : the number of processed rows is printed and updated.
2 : rows processed and timings are reported.
3 : rows processed and all timings are reported. 
The default value is 1 .

extraVarsToWrite

suffix

overwrite

dataThreads

blocksPerRead

reportProgress



An integer value that specifies the amount of output wanted. If 0 , no verbose output is
printed during calculations. Integer values from 1  to 4  provide increasing amounts of
information. The default value is 1 .

Sets the context in which computations are executed, specified with a valid
RxComputeContext. Currently local and RxInSqlServer compute contexts are supported.

Additional arguments to be passed directly to the Microsoft Compute Engine.

The following items are reported in the output by default: scoring on three variables for
the binary classifiers: PredictedLabel, Score, and Probability; the Score for oneClassSvm
and regression classifiers; PredictedLabel for Multi-class classifiers, plus a variable for
each category prepended by the Score.

A data frame or an RxDataSource object representing the created output data. By
default, output from scoring binary classifiers include three variables: PredictedLabel ,
Score , and Probability ; rxOneClassSvm  and regression include one variable: Score ; and
multi-class classifiers include PredictedLabel  plus a variable for each category
prepended by Score . If a suffix  is provided, it is added to the end of these output
variable names.

Microsoft Corporation Microsoft Technical Support

rxFastTrees, rxFastForest, rxLogisticRegression, rxNeuralNet, rxOneClassSvm.

verbose

computeContext

...

Details

Value

Author(s)

See also

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


Examples

 # Estimate a logistic regression model 
 infert1 <- infert 
 infert1$isCase <- (infert1$case == 1) 
 myModelInfo <- rxLogisticRegression(formula = isCase ~ age + parity + 
education + spontaneous + induced, 
                        data = infert1) 

 # Create an xdf file with per-instance results using rxPredict 
 xdfOut <- tempfile(pattern = "scoreOut", fileext = ".xdf") 
 scoreDS <- rxPredict(myModelInfo, data = infert1, 
     outData = xdfOut, overwrite = TRUE, 
     extraVarsToWrite = c("isCase", "Probability")) 

 # Summarize results with an ROC curve 
 rxRocCurve(actualVarName = "isCase", predVarNames = "Probability", data = 
scoreDS) 

 # Use the built-in data set 'airquality' to create test and train data 
 DF <- airquality[!is.na(airquality$Ozone), ]   
 DF$Ozone <- as.numeric(DF$Ozone)
 set.seed(12) 
 randomSplit <- rnorm(nrow(DF)) 
 trainAir <- DF[randomSplit >= 0,] 
 testAir <- DF[randomSplit < 0,] 
 airFormula <- Ozone ~ Solar.R + Wind + Temp 

 # Regression Fast Tree for train data 
 fastTreeReg <- rxFastTrees(airFormula, type = "regression",  
     data = trainAir)   

 # Put score and model variables in data frame, including the model 
variables 
 # Add the suffix "Pred" to the new variable 
 fastTreeScoreDF <- rxPredict(fastTreeReg, data = testAir,  
     writeModelVars = TRUE, suffix = "Pred") 

 rxGetVarInfo(fastTreeScoreDF) 

 # Clean-up 
 file.remove(xdfOut) 



selectColumns: Selects a set of columns,
dropping all others
Article • 02/28/2023

Selects a set of columns to retrain, dropping all others.

Specifies character vector or list of the names of the variables to keep.

Additional arguments sent to compute engine.

A maml  object defining the transform.

Microsoft Corporation Microsoft Technical Support

Usage

  selectColumns(vars, ...) 
  

Arguments

vars

...

Value

Author(s)

https://go.microsoft.com/fwlink/?LinkID=698556&clcid=0x409


selectFeatures: Machine Learning
Feature Selection Transform
Article • 02/28/2023

The feature selection transform selects features from the specified variables using the
specified mode.

A formula or a vector/list of strings specifying the name of variables upon which the
feature selection is performed, if the mode is minCount(). For example, ~ var1 + var2 +
var3 . If mode is mutualInformation(), a formula or a named list of strings describing the
dependent variable and the independent variables. For example, label ~ ``var1 + var2
+ var3 .

Specifies the mode of feature selection. This can be either minCount or
mutualInformation.

Additional arguments to be passed directly to the Microsoft Compute Engine.

The feature selection transform selects features from the specified variables using one of
the two modes: count or mutual information. For more information, see minCount and

Usage

  selectFeatures(vars, mode, ...)

Arguments

vars

mode

...

Details



mutualInformation.

A maml  object defining the transform.

minCount mutualInformation

Value

See also

Examples

 trainReviews <- data.frame(review = c(  
         "This is great", 
         "I hate it", 
         "Love it", 
         "Do not like it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I kind of hate it", 
         "I do like it", 
         "I really hate it", 
         "It is very good", 
         "I hate it a bunch", 
         "I love it a bunch", 
         "I hate it", 
         "I like it very much", 
         "I hate it very much.", 
         "I really do love it", 
         "I really do hate it", 
         "Love it!", 
         "Hate it!", 
         "I love it", 
         "I hate it", 
         "I love it", 
         "I hate it", 
         "I love it"), 
      like = c(TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,  
         FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE 
     ) 

     testReviews <- data.frame(review = c( 
         "This is great", 



         "I hate it", 
         "Love it", 
         "Really like it", 
         "I hate it", 
         "I like it a lot", 
         "I love it", 
         "I do like it", 
         "I really hate it", 
         "I love it"), stringsAsFactors = FALSE) 

 # Use a categorical hash transform which generated 128 features. 
 outModel1 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  
     mlTransforms = list(categoricalHash(vars = c(reviewCatHash = "review"), 
hashBits = 7))) 
 summary(outModel1) 

 # Apply a categorical hash transform and a count feature selection 
transform 
 # which selects only those hash slots that has value. 
 outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  
     mlTransforms = list( 
   categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),  
   selectFeatures("reviewCatHash", mode = minCount()))) 
 summary(outModel2) 

 # Apply a categorical hash transform and a mutual information feature 
selection transform 
 # which selects only 10 features with largest mutual information with the 
label. 
 outModel3 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, 
l1Weight = 0,  
     mlTransforms = list( 
   categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7),  
   selectFeatures(like ~ reviewCatHash, mode = 
mutualInformation(numFeaturesToKeep = 10)))) 
 summary(outModel3) 



olapR (R package in SQL Server Machine
Learning Services)
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x) and later versions

olapR is an R package from Microsoft used for MDX queries against a SQL Server
Analysis Services OLAP cube. Functions do not support all MDX operations, but you can
build queries that slice, dice, drilldown, rollup, and pivot on dimensions. The package is
included in SQL Server Machine Learning Services and SQL Server 2016 R Services.

You can use this package on connections to an Analysis Services OLAP cube on all
supported versions of SQL Server. Connections to a tabular model are not supported at
this time.

The olapR package is not preloaded into an R session. Run the following command to
load the package.

R

Current version is 1.0.0 in all Windows-only products and downloads providing the
package.

This package is provided in the following products, as well as on several virtual machine
images on Azure. Package location varies accordingly.

Product Location

SQL Server Machine Learning Services
(with R integration)

C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES\library

Load package

library(olapR) 

Package version

Availability and location

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017


Product Location

SQL Server 2016 R Services C:\Program Files\Microsoft SQL
Server\MSSQL13.MSSQLSERVER\R_SERVICES\library

Microsoft Machine Learning Server (R
Server)

C:\Program Files\Microsoft\R_SERVER\library

Microsoft R Client C:\Program Files\Microsoft\R Client\R_SERVER\library

Data Science Virtual Machine (on
Azure)

C:\Program Files\Microsoft\R Client\R_SERVER\library

SQL Server Virtual Machine (on Azure) C:\Program Files\Microsoft SQL
Server\MSSQL14.MSSQLSERVER\R_SERVICES\library

 R integration is optional in SQL Server. The olapR package will be installed when you
add the Machine Learning or R feature during VM configuration.

The olapR library provides a simple R style API for generating and validating MDX
queries against an Analysis Services cube. olapR does not provide APIs for all MDX
scenarios, but it does cover the most use cases including slice, dice, drilldown, rollup,
and pivot scenarios in N dimensions. You can also input a direct MDX query to Analysis
Services for queries that cannot be constructed using the olapR APIs.

Workflow for using olapR

1. Load the library.
2. Create a connection string pointing to a MOLAP cube on Analysis Services.
3. Verify you have read access on the cube
4. Use the connection string on a connection.
5. Verify the connection using the explore function.
6. Set up a query by submitting an MDX query string or by building a query structure.
7. Execute the query and verify the result.

To execute an MDX query on an OLAP Cube, you need to first create a connection string
(olapCnn ) and validate using the function OlapConnection(connectionString) . The
connection string must have a Data Source (such as localhost) and a Provider (MSOLAP).

After the connection is established, you can either pass in a fully defined MDX query, or
you can construct the query using the Query()  object, setting the query details using
cube(), axis(), columns(), slicers(), and so forth.

1

1

How to use olapR



Finally, pass the olapCnn  and query into either executeMD  or execute2D  to get a
multidimensional array or a data frame back.

Function Description

OlapConnection Create the connection string to access the Analysis Services Database.

Query Construct a Query object to use on the Analysis Services Database. Use cube,
axis, columns, rows, pages, chapters, slicers to add details to the query.

executeMD Takes a Query object or an MDX string, and returns the result as a multi-
dimensional array.

execute2D Takes a Query object or an MDX string, and returns the result as a 2D data
frame.

explore Allows for exploration of cube metadata.

MDX is the query language for multidimensional OLAP (MOLAP) cubes containing
processed and aggregated data stored in structures optimized for data analysis and
exploration. Cubes are used in business and scientific applications to draw insights
about relationships in historical data. Internally, cubes consist of mostly quantifiable
numeric data, which is sliced along dimensions like date and time, geography, or other
entities. A typical query might roll up sales for a given region and time period, sliced by
product category, promotion, sales channel, and so forth.

Cube data can be accessed using various operations:

Slicing - Taking a subset of the cube by picking a value for one dimension,
resulting in a cube that is one dimension smaller.

） Important

olapR requires the Analysis Services OLE DB provider. If you do not have SQL
Server Analysis Services installed on your computer, download the provider from
Microsoft: Data providers used for Analysis Services connections

The exact version you should install for SQL Server 2016 is here .

Function list

MDX concepts

https://learn.microsoft.com/en-us/analysis-services/client-libraries
https://download.microsoft.com/download/9/2/B/92BAD988-00C5-4F68-811E-B7FFBE009B00/SQLServer2016SP2-KB4052908-x64-ENU.exe


Dicing - Creating a subcube by specifying a range of values on multiple
dimensions.

Drill-Down/Up - Navigate from more general to more detailed data ranges, or vice
versa.

Roll-up - Summarize the data on a dimension.

Pivot - Rotate the cube.

MDX queries are similar to SQL queries but, because of the flexibility of OLAP databases,
can contain up to 128 query axes. The first four axes are named for convenience:
Columns, Rows, Pages, and Chapters. It's also common to just use two (Rows and
Columns), as shown in the following example:

SQL

Using an AdventureWorks OLAP cube from the multidimensional cube tutorial, this MDX
query selects the internet sales count and sales amount and places them on the Column
axis. On the Row axis it places all possible values of the "Product Line" dimension. Then,
using the WHERE clause (which is the slicer axis in MDX queries), it filters the query so
that only the sales from Australia matter. Without the slicer axis, we would roll up and
summarize the sales from all countries/regions.

R

SELECT {[Measures].[Internet Sales Count], [Measures].[Internet Sales-Sales 
Amount]} ON COLUMNS,  
{[Product].[Product Line].[Product Line].MEMBERS} ON ROWS 
FROM [Analysis Services Tutorial]
WHERE [Sales Territory].[Sales Territory Country].[Australia] 

olapR examples

# load the library 
library(olapR) 

# Connect to a local SSAS default instance and the Analysis Services 
Tutorial database. 
# For named instances, use server-name\\instancename, escaping the instance 
name delimiter. 
# For databases containing multiple cubes, use the cube= parameter to 
specify which one to use. 
cnnstr <- "Data Source=localhost; Provider=MSOLAP; initial catalog=Analysis 
Services Tutorial" 
olapCnn <- OlapConnection(cnnstr)

https://learn.microsoft.com/en-us/analysis-services/multidimensional-tutorial/multidimensional-modeling-adventure-works-tutorial


How to create MDX queries using olapR

# Approach 1 - build the mdx query in R 
qry <- Query() 

cube(qry) <- "[Analysis Services Tutorial]" 
columns(qry) <- c("[Measures].[Internet Sales Count]", "[Measures].[Internet 
Sales-Sales Amount]") 
rows(qry) <- c("[Product].[Product Line].[Product Line].MEMBERS") 
slicers(qry) <- c("[Sales Territory].[Sales Territory Country].[Australia]") 

result1 <- executeMD(olapCnn, qry) 

# Approach 2 - Submit a fully formed MDX query 
mdx <- "SELECT {[Measures].[Internet Sales Count], [Measures].[Internet 
Sales-Sales Amount]} ON AXIS(0), {[Product].[Product Line].[Product 
Line].MEMBERS} ON AXIS(1) FROM [Analysis Services Tutorial] WHERE [Sales 
Territory].[Sales Territory Country].[Australia]" 

result2 <- execute2D(olapCnn, mdx) 

See also



execute2D: olapR execute2D Methods
Article • 02/28/2023

Takes a Query object or an MDX string, and returns the result as a data frame.

Object of class "OlapConnection" returned by OlapConnection()

Object of class "Query" returned by Query()

String specifying a valid MDX query

If a query is provided: execute2D  validates a query object (optional), generates an mdx
query string from the query object, executes the mdx query across, and returns the
result as a data frame.

If an MDX string is provided: execute2D  executes the mdx query, and returns the result
as a data frame.

Usage

  execute2D(olapCnn, query) 
  execute2D(olapCnn, mdx) 

Arguments

olapCnn

query

mdx

Details

Value



A data frame if the MDX command returned a result-set. TRUE  and a warning if the
query returned no data. An error if the query is invalid

Multi-dimensional query results are flattened to 2D using a standard flattening
algorithm.

Creating a Demo OLAP Cube (the same as the one used in the examples):

Multidimensional Modeling (Adventure Works Tutorial)

Query, OlapConnection, executeMD, explore, data.frame

Notes

References

See also

Examples

 cnnstr <- "Data Source=localhost; Provider=MSOLAP;" 
 olapCnn <- OlapConnection(cnnstr) 

 qry <- Query() 

 cube(qry) <- "[Analysis Services Tutorial]" 
 columns(qry) <- c("[Measures].[Internet Sales Count]", "[Measures].
[Internet Sales-Sales Amount]") 
 rows(qry) <- c("[Product].[Product Line].[Product Line].MEMBERS")  
 pages(qry) <- c("[Sales Territory].[Sales Territory Region].[Sales 
Territory Region].MEMBERS") 

 result1 <- execute2D(olapCnn, qry) 

 mdx <- "SELECT {[Measures].[Internet Sales Count], [Measures].[Internet 
Sales-Sales Amount]} ON AXIS(0), {[Product].[Product Line].[Product 
Line].MEMBERS} ON AXIS(1), {[Sales Territory].[Sales Territory Region].
[Sales Territory Region].MEMBERS} ON AXIS(2) FROM [Analysis Services 
Tutorial]" 

 result2 <- execute2D(olapCnn, mdx) 

https://learn.microsoft.com/en-us/analysis-services/multidimensional-tutorial/multidimensional-modeling-adventure-works-tutorial


executeMD: olapR executeMD Methods
Article • 02/28/2023

Takes a Query object or an MDX string, and returns the result as a multi-dimensional
array.

Object of class "OlapConnection" returned by OlapConnection()

Object of class "Query" returned by Query()

String specifying a valid MDX query

If a Query is provided: executeMD  validates a Query object (optional), generates an mdx
query string from the Query object, executes the mdx query across an XMLA connection,
and returns the result as a multi-dimensional array.

If an MDX string is provided: executeMD  executes the mdx query across an XMLA
connection, and returns the result as a multi-dimensional array.

Usage

  executeMD(olapCnn, query) 
  executeMD(olapCnn, mdx) 

Arguments

olapCnn

query

mdx

Details



Returns a multi-dimensional array. Returns an error if the Query is invalid.

Creating a Demo OLAP Cube (the same as the one used in the examples):
Multidimensional Modeling (Adventure Works Tutorial)

Query, OlapConnection, execute2D, explore, array

Value

Notes

References

See also

Examples

 cnnstr <- "Data Source=localhost; Provider=MSOLAP;" 
 olapCnn <- OlapConnection(cnnstr) 

 qry <- Query() 

 cube(qry) <- "[Analysis Services Tutorial]" 
 columns(qry) <- c("[Measures].[Internet Sales Count]", "[Measures].
[Internet Sales-Sales Amount]") 
 rows(qry) <- c("[Product].[Product Line].[Product Line].MEMBERS")  
 pages(qry) <- c("[Sales Territory].[Sales Territory Region].[Sales 
Territory Region].MEMBERS") 

 result1 <- executeMD(olapCnn, qry) 

 mdx <- "SELECT {[Measures].[Internet Sales Count], [Measures].[Internet 
Sales-Sales Amount]} ON AXIS(0), {[Product].[Product Line].[Product 
Line].MEMBERS} ON AXIS(1), {[Sales Territory].[Sales Territory Region].
[Sales Territory Region].MEMBERS} ON AXIS(2) FROM [Analysis Services 
Tutorial]" 

 result2 <- executeMD(olapCnn, mdx) 

https://learn.microsoft.com/en-us/analysis-services/multidimensional-tutorial/multidimensional-modeling-adventure-works-tutorial


explore: olapR explore Method
Article • 02/28/2023

Allows for exploration of cube metadata

Object of class "OlapConnection" returned by OlapConnection()

A string specifying a cube name

A string specifying a dimension name

A string specifying a hierarchy name

A string specifying a level name

explore

Usage

  explore(olapCnn, cube = NULL, dimension = NULL, hierarchy = NULL, level = 
NULL) 

Arguments

olapCnn

cube

dimension

hierarchy

level

Details



Prints cube metadata. Returns NULL. An error is thrown if arguments are invalid.

Arguments must be specified in order. For example: In order to explore hierarchies, a
dimension and a cube must be specified.

