


Mastering Social Media Mining 
with R

Extract valuable data from social media sites and make 
better business decisions using R

Sharan Kumar Ravindran

Vikram Garg

BIRMINGHAM - MUMBAI



Mastering Social Media Mining with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1180915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-631-2

www.packtpub.com

www.packtpub.com


Credits

Authors
Sharan Kumar Ravindran

Vikram Garg

Reviewers
Richard Iannone

Hasan Kurban

Mahbubul Majumder

Haichuan Wang

Commissioning Editor
Pramila Balan

Acquisition Editor
Rahul Nair

Content Development Editor
Susmita Sabat

Technical Editor
Manali Gonsalves

Copy Editor
Roshni Banerjee

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Disha Haria

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade



About the Authors

Sharan Kumar Ravindran is a data scientist with over five years of experience. 
He is currently working for a leading e-commerce company in India. His primary 
interests lie in statistics and machine learning, and he has worked with customers 
from Europe and the U.S. in the e-commerce and IoT domains.

He holds an MBA degree with specialization in marketing and business analysis.  
He conducts workshops for Anna University to train their staff, research scholars, 
and volunteers in analytics.

In addition to coauthoring Social Media Mining with R, he has also reviewed R Data 
Visualization Cookbook. He maintains a website, www.rsharankumar.com, with links  
to his social profiles and blog.

I would like to thank the R community for their generous 
contributions.

I am grateful to Mr. Derick Jose for the inspiration and opportunities 
given to me.

I would like to thank all my friends, colleagues, and family 
members, without whom I wouldn't have learned as much.

I would like to thank my dad and brother-in-law for all their support 
and also helping me in proofreading and testing.

I would like to thank my wife, Aishwarya, and my sister, Saranya, 
for the constant motivation, and also my son, Rithik, and niece, 
Shravani, who make every day of mine joyful and fulfilling.

Most of all, I would like to thank my mother for always believing  
in me.

www.rsharankumar.com


Vikram Garg (@vikram_garg) is a senior analytical engineer at a Big Data 
organization. He is passionate about applying machine learning approaches to  
any given domain and creating technology to amplify human intelligence. He 
completed his graduation in computer science and electrical engineering from IIT, 
Delhi. When he is not solving hard problems, he can be found playing tennis or in a 
swimming pool.

I would like to dedicate all my books to my parents and my brother. 
Without whom I am no one.



About the Reviewers

Richard Iannone is an R enthusiast and a very simple person. Those who know 
him (and know him well) know that this is indeed true. He has authored many R 
packages that have achieved great success. Those who have reviewed the code know 
that it possesses a je ne sais quoi essence to it. In any case, the code coverage is quite 
adequate (thanks to the many "test parties" he held), and he often offers builds that 
pass muster according to Travis CI.

Although he has a tendency toward modesty, others have remarked that he's just a 
straight shooter with upper management written all over him. You know what, we 
couldn't agree more. We bet you'll hear a lot more about him in the near future.

Hasan Kurban is a PhD candidate from the School of Informatics and Computing 
at Indiana University, Bloomington. He is majoring in Computer Science and 
minoring in Statistics. His main fields of interest are Data Mining, Machine Learning, 
Data Science, and Statistics. He also received his master's degree in Computer 
Science from Indiana University, Bloomington, in 2012. You can contact him at  
hakurban@indiana.edu.

Mahbubul Majumder is an assistant professor of statistics in the Department of 
Mathematics, the University of Nebraska at Omaha (UNO). He earned his PhD in 
statistics with specialization in data visualization and visual statistical inference from 
Iowa State University. He had the opportunity to work with some industries dealing 
with data and creating data products. His research interests include exploratory data 
analysis, data visualization, and statistical modeling. He teaches data science and he 
is currently developing a data science program for UNO.

hakurban@indiana.edu


Haichuan Wang holds a PhD degree in computer science from the University 
of Illinois at Urbana-Champaign. He has worked extensively in the field of 
programming languages and on runtime systems, and he worked in the R language 
and GNU-R system for a few years. He has also worked in the machine learning 
and pattern recognition fields. He is passionate about bringing R into parallel and 
distributed computing domains to handle massive data processing.

I'd like to thank Bo for always loving and supporting me.

I'd also like to thank my PhD advisors, Prof. Padua and Dr. Wu, and 
my MS advisor, Prof. Zhang, who triggered my interest in this field 
and guided me throughout this journey.



www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com


[ i ]

Table of Contents
Preface v
Chapter 1: Fundamentals of Mining 1

Social media and its importance 1
Various social media platforms 3
Social media mining 4
Challenges for social media mining 4
Social media mining techniques 6

Graph mining 6
Text mining 7

The generic process of social media mining 7
Getting authentication from the social website – OAuth 2.0 8

Differences between OAuth and OAuth 2.0 10
Data visualization R packages 10

The simple word cloud 11
Sentiment analysis Wordcloud 12

Preprocessing and cleaning in R 14
Data modeling – the application of mining algorithms 14

Opinion mining (sentiment analysis) 14
Steps for sentiment analysis 15

Community detection via clustering 18
Result visualization 19
An example of social media mining 19
Summary 20

Chapter 2: Mining Opinions, Exploring Trends, and More  
with Twitter 21

Twitter and its importance 21
Understanding Twitter's APIs 23

Twitter vocabulary 23



Table of Contents

[ ii ]

Creating a Twitter API connection 24
Creating a new app 25
Finding trending topics 28
Searching tweets 29

Twitter sentiment analysis 30
Collecting tweets as a corpus 30
Cleaning the corpus 32
Estimating sentiment (A) 35
Estimating sentiment (B) 39

Summary 54
Chapter 3: Find Friends on Facebook 55

Creating an app on the Facebook platform 56
Rfacebook package installation and authentication 58

Installation 58
A closer look at how the package works 59

A basic analysis of your network 62
Network analysis and visualization 64

Social network analysis 64
Degree 66
Betweenness 67
Closeness 68
Cluster 68
Communities 69

Getting Facebook page data 71
Trending topics 73

Trend analysis 73
Influencers 74

Based on a single post 74
Based on multiple posts 76

Measuring CTR performance for a page 77
Spam detection 80

Implementing a spam detection algorithm 80
The order of stories on a user's home page 84
Recommendations to friends 87

Reading the output 89
Other business cases 90
Summary 90



Table of Contents

[ iii ]

Chapter 4: Finding Popular Photos on Instagram 93
Creating an app on the Instagram platform 94
Installation and authentication of the instaR package 96
Accessing data from R 97

Searching public media for a specific hashtag 97
Searching public media from a specific location 98
Extracting public media of a user 99
Extracting user profile 99
Getting followers 100
Who does the user follow? 101
Getting comments 102
Number of times hashtag is used 104

Building a dataset 105
User profile 106
User media 107
Travel-related media 108
Who do they follow? 109

Popular personalities 110
Who has the most followers? 110
Who follows more people? 111
Who shared most media? 111
Overall top users 112
Most viral media 112