See execute2D or executeMD for references.

query, OlapConnection, executeMD, execute2D

Value

Notes

References

See also

Examples

 cnnstr <- "Data Source=localhost; Provider=MSOLAP;" 
 ocs <- OlapConnection(cnnstr) 

 #Exploring Cubes 
 explore(ocs) 
 #Analysis Services Tutorial 
 #Internet Sales 
 #Reseller Sales 
 #Sales Summary 
 #[1] TRUE 

 #Exploring Dimensions 
 explore(ocs, "Analysis Services Tutorial") 
 #Customer 
 #Date 
 #Due Date 
 #Employee 
 #Internet Sales Order Details 
 #Measures 
 #Product 
 #Promotion 
 #Reseller 
 #Reseller Geography 
 #Sales Reason 



 #Sales Territory 
 #Ship Date 
 #[1] TRUE 

 #Exploring Hierarchies 
 explore(ocs, "Analysis Services Tutorial", "Product") 
 #Category 
 #Class 
 #Color 
 #Days To Manufacture 
 #Dealer Price 
 #End Date 
 #List Price 
 #Model Name 
 #Product Categories 
 #Product Line 
 #Product Model Lines 
 #Product Name 
 #Reorder Point 
 #Safety Stock Level 
 #Size 
 #Size Range 
 #Standard Cost 
 #Start Date 
 #Status 
 #Style 
 #Subcategory 
 #Weight 
 #[1] TRUE 

 #Exploring Levels 
 explore(ocs, "Analysis Services Tutorial", "Product", "Product Categories") 
 #(All) 
 #Category 
 #Subcategory 
 #Product Name 
 #[1] TRUE 

 #Exploring Members 
 #NOTE: -> indicates that the following member is a child of the previous 
member 
 explore(ocs, "Analysis Services Tutorial", "Product", "Product Categories", 
"Category") 
 #Accessories 
 #Bikes 
 #Clothing 
 #Components 
 #Assembly Components 
 #-> Assembly Components 
 #--> Assembly Components 



OlapConnection: olapR OlapConnection
Creation
Article • 02/28/2023

OlapConnection  constructs a "OlapConnection" object.

A valid connection string for connecting to Analysis Services

An object of class "OlapConnection"

OlapConnection  validates and holds an Analysis Services connection string. By default,
Analysis Services returns the first cube of the first database. To connect to a specific
database, use the Initial Catalog parameter.

OlapConnection  returns an object of type "OlapConnection". A warning is shown if the
connection string is invalid.

Usage

  OlapConnection(connectionString="Data Source=localhost; Provider=MSOLAP;") 

  is.OlapConnection(ocs) 

  print.OlapConnection(ocs) 

Arguments

connectionString

ocs

Details

Value



For more information on Analysis Services connection strings, see Connection string
properties.

Query, executeMD, execute2D, explore

References

See also

Examples

 # Create the connection string. For a named instance, escape the instance 
name: localhost\my-other-instance
 cnnstr <- "Data Source=localhost; Provider=MSOLAP; initial 
catalog=AdventureWorksCube" 
 olapCnn <- OlapConnection(cnnstr) 

https://learn.microsoft.com/en-us/analysis-services/instances/connection-string-properties-analysis-services


Query: olapR Query Construction
Article • 02/28/2023

Query  constructs a "Query" object. Set functions are used to build and modify the Query
axes and cube name.

A logical (TRUE, FALSE, NA) specifying whether the Query should be validated during
execution

Usage

  Query(validate = FALSE) 

  cube(qry) 
  cube(qry) <- cubeName 

  columns(qry) 
  columns(qry) <- axis 

  rows(qry) 
  rows(qry) <- axis 

  pages(qry) 
  pages(qry) <- axis 

  chapters(qry) 
  chapters(qry) <- axis 

  axis(qry, n) 
  axis(qry, n) <- axis 

  slicers(qry) 
  slicers(qry) <- axis 

  compose(qry) 

  is.Query(qry) 

Arguments

validate



An object of class "Query" returned by Query

A string specifying the name of the cube to query

A vector of strings specifying an axis. See example below.

An integer representing the axis number to be set. axis(qry, 1) == columns(qry), axis(qry,
2) == pages(qry), etc.

Query  is the constructor for the Query object. Set functions are used to specify what the
Query should return. Queries are passed to the Execute2D  and ExecuteMD  functions.
compose  takes the Query object and generates an MDX string equivalent to the one that
the Execute functions would generate and use.

Query  returns an object of type "Query". cube  returns a string. columns  returns a vector
of strings. rows  returns a vector of strings. pages  returns a vector of strings. sections
returns a vector of strings. axis  returns a vector of strings. slicers  returns a vector of
strings. compose  returns a string. is.Query  returns a boolean.

A Query object is not as powerful as pure MDX. If the Query API is not sufficient,
try using an MDX Query string with one of the Execute functions.

qry

cubeName

axis

n

Details

Value

Notes

References



See execute2D or executeMD for references.

execute2D, executeMD, OlapConnection, explore

See also

Examples

 qry <- Query(validate = TRUE) 

 cube(qry) <- "[Analysis Services Tutorial]" 

 columns(qry) <- c("[Measures].[Internet Sales Count]", "[Measures].
[Internet Sales-Sales Amount]") 
 rows(qry) <- c("[Product].[Product Line].[Product Line].MEMBERS")  
 axis(qry, 3) <- c("[Date].[Calendar Quarter].MEMBERS") 

 slicers(qry) <- c("[Sales Territory].[Sales Territories].[Sales Territory 
Region].[Northwest]") 

 print(cube(qry)) #[Analysis Services Tutorial] 
 print(axis(qry, 2)) #c("[Product].[Product Line].[Product Line].MEMBERS")  

 print(compose(qry))  #SELECT {[Measures].[Internet Sales Count], 
[Measures].[Internet Sales-Sales Amount]} ON AXIS(0), {[Product].[Product 
Line].[Product Line].MEMBERS} ON AXIS(1), {[Date].[Calendar 
Quarter].MEMBERS} ON AXIS(2) FROM [Analysis Services Tutorial] WHERE {[Sales 
Territory].[Sales Territories].[Sales Territory Region].[Northwest]} 



sqlrutils (R package in SQL Server
Machine Learning Services)
Article • 02/28/2023

Applies to:  SQL Server 2016 (13.x) and later versions

sqlrutils is an R package from Microsoft that provides a mechanism for R users to put
their R scripts into a T-SQL stored procedure, register that stored procedure with a
database, and run the stored procedure from an R development environment. The
package is included in SQL Server Machine Learning Services and SQL Server 2016 R
Services.

By converting your R code to run within a single stored procedure, you can make more
effective use of SQL Server R Services, which requires that R script be embedded as a
parameter to sp_execute_external_script. The sqlrutils package helps you build this
embedded R script and set related parameters appropriately.

The sqlrutils package performs these tasks:

Saves the generated T-SQL script as a string inside an R data structure
Optionally, generate a .sql file for the T-SQL script, which you can edit or run to
create a stored procedure
Registers the newly created stored procedure with the SQL Server instance from
your R development environment

You can also execute the stored procedure from an R environment, by passing well-
formed parameters and processing the results. Or, you can use the stored procedure
from SQL Server to support common database integration scenarios such as ETL, model
training, and high-volume scoring.

The sqlrutils package is distributed in multiple Microsoft products, but usage is the
same whether you get the package in SQL Server or another product. Should any

７ Note

If you intend to run the stored procedure from an R environment by calling the
executeStoredProcedure function, you must use an ODBC 3.8 provider, such as
ODBC Driver 13 for SQL Server.

Full reference documentation

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


product-specific behaviors exist, discrepancies will be noted in the function help page.

The following section provides an overview of the functions that you can call from the
sqlrutils package to develop a stored procedure containing embedded R code. For
details of the parameters for each method or function, see the R help for the package:
help(package="sqlrutils")

Function Description

executeStoredProcedure Execute a SQL stored procedure.

getInputParameters Get a list of input parameters to the stored procedure.

InputData Defines the source of data in SQL Server that will be used in the R data
frame. You specify the name of the data.frame in which to store the
input data, and a query to get the data, or a default value. Only simple
SELECT queries are supported.

InputParameter Defines a single input parameter that will be embedded in the T-SQL
script. You must provide the name of the parameter and its R data
type.

OutputData Generates an intermediate data object that is needed if your R function
returns a list that contains a data.frame. The OutputData object is used
to store the name of a single data.frame obtained from the list.

OutputParameter Generates an intermediate data object that is needed if your R function
returns a list. The OutputParameter object stores the name and data
type of a single member of the list, assuming that member is not a
data frame.

registerStoredProcedure Register the stored procedure with a database.

setInputDataQuery Assign a query to an input data parameter of the stored procedure.

setInputParameterValue Assign a value to an input parameter of the stored procedure.

StoredProcedure A stored procedure object.

The sqlrutils package functions must run on a computer having SQL Server Machine
Learning with R. If you are working on a client workstation, set a remote compute
context to shift execution to SQL Server. The workflow for using this package includes
the following steps:

Functions list

How to use sqlrutils



Define stored procedure parameters (inputs, outputs, or both)
Generate and register the stored procedure
Execute the stored procedure

In an R session, load sqlrutils from the command line by typing library(sqlrutils) .

StoredProcedure  is the main constructor used to build the stored procedure. This
constructor generates a SQL Server Stored Procedure object, and optionally creates a text
file containing a query that can be used to generate the stored procedure using a T-SQL
command.

Optionally, the StoredProcedure function can also register the stored procedure with the
specified instance and database.

Use the func  argument to specify a valid R function. All the variables that the
function uses must be defined either inside the function or be provided as input
parameters. These parameters can include a maximum of one data frame.

The R function must return either a data frame, a named list, or a NULL. If the
function returns a list, the list can contain a maximum of one data.frame.

Use the argument spName  to specify the name of the stored procedure you want to
create.

You can pass in optional input and output parameters, using the objects created by
these helper functions: setInputData , setInputParameter , and setOutputParameter .

Optionally, use filePath  to provide the path and name of a .sql file to create. You
can run this file on the SQL Server instance to generate the stored procedure using
T-SQL.

To define the server and database where the stored procedure will be saved, use
the arguments dbName  and connectionString .

７ Note

You can load this package on computer that does not have SQL Server (for
example, on an R Client instance) if you change the compute context to SQL Server
and execute the code in that compute context.

Define stored procedure parameters and inputs



To get a list of the InputData and InputParameter objects that were used to create
a specific StoredProcedure object, call getInputParameters .

To register the stored procedure with the specified database, use
registerStoredProcedure .

The stored procedure object typically does not have any data or values associated with
it, unless a default value was specified. Data is not retrieved until the stored procedure is
executed.

Use setInputDataQuery  to assign a query to an InputParameter object. For
example, if you have created a stored procedure object in R, you can use
setInputDataQuery  to pass arguments to the StoredProcedure function in order to
execute the stored procedure with the desired inputs.

Use setInputValue  to assign specific values to a parameter stored as an
InputParameter object. You then pass the parameter object and its value
assignment to the StoredProcedure function to execute the stored procedure with
the set values.

Use executeStoredProcedure  to execute a stored procedure defined as an
StoredProcedure object. Call this function only when executing a stored procedure
from R code. Do not use it when running the stored procedure from SQL Server
using T-SQL.

How to create a stored procedure using sqlrutils

Specify inputs and execute

７ Note

The executeStoredProcedure function requires an ODBC 3.8 provider, such as ODBC
Driver 13 for SQL Server.

See also



Convert R code to a stored procedure
using sqlrutils
Article • 11/18/2022

This article describes the steps for using the sqlrutils package to convert your R code to
run as a T-SQL stored procedure. For best possible results, your code might need to be
modified somewhat to ensure that all inputs can be parameterized.

For the best results, you should rewrite your R code to encapsulate it as a single
function.

All variables used by the function should be defined inside the function, or should be
defined as input parameters. See the sample code in this article.

Also, because the input parameters for the R function will become the input parameters
of the SQL stored procedure, you must ensure that your inputs and outputs conform to
the following type requirements:

Among the input parameters, there can be at most one data frame.

The objects inside the data frame, as well as all other input parameters of the function,
must be of the following R data types:

POSIXct
numeric
character
integer
logical
raw

If an input type is not one of the above types, it needs to be serialized and passed into
the function as raw. In this case, the function must also include code to deserialize the
input.

Step 1. Rewrite R Script

Inputs

Outputs



The function can output one of the following:

A data frame containing the supported data types. All objects in the data frame
must use one of the supported data types.
A named list, containing at most one data frame. All members of the list should
use one of the supported data types.
A NULL, if your function does not return any result

After your R code has been cleaned up and can be called as a single function, you will
use the functions in the sqlrutils package to prepare the inputs and outputs in a form
that can be passed to the constructor that actually builds the stored procedure.

sqlrutils provides functions that define the input data schema and type, and define the
output data schema and type. It also includes functions that can convert R objects to the
required output type. You might make multiple function calls to create the required
objects, depending on the data types your code uses.

If your function takes inputs, for each input, call the following functions:

setInputData  if the input is a data frame
setInputParameter  for all other input types

When you make each function call, an R object is created that you will later pass as an
argument to StoredProcedure , to create the complete stored procedure.

sqlrutils provides multiple functions for converting R objects such as lists to the
data.frame required by SQL Server. If your function outputs a data frame directly,
without first wrapping it into a list, you can skip this step. You can also skip the
conversion this step if your function returns NULL.

When converting a list or getting a particular item from a list, choose from these
functions:

setOutputData  if the variable to get from the list is a data frame
setOutputParameter  for all other members of the list

Step 2. Generate Required Objects

Inputs

Outputs



When you make each function call, an R object is created that you will later pass as an
argument to StoredProcedure , to create the complete stored procedure.

When all input and output parameters are ready, make a call to the StoredProcedure
constructor.

Usage

StoredProcedure (func, spName, ..., filePath = NULL ,dbName = NULL,

connectionString = NULL, batchSeparator = "GO")

To illustrate, assume that you want to create a stored procedure named sp_rsample with
these parameters:

Uses an existing function foosql. The function was based on existing code in R
function foo, but you rewrote the function to conform to the requirements as
described in this section, and named the updated function as foosql.
Uses the data frame queryinput as input
Generates as output a data frame with the R variable name, sqloutput
You want to create the T-SQL code as a file in the C:\Temp  folder, so that you can
run it using SQL Server Management Studio later

R

The output of the function is a T-SQL stored procedure that can be executed on an
instance of SQL Server 2016 (requires R Services) or SQL Server 2017 (requires Machine
Learning Services with R).

For additional examples, see the package help, by calling help(StoredProcedure)  from
an R environment.

Step 3. Generate the Stored Procedure

StoredProcedure (foosql, sp_rsample, queryinput, sqloutput, filePath = 
"C:\\Temp") 

７ Note

Because you are writing the file to the file system, you can omit the arguments that
define the database connection.



There are two ways that you can run the stored procedure:

Using T-SQL, from any client that supports connections to the SQL Server 2016 or
SQL Server 2017 instance
From an R environment

Both methods require that the stored procedure be registered in the database where
you intend to use the stored procedure.

You can register the stored procedure using R, or you can run the CREATE PROCEDURE
statement in T-SQL.

Using T-SQL. If you are more comfortable with T-SQL, open SQL Server
Management Studio (or any other client that can run SQL DDL commands) and
execute the CREATE PROCEDURE statement using the code prepared by the
StoredProcedure  function.

Using R. While you are still in your R environment, you can use the
registerStoredProcedure  function in sqlrutils to register the stored procedure with
the database.

For example, you could register the stored procedure sp_rsample in the instance
and database defined in sqlConnStr, by making this R call:

R

After the stored procedure has been created, open a connection to the SQL database
using any client that supports T-SQL, and pass values for any parameters required by

Step 4. Register and Run the Stored Procedure

Register the stored procedure

registerStoredProcedure(sp_rsample, sqlConnStr) 

） Important

Regardless of whether you use R or SQL, you must run the statement using an
account that has permissions to create new database objects.

Run using SQL



the stored procedure.

Some additional preparation is needed if you want to execute the stored procedure
from R code, rather from SQL Server. For example, if the stored procedure requires input
values, you must set those input parameters before the function can be executed, and
then pass those objects to the stored procedure in your R code.

The overall process of calling the prepared SQL stored procedure is as follows:

1. Call getInputParameters  to get a list of input parameter objects.
2. Define a $query  or set a $value  for each input parameter.
3. Use executeStoredProcedure  to execute the stored procedure from the R

development environment, passing the list of input parameter objects that you set.

This example shows the before and after versions of an R script that gets data from a
SQL Server database, performs some transformations on the data, and saves it to a
different database.

This simple example is used only to demonstrate how you might rearrange your R code
to make it easier to convert to a stored procedure.

R

Run using R

Example

Before code preparation

sqlConnFrom <- "Driver={ODBC Driver 13 for SQL 
Server};Server=MyServer01;Database=AirlineSrc;Trusted_Connection=Yes;" 
   
sqlConnTo <- "Driver={ODBC Driver 13 for SQL 
Server};Server=MyServer01;Database=AirlineTest;Trusted_Connection=Yes;" 
   
sqlQueryAirline <- "SELECT TOP 10000 ArrDelay, CRSDepTime, DayOfWeek FROM 
[AirlineDemoSmall]" 
   
dsSqlFrom <- RxSqlServerData(sqlQuery = sqlQueryAirline, connectionString = 
sqlConnFrom) 
   
dsSqlTo <- RxSqlServerData(table = "cleanData", connectionString = 
sqlConnTo) 
   
xFunc <- function(data) { 



In the updated version, the first line defines the function name. All other code from the
original R solution becomes a part of that function.

R

    data$CRSDepHour <- as.integer(trunc(data$CRSDepTime)) 
    return(data) 
    } 
   
xVars <- c("CRSDepTime") 
   
sqlCompute <- RxInSqlServer(numTasks = 4, connectionString = sqlConnTo) 
   
rxOpen(dsSqlFrom) 
rxOpen(dsSqlTo) 
   
if (rxSqlServerTableExists("cleanData", connectionString = sqlConnTo))   { 
    rxSqlServerDropTable("cleanData")} 
   
rxDataStep(inData = dsSqlFrom,  
     outFile = dsSqlTo, 
     transformFunc = xFunc, 
     transformVars = xVars, 
     overwrite = TRUE) 

７ Note

When you use an ODBC connection rather than invoking the RxSqlServerData
function, you must open the connection using rxOpen before you can perform
operations on the database.

After code preparation

myetl1function <- function() {  
   sqlConnFrom <- "Driver={ODBC Driver 13 for SQL 
Server};Server=MyServer01;Database=Airline01;Trusted_Connection=Yes;" 
   sqlConnTo <- "Driver={ODBC Driver 13 for SQL 
Server};Server=MyServer02;Database=Airline02;Trusted_Connection=Yes;" 
     
   sqlQueryAirline <- "SELECT TOP 10000 ArrDelay, CRSDepTime, DayOfWeek FROM 
[AirlineDemoSmall]" 

   dsSqlFrom <- RxSqlServerData(sqlQuery = sqlQueryAirline, connectionString 
= sqlConnFrom) 
   
   dsSqlTo <- RxSqlServerData(table = "cleanData", connectionString = 
sqlConnTo) 
   
   xFunc <- function(data) { 



sqlrutils reference

     data$CRSDepHour <- as.integer(trunc(data$CRSDepTime)) 
     return(data)} 
   
   xVars <- c("CRSDepTime") 
   
   sqlCompute <- RxInSqlServer(numTasks = 4, connectionString = sqlConnTo) 
   
   if (rxSqlServerTableExists("cleanData", connectionString = sqlConnTo)) 
{rxSqlServerDropTable("cleanData")} 
   
   rxDataStep(inData = dsSqlFrom,  
        outFile = dsSqlTo, 
        transformFunc = xFunc, 
        transformVars = xVars, 
        overwrite = TRUE) 
   return(NULL) 
} 

７ Note

Although you do not need to open the ODBC connection explicitly as part of your
code, an ODBC connection is still required to use sqlrutils.