Finding the most popular destination 113
Locations 114
Locations with most likes 115
Locations most talked about 115
What are people saying about these locations? 116
Most repeating locations 117

Clustering the pictures 118
Recommendations to the users 123

How to do it 123
Top three recommendations 130
Improvements to the recommendation system 131

Business case 132
Reference 132
Summary 133



Table of Contents

[ iv ]

Chapter 5: Let's Build Software with GitHub 135
Creating an app on GitHub 136
GitHub package installation and authentication 139
Accessing GitHub data from R 141
Building a heterogeneous dataset using the most active users 142

Data processing 144
Building additional metrics 145
Exploratory data analysis 148
EDA – graphical analysis 150

Which language is most popular among the active GitHub users? 150
What is the distribution of watchers, forks, and issues in GitHub? 153
How many repositories had issues? 156
What is the trend on updating repositories? 157
Compare users through heat map 158

EDA – correlation analysis 161
How Watchers is related to Forks 162
Correlation with regression line 163
Correlation with local regression curve 164
Correlation on segmented data 165
Correlation between the languages that user's use to code 166
How to get the trend of correlation? 168
Reference 171

Business cases 172
Summary 173

Chapter 6: More Social Media Websites 175
Searching on social media 176
Accessing product reviews from sites 180
Retrieving data from Wikipedia 181
Using the Tumblr API 190
Accessing data from Quora 196
Mapping solutions using Google Maps 198
Professional network data from LinkedIn 203
Getting Blogger data 208
Retrieving venue data from Foursquare 211

Use cases 218
Yelp and other networks 218

Limitations 219
Summary 219

Index 221



[ v ]

Preface
In recent times, the popularity of social media has grown exponentially and is 
increasingly being used as a channel for mass communication, such that the brands 
consider it as a medium of promotion and people largely use it for content sharing. 
With the increase in the number of users online, the data generated has increased 
many folds, bringing in the huge scope for gaining insights into the untapped gold 
mine, the social media data.

Mastering Social Media Mining with R will provide you with a detailed step-by-step 
guide to access the data using R and the APIs of various social media sites, such as 
Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and a few 
more networks. Most importantly, this book will provide you detailed explanations 
of implementation of various use cases using R programming; and by reading this 
book, you will be ready to embark your journey as an independent social media 
analyst. This book is structured in such a way that people new to the field of data 
mining or a seasoned professional can learn to solve powerful business cases with 
the application of machine learning techniques on the social media data.

What this book covers
Chapter 1, Fundaments of Mining, introduces you to the concepts of social media 
mining, various social media platforms, generic processes involved in accessing 
and processing the data, and techniques that can be implemented, as well as the 
importance, challenges, and applications of social media mining.

Chapter 2, Mining Opinions, Exploring Trends, and More with Twitter, focuses on steps 
involved in collecting tweets using the Twitter API and solve business cases, such as 
identifying the trending topics, searching tweets, collecting tweets, processing them, 
performing sentiment analysis, exploring few business cases based on sentiment 
analysis, and visualizing the sentiments in the form of word clouds.



Preface

[ vi ]

Chapter 3, Find Friends on Facebook, discusses the usage of the Facebook API and uses 
the extracted data to measure click-through rate performance, detect spam messages, 
implement and explore the concepts of social graphs, and build recommendations 
using the Apriori algorithm on pages to like.

Chapter 4, Finding Popular Photos on Instagram, helps you understand the procedure 
involved in pulling the data using the Instagram API and helps you extract the 
popular personalities and destinations, building different types of clusters, and 
implementing recommendation engine based on the user-based collaborative 
filtering approach.

Chapter 5, Let's Build Software with GitHub, teaches you to use the GitHub API from 
R and also helps you understand the ways in which you can get the solutions to 
business questions by performing graphical and nongraphical exploration data 
analysis, which includes some basic charts, trend analysis, heat maps, scatter plots, 
and much more.

Chapter 6, More Social Media Websites, helps you understand the functioning of APIs 
of various social media websites and covers the business cases that can be solved.

What you need for this book
In order to make your learning efficient, you need to have a computer with either 
Windows, Mac, or Ubuntu.

You need to download R to execute the codes mentioned in this book. You can 
download and install R using the CRAN website available at http://cran.r-
project.org/. All the codes are written using RStudio. RStudio is an integrated 
development environment  for R and can be downloaded from http://www.
rstudio.com/products/rstudio/.

In order to access the APIs of the social media, it will be necessary to create an  
app and follow certain instructions. All of these procedures are explained in their 
respective chapters.

http://cran.r-project.org/
http://cran.r-project.org/
http://www.rstudio.com/products/rstudio/
http://www.rstudio.com/products/rstudio/


Preface

[ vii ]

Who this book is for
Mastering Social Media Mining with R is intended for those who have basic knowledge 
of R in terms of its libraries and are aware of different machine learning techniques, 
or if you are a data analyst and interested in mining social media data; however, 
there is no need to have any prior knowledge of the usage of APIs of social media 
websites. This book will make you master in getting the required social media data 
and transforming them into actions resulting in improved business values.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[default]
post_id<- head(page$id, n = 100)
head(post_id, n=10)
post_id<- as.matrix(post_id)

Any command-line input or output is written as follows:

# Location (Country)

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this: 
"Clicking the Next button moves you to the next screen."

Exercise to be tried by the readers and notes appear in a box 
like this.



Preface

[ viii ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or  
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ ix ]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.





[ 1 ]

Fundamentals of Mining
Our approach in this book will be to use statistics and social science theory to mine 
social media and we'll use R as our base programming language. We will walk 
you through many important and recent developments in the field of social media. 
We'll cover advanced topics such as Open Authorization (OAuth), Twitter's OAuth 
API, Facebook's graph API, and so on, along with some interesting references and 
resources. It is assumed that the target audience has a basic understanding of R, 
along with basic concepts of social sciences.

In this chapter, we will cover the following topics:

• Importance of social media mining
• Basics of social media mining
• Social media mining techniques 
• Basic data mining algorithms 
• Opinion mining
• Social recommendations

Social media and its importance
In simple terms, social media is a way of communication using online tools such 
as Twitter, Facebook, LinkedIn, and so on. Andreas Kaplan and Michael Haenlein 
define social media as follows:

"A group of Internet-based applications that build on the ideological and 
technological foundations of Web 2.0 and that allow the creation and exchange  
of user-generated content".



Fundamentals of Mining

[ 2 ]

Social media spans lots of Internet-based platforms that facilitate human emotions 
such as:

• Networking, for example, Facebook, LinkedIn, and so on
• Micro blogging, for example, Twitter, Tumblr, and so on
• Photo sharing, for example, Instagram, Flickr, and so on
• Video sharing, for example, YouTube, Vimeo, and so on
• Stack exchanging, for example, Stack Overflow, Github, and so on
• Instant messaging, for example, Whatsapp, Hike, and so on

The traditional media such as radio, newspaper, or television, facilitates one-way 
communication with a limited scope of reach and usability. Though the audience 
can interact (two-way communication) with these channels, particularly radio, the 
quality and frequency of such communications are very limited. On the other hand, 
Internet-based social media offers multi-way communication with features such as 
immediacy and permanence. It is important to understand all the aspects of social 
media today because real customers are using it.