See also



executeStoredProcedure: Execute a SQL
Stored Procedure
Article • 02/28/2023

executeStoredProcedure : Executes a stored procedure registered with the database

a valid StoredProcedure Object

Optional input and output parameters for the stored procedure. All of the parameters
that do not have default queries or values assigned to them must be provided

A character string (must be provided if the StoredProcedure object was created without
a connection string). This function requires using an ODBC driver which supports ODBC
3.8 functionality.

Boolean. Whether to print out the command used to execute the stored procedure

TRUE on success, FALSE on failure

Usage

  executeStoredProcedure(sqlSP, ..., connectionString = NULL) 

Arguments

sqlSP

...

connectionString

verbose

Value



This function relies that the ODBC driver used supports ODBC 3.8 features. Otherwise it
will fail.

Notes

Examples

 ## Not run: 

 # See ?StoredProcedure for creating the "cleandata" table. 

 ############# Example 1 ############# 
 # Create a linear model and store in the "rdata" table. 
 train <- function(in_df) { 
   factorLevels <- 
c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday") 
   in_df[,"DayOfWeek"] <- factor(in_df[,"DayOfWeek"], levels=factorLevels) 
   # The model formula 
   formula <- ArrDelay ~ CRSDepTime + DayOfWeek + CRSDepHour:DayOfWeek 

   # Train the model 
   mm <- rxLinMod(formula, data = in_df, transformFunc = NULL, transformVars 
= NULL) 

   # Store the model into the database 
   # rdata needs to be created beforehand 
   conStr <- paste0("Driver={ODBC Driver 13 for SQL Server};Server=.;", 
                    "Database=RevoTestDB;Trusted_Connection=Yes;") 
   out.table = "rdata" 
   # write the model to the table
   ds = RxOdbcData(table = out.table, connectionString = conStr) 

   rxWriteObject(ds, "linmod.v1", mm, keyName = "key", 
                 valueName = "value") 
   return(NULL) 
 } 

 conStr <- "Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;Trusted_Connection=Yes;" 
 # create  an InputData object for the input data frame in_df 
 indata <- InputData("in_df", 
                     defaultQuery = paste0("select top 10000 
ArrDelay,CRSDepTime,", 
                                           "DayOfWeek,CRSDepHour from 
cleanData")) 
 # create the sql server stored procedure object 
 trainSP1 <- StoredProcedure('train', "spTrain_df_to_df", indata, 
                             dbName = "RevoTestDB", 



                             connectionString = conStr, 
                             filePath = ".") 
 # spRegisterSp and executeStoredProcedure do not require a connection 
string since we 
 # provided one when we created trainSP1 
 registerStoredProcedure(trainSP1) 
 executeStoredProcedure(trainSP1, verbose = TRUE) 

 ############# Example 2 ############# 
 # score1 makes a batch prediction given clean data(indata), 
 # model object(model_param), and the new name of the variable 
 # that is being predicted 
score1 <- function(in_df, model_param, predVarNameInParam) { 
   factorLevels <- 
c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday") 
   in_df[,"DayOfWeek"] <- factor(in_df[,"DayOfWeek"], levels=factorLevels) 
   mm <- rxReadObject(as.raw(model_param)) 
   # Predict 
   result <- rxPredict(modelObject = mm, 
                       data = in_df, 
                       outData = NULL, 
                       predVarNames = predVarNameInParam, 
                       extraVarsToWrite = c("ArrDelay"), 
                       writeModelVars = TRUE, 
                       overwrite = TRUE) 
   return(list(result = result, pvOutParam = mm$f.pvalue)) 
} 

# create  an InputData object for the input data frame in_df 
indata <- InputData(name = "in_df", defaultQuery = "SELECT top 10 * from 
cleanData") 
# create InputParameter objects for model_param and predVarNameInParam 
model <- InputParameter("model_param", "raw", 
                       defaultQuery = paste("select top 1 value from rdata", 
                                            "where [key] = 'linmod.v1'")) 
predVarNameInParam <- InputParameter("predVarNameInParam", "character") 
# create OutputData object for the data frame inside the return list 
outData <- OutputData("result") 
# create OutputParameter object for non data frame variable inside the 
return list 
pvOutParam <- OutputParameter("pvOutParam", "numeric") 
scoreSP1 <- StoredProcedure(score1, "spScore_df_param_df", indata, model, 
predVarNameInParam, outData, pvOutParam, 
                           filePath = ".") 
conStr <- "Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;Trusted_Connection=Yes;" 
# connection string necessary for registrations and execution 
# since we did not pass it to StoredProcedure 
registerStoredProcedure(scoreSP1, conStr) 
model <- executeStoredProcedure(scoreSP1, predVarNameInParam = 
"ArrDelayEstimate", connectionString = conStr, verbose = TRUE) 
model$data 
model$params[[1]] 
## End(Not run)  





getInputParameters: Get a List of Input
Parameters of a SQL Stored Procedure
Article • 02/28/2023

getInputParameters : returns a list of SQL Server parameter objects that describe the
input parameters associated with a stored procedure

A valid StoredProcedure Object

A named list of SQL Server parameter objects (InputData, InputParameter) associated
with the provided StoredProcedure object. The names are the names of the variables
from the R function provided into StoredProcedure associated with the objects

Usage

  getInputParameters(sqlSP) 

Arguments

sqlSP

Value

Examples

 ## Not run: 

 # See ?StoredProcedure for creating the `cleandata` table. 
 # and ?executeStoredProcedure for creating the `rdata` table. 

 # score1 makes a batch prediction given clean data(indata), 
 # model object(model_param), and the new name of the variable 
 # that is being predicted 



 score1 <- function(indata, model_param, predVarName) { 
   indata[,"DayOfWeek"] <- factor(indata[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
   # The connection string 
   conStr <- paste("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                   "Trusted_Connection=Yes;", sep = "") 
   # The compute context 
   computeContext <- RxInSqlServer(numTasks=4, connectionString=conStr) 
   mm <- rxReadObject(as.raw(model_param)) 
   # Predict 
   result <- rxPredict(modelObject = mm, 
                       data = indata, 
                       outData = NULL, 
                       predVarNames = predVarName, 
                       extraVarsToWrite = c("ArrDelay"), 
                       writeModelVars = TRUE, 
                       overwrite = TRUE) 
 } 
 # connections string 
 conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                  "Trusted_Connection=Yes;") 
 # create InpuData Object for an input parameter that is a data frame 
 id <- InputData(name = "indata", defaultQuery = "SELECT * from cleanData") 
 # InputParameter for the model_param input variable 
 model <- InputParameter("model_param", "raw", 
                         defaultQuery = 
                           "select top 1 value from rdata where [key] = 
'linmod.v1'") 
 # InputParameter for the predVarName variable 
 name <- InputParameter("predVarName", "character") 
 sp_df_df <- StoredProcedure(score1, "sTest", id, model, name, 
                         filePath = ".") 

 # inspect the input parameters 
 getInputParameters(sp_df_df)  # "model_param" "predVarName" "indata" 

 # register the stored procedure with a database 
 registerStoredProcedure(sp_df_df, conStr) 
 # assign a different query to the InputData so that it only uses the firt 
10 rows 
 id <- setInputDataQuery(id, "SELECT top 10 * from cleanData") 
 # assign a value to the name parameter 
 name <- setInputParameterValue(name, "ArrDelayEstimate") 
 # execute the stored procedure 
 model <- executeStoredProcedure(sp_df_df, id, name, connectionString = 
conStr) 
 model$data 
## End(Not run)  



InputData: Input Data for SQL Stored
Procedure: Class Generator
Article • 02/28/2023

InputData : generates an InputData Object that captures the information about the input
parameter that is a data frame. The data frame needs to be populated upon the
execution a given query. This object is necessary for creation of stored procedures in
which the embedded R function takes in a data frame input parameter.

R

A character string, the name of the data input parameter into the R function supplied to
StoredProcedure.

A character string specifying the default query that will retrieve the data if a different
query is not provided at the time of the execution of the stored procedure. Must be a
simple SELECT query.

A character string specifing the query that will be used to retrieve the data in the next
run of the stored procedure.

InputData Object

Usage

  InputData(name, defaultQuery = NULL, query = NULL) 

Arguments

name

defaultQuery

query

Value



R

Examples

 ## Not run: 

 # See ?StoredProcedure for creating the "cleandata" table. 

 # train 1 takes a data frame with clean data and outputs a model 
 train1 <- function(in_df) { 
   in_df[,"DayOfWeek"] <- factor(in_df[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
   # The model formula 
   formula <- ArrDelay ~ CRSDepTime + DayOfWeek + CRSDepHour:DayOfWeek 
   # Train the model 
   rxSetComputeContext("local") 
   mm <- rxLinMod(formula, data=in_df) 
   mm <- rxSerializeModel(mm) 

   return(list("mm" = mm)) 
 } 
 # create InpuData Object for an input parameter that is a data frame 
 # note: if the input parameter is not a data frame use InputParameter 
object 
 id <- InputData(name = "in_df", 
                defaultQuery = paste0("select top 10000 
ArrDelay,CRSDepTime,", 
                                      "DayOfWeek,CRSDepHour from 
cleanData")) 
 # create an OutputParameter object for the variable inside the return list 
 # note: if that variable is a data frame use OutputData object 
 out <- OutputParameter("mm", "raw") 

 # connections string 
 conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                  "Trusted_Connection=Yes;") 
 # create the stored procedure object 
 sp_df_op <- StoredProcedure("train1", "spTest1", id, out, 
                        filePath = ".") 
 # register the stored procedure with the database 
 registerStoredProcedure(sp_df_op, conStr) 

 # execute the stored procedure, note: non-data frame variables inside the 
 # return list are not returned to R. However, if the execution is not 
sucessful 
 # the error will be displayed 
 model <- executeStoredProcedure(sp_df_op, connectionString = conStr) 
 # get the linear model 
 mm <- rxUnserializeModel(model$params$op1) 
## End(Not run)  





InputParameter: Input Parameter for
SQL Stored Procedure: Class Generator
Article • 02/28/2023

InputParameter : generates an InputParameter Object, that captures the information
about the input parameters of the R function that is to be embedded into a SQL Server
Stored Procesure. Those will become the input parameters of the stored procedure.
Supported R types of the input parameters are POSIXct, numeric, character, integer,
logical, and raw.

A character string, the name of the input parameter object.

A character string representing the R type of the input parameter object.

Default value of the parameter. Not supported for "raw".

A character string specifying the default query that will retrieve the data if a different
query is not provided at the time of the execution of the stored procedure.

Usage

  InputParameter(name, type, defaultValue = NULL, defaultQuery = NULL, 
  value = NULL, enableOutput = FALSE) 

Arguments

name

type

defaultValue

defaultQuery



A value that will be used for the parameter in the next run of the stored procedure.

Make this an Input/Output Parameter

InputParameter Object

value

enableOutput

Value

Examples

 ## Not run: 

 # See ?StoredProcedure for creating the `cleandata` table. 
 # and ?executeStoredProcedure for creating the `rdata` table.  

 # score1 makes a batch prediction given clean data(indata), 
 # model object(model_param), and the new name of the variable 
 # that is being predicted 
 score1 <- function(indata, model_param, predVarName) { 
 indata[,"DayOfWeek"] <- factor(indata[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
 # The connection string 
 conStr <- paste("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                 "Trusted_Connection=Yes;", sep = "") 
 # The compute context 
 computeContext <- RxInSqlServer(numTasks=4, connectionString=conStr) 
 mm <- rxReadObject(as.raw(model_param)) 
 # Predict 
 result <- rxPredict(modelObject = mm, 
                     data = indata, 
                     outData = NULL, 
                     predVarNames = predVarName, 
                     extraVarsToWrite = c("ArrDelay"), 
                     writeModelVars = TRUE, 
                     overwrite = TRUE) 
} 
# connections string 
conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 



                "Trusted_Connection=Yes;") 
# create InpuData Object for an input parameter that is a data frame 
id <- InputData(name = "indata", defaultQuery = "SELECT * from cleanData") 
# InputParameter for the model_param input variable 
model <- InputParameter("model_param", "raw", 
                       defaultQuery = 
                         "select top 1 value from rdata where [key] = 
'linmod.v1'") 
# InputParameter for the predVarName variable 
name <- InputParameter("predVarName", "character", value = 
"ArrDelayEstimate") 
sp_df_df <- StoredProcedure(score1, "sTest", id, model, name, 
                       filePath = ".") 
## End(Not run)  



OutputData: Output Data for SQL
Stored Procedure: Class Generator
Article • 02/28/2023

OutputData : generates an OutputData Object that captures the information about the
data frame that needs to be returned after the execution of the R function embedded
into the stored procedure. This object must be created if the R function is returning a
named list, where one of the items in the list is a data frame. The return list can contain
at most one data frame.

A character string, the name of the data frame variable.

OutputData Object

Usage

  OutputData(name) 

Arguments

name

Value

Examples

 ## Not run: 

 # See ?StoredProcedure for creating the "cleandata" table. 

 # train 2 takes a data frame with clean data and outputs a model 
 # as well as the data on the basis of which the model was built 
 train2 <- function(in_df) { 



 in_df[,"DayOfWeek"] <- factor(in_df[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
   # The model formula 
   formula <- ArrDelay ~ CRSDepTime + DayOfWeek + CRSDepHour:DayOfWeek 
   # Train the model 
   rxSetComputeContext("local") 
   mm <- rxLinMod(formula, data=in_df, transformFunc=NULL, 
transformVars=NULL) 
   mm <- rxSerializeModel(mm) 
   return(list(mm = mm, in_df = in_df)) 
 } 
 # create InpuData Object for an input parameter that is a data frame 
 # note: if the input parameter is not a data frame use InputParameter 
object 
 id <- InputData(name = "in_df", 
                 defaultQuery = paste0("select top 10000 
ArrDelay,CRSDepTime,", 
                                       "DayOfWeek,CRSDepHour from 
cleanData")) 
 out1 <- OutputData("in_df") 
 # create an OutputParameter object for the variable "mm" inside the return 
list 
 out2 <- OutputParameter("mm", "raw") 
 # connections string 
 conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                  "Trusted_Connection=Yes;") 
 # create the stored procedure object 
 sp_df_op <- StoredProcedure(train2, "spTest2", id, out1, out2, 
                         filePath = ".") 

 registerStoredProcedure(sp_df_op, conStr) 
 result <- executeStoredProcedure(sp_df_op, connectionString = conStr) 
 # Get back the linear model. 
 mm <- rxUnserializeModel(result$params$op1) 
## End(Not run)  



OutputParameter: Output Parameter for
SQL Stored Procedure: Class Generator
Article • 02/28/2023

OutputParameter : generates an OutputParameter Object that captures the information
about the output parameters of the function that is to be embedded into a SQL Server
Stored Procesure. Those will become the output parameters of the stored procedure.
Supported R types of the output parameters are POSIXct, numeric, character, integer,
logical, and raw. This object must be created if the R function is returning a named list
for non-data frame memebers of the list

A character string, the name of the output parameter object.

R type of the output parameter object.

OutputParameter Object

Usage

  OutputParameter(name, type) 

Arguments

name

type

Value

Examples



 ## Not run: 

 # See ?StoredProcedure for creating the "cleandata" table. 

 # train 2 takes a data frame with clean data and outputs a model 
 # as well as the data on the basis of which the model was built 
 train2 <- function(in_df) { 
 in_df[,"DayOfWeek"] <- factor(in_df[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
   # The model formula 
   formula <- ArrDelay ~ CRSDepTime + DayOfWeek + CRSDepHour:DayOfWeek 
   # Train the model 
   rxSetComputeContext("local") 
   mm <- rxLinMod(formula, data=in_df, transformFunc=NULL, 
transformVars=NULL) 
   mm <- rxSerializeModel(mm) 
   return(list(mm = mm, in_df = in_df)) 
 } 
 # create InpuData Object for an input parameter that is a data frame 
 # note: if the input parameter is not a data frame use InputParameter 
object 
 id <- InputData(name = "in_df", 
                 defaultQuery = paste0("select top 10000 
ArrDelay,CRSDepTime,", 
                                       "DayOfWeek,CRSDepHour from 
cleanData")) 
 out1 <- OutputData("in_df") 
 # create an OutputParameter object for the variable "mm" inside the return 
list 
 out2 <- OutputParameter("mm", "raw") 
 # connections string 
 conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                  "Trusted_Connection=Yes;") 
 # create the stored procedure object 
 sp_df_op <- StoredProcedure(train2, "spTest2", id, out1, out2, 
                         filePath = ".") 
 registerStoredProcedure(sp_df_op, conStr) 
 result <- executeStoredProcedure(sp_df_op, connectionString = conStr) 
 # Get back the linear model. 
 mm <- rxUnserializeModel(result$params$op1) 
## End(Not run)  



registerStoredProcedure: Register a SQL
Stored Procedure with a Database
Article • 02/28/2023

registerStoredProcedure : Uses the StoredProcedure object to register the stored
procedure with the specified database

a valid StoredProcedure object

A character string (must be provided if the StoredProcedure object was created without
a connection string)

TRUE on success, FALSE on failure

Usage

  registerStoredProcedure(sqlSP, connectionString = NULL) 

Arguments

sqlSP

connectionString

Value

Examples

 ## Not run: 

# See ?StoredProcedure for creating the "cleandata" table. 



# train 1 takes a data frame with clean data and outputs a model 
train1 <- function(in_df) { 
 in_df[,"DayOfWeek"] <- factor(in_df[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
 # The model formula 
 formula <- ArrDelay ~ CRSDepTime + DayOfWeek + CRSDepHour:DayOfWeek 
 # Train the model 
 rxSetComputeContext("local") 
 mm <- rxLinMod(formula, data=in_df) 
 mm <- rxSerializeModel(mm) 
 return(list("mm" = mm)) 
} 
# create InpuData Object for an input parameter that is a data frame 
# note: if the input parameter is not a data frame use InputParameter object 
id <- InputData(name = "in_df", 
              defaultQuery = paste0("select top 10000 ArrDelay,CRSDepTime,", 
                                    "DayOfWeek,CRSDepHour from cleanData")) 

# create an OutputParameter object for the variable inside the return list 
# note: if that variable is a data frame use OutputData object 
out <- OutputParameter("mm", "raw") 

# connections string 
conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                "Trusted_Connection=Yes;") 
# create the stored procedure object 
sp_df_op <- StoredProcedure("train1", "spTest1", id, out, 
                       filePath = ".") 
# register the stored procedure with the database 
registerStoredProcedure(sp_df_op, conStr) 
model <- executeStoredProcedure(sp_df_op, connectionString = conStr) 

# Getting back the model by unserializing it. 
mm <- rxUnserializeModel(model$params$op1) 
## End(Not run)  



setInputDataQuery: Assign a Query to
the Input Data Parameter of the SQL
Stored Procedure
Article • 02/28/2023

setInputDataQuery : assigns a query to the InputData parameter of the stored procedure
that is going to populate the input data frame of the embedded R function in the next
run of the stored procedure.