Chapter 1

[ 3 ]

Today's corporate marketing departments are maturing in understanding the 
promise or the impact of social media. In the early years, social media was perceived 
as yet another broadcasting medium for publishing banner advertisements into 
the world. Unfortunately, many still believe this to be the only use of social media. 
While it's not deniable that social media is a great tool for banner advertisements in 
terms of cost and reach, it's not limited to that. There is another use of social media 
that can turn out to be more influential in the long term. Businesses need to heed to 
the opinion of the consumer by mining social networks. By gathering information 
on the opinions of consumers, they can understand current and potential customers' 
outlook, and such informative data can guide business decisions, in the long run, 
influencing the fate of any business.

Current customer relationship management (CRM) systems create consumer 
profiles to help with marketing judgments using a mixture of demographics, 
past buying patterns, and other prior actions. These methods basically empower 
companies to keep a close eye on their consumers. The customer data available via 
communities such as LinkedIn or Facebook is quite detailed. A financial business 
with access to such data would not only know the intricate details of a customer, 
but also the interests of the customer, and evidence that might be beneficial in 
preparation of future marketing plans. Every minute of every day, Facebook, 
Twitter, LinkedIn, and other online communities generate enormous amounts  
of this data. If it could be mined, it might work like a real-time CRM, persistently 
revealing new trends and opportunities.

Various social media platforms
Social media is not restricted to email or chat or media sharing; it is collection of a 
larger group of content generating platforms such as:

• Blogs
• Micro blogs
• Social news
• Social bookmarking
• Professional groups
• Community-based questions and answers
• Wikis



Fundamentals of Mining

[ 4 ]

Social media mining
In simple terms, social media mining is a systematic analysis of information generated 
from social media. It becomes necessary to tap into this enormous social media data 
with the help of today's technology, which is not without its challenges. Data stream 
is a prime example of Big Data. Dealing with data sets measured in petabytes is 
challenging, and things like signal-to-noise ratio need to be taken into consideration. 
It is estimated that around 20 percent of such social media data streams contain 
relevant information.

The set of tools and techniques, which are used to mine such information, are 
collectively called Data mining technique and in the context of social media it's  
called social media mining (SMM). SMM can generate insights about how much 
someone is influencing others on the Web. SMM can help businesses identify the 
pain points of its customer in real time. In turn, this can be used for proactive 
planning. Identification of potential customers is a very important problem every 
business has been trying to solve for ages. SMMs can help us identify the potential 
customers based on their online activities and based on their friend's online activities. 
There has been a lot of research in multiple disciplines of social media:

• Why does social media mining matter?
• If you can measure it, you can improve it
• Modeling behavior
• Predictive analysis
• Recommending content

Challenges for social media mining
Social media mining is currently in a stage of infancy, and its practitioners are 
learning and developing new approaches. Social media mining draws its roots 
from many fields, such as statistics, machine learning, information retrieval, pattern 
recognition, and bioinformatics. The parent fields themselves are not without their 
challenges. The sheer amount of data being generated daily is staggering, but current 
techniques allow for novel data mining solutions and scalable computational models 
with help from the fundamental concepts and theories and algorithms.



Chapter 1

[ 5 ]

In social media theory, people are considered to be the basic building blocks of a 
world created on the grounds provided by the social media. The measurements 
of the interactions between these building blocks and other entities such as sites, 
networks, content, and so on leads to the discovery of human nature. The knowledge 
gained via these measurements constitutes the soul of the social worlds. Finding the 
insights from this data where social relationships play a critical role can be termed 
as the mining of social media data. This problem not only has to face the basic data 
mining challenges but also those that emerge because of the social-relationship 
aspect. We have listed down some of the important challenges here:

• Big Data: Should we use the taste of a friend of a friend of the person of 
interest, who has studied at one particular college and whose hometown was 
one particular city to recommend something to the person of the interest? In 
some applications, this might be overkill and in others this information could 
lead to a very small but differentiating performance increase. The content 
that can be used in social media data can be very deep. However, this can 
lead to a problem called over fitting, which is well known in the domain of 
machine learning. Using multiple sources of data can also complicate the 
overall performance in a similar fashion.

• Sufficiency: Should we restrict people to view only the person of interest's 
alma mater and his/her hometown to recommend something and not use 
the tastes of his/her friends? Common sense says this is not correct and 
we may be missing out on something. This is a problem commonly known 
as under fitting. This problem can also arise due to the fact that most social 
media networks restrict the amount of information that can be accessed in a 
certain time frame, so sometimes the data is not sufficient enough to generate 
patterns and/or generate recommendations.

• Noise removal error: Preprocessing steps are more or less always required 
in any application of data mining. These steps not only make the actual 
application run faster on the cleaned data, but they also improve overall 
accuracy. Due to all the clutter, which is present in most social data, a large 
amount of noise is always expected but effectively removing the noise from 
the data we have is a very tricky business. You can always end up missing 
some information while trying to remove this noise. Noise by its definition is 
a subjective quantity and can always be confused; hence, this step can end up 
introducing more error in pattern recognition.



Fundamentals of Mining

[ 6 ]

• Evaluation dilemma: Because of the sheer size of social media data, it's 
not possible to obtain a properly annotated dataset to train a supervised 
machine-learning algorithm. Without the proper ground truth data, there is 
no way to judge the accuracy of any off-the-shell classification algorithms. 
Since there can't be any accuracy measures without the ground truth data, 
only a clustering (unsupervised machine learning) algorithm can be applied. 
But the problem is that such algorithms rely heavily on the domain expertise.

Social media mining techniques
We'll go through a few of the standard social media mining techniques available.  
We will consider examples with Facebook and Twitter as our data sources.

Graph mining
Network graphs make up the dominant data structure and appear, essentially, in all 
forms of social media data/information. Typically, user communities constitute a 
group of nodes in such graphs where nodes within the same community or cluster 
tend to share common features.

Graph mining can be described as the process of extracting useful knowledge (patterns, 
outliers and so on.) from a social relationship between the community members can be 
represented as a graph. The most influential example of graph mining is Facebook 
Graph Search.



Chapter 1

[ 7 ]

Text mining
Extraction of meaning from unstructured text data present in social media is 
described as text mining. The primary targets of this type of mining are blogs and 
micro blogs such as Twitter. It's applicable to other social networks such as Facebook 
that contain links to posts, blogs, and other news articles.

The generic process of social media 
mining
Any data mining activity follows some generic steps to gain some useful insights 
from the data. Since social media is the central theme of this book, let's discuss these 
steps by taking example data from Twitter:

• Getting authentication from the social website
• Data visualization
• Cleaning and preprocessing
• Data modeling using standard algorithms such as opinion mining, clustering, 

anomaly/spam detection, correlations and segmentations, recommendations
• Result visualization



Fundamentals of Mining

[ 8 ]

Getting authentication from the social website 
– OAuth 2.0
Most social media websites provide API access to their data. To do the mining, we 
(as a third-party) would need some mechanism to get access to users' data, available 
on these websites. But the problem is that a user will not share their credentials with 
anyone due to obvious security reasons. This is where OAuth comes in the picture. 
According to its home page (http://oauth.net/), OAuth can be defined as follows:

An open protocol to allow secure authorization in a simple and standard method 
from web, mobile and desktop applications.

To understand it better, let's take an example of Instagram where a user can  
allow a printing service access to his/her private photographs stored on  
Instagram's server, without sharing her credentials with the printing service.  
Instead, they authenticate directly with Instagram, which issues the printing  
service delegation-specific permissions. The user here is the primary owner of  
the resource and the printing service is the third-party client. Social media websites 
such as Instagram, Twitter, and Facebook allow various applications to access 
user data for various advertisements or recommendations. Almost all cab service 
applications access user location.

Here's a diagram illustrating the concept:

http://oauth.net/


Chapter 1

[ 9 ]

OAuth 2.0 provides various methods in which different levels of authorizations of 
the various resources can reliably be granted to the requesting client application.  
One of the most frequently used and most important use cases is the authorization  
of World Wide Web server data to another World Wide Web server/application.

The following image shows the authentication process:

Let's look at the various steps involved:

1. The client accesses the web app with the button Login via Twitter (or Login 
via LinkedIn or Login via Facebook).

2. This takes the client to an app, which will authenticate it. The client app then 
asks the user to allow it the access to his/her resources, that is, the profile 
data. The user needs to accept it to go the next step.



Fundamentals of Mining

[ 10 ]

3. The client is then redirected to a redirect link via the authenticating app, 
which the client app has provided to the authenticating app. Usually, the 
redirect link is delivered by registering the client app with the authenticating 
app. The user of the client app also registers the redirect link and at the same 
time authenticating app also gives the client app with client credentials.

4. Using the redirect link, the client contacts the website in the client app. 
During this step, a connection between authenticating app and client 
app is made and the authentication code received in the redirect request 
parameters. So, an access token is returned by the authenticating app.

Depending on the network, the access provided by the access token can be 
constrained not only in terms of the information but also the life of the access token 
itself. As soon as the client app obtains an access token, this access token can be sent 
to the respective social media organizations, such as Facebook, LinkedIn, Twitter, 
and so on, to access resources in these servers that are related to the clients who gave 
permission via the tokens.

Differences between OAuth and OAuth 2.0
Here are some of the major differences:

• More flows in OAuth 2.0 to permit improved support for non-browser  
based apps

• OAuth 2.0 does not need the client app to have cryptography
• OAuth 2.0 offers much less complicated signatures
• OAuth 2.0 generates short-lived access tokens, hence it is more secure
• OAuth 2.0 has a clearer segregation of roles concerning the server responsible 

for handling user authorization and the server handling OAuth requests

Data visualization R packages
A number of visualization R packages for text data are available as R package.  
These libraries, based on available data and objective, provide various options 
varying from simple clusters of words to the one inline with semantic analysis or 
topic modeling of the corpus. These libraries provide means to better understand  
text data. In this book, we'll use the following libraries:



Chapter 1

[ 11 ]

The simple word cloud
One of the simplest and most frequently used visualization libraries is the simple 
word cloud. The basic intent to using word cloud is to visualize the weights of the 
words present. The "wordcloud" R library helps the user get an understanding 
of weights of a word/term with respect to the tf-idf matrix. The weights are 
proportional to the size and color of the word you see in the plot. Here's an  
example of one such simple word cloud based on the corpus created from tweets:



Fundamentals of Mining

[ 12 ]

Sentiment analysis Wordcloud
There are R packages that can generate a word cloud similar to the preceding figure, 
along with the sentiments each word is representing. Such plots are one step ahead 
of the basic word cloud because they let the user get an understanding of what kind 
of sentiments are present and why the particular documents (collection of tweets) 
are of a particular nature (joy, sadness, disgust, love, and so on.). Timothy Jurka 
developed one such package, which we are going to use. The two main functions  
of this package are as follows:

• Classify_emotion: As the name suggests, the procedure helps the user 
understand the type of sentiment that is present. This procedure also  
clusters the words present in the query based on the sentiment and level of 
emotions that particular word present. A voting-based classification is one 
the algorithms used in this particular procedure. The Naive Bayes algorithm 
is also used for more enhanced results. The training dataset used on the 
above algorithms is from Carlo Strapparava and Alessandro Valitutti.  
Here's a sample output:



Chapter 1

[ 13 ]

• Classify_polarity: This procedure indicates the overall polarity of 
the emotions (positive or negative). This is, in a way, an extension of 
the procedure. The training data used here comes from Janyce Wiebe's 
subjectivity lexicon.

The most commonly used visualization library for Facebook data is Gephi. The key 
difference between Facebook and Twitter is the richness of the profile of a user 
and the social connections one shares on Facebook. Gephi helps users visualize 
both of the distinctions in a very pleasant way. It enables a user to understand the 
impact one Facebook profile has, or could have, over the network. Gephi is highly 
customizable and user-friendly library. We'll discuss this in Chapter 3, Find Friends on 
Facebook. As a working example, here's the graph representation of a social network 
of two friends.

Many more R packages are available to visualize most social media data. For more 
information, refer to the following links:

• http://rcytoscape.systemsbiology.net/versions/current/index.html

• http://cran.us.r-project.org/web/packages/sna/index.html

• http://statnetproject.org/

http://rcytoscape.systemsbiology.net/versions/current/index.html
http://cran.us.r-project.org/web/packages/sna/index.html
http://statnetproject.org/


Fundamentals of Mining

[ 14 ]

Preprocessing and cleaning in R
Preprocessing and cleaning are the very basic and first steps in any data-mining 
problem. A learning algorithm on a unified and cleaned dataset cannot only run 
very fast, but can also produce more accurate results. The first steps involve the 
annotation of target data, in the case of classification problems and understating 
the feature vector space, to apply an appropriate distance measure for clustering 
problems. Identification of noise samples and their clean up is a very tricky task but 
the better it's done, the more accuracy one can expect in the results. As mentioned 
previously, you need to be careful in cleaning tasks as this can lead to a rejection of 
good samples. Furthermore, the preprocessing steps need to be a reversible process 
because at the end of the exercise, the results need to be processed back to the 
original sample space for it to make sense.

Data modeling – the application of mining 
algorithms
Let's look at some of the standard mining algorithms.