A character string, the name of the data frame input parameter into the R function.

A character string representing a query.

InputData Object

Usage

  setInputDataQuery(inputData, query) 

Arguments

inputData

query

Value

Examples

 ## Not run: 



 # See ?StoredProcedure for creating the `cleandata` table. 
 # and ?executeStoredProcedure for creating the `rdata` table. 

 # score1 makes a batch prediction given clean data(indata), 
 # model object(model_param), and the new name of the variable 
 # that is being predicted 
 score1 <- function(indata, model_param, predVarName) { 
   indata[,"DayOfWeek"] <- factor(indata[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
   # The connection string 
   conStr <- paste("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                   "Trusted_Connection=Yes;", sep = "") 
   # The compute context 
   computeContext <- RxInSqlServer(numTasks=4, connectionString=conStr) 
   mm <- rxReadObject(as.raw(model_param)) 
   # Predict 
   result <- rxPredict(modelObject = mm, 
                       data = indata, 
                       outData = NULL, 
                       predVarNames = predVarName, 
                       extraVarsToWrite = c("ArrDelay"), 
                       writeModelVars = TRUE, 
                       overwrite = TRUE) 
 } 
 # connections string 
 conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                  "Trusted_Connection=Yes;") 
 # create InpuData Object for an input parameter that is a data frame 
 id <- InputData(name = "indata", defaultQuery = "SELECT * from cleanData") 
 # InputParameter for the model_param input variable 
 model <- InputParameter("model_param", "raw", 
                         defaultQuery = 
                           "select top 1 value from rdata where [key] = 
'linmod.v1'") 
 # InputParameter for the predVarName variable 
 name <- InputParameter("predVarName", "character") 
 sp_df_df <- StoredProcedure(score1, "sTest", id, model, name, 
                         filePath = ".") 
 # register the stored procedure with a database 
 registerStoredProcedure(sp_df_df, conStr) 
 # assign a different query to the InputData so that it only uses the firt 
10 rows 
 id <- setInputDataQuery(id, "SELECT top 10 * from cleanData") 
 # assign a value to the name parameter 
 name <- setInputParameterValue(name, "ArrDelayEstimate") 
 # execute the stored procedure 
 model <- executeStoredProcedure(sp_df_df, id, name, connectionString = 
conStr) 
 model$data 
## End(Not run)  



setInputParameterValue: Assign a Value
to the Input Data Parameter of the SQL
Stored Procedure
Article • 02/28/2023

setInputParameterValue : assigns a value to an input parameter of the stored
procedure/embedded R function that is going to be used in the next run of the stored
procedure.

A character string, the name of input parameter into the R function.

A value that is to be bound to the input parameter. Note: binding for input parameters
of type "raw" is not supported.

InputParameter Object

Usage

  setInputParameterValue(inParam, value) 

Arguments

inParam

value

Value

Examples

 ## Not run: 



 # See ?StoredProcedure for creating the `cleandata` table. 
 # and ?executeStoredProcedure for creating the `rdata` table. 

 # score1 makes a batch prediction given clean data(indata), 
 # model object(model_param), and the new name of the variable 
 # that is being predicted 
 score1 <- function(indata, model_param, predVarName) { 
   indata[,"DayOfWeek"] <- factor(indata[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
   # The connection string 
   conStr <- paste("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                   "Trusted_Connection=Yes;", sep = "") 
   # The compute context 
   computeContext <- RxInSqlServer(numTasks=4, connectionString=conStr) 
   mm <- rxReadObject(as.raw(model_param)) 
   # Predict 
   result <- rxPredict(modelObject = mm, 
                       data = indata, 
                       outData = NULL, 
                       predVarNames = predVarName, 
                       extraVarsToWrite = c("ArrDelay"), 
                       writeModelVars = TRUE, 
                       overwrite = TRUE) 
 } 
 # connections string 
 conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                  "Trusted_Connection=Yes;") 
 # create InpuData Object for an input parameter that is a data frame 
 id <- InputData(name = "indata", defaultQuery = "SELECT * from cleanData") 
 # InputParameter for the model_param input variable 
 model <- InputParameter("model_param", "raw", 
                         defaultQuery = 
                           "select top 1 value from rdata where [key] = 
'linmod.v1'") 
 # InputParameter for the predVarName variable 
 name <- InputParameter("predVarName", "character") 
 sp_df_df <- StoredProcedure(score1, "sTest", id, model, name, 
                         filePath = ".") 
 # register the stored procedure with a database 
 registerStoredProcedure(sp_df_df, conStr) 
 # assign a different query to the InputData so that it only uses the firt 
10 rows 
 id <- setInputDataQuery(id, "SELECT top 10 * from cleanData") 
 # assign a value to the name parameter 
 name <- setInputParameterValue(name, "ArrDelayEstimate") 
 # execute the stored procedure 
 model <- executeStoredProcedure(sp_df_df, id, name, connectionString = 
conStr) 
 model$data 
## End(Not run)  



StoredProcedure: SQL Server Stored
Procedure: Class Generator
Article • 02/28/2023

StoredProcedure : generates a SQLServer Stored Procedure Object and optionally a .sql
file containing a query to create a stored procedure. StoredProcedure$registrationVec
contains strings representing the queries needed for creation of the stored procedure

A valid R function or a string name of a valid R function: 1) All of the variables that the
function relies on should be defined either inside the function or come in as input
parameters. Among the input parameters there can be at most 1 data frame 2) The
function should return either a data frame, a named list, or NULL. There can be at most
one data frame inside the list.

A character string specifying name for the stored procedure.

Optional input and output parameters for the stored procedure; must be objects of
classes InputData, InputParameter, or outputParameter.

Usage

  StoredProcedure (func, spName, ..., filePath = NULL ,dbName = NULL, 
  connectionString = NULL, batchSeparator = "GO") 

Arguments

func

spName

...

filePath



A character string specifying a path to the directory in which to create the .sql. If NULL
the .sql file is not generated.

A character string specifying name of the database to use.

A character string specifying the connection string.

Desired SQL batch separator (only relevant if filePath is defined)

SQLServer Stored Procedure Object

dbName

connectionString

batchSeparator

Value

Examples

 ## Not run: 

 ############# Example 1 ############# 
 # etl1 - reads from and write directly to the database 
 etl1 <- function() { 
   # The query to get the data 
   qq <- "select top 10000 ArrDelay,CRSDepTime,DayOfWeek from 
AirlineDemoSmall" 
   # The connection string 
   conStr <- paste("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                 "Trusted_Connection=Yes;", sep = "") 
   # The data source - retrieves the data from the database 
   dsSqls <- RxSqlServerData(sqlQuery=qq, connectionString=conStr) 
   # The destination data source 
   dsSqls2 <- RxSqlServerData(table ="cleanData",  connectionString = 
conStr) 
   # A transformation function 
   transformFunc <- function(data) { 
     data$CRSDepHour <- as.integer(trunc(data$CRSDepTime)) 
     return(data) 
   } 



   # The transformation variables
   transformVars <- c("CRSDepTime") 
   rxDataStep(inData = dsSqls, 
              outFile = dsSqls2, 
              transformFunc=transformFunc, 
              transformVars=transformVars, 
              overwrite = TRUE) 
   return(NULL) 
 } 
 # Create a StoredProcedure object 
 sp_ds_ds <- StoredProcedure(etl1, "spTest", 
                        filePath = ".", dbName ="RevoTestDB") 
 # Define a connection string 
 conStr <- paste("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                 "Trusted_Connection=Yes;", sep = "") 
 # register the stored procedure with a database 
 registerStoredProcedure(sp_ds_ds, conStr) 
 # execute the stored procedure 
 executeStoredProcedure(sp_ds_ds, connectionString = conStr) 

 ############# Example 2 ############# 
 # train 1 takes a data frame with clean data and outputs a model 
 train1 <- function(in_df) { 
   in_df[,"DayOfWeek"] <- factor(in_df[,"DayOfWeek"], 
levels=c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sund
ay")) 
   # The model formula 
   formula <- ArrDelay ~ CRSDepTime + DayOfWeek + CRSDepHour:DayOfWeek 
   # Train the model 
   rxSetComputeContext("local") 
   mm <- rxLinMod(formula, data=in_df) 
   mm <- rxSerializeModel(mm) 
   return(list("mm" = mm)) 
 } 
 # create InpuData Object for an input parameter that is a data frame 
 # note: if the input parameter is not a data frame use InputParameter 
object 
 id <- InputData(name = "in_df", 
                defaultQuery = paste0("select top 10000 
ArrDelay,CRSDepTime,", 
                                      "DayOfWeek,CRSDepHour from 
cleanData")) 
 # create an OutputParameter object for the variable inside the return list 
 # note: if that variable is a data frame use OutputData object 
 out <- OutputParameter("mm", "raw") 

 # connections string 
 conStr <- paste0("Driver={ODBC Driver 13 for SQL 
Server};Server=.;Database=RevoTestDB;", 
                  "Trusted_Connection=Yes;") 
 # create the stored procedure object 
 sp_df_op <- StoredProcedure("train1", "spTest1", id, out, 
                        filePath = ".") 



 # register the stored procedure with the database 
 registerStoredProcedure(sp_df_op, conStr) 

 # get the linear model 
 model <- executeStoredProcedure(sp_df_op, connectionString = conStr) 
 mm <- rxUnserializeModel(model$params$op1) 
## End(Not run)  



SQL Server 2017 Release Notes
Article • 03/31/2023

Applies to:  SQL Server 2017 (14.x) and later

This article describes limitations and issues with SQL Server 2017. For related
information, see:

What's New in SQL Server 2017
SQL Server on Linux release notes
SQL Server 2017 Cumulative updates  for information about the latest cumulative
update (CU) release

Try SQL Server!

 Download SQL Server 2017
 Spin up a Virtual Machine with SQL Server 2017

Issue and customer impact: After upgrade, the existing FILESTREAM network share
may be no longer available.

Workaround: First, reboot the computer and check if the FILESTREAM network
share is available. If the share is still not available, complete the following steps:

1. In SQL Server Configuration Manager, right-click the SQL Server instance, and
click Properties.

2. In the FILESTREAM tab clear Enable FILESTREAM for file I/O streaming
access, then click Apply.

3. Check Enable FILESTREAM for file I/O streaming access again with the
original share name and click Apply.

７ Note

SQL Server 2019 preview is now available. For more information, see What's New in
SQL Server 2019.

SQL Server 2017 - general availability release
(October 2017)

Database Engine

https://learn.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2017?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes-2017?view=sql-server-2017
https://aka.ms/sql2017cu
https://go.microsoft.com/fwlink/?LinkID=829477
https://azure.microsoft.com/services/virtual-machines/sql-server/?wt.mc_id=sqL16_vm
https://learn.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-2019?preserve-view=true&view=sql-server-ver15


Issue and customer impact:  On the user permissions page, when granting
permission to the root level in the entity tree view, you see the following error:
"The model permission cannot be saved. The object guid is not valid"

Workaround:
Grant permission on the sub nodes in the tree view instead of the root level.

Issue and customer impact: Data connectors for the following sources are not yet
available for tabular models at the 1400 compatibility level.

Amazon Redshift
IBM Netezza
Impala

Workaround: None.

Issue and customer impact: Direct Query models at the 1400 compatibility level
with perspectives can fail on querying or discovering metadata.

Workaround: Remove perspectives and redeploy.

Issue and customer impact: Running DReplay fails with the following message:
"Error DReplay Unexpected error occurred!".
Workaround: None.

There are no release notes for SQL Server on Windows related to this release. See SQL
Server on Linux Release notes.

Master Data Services (MDS)

Analysis Services

Tools

SQL Server 2017 Release Candidate (RC2 -
August 2017)

https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes-2017?view=sql-server-2017


Issue and customer impact: The parameter runincluster of the stored procedure
[catalog].[create_execution] is renamed to runinscaleout for consistency and
readability.

Work around: If you have existing scripts to run packages in Scale Out, you have
to change the parameter name from runincluster to runinscaleout to make the
scripts work in RC1.

Issue and customer impact: SQL Server Management Studio (SSMS) 17.1 and
earlier versions can't trigger package execution in Scale Out in RC1. The error
message is: "@runincluster is not a parameter for procedure create_execution."
This issue is fixed in the next release of SSMS, version 17.2. Versions 17.2 and later
of SSMS support the new parameter name and package execution in Scale Out.

Work around: Until SSMS version 17.2 is available:

1. Use your existing version of SSMS to generate the package execution script.
2. Change the name of the runincluster parameter to runinscaleout in the script.
3. Run the script.

Issue and customer impact: Documentation for SQL Server 2017 (14.x) is limited
and content is included with the SQL Server 2016 (13.x) documentation set.
Content in articles that is specific to SQL Server 2017 (14.x) is noted with Applies
To.
Issue and customer impact: No offline content is available for SQL Server 2017
(14.x).

SQL Server 2017 Release Candidate (RC1 - July
2017)

SQL Server Integration Services (SSIS) (RC1 - July 2017)

SQL Server 2017 CTP 2.1 (May 2017)

Documentation (CTP 2.1)

SQL Server Reporting Services (CTP 2.1)



Issue and customer impact: If you have both SQL Server Reporting Services and
Power BI Report Server on the same machine and uninstall one of them, you
cannot connect to the remaining report server with Report Server Configuration
Manager.

Work around To work around this issue, you must perform the following
operations after uninstalling one of the servers.

1. Launch a command prompt in Administrator mode.

2. Go to the directory where the remaining report server is installed.

Default location for Power BI Report Server: C:\Program Files\Microsoft Power
BI Report Server

Default location for SQL Server Reporting Services: C:\Program Files\Microsoft
SQL Server Reporting Services

3. Then go to the next folder, which is either SSRS or PBIRS depending on what
is remaining.

4. Go to the WMI folder.

5. Run the following command:

Console

If you see the following error, ignore it.

Issue and customer impact: After installing on a computer that has a 2016 version
of TSqlLanguageService.msi installed (either through SQL Setup or as a standalone
redistributable) the v13.* (SQL 2016) versions of
Microsoft.SqlServer.Management.SqlParser.dll and
Microsoft.SqlServer.Management.SystemMetadataProvider.dll are removed. Any

regsvr32 /i ReportingServicesWMIProvider.dll 

The module "ReportingServicesWMIProvider.dll" was loaded but the 
entry-point DLLInstall was not found. Make sure that 
"ReportingServicesWMIProvider.dll" is a valid DLL or OCX file and 
then try again. 

TSqlLanguageService.msi (CTP 2.1)



application that has a dependency on the 2016 versions of those assemblies stops
working and generate an error similar to: error : Could not load file or assembly
'Microsoft.SqlServer.Management.SqlParser, Version=13.0.0.0, Culture=neutral,
PublicKeyToken=89845dcd8080cc91' or one of its dependencies. The system cannot
find the file specified.

In addition, attempts to reinstall a 2016 version of TSqlLanguageService.msi fail
with the message: Installation of Microsoft SQL Server 2016 T-SQL Language Service
failed because a higher version already exists on the machine.

Workaround To work around this issue and fix an application that depends on the
v13 version of the assemblies follow these steps:

1. Go to Add/Remove Programs
2. Find Microsoft SQL Server 2019 T-SQL Language Service CTP2.1, right-click it,

and select Uninstall.
3. After the component is removed, repair the application that is broken or

reinstall the appropriate version of TSqlLanguageService.MSI.

This workaround removes the v14 version of those assemblies, so any applications
that depend on the v14 versions will no longer function. If those assemblies are
needed, then a separate installation without any side-by-side 2016 installs is
required.

Issue and customer impact: Documentation for SQL Server 2017 (14.x) is limited
and content is included with the SQL Server 2016 (13.x) documentation set.
Content in articles that is specific to SQL Server 2017 (14.x) is noted with Applies
To.
Issue and customer impact: No offline content is available for SQL Server 2017
(14.x).

Issue and customer impact: A SQL Server instance hosting an availability group
secondary replica crashes if the SQL Server major version is lower than the instance

SQL Server 2017 CTP 2.0 (April 2017)

Documentation (CTP 2.0)

Always On availability groups



that hosts the primary replica. Affects upgrades from all supported versions of SQL
Server that host availability groups to SQL Server SQL Server 2017 (14.x) CTP 2.0.
The issue occurs under the following conditions.

1. User upgrades SQL Server instance hosting secondary replica in accordance
with best practices.

2. After upgrade, a failover occurs and a newly upgraded secondary becomes
primary before completing upgrade for all secondary replicas in the availability
group. The old primary is now a secondary, which is lower version than
primary.

3. The availability group is in an unsupported configuration and any remaining
secondary replicas might be vulnerable to crash.

Workaround Connect to the SQL Server instance that hosts the new primary
replica, and remove the faulty secondary replica from the configuration.

SQL

The instance of SQL Server that hosted the secondary replica recovers.

SQL Server Reporting Services release notes.
Known Issues for Machine Learning Services
SQL Server Update Center - links and information for all supported versions

Ideas for SQL: Have suggestions for improving SQL Server?
Microsoft Q & A (SQL Server)
DBA Stack Exchange (tag sql-server): Ask SQL Server questions
Stack Overflow (tag sql-server): Answers to SQL development questions
Reddit: General discussion about SQL Server
Microsoft SQL Server License Terms and Information
Support options for business users
Contact Microsoft
Additional SQL Server help and feedback

ALTER AVAILABILITY GROUP agName REMOVE REPLICA ON NODE instanceName; 

More information

 Get help

https://learn.microsoft.com/en-us/sql/database-engine/availability-groups/windows/upgrading-always-on-availability-group-replica-instances?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/reporting-services/release-notes-reporting-services?view=sql-server-2017
https://learn.microsoft.com/en-us/troubleshoot/sql/releases/download-and-install-latest-updates?bc=%2fsql%2fbreadcrumb%2ftoc.json&toc=%2fsql%2ftoc.json
https://feedback.azure.com/forums/908035-sql-server
https://learn.microsoft.com/en-us/answers/products/sql-server
https://dba.stackexchange.com/questions/tagged/sql-server
https://stackoverflow.com/questions/tagged/sql-server
https://www.reddit.com/r/SQLServer/
https://www.microsoft.com/licensing/product-licensing/sql-server
https://support.microsoft.com/gp/support-options-for-business
https://support.microsoft.com/gp/contactus81?Audience=Commercial
https://learn.microsoft.com/en-us/sql/sql-server/sql-server-get-help?view=sql-server-2017


Did you know that you can edit SQL content yourself? If you do so, not only do you help
improve our documentation, but you also get credited as a contributor to the page.