Opinion mining (sentiment analysis)
In simple words, opinion mining or sentiment analysis is the method in which we 
try to assess the opinion/sentiment present in the given phrase. The phrase could be 
any sentence. Though our examples would be English, the sentiment analysis is not 
limited to any language. Also, the sentence could come from any source—it could  
be a 140-character tweet, Facebook post/chats, SMSs, and so on. Consider the 
following examples:

• Visiting to the wonderful places in Europe. Feeling real happy—Positive.
• I love little sunshine in winters, make me feel live—Positive.
• I am stuck in a same place, feeling sad—Negative.
• The cab driver was a nice person. Think many of them are actually good 

people—Positive.



Chapter 1

[ 15 ]

Sentiment analysis can play a crucial role in understanding the costumer sentiment, 
which can actually affect the growth of any business. With social media platforms 
such as Twitter, the meaning of the saying words are mightier than swords, has reached 
a whole new level. In the next chapter, we'll see how the customer sentiments can 
affect the growth of business. Also, there is nothing like word of mouth marketing, 
and again social media platforms can help you provide more business via the words 
of real customers. This field has become so advanced that people have actually 
predicted the outcomes of major elections based on the sentiments of the voters. 
Similarly, stock market forecasts are now being generated based on the analysis  
of customer tweets.

Steps for sentiment analysis
A belief or an opinion or sentiment to a computer can be described as a  
quintuple; that is an object in a five dimensional space, where each axis  
represents the following:

• Oj: This is the objective (that is, product). It is realized via named  
entity extraction.

• fjk: This is a feature of Oj. It is assessed using information mining theory
• SOijkl:This is the sentiment value of the opinion of the opinion holder hi on 

feature fjk of object oj at time tl

• hi: This is the information miner
• Ti: This is for data extraction

Perform the following steps to get the sentiment value SOijkl:

1. Part-of-speech tagging (pos) means the term in the text (or the sentence) 
that are marked using a pos-tagger so that it allocates a label to each term, 
allowing the system to do something with it.

2. We look at sentiment orientation (SO) of the patterns we mined. For 
example, we may have extracted Remarkable + Handset, which is, [JJ] 
+ [NN] (or adjective trailed by noun). The opposite might be "Awful" for 
instance. In this phase, the system attempts to position the terms on an 
emotive scale.

3. The average sentiment orientation of all the terms we gathered is computed. 
This allows the system to say something like:

 ° "Usually individuals like the fresh Handset." They recommend it
 ° "Usually individuals hate the fresh Handset." They don't  

recommend it



Fundamentals of Mining

[ 16 ]

It's not easy to classify sentiments; nonetheless there are various classification 
algorithms, which have been employed to aid opinion mining. These algorithms vary 
from simple probabilistic classifiers such as Naïve Bayes (probability classifier that 
assumes all the features are independent and does not use any prior information) 
to the more advanced classifiers such as maximum entropy (which uses the prior 
information to a certain extent.

Many hyperspace classifiers such as Support Vector Machine (SVM) and Neural 
Networks (NN) have also been used to correctly classify the sentiments. Between 
SVM and NN, SVM, in general, works wonders due to the kernel trick.

There are other methods being explored as well. For example, Anomaly/spam 
detection or social spammer detection. Fake profiles created with a malicious 
intention are known as spam or anomalous profiles. The user who creates such 
profiles often pretend to be someone they are not and try to perform some 
inappropriate activity, which can eventually cause problems for the person they 
were imitating as well as to others. There has been an increase in the number of cases 
of online bullying, trolling, and so on, which are direct causes of social spamming. 
We'll show you the various classification algorithms to detect these fake profiles in 
Chapter 3, Find Friends on Facebook.



Chapter 1

[ 17 ]

The algorithms we'll use to identify the spam and/or spammers based on a same 
example datasets, fall under the general class of algorithms known as supervised 
machine learning algorithms. The example dataset used in these algorithms is called 
training set. For notational consistency, let's say each ith record in the training set as 
a pair consists of an input vector represented by xi and output label represented by 
yi. The vector xi consists of a set of features representative of the ith sample point. 
The task of such an algorithm is to infer a function f (from a given possible set of 
functions F) which can map the xi's to the respective yi's, with high level of accuracy. 
This function f is sometimes also called a learned/trained model. The process of 
inferring f, using the training data is called learning. Once the model is trained, we 
use this learned model with the new records to identify new labels. The ability of 
such a model/algorithm to correctly identify the new example set (also called test 
set) labels that differ from the training set, is known as generalization.

There are many algorithms under the class of supervised machine learning 
algorithms such as the Naïve Bayes classifier, Decision tree classifier, and so on. One 
such algorithm is SVM. In a two-class (binary) classification problem, an SVM is the 
maximal margin hyperplane that separate the two classes with the largest possible 
margin. If there are more than two classes, then multiple SVMs are learned under 
one-versus-rest or one-versus-one methods; discussing these two methods is beyond 
the scope of the book.

The following figure illustrates a binary classification by SVM. The red and black 
dots are part of training data point xi's, representing the two types of the label yi. 
SVM comes with a neat transformation, which can transform the current feature 
space to a new feature space using various kernels. Discussing the details is beyond 
the scope of this book.



Fundamentals of Mining

[ 18 ]

Community detection via clustering
In graph analogy, a community is a set of nodes between which the 
communications/ interactions are rather more frequent than with those outside the 
set. From a marketing point of view, community detection become very crucial and 
has been proven to be very rewarding in terms of return-of-investments (ROIs). For 
example, travel enthusiasts can be identified on various social media websites based 
on their visited places, posts, comments, tweets, and so on. If such segmentation 
can be done, then selling them some product related to travel (such as a handheld 
compass, travel pillow, global alarm clock, binoculars, slim digital camera,  
noise-cancelling headphones, and so on) would stand a higher chance of  
purchase. Hence, with a focused marketing effort, the business can get  
more ROIs.

While spam detection is a supervised machine-learning task, community detection 
or clustering falls under the class of unsupervised learning algorithms. Social media 
offers two types of communities. Some are explicitly created groups with people 
of common location, hobbies, or occupation. There are several other people who 
might not be connected to such groups. Identification of these people is a clustering 
task. This is performed based on their interaction (for example, they mentioned a 
common thing in their comments/posts/tweets) as features sets (xi's) and without 
label information (as in the case of supervised machine learning algorithms). These 
features are passed to various unsupervised machine learning algorithms to find  
the commonalities and hence the communities. Many algorithms also provide  
the extent/degree/affinity score with which a particular person belongs to a  
specific community.

There are many algorithms and techniques proposed in academia that we'll discuss 
in detail in the following chapters. Basically, these methods are based on calculation 
of the influence on the link between various edges (people, locations, and other 
such entities). Similar people are likely to be linked, and edges between these links 
indicate that linked users will influence each other and become more similar, two 
users in the same group or community if they have higher similarity.



Chapter 1

[ 19 ]

Result visualization
Visualization helps one understand more about the data in hand. A picture is worth 
a thousand words. We get a better understanding of the feature space by representing 
data on a graphical platform. Trends, anomalies, relationships, and other similar 
patterns help us think more about the possible algorithm and heuristics to use on 
the given data for a given problem. There can be various levels of abstraction and 
granularities present in the data. Here's a list of a few standard methods used to 
visualize data:

• Boxplots
• Scatter plots
• Word clouds
• Decision trees
• Various social networks analysis tools such as Igraph, MuxViz, NetworkX, 

and so on

In the next chapters, we'll show you how these help us understand the results better. 
How to interpret the results is a crucial part of the mining process.

An example of social media mining
Let's look at a few examples of well-known social media sites:

Twitter

• What are people talking about right now?
• Mining entities from user's tweets
• Sentiment analysis

Facebook

• Gender analysis of Facebook post likes
• Analysis of Facebook friends network
• Inferring community behavior dynamically
• Fraud prevention
• Questions such as "Who influences whom?"
• Getting peoples' interest based on their chat history, such as with whom they 

are chatting, what they are chatting, where they are chatting, and so on.



Fundamentals of Mining

[ 20 ]

Summary
In this chapter, we tried to familiarize the user with the concept of social media  
and mining.

We discussed the OAuth API, which offers a technique for clients to allow  
third-party entry to their resources without sharing their credentials. It also  
offers a way to grant controlled access in terms of scope and duration.

We saw examples of various R packages available to visualize the text data. 
We discussed innovative ways to analyze and study the text data via plots. The 
application of sentiment analysis along with topic mining was also discussed in the 
same sections. To many, it's a new way to look at these kinds of data. Historically, 
people have used plots to plot numerical data, but plotting words on 2D graphs 
is very new. People have made more advances than 2D plots. With Facebook and 
LinkedIn, the Gephi library allows visualizing the social networks in 3D.

Next, you learned the basic steps of any data-mining problem along with various 
machine learning algorithms. We'll see the applications of many of these algorithms 
in the coming chapters. We briefly talked about sentiment analysis, anomaly 
detection, and various community detection algorithms. So far, we have not gone 
deep into any of the algorithms, but will dive into them in the later chapters.

In the next chapter, we will apply the knowledge gained so far to mine Twitter  
and give detailed information of the methods and techniques used there.



[ 21 ]

Mining Opinions, Exploring 
Trends, and More with Twitter
Our approach in this book is to use statistics and social science theory to mine social 
media, and we'll use R as our base programming language.

In this chapter, we will cover the following:

• Twitter and its importance
• Getting hands-on with Twitter's data and using various Twitter APIs
• Use of data to solve business problems—comparison of various businesses 

based on tweets

Twitter and its importance
Twitter can be considered an extension of the short messages service, or SMS, but on 
an Internet-based platform. In the words of Jack Dorsey, co-founder and co-creator  
of Twitter:

"...We came across the word 'twitter', and it was just perfect. The definition was 
'a short burst of inconsequential information,' and 'chirps from birds'. And that's 
exactly what the product was."



Mining Opinions, Exploring Trends, and More with Twitter

[ 22 ]

Twitter acts as a utility with which people can send their SMSs to the whole world. 
It enables people to instantaneously get heard and get a response. Since the audience 
of this SMS is so large, responses are often very quick. Twitter facilitates the basic 
social instincts of humans. By sharing on Twitter, a user can easily express his/her 
opinion for just about everything, and at any time. Friends who are connected, or, in 
the case of Twitter, followers, immediately get the information about what's going on in 
someone's life. This in turn serves another human emotion—the innate need to know 
about what is going on in someone's life. Apart from being real-time, Twitter's UI is 
really easy to work with. It's naturally and instinctively understood. That is, the UI is 
very intuitive in nature.

Each tweet on Twitter is a short message with maximum of 140 characters. Twitter 
is an excellent example of a microblogging service. As of July 2014, the Twitter user 
base exceeded 500 million, with more than 271 million active users. Around 23 
percent are adult Internet users, which is also about 19 percent of the entire  
adult population.

If we can properly mine what users are tweeting about, Twitter can act as a great  
tool for advertisement and marketing. However, this not the only information 
Twitter provides. Due to its non-symmetric nature in terms of followers and 
followings, Twitter assists better in terms of understanding user interests than for 
its impact on the social network. An interest graph can be thought of as a way to 
learn the links between individuals and their diverse interests. Computing the 
degree of association or correlations between individuals' interests and the potential 
advertisements is one of the most important applications of the interest graphs. 
Based on these correlations, a user can be targeted so as to attain a maximum 
response to an advertising campaign, along with followers' recommendations.

One interesting fact about Twitter (and Facebook) is that the user does not need to 
be a real person. A user on Twitter (or on Facebook) can be anything and anyone; 
for example, an organization, a campaign, or a famous but imaginary personality 
(a fictional character recognizable in the media) apart from a real/actual person. 
If a real person follows these users on Twitter, a lot can be inferred about their 
personality and hence ads or other followers can be recommended based on such 
information. For example, @fakingnews is an Indian blog that publishes news satires 
on subjects ranging from Indian politics to typical Indian mindsets. People who 
follow @fakingnews are ones who, in general, like to read sarcasm news. Hence, 
these people can be thought of as to belonging to the same cluster or community. If 
we have another sarcastic blog, we can always recommend it to this community and 
improve on advertisement return on investment. The chances of getting more hits via 
people belonging to this community will be higher than a community that doesn't 
follow @fakingnews, or any such news in general.



Chapter 2

[ 23 ]

Once you have comprehended that Twitter allows you to create, link, and investigate 
a community with an interest in a random topic, the influence of Twitter and the 
knowledge one can find from mining it becomes clearer.

Understanding Twitter's APIs
Twitter APIs provide a means to access the Twitter data; that is, tweets sent by its 
millions of users. Let's get to know these APIs a bit better.

Twitter vocabulary
As described earlier, Twitter is a microblogging service with a social aspect. It 
allows its users to express their views/sentiments through an Internet SMS, called 
"tweets" in the context of Twitter. These tweets are entities formed of maximum of 
140 characters. The content of these tweets can be anything ranging from a person's 
mood to person's location to a person's curiosity. The platform on which these tweets 
are posted is called a Timeline. To use Twitter's APIs, one must understand the basic 
terminology.

Tweets are the crux of Twitter. Theoretically, a tweet is just 140 characters of text 
content tweeted by a user, but there is more to it than just that. There is more 
metadata associated with the same tweet, which are classified by Twitter as  
entities and places:

• The entities consist of hashtags, URLs, and other media data that users have 
included in their tweets.

• The places are nothing but the locations from which the tweets originate. It is 
possible the place is the real world location from which the tweet was sent, or 
it could be a location mentioned in the text of the tweet.

Take the following tweet as an example:

Learn how to consume millions of tweets with @twitterapi at #TDC2014 in São 
Paulo #bigdata tomorrow at 2:10pm http://t.co/pTBlWzTvVd

The preceding tweet was tweeted by @TwitterDev and it's about 132 characters long. 
The following are the entities mentioned in this tweet:

• Handle: @twitterapi
• Hashtags: #TDC2014, #bigdata
• URL: http://t.co/pTBlWzTvVd

http://t.co/pTBlWzTvVd 


Mining Opinions, Exploring Trends, and More with Twitter

[ 24 ]

São Paulo is the place mentioned in this tweet.