For more information, see How to contribute to SQL Server documentation

 Contribute to SQL documentation

https://learn.microsoft.com/en-us/sql/sql-server/sql-server-docs-contribute?view=sql-server-2017


Known issues for Python and R in SQL
Server Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article describes known problems or limitations with the Python and R components
that are provided in SQL Server Machine Learning Services and SQL Server 2016 R
Services.

For a description of processes related to initial setup and configuration, see Install SQL
Server Machine Learning Services. It contains information about upgrades, side-by-side
installation, and installation of new R or Python components.

Applies to: R_SERVER binaries 9.0, 9.1, 9.2 or 9.3.

R_SERVER uses the Intel Math Kernel Library (MKL). For computations involving MKL,
inconsistent results can occur if your system is missing an environment variable.

Set the environment variable 'MKL_CBWR'=AUTO  to ensure conditional numerical
reproducibility in R_SERVER. For more information, see Introduction to Conditional
Numerical Reproducibility (CNR) .

1. In Control Panel, select System and Security > System > Advanced System
Settings > Environment Variables.

） Important

The support for Machine Learning Server (previously known as R Server) ended on
July 1, 2022. For more information, see What's happening to Machine Learning
Server?

Setup and configuration issues

Inconsistent results in MKL computations due to missing
environment variable

Workaround

https://learn.microsoft.com/en-us/sql/machine-learning/r/sql-server-r-services?view=sql-server-2017
https://software.intel.com/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://learn.microsoft.com/en-us/machine-learning-server/what-is-happening-to-machine-learning-server


2. Create a new User or System variable.

Set Variable to MKL_CBWR .
Set the Value to AUTO .

3. Restart R_SERVER. On SQL Server, you can restart SQL Server Launchpad Service.

For SQL Server 2017 (14.x), in cumulative updates 5 through 7, there is a regression in
the rlauncher.config file where the temp directory file path includes a space. This
regression is corrected in CU 8.

The error you will see when running R script includes the following messages:

Unable to communicate with the runtime for 'R' script. Please check the requirements
of 'R' runtime.

STDERR message(s) from external script:

Fatal error: cannot create 'R_TempDir'

Apply CU 8 when it becomes available. Alternatively, you can recreate rlauncher.config
by running registerrext with uninstall/install on an elevated command prompt.

Windows Command Prompt

７ Note

If you are running the SQL Server 2019 (15.x) on Linux, edit or create .bash_profile
in your user home directory, adding the line export MKL_CBWR="AUTO" . Execute this
file by typing source .bash_profile  at a bash command prompt. Restart R_SERVER
by typing Sys.getenv()  at the R command prompt.

R Script runtime error (SQL Server 2017 CU 5 - CU 7
regression)

Workaround

<SQLInstancePath>\R_SERVICES\library\RevoScaleR\rxLibs\x64\RegisterRExt.exe 
/uninstall /sqlbinnpath:<SQLInstanceBinnPath> /userpoolsize:0 /instance:
<SQLInstanceName> 

<SQLInstancePath>\R_SERVICES\library\RevoScaleR\rxLibs\x64\RegisterRExt.exe 



The following example shows the commands with the default instance
"MSSQL14.MSSQLSERVER" installed into C:\Program Files\Microsoft SQL Server\ :

Windows Command Prompt

If you try to install SQL Server 2016 (13.x) R Services or SQL Server Machine Learning
Services on a domain controller, setup fails, with these errors:

An error occurred during the setup process of the feature

Cannot find group with identity

Component error code: 0x80131509

The failure occurs because, on a domain controller, the service can't create the 20 local
accounts required to run machine learning. In general, we don't recommend installing
SQL Server on a domain controller. For more information, see Support bulletin
2032911 .

If you install the latest version of Microsoft R Client and use it to run R on SQL Server in
a remote compute context, you might get an error like the following:

You are running version 9.x.x of Microsoft R Client on your computer, which is
incompatible with Microsoft R Server version 8.x.x. Download and install a compatible

/install /sqlbinnpath:<SQLInstanceBinnPath> /userpoolsize:0 /instance:
<SQLInstanceName> 

"C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\R_SERVICES\library\RevoScaleR\rxLibs\x64\Register
Rext.exe" /uninstall /sqlbinnpath:"C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\MSSQL\Binn" /userpoolsize:0 /instance:MSSQLSERVER 

"C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\R_SERVICES\library\RevoScaleR\rxLibs\x64\Register
Rext.exe" /install /sqlbinnpath:"C:\Program Files\Microsoft SQL 
Server\MSSQL14.MSSQLSERVER\MSSQL\Binn" /userpoolsize:0 /instance:MSSQLSERVER 

Unable to install SQL Server machine learning features on
a domain controller

Install the latest service release to ensure compatibility
with Microsoft R Client

https://support.microsoft.com/help/2032911/you-may-encounter-problems-when-installing-sql-server-on-a-domain-cont


version.

SQL Server 2016 (13.x) requires that the R libraries on the client exactly match the R
libraries on the server. The restriction has been removed for releases later than R Server
9.0.1. However, if you encounter this error, verify the version of the R libraries that's used
by your client and the server and, if necessary, update the client to match the server
version.

The version of R that is installed with SQL Server R Services is updated whenever a SQL
Server service release is installed. To ensure that you always have the most up-to-date
versions of R components, be sure to install all service packs.

To ensure compatibility with Microsoft R Client 9.0.0, install the updates that are
described in this archived version of support article KB3210262 .

To avoid problems with R packages, you can also upgrade the version of the R libraries
that are installed on the server, by changing your servicing agreement to use the
Modern Lifecycle Support policy, as described in the next section. When you do so, the
version of R that's installed with SQL Server is updated on the same schedule used for
updates of Machine Learning Server (formerly Microsoft R Server).

Applies to: SQL Server 2016 (13.x) R Services, with R Server version 9.0.0 or earlier

A limited number of Azure virtual machines were provisioned without the R installation
files that should be included with SQL Server. The issue applies to virtual machines
provisioned in the period from 2018-01-05 to 2018-01-23. This issue might also affect
on-premises installations, if you applied the CU 3 update for SQL Server 2017 (14.x)
during the period from 2018-01-05 to 2018-01-23.

A service release has been provided that includes the correct version of the R installation
files.

Cumulative Update Package 3 for SQL Server 2017 KB4052987 .

To install the components and repair SQL Server 2017 (14.x) CU 3, you must uninstall CU
3, and reinstall the updated version:

1. Download the updated CU 3 installation file, which includes the R installers.
2. Uninstall CU 3. In Control Panel, search for Uninstall an update, and then select

"Hotfix 3015 for SQL Server 2017 (KB4052987) (64-bit)". Proceed with uninstall
steps.

R components missing from SQL Server 2017 CU 3 setup

https://web.archive.org/web/20190415073655/https://support.microsoft.com/en-us/help/3210262/fix-version-of-r-client-is-incompatible-with-the-microsoft-r-server-ve
https://www.microsoft.com/download/details.aspx?id=56128


3. Reinstall the CU 3 update, by double-clicking on the update for KB4052987 that
you downloaded: SQLServer2017-KB4052987-x64.exe . Follow the installation
instructions.

If you install a pre-release version of SQL Server 2017 (14.x) on a computer without
internet access, the installer might fail to display the page that prompts for the location
of the downloaded Python components. In such an instance, you can install the Machine
Learning Services feature, but not the Python components.

This issue is fixed in the release version. Also, this limitation doesn't apply to R
components.

Applies to: SQL Server 2017 (14.x) with Python

When you run R code in a SQL Server 2016 (13.x) compute context, you might see the
following error:

You are running version 9.0.0 of Microsoft R Client on your computer, which is
incompatible with the Microsoft R Server version 8.0.3. Download and install a
compatible version.

This message is displayed if either of the following two statements is true:

You installed R Server (Standalone) on a client computer by using the setup wizard
for SQL Server 2017 (14.x).
You installed Microsoft R Server by using the separate Windows installer.

To ensure that the server and client use the same version you might need to use binding,
supported for Microsoft R Server 9.0 and later releases, to upgrade the R components in
SQL Server 2016 (13.x) instances. To determine if support for upgrades is available for
your version of R Services, see Upgrade an instance of R Services using SqlBindR.exe.

Applies to: SQL Server 2016 (13.x) R Services, with R Server version 9.0.0 or earlier

Unable to install Python components in offline
installations of SQL Server 2017 or later

Warn of incompatible version when you connect to an
older version of SQL Server R Services from a client by
using SQL Server 2017

https://learn.microsoft.com/en-us/machine-learning-server/install/r-server-install-windows


When you install a cumulative update or install a service pack for SQL Server 2016 (13.x)
on a computer that isn't connected to the internet, the setup wizard might fail to display
the prompt that lets you update the R components by using downloaded CAB files. This
failure typically occurs when multiple components were installed together with the
database engine.

As a workaround, you can install the service release by using the command line and
specifying the MRCACHEDIRECTORY  argument as shown in this example, which installs CU 1
updates:

C:\<path to installation media>\SQLServer2016-KB3164674-x64.exe /Action=Patch

/IACCEPTROPENLICENSETERMS /MRCACHEDIRECTORY=<path to CU 1 CAB files>

To get the latest installers, see Install machine learning components without internet
access.

Applies to: SQL Server 2016 (13.x) R Services, with R Server version 9.0.0 or earlier

If you install SQL Server R Services separately from the database engine, and the build
versions are different, you might see the following error in the System Event log:

The SQL Server Launchpad service failed to start due to the following error: The service
did not respond to the start or control request in a timely fashion.

For example, this error might occur if you install the database engine by using the
release version, apply a patch to upgrade the database engine, and then add the R
Services feature by using the release version.

To avoid this problem, use a utility such as File Manager to compare the versions of
Launchpad.exe with version of SQL binaries, such as sqldk.dll . All components should
have the same version number. If you upgrade one component, be sure to apply the
same upgrade to all other installed components.

Look for Launchpad in the Binn  folder for the instance. For example, in a default
installation of SQL Server 2016 (13.x), the path might be C:\Program Files\Microsoft
SQL Server\MSSQL.13.InstanceNameMSSQL\Binn .

Setup for SQL Server 2016 service releases might fail to
install newer versions of R components

Launchpad services fails to start if the version is different
from the R version



If you have installed SQL Server on an Azure virtual machine, you might not be able to
use compute contexts that require the use of the virtual machine's workspace. The
reason is that, by default, the firewall on Azure virtual machines includes a rule that
blocks network access for local R user accounts.

As a workaround, on the Azure VM, open Windows Firewall with Advanced Security,
select Outbound Rules, and disable the following rule: Block network access for R local
user accounts in SQL Server instance MSSQLSERVER. You can also leave the rule
enabled, but change the security property to Allow if secure.

When you run R jobs from a remote data-science workstation by using Integrated
Windows authentication, SQL Server uses implied authentication to generate any local
ODBC calls that might be required by the script. However, this feature didn't work in the
RTM build of SQL Server 2016 (13.x) Express edition.

To fix the issue, we recommend that you upgrade to a later service release. If upgrade
isn't feasible, as a workaround, use a SQL login to run remote R jobs that might require
embedded ODBC calls.

Applies to: SQL Server 2016 (13.x) R Services Express edition

It is possible to call the machine learning libraries that are installed for SQL Server from
an external application, such as RGui. Doing so might be the most convenient way to
accomplish certain tasks, such as installing new packages, or running ad hoc tests on
very short code samples. However, outside of SQL Server, performance might be limited.

For example, even if you are using the Enterprise edition of SQL Server, R runs in single-
threaded mode when you run your R code by using external tools. To get the benefits of
performance in SQL Server, initiate a SQL Server connection and use
sp_execute_external_script to call the external script runtime.

In general, avoid calling the machine learning libraries that are used by SQL Server from
external tools. If you need to debug R or Python code, it is typically easier to do so

Remote compute contexts are blocked by a firewall in
SQL Server instances that are running on Azure virtual
machines

Implied authentication in SQL Server 2016 Express edition

Performance limits when libraries used by SQL Server are
called from other tools

https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


outside of SQL Server. To get the same libraries that are in SQL Server, you can install
Microsoft R Client or SQL Server 2017 Machine Learning Server (Standalone).

When you use Visual Studio or SQL Server Data Tools to publish a database project, if
any principal has permissions specific to external script execution, you might get an
error like this one:

TSQL Model: Error detected when reverse engineering the database. The permission
was not recognized and was not imported.

Currently the DACPAC model doesn't support the permissions used by R Services or
Machine Learning Services, such as GRANT ANY EXTERNAL SCRIPT , or EXECUTE ANY EXTERNAL
SCRIPT . This issue will be fixed in a later release.

As a workaround, run the additional GRANT  statements in a post-deployment script.

In Enterprise edition, you can use resource pools to manage external script processes. In
some early release builds, the maximum memory that could be allocated to the R
processes was 20 percent. Therefore, if the server had 32 GB of RAM, the R executables
(RTerm.exe  and BxlServer.exe ) could use a maximum of 6.4 GB in a single request.

If you encounter resource limitations, check the current default. If 20 percent isn't
enough, see the documentation for SQL Server on how to change this value.

Applies to: SQL Server 2016 (13.x) R Services, Enterprise edition

On a clean Linux machine that doesn't have libc++.so  installed, running a
sp_execute_external_script  (SPEES) query with Java or an external language fails
because commonlauncher.so  fails to load libc++.so .

For example:

SQL Server Data Tools doesn't support permissions
required by external scripts

External script execution is throttled due to resource
governance default values

Error when using sp_execute_external_script  without
libc++.so  on Linux



SQL

This fails with a message similar to the following:

text

The mssql-launchpadd  logs will show an error message similar to the following:

text

You can perform one of the following workarounds:

1. Copy libc++*  from /opt/mssql/lib  to the default system path /lib64

2. Add the following entries to /var/opt/mssql/mssql.conf  to expose the path:

text

Applies to: SQL Server 2019 (15.x) on Linux

EXECUTE sp_execute_external_script @language = N'Java' 
    , @script = N'JavaTestPackage.PassThrough' 
    , @parallel = 0 
    , @input_data_1 = N'select 1'
WITH RESULT SETS((col1 INT NOT NULL)); 
GO 

Msg 39012, Level 16, State 14, Line 0 

Unable to communicate with the runtime for 'Java' script for request id: 
94257840-1704-45E8-83D2-2F74AEB46CF7. Please check the requirements of 
'Java' runtime. 

Oct 18 14:03:21 sqlextmls launchpadd[57471]: [launchpad] 2019/10/18 14:03:21 
WARNING: PopulateLauncher failed: Library /opt/mssql-
extensibility/lib/commonlauncher.so not loaded. Error: libc++.so.1: cannot 
open shared object file: No such file or directory 

Workaround

[extensibility] 
readabledirectories = /opt/mssql 

Installation or upgrade error on FIPS enabled servers



If you install SQL Server 2019 (15.x) with the feature Machine Learning Services and
Language Extensions or upgrade the SQL Server instance on a Federal Information
Processing Standard (FIPS) enabled server, you will receive the following error:

An error occurred while installing extensibility feature with error message:
AppContainer Creation Failed with error message NONE, state This implementation is
not part of the Windows Platform FIPS validated cryptographic algorithms.

Disable FIPS before the installation of SQL Server 2019 (15.x) with the feature Machine
Learning Services and Language Extensions or upgrade of the SQL Server instance.
Once the installation or upgrade is complete, you can reenable FIPS.

Applies to: SQL Server 2019 (15.x)

The following limitations apply on SQL Server 2017 (14.x) with runtime upgrade. This
issue applies to Enterprise edition.

Parallelism: RevoScaleR  and MicrosoftML  algorithm thread parallelism for scenarios
are limited to maximum of two threads.
Streaming & partitioning: Scenarios involving @r_rowsPerRead  parameter passed to
T-SQL sp_execute_external_script  isn't applied.
Streaming & partitioning: RevoScaleR  and MicrosoftML  data sources (that is, ODBC ,
XDF ) doesn't support reading rows in chunks for training or scoring scenarios.
These scenarios always bring all data to memory for computation and the
operations are memory bound

The best solution is to upgrade to SQL Server 2019 (15.x). Alternatively you can continue
to use SQL Server 2017 (14.x) with runtime upgrade configured using RegisterRext.exe
/configure, after you complete the following tasks.

1. Edit registry to create a key
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\150  and

Workaround

R libraries using specific algorithms, streaming, or
partitioning

Issue

Solution

https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/system-cryptography-use-fips-compliant-algorithms-for-encryption-hashing-and-signing


add a value SharedCode  with data C:\Program Files\Microsoft SQL
Server\150\Shared  or the instance shared directory, as configured.

2. Create a folder C:\Program Files\Microsoft SQL Server\150\Shared and copy
instapi140.dll  from the folder C:\Program Files\Microsoft SQL
Server\140\Shared  to the newly created folder.

3. Rename the instapi140.dll  to instapi150.dll  in the new folder C:\Program
Files\Microsoft SQL Server\150\Shared .

This section contains known issues and workarounds for using ML services (R and
Python) in SQL Server.

Upon execution of sp_execute_external_script , the launchpad service launches satellite
processes that start the external runtimes such as R and Python. To amortize the startup
cost, a pool of processes is created that can be used in the subsequent execution of
sp_execute_external_script . This pool of processes is specific to this user, database,
and the used language (R or Python in ML Services).

The satellite processes need to be warmed up when sp_execute_external_script  is
executed for the first time or after a period of idle time (the processes are terminated via
a cleanup task if they are not used for a while). Cold start of such pooled processes may
be slow (for example, due to resource constraints).

If the performance of the first call is important, it is recommended to keep the queries
warm. For example, a background task can be executed that fires a simple

） Important

If you do the steps above, you must manually remove the added key prior to
upgrading to a later version of SQL Server.

Performance issues of Process Pooling in ML
Services (R and Python)

Cold start Performance of Process Pooling in ML Services

First query execution

Workaround



sp_execute_external_script  query before the processes get expired. For instance, to
keep R queries warm, you may execute the following query periodically.

SQL

If the number of concurrent execution of sp_execute_external_script  is higher than the
active R/Python processes in the pool, the cold start of adding additional processes to
the pool may be slow (for example, due to resource constraints).

To overcome the scaling performance issue, multiple requests can be batched (for
example, via loopback connections or rewriting the script to handle multiple requests).
In addition, for real-time scenarios SQL PREDICT can be utilized.

This section contains known issues that are specific to running R on SQL Server, as well
as some issues that are related to the R libraries and tools published by Microsoft,
including RevoScaleR.

For additional known issues that might affect R solutions, see the Machine Learning
Server site.

If the instance of SQL Server has been installed to a non-default location, such as
outside the Program Files  folder, the warning ACCESS_DENIED is raised when you try to
run scripts that install a package. For example:

In normalizePath(path.expand(path), winslash, mustWork)  :
path[2]="~ExternalLibraries/R/8/1": Access is denied

EXECUTE sp_execute_external_script @language = N'R', @script = N''; 
GO 

High number of concurrent queries

Workaround

R script execution issues

Access denied warning when executing R scripts on SQL
Server in a non default location

https://learn.microsoft.com/en-us/sql/machine-learning/connect/loopback-connection?view=sql-server-2017
https://learn.microsoft.com/en-us/machine-learning-server/resources-known-issues


The reason is that an R function attempts to read the path, and fails if the built-in users
group SQLRUserGroup, doesn't have read access. The warning that is raised doesn't
block execution of the current R script, but the warning might recur repeatedly
whenever the user runs any other R script.

If you have installed SQL Server to the default location, this error doesn't occur, because
all Windows users have read permissions on the Program Files  folder.

This issue is addressed in an upcoming service release. As a workaround, provide the
group, SQLRUserGroup, with read access for all parent folders of ExternalLibraries .

When you pass a model using a serialized format to a remote SQL Server instance, you
might get the error:

Error in memDecompress(data, type = decompress) internal error -3 in
memDecompress(2).

This error is raised if you saved the model using a recent version of the serialization
function, rxSerializeModel, but the SQL Server instance where you deserialize the model
has an older version of the RevoScaleR APIs, from SQL Server 2017 (14.x) CU 2 or earlier.

As a workaround, you can upgrade the SQL Server 2017 (14.x) instance to CU 3 or later.

The error doesn't appear if the API version is the same, or if you are moving a model
saved with an older serialization function to a server that uses a newer version of the
serialization API.

In other words, use the same version of RevoScaleR for both serialization and
deserialization operations.

If you create a model using a decision tree or decision forest method and specify the
learning rate, you might see inconsistent results when using sp_rxpredict  or the SQL
PREDICT  function, as compared to using rxPredict .

The cause is an error in the API that processes serialized models, and is limited to the
learningRate  parameter: for example, in rxBTrees, or

Serialization error between old and new versions of
RevoScaleR

Real-time scoring doesn't correctly handle the
learningRate parameter in tree and forest models

https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxserializemodel
https://learn.microsoft.com/en-us/machine-learning-server/r-reference/revoscaler/rxbtrees


This issue is addressed in an upcoming service release.

In the initial release build of SQL Server 2016 (13.x), you could set processor affinity only
for CPUs in the first k-group. For example, if the server is a 2-socket machine with two k-
groups, only processors from the first k-group are used for the R processes. The same
limitation applies when you configure resource governance for R script jobs.

This issue is fixed in SQL Server 2016 (13.x) Service Pack 1. We recommend that you
upgrade to the latest service release.

Applies to: SQL Server 2016 (13.x) R Services (RTM version)

If your compute context is set to the SQL Server instance, you can't use the colClasses
argument (or other similar arguments) to change the data type of columns in your R
code.

For example, the following statement would result in an error if the column
CRSDepTimeStr isn't already an integer:

R

As a workaround, you can rewrite the SQL query to use CAST  or CONVERT  and present the
data to R by using the correct data type. In general, performance is better when you
work with data by using SQL rather than by changing data in the R code.

Applies to: SQL Server 2016 (13.x) R Services

When you save a model to a SQL Server table, you must serialize the model and save it
in a binary format. Theoretically the maximum size of a model that can be stored with
this method is 2 GB, which is the maximum size of varbinary columns in SQL Server.

Limitations on processor affinity for R jobs

Changes to column types can't be performed when
reading data in a SQL Server compute context

data <- RxSqlServerData( 
  sqlQuery = "SELECT CRSDepTimeStr, ArrDelay FROM AirlineDemoSmall", 
  connectionString = connectionString, 
  colClasses = c(CRSDepTimeStr = "integer")) 

Limits on size of serialized models



If you need to use larger models, the following workarounds are available:

Take steps to reduce the size of your model. Some open source R packages include
a great deal of information in the model object, and much of this information can
be removed for deployment.

Use feature selection to remove unnecessary columns.

If you are using an open source algorithm, consider a similar implementation using
the corresponding algorithm in MicrosoftML or RevoScaleR. These packages have
been optimized for deployment scenarios.

After the model has been rationalized and the size reduced using the preceding
steps, see if the memCompress  function in base R can be used to reduce the size
of the model before passing it to SQL Server. This option is best when the model is
close to the 2-GB limit.

For larger models, you can use the SQL Server FileTable feature to store the
models, rather than using a varbinary column.

To use FileTables, you must add a firewall exception, because data stored in
FileTables is managed by the Filestream filesystem driver in SQL Server, and default
firewall rules block network file access. For more information, see Enable
Prerequisites for FileTable.

After you have enabled FileTable, to write the model, you get a path from SQL
using the FileTable API, and then write the model to that location from your code.
When you need to read the model, you get the path from SQL Server, and then call
the model using the path from your script. For more information, see Access
FileTables with File Input-Output APIs.

If you use an R command to clear your workspace of objects while running R code in a
SQL Server compute context, or if you clear the workspace as part of an R script called
by using sp_execute_external_script, you might get this error: workspace object
revoScriptConnection not found

revoScriptConnection  is an object in the R workspace that contains information about
an R session that is called from SQL Server. However, if your R code includes a
command to clear the workspace (such as rm(list=ls())) , all information about the
session and other objects in the R workspace is cleared as well.

Avoid clearing workspaces when you execute R code in a
SQL Server compute context

https://www.rdocumentation.org/packages/base/versions/3.4.1/topics/memCompress
https://learn.microsoft.com/en-us/sql/relational-databases/blob/filetables-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/blob/enable-the-prerequisites-for-filetable?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/blob/access-filetables-with-file-input-output-apis?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-execute-external-script-transact-sql?view=sql-server-2017


As a workaround, avoid indiscriminate clearing of variables and other objects while
you're running R in SQL Server. Although clearing the workspace is common when
working in the R console, it can have unintended consequences.

To delete specific variables, use the R remove  function: for example,
remove('name1', 'name2', ...)

If there are multiple variables to delete, save the names of temporary variables to a
list and perform periodic garbage collection.

You can't use in an R script the following types of query results:

Data from a Transact-SQL query that references AlwaysEncrypted columns.

Data from a Transact-SQL query that references masked columns.

If you need to use masked data in an R script, a possible workaround is to make a
copy of the data in a temporary table and use that data instead.

Using string type variables as factors can greatly increase the amount of memory used
for R operations. This is a known issue with R in general, and there are many articles on
the subject. For example, see Factors aren't first-class citizens in R, by John Mount, in R-
bloggers)  or stringsAsFactors: An unauthorized biography , by Roger Peng.

Although the issue isn't specific to SQL Server, it can greatly affect performance of R
code run in SQL Server. Strings are typically stored as varchar or nvarchar, and if a
column of string data has many unique values, the process of internally converting these
to integers and back to strings by R can even lead to memory allocation errors.

If you don't absolutely require a string data type for other operations, mapping the
string values to a numeric (integer) data type as part of data preparation would be
beneficial from a performance and scale perspective.

For a discussion of this issue, and other tips, see Performance for R Services - data
optimization.

Restrictions on data that can be provided as input to an R
script

Use of strings as factors can lead to performance
degradation

https://www.r-bloggers.com/factors-are-not-first-class-citizens-in-r/
https://simplystats.github.io/2015/07/24/stringsasfactors-an-unauthorized-biography/


When you use the rxDataStep function to write results to a table, using the varsToKeep
and varsToDrop is a handy way of specifying the columns to include or exclude as part
of the operation. However, these arguments aren't supported for SQL Server data
sources.

Not all data types that are supported in SQL can be used in R. As a workaround,
consider casting the unsupported data type to a supported data type before passing the
data to sp_execute_external_script .

For more information, see R libraries and data types.

Passing Unicode data in varchar columns from SQL Server to R/Python can result in
string corruption. This is due to the encoding for these Unicode strings in SQL Server
collations may not match with the default UTF-8 encoding used in R/Python.

To send any non-ASCII string data from SQL Server to R/Python, use UTF-8 encoding
(available in SQL Server 2019 (15.x)) or use nvarchar type for the same.

When a binary data type (the R raw data type) is returned from R, the value must be
sent in the output data frame.

With data types other than raw, you can return parameter values along with the results
of the stored procedure by adding the OUTPUT keyword. For more information, see
Parameters.

If you want to use multiple output sets that include values of type raw, one possible
workaround is to do multiple calls of the stored procedure, or to send the result sets
back to SQL Server by using ODBC.

Arguments varsToKeep and varsToDrop aren't supported
for SQL Server data sources

Limited support for SQL data types in
sp_execute_external_script

Possible string corruption using Unicode strings in
varchar columns

Only one value of type raw  can be returned from
sp_execute_external_script

https://learn.microsoft.com/en-us/sql/relational-databases/stored-procedures/parameters?view=sql-server-2017


Because Transact-SQL and R support various data types, numeric data types can suffer
loss of precision during conversion.

For more information about implicit data-type conversion, see R libraries and data types.

To transform data while you are modeling, you can pass a transformFunc argument in a
function such as rxLinmod  or rxLogit . However, nested function calls can lead to
scoping errors in the SQL Server compute context, even if the calls work correctly in the
local compute context.

The sample data set for the analysis has no variables

For example, assume that you have defined two functions, f  and g , in your local global
environment, and g  calls f . In distributed or remote calls involving g , the call to g
might fail with this error, because f  can't be found, even if you have passed both f  and
g  to the remote call.

If you encounter this problem, you can work around the issue by embedding the
definition of f  inside your definition of g , anywhere before g  would ordinarily call f .

For example:

R

To avoid the error, rewrite the definition as follows:

R

Loss of precision

Variable scoping error when you use the transformFunc
parameter

f <- function(x) { 2*x * 3 } 
g <- function(y) { 
              a <- 10 * y 
               f(a) 
} 

g <- function(y){ 
              f <- function(x) { 2*x +3} 
              a <- 10 * y 
              f(a) 
} 



When varchar columns are read from a database, white space is trimmed. To prevent
this, enclose strings in non-white-space characters.

When functions such as rxDataStep  are used to create database tables that have
varchar columns, the column width is estimated based on a sample of the data. If the
width can vary, it might be necessary to pad all strings to a common length.

Using a transform to change a variable's data type isn't supported when repeated calls
to rxImport  or rxTextToXdf  are used to import and append rows, combining multiple
input files into a single .xdf file.

In SQL Server 2016 (13.x), the rxExec  function that's provided by the RevoScaleR
package can be used only in single-threaded mode.

If you use data sets with extremely large numbers of variables (for example, over
40,000), set the max-ppsize  flag when you start R to use functions such as rxGetVarInfo .
The max-ppsize  flag specifies the maximum size of the pointer protection stack.

If you are using the R console (for example, RGui.exe or RTerm.exe), you can set the
value of max-ppsize to 500000 by typing:

R

The rxDTree  function doesn't currently support in-formula transformations. In particular,
using the F()  syntax for creating factors on the fly isn't supported. However, numeric
data is automatically binned.

Ordered factors are treated the same as factors in all RevoScaleR analysis functions
except rxDTree .

Data import and manipulation using RevoScaleR

Limited support for rxExec

Increase the maximum parameter size to support
rxGetVarInfo

R --max-ppsize=500000 

Issues with the rxDTree function



Using data.table  as an OutputDataSet  in R isn't supported in SQL Server 2017 (14.x)
Cumulative Update 13 (CU 13) and earlier. The following message might appear:

text

data.table  as an OutputDataSet  in R is supported in SQL Server 2017 (14.x) Cumulative
Update 14 (CU 14) and later.

Running a long running external script session and having the dbo in parallel trying to
install a library on a different database can terminate the script.

For example, running this external script against master:

SQL

While the dbo in parallel installs a library in LibraryManagementFunctional:

SQL

data.table  as an OutputDataSet in R

Msg 39004, Level 16, State 20, Line 2 
A 'R' script error occurred during execution of 
'sp_execute_external_script' with HRESULT 0x80004004. 
Msg 39019, Level 16, State 2, Line 2 
An external script error occurred: 
Error in alloc.col(newx) : 
  Internal error: length of names (0) is not length of dt (11) 
Calls: data.frame ... as.data.frame -> as.data.frame.data.table -> copy -> 
alloc.col 

Error in execution.  Check the output for more information. 
Error in eval(expr, envir, enclos) : 
  Error in execution.  Check the output for more information. 
Calls: source -> withVisible -> eval -> eval -> .Call 
Execution halted 

Running a long script fails while installing a library

USE MASTER 
DECLARE @language nvarchar(1) = N'R' 
DECLARE @script nvarchar(max) = N'Sys.sleep(100)' 
DECLARE @input_data_1 nvarchar(max) = N'select 1' 
EXEC sp_execute_external_script @language = @language, @script = @script, @i
nput_data_1 = @input_data_1 with result sets none 
go 



The previous long running external script against master will terminate with the
following error message:

A 'R' script error occurred during execution of 'sp_execute_external_script' with
HRESULT 0x800704d4.

Don't run the library install in parallel to the long-running query. Or rerun the long
running query after the installation is complete.

Applies to: SQL Server 2019 (15.x) on Linux & Big Data Clusters only.

SQL Server 2019 (15.x) contains a regression that affects R scripts that use parallel
execution. Examples include using rxExec  with RxLocalPar  compute context and scripts
that use the parallel package. This problem is caused by errors the parallel package
encounters when writing to the null device while executing in SQL Server.

Applies to: SQL Server 2019 (15.x).

Executing an R script with sp_execute_external_script  allows money, numeric, decimal,
and bigint data types as input data. However, because they are converted to R's numeric

USE [LibraryManagementFunctional] 
go 

CREATE EXTERNAL LIBRARY [RODBC] FROM (CONTENT = N'/home/ani/var/opt/mssql/da
ta/RODBC_1.3-16.tar.gz') WITH (LANGUAGE = 'R') 
go 

DECLARE @language nvarchar(1) = N'R' 
DECLARE @script nvarchar(14) = N'library(RODBC)' 
DECLARE @input_data_1 nvarchar(8) = N'select 1' 
EXEC sp_execute_external_script @language = @language, @script = @script, @i
nput_data_1 = @input_data_1 
go 

Workaround

SQL Server stops responding when executing R scripts
containing parallel execution

Precision loss for money/numeric/decimal/bigint data
types



type, they suffer a precision loss with values that are very high or have decimal point
values.

money: Sometimes cent values would be imprecise and a warning would be
issued: Warning: unable to precisely represent cents values.
numeric/decimal: sp_execute_external_script  with an R script doesn't support the
full range of those data types and would alter the last few decimal digits especially
those with fraction.
bigint: R only support up to 53-bit integers and then it will start to have precision
loss.

When the rxExecBy  function is called, a new R runtime process starts. This new process
does not have updated library paths, hence, packages installed in locations other than
the default library path are not found during execution.

The path to R packages needs to be explicitly updated. Suppose the packages are
installed in the external libraries path, the following R script could be used to update
library path: .libPaths(c(Sys.getenv("MRS_EXTLIB_USER_PATH"),
Sys.getenv("MRS_EXTLIB_SHARED_PATH"), .libPaths()))

This section contains known issues that are specific to running Python on SQL Server, as
well as issues that are related to the Python packages published by Microsoft, including
revoscalepy and microsoftml.

If you installed the pretrained models in an early release of SQL Server 2017 (14.x), the
complete path to the trained model file might be too long for Python to read. This
limitation is fixed in a later service release.

There are several potential workarounds:

When you install the pretrained models, choose a custom location.

Issues with the rxExecBy function - rxExecBy function
cannot find installed package

Workaround

Python script execution issues

Call to pretrained model fails if path to model is too long

https://learn.microsoft.com/en-us/r-server/python-reference/revoscalepy/revoscalepy-package
https://learn.microsoft.com/en-us/r-server/python-reference/microsoftml/microsoftml-package


If possible, install the SQL Server instance under a custom installation path with a
shorter path, such as C:\SQL\MSSQL14.MSSQLSERVER .
Use the Windows utility Fsutil to create a hard link that maps the model file to a
shorter path.
Update to the latest service release.

When you pass a model to a remote SQL Server instance, and try to read the binary
model using the rx_unserialize  function in revoscalepy, you might get the error:

NameError: name 'rx_unserialize_model' is not defined

This error is raised if you saved the model using a recent version of the serialization
function, but the SQL Server instance where you deserialize the model doesn't recognize
the serialization API.

To resolve the issue, upgrade the SQL Server 2017 (14.x) instance to CU 3 or later.

If you run Python code in SQL Server using sp_execute_external_script , and the code
has output variables of type varbinary(max), varchar(max) or similar types, the variable
must be initialized or set as part of your script. Otherwise, the data exchange
component, BxlServer, raises an error and stops working.

This limitation will be fixed in an upcoming service release. As a workaround, make sure
that the variable is initialized within the Python script. Any valid value can be used, as in
the following examples:

SQL

SQL

Error when saving serialized model to SQL Server

Failure to initialize a varbinary variable causes an error in
BxlServer

declare @b varbinary(max); 
exec sp_execute_external_script 
  @language = N'Python' 
  , @script = N'b = 0x0' 
  , @params = N'@b varbinary(max) OUTPUT' 
  , @b = @b OUTPUT; 
go 

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc788097(v=ws.11)
https://learn.microsoft.com/en-us/machine-learning-server/python-reference/revoscalepy/revoscalepy-package


Beginning with SQL Server 2017 (14.x) CU 2, the following message might appear even if
Python code otherwise runs successfully:

STDERR message(s) from external script: ~PYTHON_SERVICES\lib\site-
packages\revoscalepy\utils\RxTelemetryLogger SyntaxWarning: telemetry_state is used
prior to global declaration

This issue has been fixed in SQL Server 2017 (14.x) Cumulative Update 3 (CU 3).

Beginning with SQL Server 2017 (14.x) Cumulative Update 12 (CU 12), numeric, decimal
and money data types in WITH RESULT SETS are unsupported when using Python with
sp_execute_external_script . The following messages might appear:

[Code: 39004, SQL State: S1000] A 'Python' script error occurred during execution
of'sp_execute_external_script' with HRESULT 0x80004004.

[Code: 39019, SQL State: S1000] An external script error occurred:

SqlSatelliteCall error: Unsupported type in output schema. Supported types: bit,
smallint, int, datetime, smallmoney, real and float. char, varchar are partially
supported.

This has been fixed in SQL Server 2017 (14.x) Cumulative Update 14 (CU 14).

On SQL Server 2019 (15.x), if you try to use pip. For example:

declare @b varchar(30);
exec sp_execute_external_script 
  @language = N'Python' 
  , @script = N' b = ""  ' 
  , @params = N'@b varchar(30) OUTPUT' 
  , @b = @b OUTPUT; 
go 

Telemetry warning on successful execution of Python
code

Numeric, decimal, and money data types not supported

Bad interpreter error when installing Python packages
with pip on Linux



Bash

You will then get this error:

bash: /opt/mssql/mlservices/runtime/python/bin/pip:
/opt/microsoft/mlserver/9.4.7/bin/python/python: bad interpreter: No such file or
directory

Install pip from the Python Package Authority (PyPA) :

Bash

See Install Python packages with sqlmlutils.