This is an example of a tweet with a fairly good amount of metadata. Although 
the actual tweet's length is well within the 140-character limit, it contains more 
information than one can think of. This actually enables us to figure out that this 
tweet belongs to a specific community based on the cross-referencing of the topics 
present in the hashtags, the URL of the website, the different users mentioned, and 
so on. The interface (web or mobile) on which the tweets are displayed is called 
the timeline. The tweets are, in general, arranged in chronological order of posting 
time. On a specific user's account, only a certain number of tweets are displayed by 
Twitter. This is generally based on the users the given user is following and is  
being followed by. This is the interface a user will see when he/she login his/her 
Twitter account.

Twitter streams are different from a Twitter timeline in the sense that they are not 
for a specific user. The tweets on a user's Twitter timeline will be displayed from 
only a certain number of users, and will be displayed/updated less frequently, while 
the Twitter stream is a chronological collection of the all the tweets posted by all the 
users. The number of active users on Twitter is in the order of hundreds of millions. 
All the users tweeting during some public events of widespread interest, such as 
presidential debates, can achieve volumes of several hundreds of thousands of 
tweets per minute. The behavior is very similar to a stream; hence the name of  
such a collection is a Twitter stream.

You can try the following by creating a Twitter account (it would be more insightful 
if you have few followers already with you). Before creating the account, it is advised 
that you read all the terms and conditions of the site. You can also start reading its 
API documentation, but that is not mandatory for the step we will discuss in the  
next sections.

Creating a Twitter API connection
We need to have an app created at https://dev.twitter.com/apps before making 
any API requests to Twitter. It's a standard method for developers to gain API access, 
and, more importantly, it helps Twitter to observe and restricts developer from 
making high load API requests.

The ROAuth package is the one we are going to use in our experiments. Recall that in 
Chapter 1, Fundamentals of Mining, we discussed a lot about the OAuth protocol to for 
obtaining tokens. These tokens allow users to authorize third-party apps to access 
the data from any user account without the need to have their passwords (or other 
sensitive information). ROAuth basically facilitates the same thing.

https://dev.twitter.com/apps


Chapter 2

[ 25 ]

Creating a new app
The first step toward getting any kind of token access from Twitter is to create an 
app on it. You have to go to https://dev.twitter.com/ and log in with your 
Twitter credentials. Having logged in using your credentials, the step for creating  
an app are as follows:

1. Go to https://apps.twitter.com/app/new.
2. Put the name of your application in the Name field. This name can be 

anything you like.
3. Similarly, enter the description in the Description field.
4. The Website field needs to be filled with a valid URL, but, again,  

that can be any random URL.
5. You can leave the Callback URL field blank.

https://dev.twitter.com/
https://apps.twitter.com/app/new


Mining Opinions, Exploring Trends, and More with Twitter

[ 26 ]

After the creation of this app, we need to find the API Key and API Secret  
values from the Key and Access Token tab. Consider the example shown in  
the following figure:

Under the Key and Access Tokens tab, you will find a button to generate access 
tokens. Click on it and you will be provided with an Access Token and Access 
Token Secret value.

Before using the preceding keys, we need to install twitteR to access the data in R 
using the app we just created. Use the following code:

install.packages(c("devtools", "rjson", "bit64", "httr"))
library(devtools)
install_github("geoffjentry/twitteR").
library(twitteR)

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support


Chapter 2

[ 27 ]

Here's sample code that helps us access the tweets posted since any given date 
and which contain a specific keyword. In this example, we are searching for tweets 
containing the word Earthquake in the tweets posted since September 29, 2014. In 
order to get this information, we provide four special types of information to get the 
authorization token:

• Key
• Secret
• Access token
• Access token secret

We'll show you how to use the preceding information to get an app authorized by 
the user and access its resources on Twitter. The ROAuh function in twitteR will 
make our next steps very smooth and clear:

api_key<- "your_api_key"
api_secret<- "your_api_secret"
access_token<- "your_access_token"
access_token_secret<- "your_access_token_secret"
setup_twitter_oauth 
(api_key,api_secret,access_token,access_token_secret)
EarthQuakeTweets = searchTwitter("EarthQuake", since='2014-09-29')

You can also download the code from:  
https://github.com/gargvikram07/SMMR_Twitter.

The results of this example should simply display Using direct authentication with 
25 tweets loaded in the EarthQuakeTweets variable, as shown here.

head(EarthQuakeTweets,2)
[[1]]
[1] "TamamiJapan: RT @HistoricalPics: Japan. Top: One Month After 
Hiroshima, 1945. Bottom: One Month After The Earthquake and Tsunami, 
2011. Incredible. http…"

[[2]]
[1] "OldhamDs: RT @HistoricalPics: Japan. Top: One Month After 
Hiroshima, 1945. Bottom: One Month After The Earthquake and Tsunami, 
2011. Incredible. http…"

We have shown the first two of the 25 tweets containing the word Earthquake since 
September 29, 2014. If you closely observe the results, you'll find all the metadata we 
discussed in the previous section using str(EarthQuakeTweets[1]).

https://github.com/gargvikram07/SMMR_Twitter


Mining Opinions, Exploring Trends, and More with Twitter

[ 28 ]

Finding trending topics
Now that you understand how to create API connections to Twitter and fetch data 
using it, we will look at how to get answer to what is trending on Twitter to list what 
topic (worldwide or local) is being talked about the most right now. Using the same 
API, we can easily access the trending information:

#return data frame with name, country & woeid.
Locs <- availableTrendLocations()
# Where woeid is a numerical identification code describing a location 
ID

# Filter the data frame for Delhi (India) and extract the woeid of the 
same
LocsIndia = subset(Locs, country == "India")
woeidDelhi = subset(LocsIndia, name == "Delhi")$woeid

# getTrends takes a specified woeid and returns the trending topics 
associated with that woeid
trends = getTrends(woeid=woeidDelhi)

The function availableTrendLocations() returns R dataframe containing the 
name, country, and woeid parameters. We then filter this data frame for a location of 
our choosing; in this example, its Delhi, India. The function getTrends() fetches the 
top 10 trends in the location determined by the woeid.