Applies to: SQL Server 2019 (15.x) on Linux

After installing SQL Server 2019 (15.x) on Windows, attempting to install a python
package via pip from a DOS command line will fail. For example:

Bash

This will return the following error:

pip is configured with locations that require TLS/SSL, however the ssl module in
Python is not available.

/opt/mssql/mlservices/runtime/python/bin/pip -h 

Workaround

wget 'https://bootstrap.pypa.io/get-pip.py' 
/opt/mssql/mlservices/bin/python/python ./get-pip.py 

Recommendation

Unable to install Python packages using pip  after
installing SQL Server 2019 on Windows

pip install quantfolio 

https://www.pypa.io/
https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-python-packages-on-sql-server?view=sql-server-2017


This is a problem specific to the Anaconda package. It will be fixed in an upcoming
service release.

Copy the following files:

libssl-1_1-x64.dll

libcrypto-1_1-x64.dll

from the folder  
C:\Program Files\Microsoft SQL

Server\MSSSQL15.MSSQLSERVER\PYTHON_SERVICES\Library\bin

to the folder  
C:\Program Files\Microsoft SQL Server\MSSSQL15.MSSQLSERVER\PYTHON_SERVICES\DLLs

Then open a new DOS command shell prompt.

Applies to: SQL Server 2019 (15.x) on Windows

On a clean Linux machine that doesn't have libc++abi.so  installed, running a
sp_execute_external_script  (SPEES) query fails with a "No such file or directory" error.

For example:

SQL

Output

Workaround

Error when using sp_execute_external_script  without
libc++abo.so  on Linux

EXEC sp_execute_external_script 
    @language = N'Python' 
    , @script = N' 
OutputDataSet = InputDataSet' 
    , @input_data_1 = N'select 1' 
    , @input_data_1_name = N'InputDataSet' 
    , @output_data_1_name = N'OutputDataSet' 
    WITH RESULT SETS (([output] int not null)); 

Msg 39012, Level 16, State 14, Line 0 
Unable to communicate with the runtime for 'Python' script for request id: 
94257840-1704-45E8-83D2-2F74AEB46CF7. Please check the requirements of 



Run the following command:

Bash

Applies to: SQL Server 2019 (15.x) on Linux

When viewing the logs of mssql-launchpadd  using sudo journalctl -a -u mssql-
launchpadd , you might see a firewall rule creation error similar to the following output.

Output

'Python' runtime. 
STDERR message(s) from external script: 

Failed to load library /opt/mssql-extensibility/lib/sqlsatellite.so with 
error libc++abi.so.1: cannot open shared object file: No such file or 
directory. 

SqlSatelliteCall error: Failed to load library /opt/mssql-
extensibility/lib/sqlsatellite.so with error libc++abi.so.1: cannot open 
shared object file: No such file or directory. 
STDOUT message(s) from external script: 
SqlSatelliteCall function failed. Please see the console output for more 
information. 
Traceback (most recent call last): 
  File 
"/opt/mssql/mlservices/libraries/PythonServer/revoscalepy/computecontext/RxI
nSqlServer.py", line 605, in rx_sql_satellite_call 
    rx_native_call("SqlSatelliteCall", params) 
  File 
"/opt/mssql/mlservices/libraries/PythonServer/revoscalepy/RxSerializable.py"
, line 375, in rx_native_call 
    ret = px_call(functionname, params) 
RuntimeError: revoscalepy function failed. 
Total execution time: 00:01:00.387 

Workaround

sudo cp /opt/mssql/lib/libc++abi.so.1 /opt/mssql-extensibility/lib/ 

Firewall rule creation error in modprobe  when running
mssql-launchpadd  on Linux

-- Logs begin at Sun 2021-03-28 12:03:30 PDT, end at Wed 2022-10-12 13:20:17 
PDT. -- 
Mar 22 16:57:51 sqlVm systemd[1]: Started Microsoft SQL Server Extensibility 
Launchpad Daemon. 
Mar 22 16:57:51 sqlVm launchpadd[195658]: 2022/03/22 16:57:51 [launchpadd] 



Run the following commands to configure modprobe , and restart the SQL Server
Launchpad service:

Bash

Applies to: SQL Server 2019 (15.x) and later on Linux

The sqlmlutils package is used to install Python packages in SQL Server 2019 (15.x). You
need to download, install, and update the Microsoft Visual C++ 2015-2019

INFO: Extensibility Log Header: <timestamp> <process> <sandboxId> 
<sessionId> <message> 
Mar 22 16:57:51 sqlVm launchpadd[195658]: 2022/03/22 16:57:51 [launchpadd] 
INFO: No extensibility section in /var/opt/mssql/mssql.conf file. Using 
default settings. 
Mar 22 16:57:51 sqlVm launchpadd[195658]: 2022/03/22 16:57:51 [launchpadd] 
INFO: DataDirectories =  
/bin:/etc:/lib:/lib32:/lib64:/sbin:/usr/bin:/usr/include:/usr/lib:/usr/lib32
:/usr/lib64:/usr/libexec/gcc:/usr/sbin:/usr/share:/var/lib:/opt/microsoft:/o
pt/mssql-extensibility:/opt/mssql/mlservices:/opt/mssql/lib/zulu-jre-
11:/opt/mssql-tools 
Mar 22 16:57:51 sqlVm launchpadd[195658]: 2022/03/22 16:57:51 [launchpadd] 
INFO: [RG] SQL Extensibility Cgroup initialization is done. 
Mar 22 16:57:51 sqlVm launchpadd[195658]: 2022/03/22 16:57:51 [launchpadd] 
INFO: Found 1 IP address(es) from the bridge. 
Mar 22 16:57:51 sqlVm launchpadd[195676]: modprobe: ERROR: could not insert 
'ip6_tables': Operation not permitted 
Mar 22 16:57:51 sqlVm launchpadd[195673]: ip6tables v1.8.4 (legacy): can't 
initialize ip6tables table `filter': Table does not exist (do you need to 
insmod?) 
Mar 22 16:57:51 sqlVm launchpadd[195673]: Perhaps ip6tables or your kernel 
needs to be upgraded. 
Mar 22 16:57:51 sqlVm launchpadd[195678]: modprobe: ERROR: could not insert 
'ip6_tables': Operation not permitted 
Mar 22 16:57:51 sqlVm launchpadd[195677]: ip6tables v1.8.4 (legacy): can't 
initialize ip6tables table `filter': Table does not exist (do you need to 
insmod?) 
Mar 22 16:57:51 sqlVm launchpadd[195677]: Perhaps ip6tables or your kernel 
needs to be upgraded. 
Mar 22 16:57:51 sqlVm launchpadd[195670]: 2022/03/22 16:57:51 [setnetbr] 
ERROR: Failed to set firewall rules: exit status 3 

Workaround

sudo modprobe ip6_tables 
sudo systemctl restart mssql-launchpadd 

Can't install tensorflow  package using sqlmlutils

https://learn.microsoft.com/en-us/sql/machine-learning/package-management/install-additional-python-packages-on-sql-server?view=sql-server-2017
https://visualstudio.microsoft.com/downloads/


Redistributable (x64) . However, the tensorflow  package can't be installed using
sqlmlutils. The tensorflow  package depends on a newer version of numpy  than the
version installed in SQL Server. However, numpy  is a preinstalled system package that
sqlmlutils  can't update when trying to install tensorflow .

Using a command prompt in administrator mode, run the following command, replacing
"MSSQLSERVER" with the name of your SQL instance:

Windows Command Prompt

If you get a "TLS/SSL" error, see 7. Unable to install Python packages using pip earlier in
this article.

Applies to: SQL Server 2019 (15.x) on Windows

This section lists issues specific to R connectivity, development, and performance tools
that are provided by Revolution Analytics. These tools were provided in earlier pre-
release versions of SQL Server.

In general, we recommend that you uninstall these previous versions and install the
latest version of SQL Server or Microsoft R Server.

Installing Revolution R Enterprise side by side with any version of R Services (In-
Database) isn't supported.

If you have an existing license for Revolution R Enterprise, you must put it on a separate
computer from both the SQL Server instance and any workstation that you want to use
to connect to the SQL Server instance.

Some pre-release versions of R Services (In-Database) included an R development
environment for Windows that was created by Revolution Analytics. This tool is no
longer provided, and isn't supported.

Workaround

"C:\Program Files\Microsoft SQL 
Server\MSSQL15.MSSQLSERVER\PYTHON_SERVICES\python.exe" -m pip install --
upgrade tensorflow 

Revolution R Enterprise and Microsoft R Open

Revolution R Enterprise isn't supported

https://visualstudio.microsoft.com/downloads/


For compatibility with R Services (In-Database), we recommend that you install
Microsoft R Client instead. R Tools for Visual Studio  and Visual Studio Code  also
supports Microsoft R solutions.

Revision 0.92 of the SQLite ODBC driver is incompatible with RevoScaleR. Revisions 0.88-
0.91 and 0.93 and later are known to be compatible.

Collect data to troubleshoot SQL Server Machine Learning Services

Compatibility issues with SQLite ODBC driver and
RevoScaleR

Next steps

https://marketplace.visualstudio.com/items?itemName=MikhailArkhipov007.RTVS2019
https://code.visualstudio.com/


Collect data to troubleshoot Python and
R scripts with SQL Server Machine
Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article describes how to collect the data you need when you're attempting to
resolve problems in SQL Server Machine Learning Services. This data can be useful
whether you're resolving problems on your own or with the help of Microsoft customer
support.

SQL Server 2016 R Services is the first release of SQL Server to include integrated R
support. SQL Server 2016 Service Pack 1 (SP1) includes several major improvements,
including the ability to run external scripts. If you are using SQL Server 2016, you should
consider installing SP1 or later.

SQL Server 2017 and later has Python language integration. You cannot get Python
feature integration in earlier releases.

For assistance getting edition and versions, see this article, which lists the build numbers
for each of the SQL Server versions .

Depending on the edition of SQL Server you're using, some machine learning
functionality might be unavailable, or limited.

In general, the version of Microsoft R that is installed when you select the R Services
feature or the Machine Learning Services feature is determined by the SQL Server build

） Important

The support for Machine Learning Server (previously known as R Server) ended on
July 1, 2022. For more information, see What's happening to Machine Learning
Server?

SQL Server version and edition

R language and tool versions

https://social.technet.microsoft.com/wiki/contents/articles/783.sql-server-versions.aspx#Service_Pack_editions
https://learn.microsoft.com/en-us/machine-learning-server/what-is-happening-to-machine-learning-server


number. If you upgrade or patch SQL Server, you must also upgrade or patch its R
components.

For a list of releases and links to R component downloads, see Install machine learning
components without internet access. On computers with internet access, the required
version of R is identified and installed automatically.

It's possible to upgrade the R Server components separately from the SQL Server
database engine, in a process known as binding. Therefore, the version of R that you use
when you run R code in SQL Server might differ depending on both the installed version
of SQL Server and whether you have migrated the server to the latest R version.

The easiest way to determine the R version is to get the runtime properties by running a
statement such as the following:

SQL

As a last resort, you can open files on the server to determine the installed version. To
do so, locate the rlauncher.config file to get the location of the R runtime and the

Determine the R version

EXECUTE sp_execute_external_script 
       @language = N'R' 
       , @script = N' 
# Transform R version properties to data.frame 
OutputDataSet <- data.frame( 
  property_name = c("R.version", "Revo.version"), 
  property_value = c(R.Version()$version.string, 
Revo.version$version.string), 
  stringsAsFactors = FALSE) 
# Retrieve properties like R.home, libPath & default packages 
OutputDataSet <- rbind(OutputDataSet, data.frame( 
  property_name = c("R.home", "libPaths", "defaultPackages"), 
  property_value = c(R.home(), .libPaths(), 
paste(getOption("defaultPackages"), collapse=", ")), 
  stringsAsFactors = FALSE) 
) 
' 
WITH RESULT SETS ((PropertyName nvarchar(100), PropertyValue 
nvarchar(4000))); 

 Tip

If R Services is not working, try running only the R script portion from RGui.



current working directory. We recommend that you make and open a copy of the file so
that you don't accidentally change any properties.

SQL Server 2016

C:\Program Files\Microsoft SQL Server\MSSQL13.

<instance_name\MSSQL\Binn\rlauncher.config

SQL Server 2017

C:\Program Files\Microsoft SQL Server\MSSQL14.

<instance_name>\MSSQL\Binn\rlauncher.config

To get the R version and RevoScaleR versions, open an R command prompt, or open the
RGui that's associated with the instance.

SQL Server 2016

C:\Program Files\Microsoft SQL Server\MSSQL13.

<instancename>\R_SERVICES\bin\x64\RGui.exe

SQL Server 2017

C:\Program Files\Microsoft SQL Server\MSSQL14.

<instance_name>\R_SERVICES\bin\x64\RGui.exe

The R console displays the version information on startup. For example, the following
version represents the default configuration for SQL Server 2017:

Console

There are several ways to get the Python version. The easiest way is to run this
statement from Management Studio or any other SQL query tool:

SQL

*Microsoft R Open 3.3.3* 

*The enhanced R distribution from Microsoft* 

*Microsoft packages Copyright (C) 2017 Microsoft* 

*Loading Microsoft R Server packages, version 9.1.0.* 

Python versions



If Machine Learning Services is not running, you can determine the installed Python
version by looking at the pythonlauncher.config file. We recommend that you make and
open a copy of the file so that you don't accidentally change any properties.

1. For SQL Server 2017 only: C:\Program Files\Microsoft SQL Server\MSSQL14.
<instance_name>\MSSQL\Log\ExtensibilityLog\pythonlauncher.config

2. Get the value for PYTHONHOME.
3. Get the value of the current working directory.

Check to see whether more than one copy of the R libraries is installed on the computer.
This duplication can happen if:

During setup you select both R Services (In-Database) and R Server (Standalone).
You install Microsoft R Client in addition to SQL Server.
A different set of R libraries was installed by using R Tools for Visual Studio, R
Studio, Microsoft R Client, or another R IDE.
The computer hosts multiple instances of SQL Server, and more than one instance
uses machine learning.

The same conditions apply to Python.

-- Get Python runtime properties:
exec sp_execute_external_script 
       @language = N'Python' 
       , @script = N' 
import sys 
import pkg_resources 
OutputDataSet = pandas.DataFrame(
                    {"property_name": ["Python.home", "Python.version", 
"Revo.version", "libpaths"], 
                    "property_value": [sys.executable[:-10], sys.version, 
pkg_resources.get_distribution("revoscalepy").version, str(sys.path)]} 
) 
' 
with WITH RESULT SETS (SQL keywords) ((PropertyName nvarchar(100), 
PropertyValue nvarchar(4000))); 

７ Note

If you have installed both Python and R in SQL Server 2017, the working directory
and the pool of worker accounts are shared for the R and Python languages.

Are multiple instances of R or Python installed?



If you find that multiple libraries or runtimes are installed, make sure that you get only
the errors associated with the Python or R runtimes that are used by the SQL Server
instance.

The errors that you see when you attempt to run R code can come from any of the
following sources:

SQL Server database engine, including the stored procedure
sp_execute_external_script
The SQL Server Trusted Launchpad
Other components of the extensibility framework, including R and Python
launchers and satellite processes
Providers, such as Microsoft Open Database Connectivity (ODBC)
R language

When you work with the service for the first time, it can be difficult to tell which
messages originate from which services. We recommend that you capture not only the
exact message text, but the context in which you saw the message. Note the client
software that you're using to run machine learning code:

Are you using Management Studio? An external application?
Are you running R code in a remote client, or directly in a stored procedure?

Get the most recent SQL Server ERRORLOG. The complete set of error logs consists of
the files from the following default log directory:

SQL Server 2016

C:\Program Files\Microsoft SQL

Server\MSSQL13.SQL2016\MSSQL\Log\ExtensibilityLog

SQL Server 2017

C:\Program Files\Microsoft SQL

Server\MSSQL14.SQL2016\MSSQL\Log\ExtensibilityLog

Origin of errors

SQL Server log files

７ Note



Get the complete text of errors that are returned, if any, when you run the
sp_execute_external_script command.

To remove R or Python problems from consideration, you can run this script, which
starts the R or Python runtime and passes data back and forth.

For R

SQL

For Python

SQL

SQL Server generates separate logs for the external script language runtimes. These
errors are not generated by the Python or R language. They're generated from the
extensibility components in SQL Server, including language-specific launchers and their
satellite processes.

You can get these logs from the following default locations:

SQL Server 2016

C:\Program Files\Microsoft SQL Server\MSSQL13.

<instance_name>\MSSQL\Log\ExtensibilityLog

The exact folder name differs depending on the instance name.

Errors returned by sp_execute_external_script

exec sp_execute_external_script @language =N'R',   
@script=N'OutputDataSet<-InputDataSet',   
@input_data_1 =N'select 1 as hello'   
with result sets (([hello] int not null));   
go 

exec sp_execute_external_script @language =N'Python',   
@script=N'OutputDataSet= InputDataSet',   
@input_data_1 =N'select 1 as hello'   
with result sets (([hello] int not null));   
go 

Errors generated by the extensibility framework



SQL Server 2017

C:\Program Files\Microsoft SQL Server\MSSQL14.

<instance_name>\MSSQL\Log\ExtensibilityLog

For example, the following log messages are related to the extensibility framework:

LogonUser Failed for user MSSQLSERVER01

This might indicate that the worker accounts that run external scripts cannot
access the instance.

InitializePhysicalUsersPool Failed

This message might mean that your security settings are preventing setup from
creating the pool of worker accounts that are needed to run external scripts.

Security Context Manager initialization failed

Satellite Session Manager initialization failed

1. Open Windows Event Viewer, and search the System Event log for messages that
include the string Launchpad.

2. Open the ExtLaunchErrorlog file, and look for the string ErrorCode. Review the
message that's associated with the ErrorCode.

For example, the following messages are common system errors that are related to the
SQL Server extensibility framework:

The SQL Server Launchpad (MSSQLSERVER) service failed to start due to the
following error: <text>

The service did not respond to the start or control request in a timely fashion.

A timeout was reached (120000 milliseconds) while waiting for the SQL Server
Launchpad (MSSQLSERVER) service to connect.

７ Note

The exact folder name differs based on the instance name. Depending on your
configuration, the folder might be on a different drive.

System events



If you are knowledgeable about debugging, you can use the dump files to analyze a
failure in Launchpad.

1. Locate the folder that contains the setup bootstrap logs for SQL Server. For
example, in SQL Server 2016, the default path was C:\Program Files\Microsoft SQL
Server\130\Setup Bootstrap\Log.

2. Open the bootstrap log subfolder that is specific to extensibility.
3. If you need to submit a support request, add the entire contents of this folder to a

zipped file. For example, C:\Program Files\Microsoft SQL Server\130\Setup
Bootstrap\Log\LOG\ExtensibilityLog.

The exact location might differ on your system, and it might be on a drive other than
your C drive. Be sure to get the logs for the instance where machine learning is installed.

This section lists additional components or providers that can be a source of errors
when you run R or Python scripts.

Machine Learning Services requires the following network protocols for internal
communication among extensibility components, and for communication with external
R or Python clients.

Named pipes
TCP/IP

Open SQL Server Configuration Manager to determine whether a protocol is installed
and, if it is installed, to determine whether it is enabled.

For worker accounts:

1. In Control Panel, open Users and Groups, and locate the group used to run
external script jobs. By default, the group is SQLRUserGroup.

2. Verify that the group exists and that it contains at least one worker account.
3. In SQL Server Management Studio, select the instance where R or Python jobs will

be run, select Security, and then determine whether there is a logon for

Dump files

Configuration settings

What network protocols are available?

Security configuration and permissions



SQLRUserGroup.
4. Review permissions for the user group.

For individual user accounts:

1. Determine whether the instance supports Mixed Mode authentication, SQL logins
only, or Windows authentication only. This setting affects your R or Python code
requirements.

2. For each user who needs to run R code, determine the required level of
permissions on each database where objects will be written from R, data will be
accessed, or objects will be created.

3. To enable script execution, create roles or add users to the following roles, as
necessary:

All but db_owner: Require EXECUTE ANY EXTERNAL SCRIPT.
db_datawriter: To write results from R or Python.
db_ddladmin: To create new objects.
db_datareader: To read data that's used by R or Python code.

4. Note whether you changed any default startup accounts when you installed SQL
Server 2016.

5. If a user needs to install new R packages or use R packages that were installed by
other users, you might need to enable package management on the instance and
then assign additional permissions.

Antivirus software can lock folders, which prevents both the setup of the machine
learning features and successful script execution. Determine whether any folders in the
SQL Server tree are subject to virus scanning.

However, when multiple services or features are installed on an instance, it can be
difficult to enumerate all possible folders that are used by the instance. For example,
when new features are added, the new folders must be identified and excluded.

Moreover, some features create new folders dynamically at runtime. For example, in-
memory OLTP tables, stored procedures, and functions all create new directories at
runtime. These folder names often contain GUIDs and cannot be predicted. The SQL
Server Trusted Launchpad creates new working directories for R and Python script jobs.

What folders are subject to locking by antivirus software?



Because it might not be possible to exclude all folders that are needed by the SQL
Server process and its features, we recommend that you exclude the entire SQL Server
instance directory tree.

1. To determine whether SQL Server supports remote connections, see Configure
remote server connections.

2. Determine whether a firewall rule has been created for SQL Server. For security
reasons, in a default installation, it might not be possible for remote R or Python
client to connect to the instance. For more information, see Troubleshooting
connecting to SQL Server.

Troubleshoot machine learning in SQL Server

Is the firewall open for SQL Server? Does the instance
support remote connections?

See also

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/view-or-configure-remote-server-connection-options-sql-server?view=sql-server-2017
https://learn.microsoft.com/en-us/troubleshoot/sql/connect/network-related-or-instance-specific-error-occurred-while-establishing-connection


Troubleshoot issues with Launchpad
service executing Python and R scripts
in SQL Server Machine Learning
Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article provides troubleshooting guidance for issues involving the SQL Server
Launchpad service used with Machine Learning Services. The Launchpad service
supports external script execution for R and Python. Multiple issues can prevent
Launchpad from starting, including configuration problems or changes, or missing
network protocols.

1. Open SQL Server Configuration Manager. From the command line, type
SQLServerManager13.msc, SQLServerManager14.msc, or
SQLServerManager15.msc.

2. Make a note of the service account that Launchpad is running under. Each instance
where R or Python is enabled should have its own instance of the Launchpad
service. For example, the service for a named instance might be something like
MSSQLLaunchpad$InstanceName.

3. If the service is stopped, restart it. On restarting, if there are any issues with
configuration, a message is published in the system event log, and the service is
stopped again. Check the system event log for details about why the service
stopped.

4. Review the contents of RSetup.log, and make sure that there are no errors in the
setup. For example, the message Exiting with code 0 indicates failure of the service
to start.

5. To look for other errors, review the contents of rlauncher.log.

Determine whether Launchpad is running

Check the Launchpad service account

https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-configuration-manager?view=sql-server-2017


The default service account might be "NT Service$SQL2016", "NT Service$SQL2017", or
"NT Service$SQL2019". The final part might vary, depending on your SQL instance name.

The Launchpad service (Launchpad.exe) runs by using a low-privilege service account.
However, to start R and Python and communicate with the database instance, the
Launchpad service account requires the following user rights:

Log on as a service (SeServiceLogonRight)
Replace a process-level token (SeAssignPrimaryTokenPrivilege)
Bypass traverse checking (SeChangeNotifyPrivilege)
Adjust memory quotas for a process (SeIncreaseQuotaSizePrivilege)

For information about these user rights, see the "Windows privileges and rights" section
in Configure Windows service accounts and permissions.

During setup of Machine Learning Services, SQL Server creates the Windows user group
SQLRUserGroup and then provisions it with all rights necessary for Launchpad to
connect to SQL Server and run external script jobs. If this user group is enabled, it is also
used to execute Python scripts.

However, in organizations where more restrictive security policies are enforced, the
rights that are required by this group might have been manually removed, or they might
be automatically revoked by policy. If the rights have been removed, Launchpad can no
longer connect to SQL Server, and SQL Server cannot call the external runtime.

To correct the problem, ensure that the group SQLRUserGroup has the system right
Allow log on locally.

For more information, see Configure Windows service accounts and permissions.

 Tip

If you are familiar with the use of the Support Diagnostics Platform (SDP) tool for
SQL Server diagnostics, you can use SDP to review the output file with the name
MachineName_UserRights.txt.

User group for Launchpad cannot log on locally

Permissions to run external scripts

https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-windows-service-accounts-and-permissions?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/database-engine/configure-windows/configure-windows-service-accounts-and-permissions?view=sql-server-2017


Even if Launchpad is configured correctly, it returns an error if the user does not have
permission to run R or Python scripts.

If you installed SQL Server as a database administrator or you are a database owner, you
are automatically granted this permission. However, other users usually have more
limited permissions. If they try to run an R script, they get a Launchpad error.

To correct the problem, in SQL Server Management Studio, a security administrator can
modify the SQL login or Windows user account by running the following script:

SQL

For more information, see GRANT (Transact-SQL.

This section lists the most common error messages that Launchpad returns.

If the Windows group for R users (also used for Python) cannot log on to the instance
that is running R Services, you might see the following errors:

Errors generated when you try to run R scripts:

Unable to launch runtime for 'R' script. Please check the configuration of the 'R'
runtime.

An external script error occurred. Unable to launch the runtime.

Errors generated by the SQL Server Launchpad service:

Failed to initialize the launcher RLauncher.dll

No launcher dlls were registered!

Security logs indicate that the account NT SERVICE was unable to log on

For information about how to grant this user group the necessary permissions, see
Install SQL Server R Services.

GRANT EXECUTE ANY EXTERNAL SCRIPT TO <username> 

Common Launchpad errors

"Unable to launch runtime for R script"

７ Note

https://learn.microsoft.com/en-us/sql/t-sql/statements/grant-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/machine-learning/install/sql-r-services-windows-install?view=sql-server-2017


By default, SQL Server Launchpad uses the following account on startup: NT
Service\MSSQLLaunchpad . The account is configured by SQL Server setup to have all
necessary permissions.

If you assign a different account to Launchpad, or the right is removed by a policy on
the SQL Server machine, the account might not have the necessary permissions, and you
might see this error:

ERROR_LOGON_TYPE_NOT_GRANTED 1385 (0x569) Logon failure: the user has not
been granted the requested logon type at this computer.

To grant the necessary permissions to the new service account, use the Local Security
Policy application, and update the permissions on the account to include the following
permissions:

Adjust memory quotas for a process (SeIncreaseQuotaPrivilege)
Bypass traverse checking (SeChangeNotifyPrivilege)
Log on as a service (SeServiceLogonRight)
Replace a process-level token (SeAssignPrimaryTokenPrivilege)

If you have installed and then enabled machine learning, but you get this error when
you try to run an R or Python script, the Launchpad service for the instance might have
stopped running.

1. From a Windows command prompt, open the SQL Server Configuration Manager.
For more information, see SQL Server Configuration Manager.

2. Right-click SQL Server Launchpad for the instance, and then select Properties.

3. Select the Service tab, and then verify that the service is running. If it is not
running, change the Start Mode to Automatic, and then select Apply.

This limitation does not apply if you use SQL logins to run R scripts from a remote
workstation.

"Logon failure: the user has not been granted
the requested logon type"

"Unable to communicate with the Launchpad
service"

https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-configuration-manager?view=sql-server-2017


4. Restarting the service usually fixes the problem so that machine learning scripts
can run. If the restart does not fix the issue, note the path and the arguments in
the Binary Path property, and do the following:

a. Review the launcher's .config file and ensure that the working directory is valid.

b. Ensure that the Windows group that's used by Launchpad can connect to the
SQL Server instance.

c. If you change any of the service properties, restart the Launchpad service.

In this scenario, you have successfully installed machine learning features, and
Launchpad is running. You try to run some simple R or Python code, but Launchpad fails
with an error like the following:

Unable to communicate with the runtime for R script. Please check the requirements
of R runtime.

At the same time, the external script runtime writes the following message as part of the
STDERR message:

Fatal error: creation of tmpfile failed.

This error indicates that the account that Launchpad is attempting to use does not have
permission to log on to the database. This situation can happen when strict security
policies are implemented. To determine whether this is the case, review the SQL Server
logs, and check to see whether the MSSQLSERVER01 account was denied at login. The
same information is provided in the logs that are specific to R_SERVICES or
PYTHON_SERVICES. Look for ExtLaunchError.log.

By default, 20 accounts are set up and associated with the Launchpad.exe process, with
the names MSSQLSERVER01 through MSSQLSERVER20. If you make heavy use of R or
Python, you can increase the number of accounts.

To resolve the issue, ensure that the group has Allow Log on Locally permissions to the
local instance where machine learning features have been installed and enabled. In
some environments, this permission level might require a GPO exception from the
network administrator.

"Fatal error creation of tmpFile failed"



This error can mean one of several things:

Launchpad might have insufficient external users to run the external query. For
example, if you are running more than 20 external queries concurrently, and there
are only 20 default users, one or more queries might fail.

Insufficient memory is available to process the R task. This error happens most
often in a default environment, where SQL Server might be using up to 70 percent
of the computer's resources. For information about how to modify the server
configuration to support greater use of resources by R, see Operationalizing your R
code.

If you run R code in SQL Server and get this message, but did not get the message when
you ran the same code outside SQL Server, it means that the package was not installed
to the default library location used by SQL Server.

This error can happen in many ways:

You installed a new package on the server, but access was denied, so R installed
the package to a user library.

You installed R Services and then installed another R tool or set of libraries, such as
RStudio.

To determine the location of the R package library that's used by the instance, open SQL
Server Management Studio (or any other database query tool), connect to the instance,
and then run the following stored procedure:

SQL

STDOUT message(s) from external script:

[1] "C:\Program Files\Microsoft SQL Server\MSSQL13.SQL2016\R_SERVICES"

"Not enough quota to process this command"

"Can't find package"

EXEC sp_execute_external_script @language = N'R',   
@script = N' print(normalizePath(R.home())); print(.libPaths());';  

Sample results



[1] "C:/Program Files/Microsoft SQL Server/MSSQL13.SQL2016/R_SERVICES/library"

To resolve the issue, you must reinstall the package to the SQL Server instance library.

If you install the database engine with other features, patch the server, and then later
add the Machine Learning feature by using the original media, the wrong version of the
Machine Learning components might be installed. When Launchpad detects a version
mismatch, it shuts down and creates a dump file.

To avoid this problem, be sure to install any new features at the same patch level as the
server instance.

The wrong way to upgrade:

1. Install SQL Server 2016 without R Services.
2. Upgrade SQL Server 2016 Cumulative Update 2.
3. Install R Services (In-Database) by using the RTM media.

The correct way to upgrade:

1. Install SQL Server 2016 without R Services.
2. Upgrade SQL Server 2016 to the desired patch level. For example, install Service

Pack 1 and then Cumulative Update 2.
3. To add the feature at the correct patch level, run SP1 and CU2 setup again, and

then choose R Services (In-Database).

７ Note

If you have upgraded an instance of SQL Server 2016 to use the latest version of
Microsoft R, the default library location is different. For more information, see
Default R library location.

Launchpad shuts down due to mismatched
DLLs

Launchpad fails to start if 8dot3 notation is
required

７ Note



For compatibility with R, SQL Server 2016 R Services (In-Database) required the drive
where the feature is installed to support the creation of short file names by using 8dot3
notation. An 8.3 file name is also called a short file name, and it's used for compatibility
with earlier versions of Microsoft Windows or as an alternative to long file names.

If the volume where you are installing R does not support short file names, the
processes that launch R from SQL Server might not be able to locate the correct
executable, and Launchpad will not start.

As a workaround, you can enable the 8dot3 notation on the volume where SQL Server is
installed and where R Services is installed. You must then provide the short name for the
working directory in the R Services configuration file.

1. To enable 8dot3 notation, run the fsutil utility with the 8dot3name argument as
described here: fsutil 8dot3name.

2. After the 8dot3 notation is enabled, open the RLauncher.config file and note the
property of WORKING_DIRECTORY . For information about how to find this file, see
Data collection for Machine Learning troubleshooting.

3. Use the fsutil utility with the file argument to specify a short file path for the folder
that's specified in WORKING_DIRECTORY.

4. Edit the configuration file to specify the same working directory that you entered
in the WORKING_DIRECTORY property. Alternatively, you can specify a different
working directory and choose an existing path that's already compatible with the
8dot3 notation.

Data collection for troubleshooting machine learning

Install SQL Server Machine Learning Services

Troubleshoot database engine connections

On older systems, Launchpad can fail to start if there is an 8dot3 notation
requirement. This requirement has been removed in later releases. SQL Server 2016
R Services customers should install one of the following:

SQL Server 2016 SP1 and CU1: Cumulative Update 1 for SQL Server .

SQL Server 2016 RTM, Cumulative Update 3, and this hotfix , which is
available on demand.

Next steps

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/ff621566(v=ws.11)
https://learn.microsoft.com/en-us/troubleshoot/sql/connect/network-related-or-instance-specific-error-occurred-while-establishing-connection
https://support.microsoft.com/help/3208177/cumulative-update-1-for-sql-server-2016-sp1
https://support.microsoft.com/help/3210110/on-demand-hotfix-update-package-for-sql-server-2016-cu3


Common R script errors in SQL Server
Machine Learning Services
Article • 03/03/2023

Applies to:  SQL Server 2016 (13.x) and later versions

This article documents several common script errors when running R script in SQL Server
Machine Learning Services. The list is not comprehensive. There are many packages and
errors can vary between versions of the same package.

Before wrapping your R code in a stored procedure, it is a good idea to run your R code
in an external IDE, or in one of the R tools such as RTerm or RGui. By using these
methods, you can test and debug the code by using the detailed error messages that
are returned by R.

However, sometimes code that works perfectly in an external IDE or utility might fail to
run in a stored procedure or in a SQL Server compute context. If this happens, there are
a variety of issues to look for before you can assume that the package doesn't work in
SQL Server.

1. Check to see whether Launchpad is running.

2. Review messages to see whether either the input data or output data contains
columns with incompatible or unsupported data types. For example, queries on a
SQL database often return GUIDs or RowGUIDs, both of which are unsupported.
For more information, see R libraries and data types.

3. Review the help pages for individual R functions to determine whether all
parameters are supported for the SQL Server compute context. For ScaleR help,
use the inline R help commands, or see Package Reference.

If the R runtime is functioning but your script returns errors, we recommend that you try
debugging the script in a dedicated R development environment, such as R Tools for
Visual Studio.

We also recommend that you review and slightly rewrite the script to correct any
problems with data types that might arise when you move data between R and the
database engine. For more information, see R libraries and data types.

Valid script fails in T-SQL or in stored
procedures

https://learn.microsoft.com/en-us/r-server/r-reference/revoscaler/revoscaler


Additionally, you can use the sqlrutils package to bundle your R script in a format that is
more easily consumed as a stored procedure. For more information, see:

sqlrutils package
Create a stored procedure by using sqlrutils

R scripts can return different values in a SQL Server context, for several reasons:

Implicit type conversion is automatically performed on some data types, when the
data is passed between SQL Server and R. For more information, see R libraries and
data types.

Determine whether bitness is a factor. For example, there are often differences in
the results of math operations for 32-bit and 64-bit floating point libraries.

Determine whether NaNs were produced in any operation. This can invalidate
results.

Small differences can be amplified when you take a reciprocal of a number near
zero.

Accumulated rounding errors can cause such things as values that are less than
zero instead of zero.

If you connect to the SQL Server computer to run R commands by using the RevoScaleR
functions, you might get an error when you use ODBC calls that write data to the server.
This error happens only when you're using Windows authentication.

The reason is that the worker accounts that are created for R Services do not have
permission to connect to the server. Therefore, ODBC calls cannot be executed on your
behalf. The problem does not occur with SQL logins because, with SQL logins, the
credentials are passed explicitly from the R client to the SQL Server instance and then to
ODBC. However, using SQL logins is also less secure than using Windows authentication.

To enable your Windows credentials to be passed securely from a script that's initiated
remotely, SQL Server must emulate your credentials. This process is termed implied

Script returns inconsistent results

Implied authentication for remote execution
via ODBC



authentication. To make this work, the worker accounts that run R or Python scripts on
the SQL Server computer must have the correct permissions.

1. Open SQL Server Management Studio as an administrator on the instance where
you want to run R code.

2. Run the following script. Be sure to edit the user group name, if you changed the
default, and the computer and instance names.

SQL

Although clearing the workspace is common when you work in the R console, it can
have unintended consequences in a SQL compute context.

revoScriptConnection  is an object in the R workspace that contains information about
an R session that's called from SQL Server. However, if your R code includes a command
to clear the workspace (such as rm(list=ls()) ), all information about the session and
other objects in the R workspace is cleared as well.

As a workaround, avoid indiscriminate clearing of variables and other objects while
you're running R in SQL Server. You can delete specific variables by using the remove
function:

R

If there are multiple variables to delete, we suggest that you save the names of
temporary variables to a list and then perform periodic garbage collections on the list.

USE [master] 
GO 

CREATE LOGIN [computername\\SQLRUserGroup] FROM WINDOWS WITH 
DEFAULT_DATABASE=[master], DEFAULT_LANGUAGE=[language] 
GO 

Avoid clearing the workspace while you're
running R in a SQL compute context

remove('name1', 'name2', ...) 

Next steps



Data collection for troubleshooting SQL Server Machine Learning Services

Install SQL Server Machine Learning Services

Troubleshoot database engine connections

https://learn.microsoft.com/en-us/troubleshoot/sql/connect/network-related-or-instance-specific-error-occurred-while-establishing-connection
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