Here are the top four trending hashtags in the region defined by woeid = 20070458, 
that is, Delhi, India:

head(trends)
name         url                   query                woeid
1 #AntiHinduNGOsExposed http://twitter.com/search?q=%23AntiHinduNGOsEx
posed %23AntiHinduNGOsExposed 20070458
2           #KhaasAadmi           http://twitter.com/search?q=%23Khaas
Aadmi           %23KhaasAadmi  
20070458
3            #WinGOSF14            http://twitter.com/search?q=%23WinG
OSF14            %23WinGOSF14  
20070458
4     #ItsForRealONeBay     http://twitter.com/search?q=%23ItsForReal
ONeBay      
%23ItsForRealONeBay 20070458



Chapter 2

[ 29 ]

Searching tweets
Similar to trends, there is one more important function that comes with the TwitteR 
package: searchTwitter(). This function will return tweets containing the searched 
string, along with the other constraints. Some of the constraints that can be imposed 
are as follows:

• lang: This constraints the tweets of given language
• since/until: This constraints the tweets to be since the given date or until 

the given date
• geocode: This constraints tweets to be from only those users who are located 

within a certain distance from the given latitude/longitude

For example, extracting tweets about the cricketer Sachin Tendulkar in the month of 
November 2014 returns the following:

head(searchTwitter('Sachin Tendulkar', since='2014-11-01',  
until= '2014-11-30'))

[[1]]
[1] "TendulkarFC: RT @Moulinparikh: Sachin Tendulkar had a long  
session with the Mumbai Ranji Trophy team after today's loss."

[[2]]
[1] "tyagi_niharika: @WahidRuba @Anuj_dvn @Neel_D_ @alishatariq3  
@VWellwishers @Meenal_Rathore oh... Yaadaaya....hmaraesachuuu  
sir\xed\xa0\xbd\xed\xb8\x8d..i mean sachin Tendulkar"

[[3]]
[1] "Meenal_Rathore: @WahidRuba @Anuj_dvn @tyagi_niharika @Neel_D_  
@alishatariq3 @AliaaFcc @VWellwishers .. Sachin Tendulkar  
\xed\xa0\xbd\xed\xb8\x8a☺️"

[[4]]
[1] "MishraVidyanand: Vidyanand Mishra is following the Interest  
\"The Living Legend SachinTendu...\" on http://t.co/tveHXMB4BM -  
http://t.co/CocNMcxFge"

[[5]]
[1] "CSKalwaysWin: I have never tried to compare myself to anyone  
else.\n - Sachin Tendulkar"



Mining Opinions, Exploring Trends, and More with Twitter

[ 30 ]

Twitter sentiment analysis
Depending on the objective, and based on the functionality to search any type of 
tweets from the public timeline, one can always collect the required corpus. For 
example, you may want to learn about customer satisfaction levels with various cab 
services, which are up and coming in the Indian market. These start-ups are offering 
various discounts and coupons to attract customers, but at the end of the day, the 
service quality determines the business of any organization. These start-ups are 
constantly promoting themselves on various social media websites. Customers  
are showing various sentiments on the same platform.

Let's target the following:

• Meru Cabs: A radio cabs service based in Mumbai, India, launched in 2007
• Ola Cabs: A taxi aggregator company based in Bangalore, India, launched  

in 2011
• TaxiForSure: A taxi aggregator company based in Bangalore, India, launched 

in 2011
• Uber India: A taxi aggregator company headquartered in San Francisco, 

California, launched in India in 2014

Let's make it our goal to get the general sentiments about each of the preceding 
service providers based on the customer sentiments present in the tweets on Twitter.

Collecting tweets as a corpus
We'll start with the searchTwitter()function (discussed previously) on the 
TwitteR package to gather the tweets for each of the preceding organizations.

Now, in order to avoid writing the same code again and again, we push the 
following authorization code in the file called authenticate.R:

library(twitteR)
api_key<- "xx"
api_secret<- "xx"
access_token<- "xx"
access_token_secret<- "xx"
setup_twitter_oauth(api_key,api_secret,access_token, 
access_token_secret)



Chapter 2

[ 31 ]

We run the following scripts to get the required tweets:

# Load the necessary packages
source('authenticate.R')

Meru_tweets = searchTwitter("MeruCabs", n=2000, lang="en")
Ola_tweets = searchTwitter("OlaCabs", n=2000, lang="en")
TaxiForSure_tweets =  
searchTwitter("TaxiForSure", n=2000, lang="en")
Uber_tweets = searchTwitter("Uber_Delhi", n=2000, lang="en")

Now, as mentioned in Twitter's Rest API documentation, we get the message  
"Due to capacity constraints, the index currently only covers about a week's  
worth of tweets". We do not always get the desired number of tweets (for example, 
here, it's 2,000). Instead, the following are the sizes of each of the preceding tweet 
lists we get the following:

>length(Meru_tweets)
[1] 393
>length(Ola_tweets)
[1] 984
> length(TaxiForSure_tweets)
[1] 720
> length(Uber_tweets)
[1] 2000

As you can see from the preceding code, the length of these tweets is not equal to the 
number of tweets we asked for in our query scripts. There are many things to take 
away from this information. Since these tweets are only from the last week's tweets 
on Twitter, they suggest there is more discussion about these taxi services in the 
following order:

• Uber India
• Ola Cabs
• TaxiForSure
• Meru Cabs



Mining Opinions, Exploring Trends, and More with Twitter

[ 32 ]

A ban was imposed on Uber India after an alleged rape incident by one Uber India 
driver. The decision to put a ban on the entire organization because one of its 
drivers committed a crime became a matter of public outrage. Hence, the number of 
tweets about Uber increased on social media. Now, Meru Cabs have been in India 
for almost seven years. Hence, they are quite a stable organization. The amount of 
promotion Ola Cabs and TaxiForSure are doing is way higher than that done by 
Meru Cabs. This could be one reason for Meru Cabs having the lowest number (393) 
of tweets in last week. The number of tweets in the last week is comparable for Ola 
Cabs (984) and TaxiForSure (720). There could be several reasons for this. They both 
started their business in same year, and, more importantly, they follow the same 
business model. Meru Cabs is a radio taxi service and they own and manage a fleet 
of cars, while Ola Cabs, TaxiForSure, or Uber are a marketplace for users to compare 
the offerings of various operators and book easily.

Let's dive deep into the data and get more insights.

Cleaning the corpus
Before applying any intelligent algorithms to gather more insights from the 
tweets collected so far, let's first clean the corpus. In order to clean up, we need to 
understand what the list of tweets looks like:

head(Meru_tweets)
[[1]]
[1] "MeruCares: @KapilTwitts 2&gt;...and other details at  
feedback@merucabs.com We'll check back and reach out soon."

[[2]]
[1] "vikasraidhan: @MeruCabs really disappointed with @GenieCabs.  
Cab is never assigned on time. Driver calls after 30 minutes. Why  
would I ride with Meru?"

[[3]]
[1] "shiprachowdhary: fallback of #ubershame , #MERUCABS taking  
customers for a ride"

[[4]]
[1] "shiprachowdhary: They book Genie, but JIT inform of  
cancellation &amp; send full fare #MERUCABS . Very  
disappointed.Always used these guys 4 and recommend them."

[[5]]
[1] "shiprachowdhary: No choice bt to take the #merucabs premium  
service. Driver told me that this happens a lot with #merucabs."



Chapter 2

[ 33 ]

[[6]]
[1] "shiprachowdhary: booked #Merucabsyestrdy. Asked for Meru  
Genie. 10 mins 4 pick up time, they call to say Genie not available, 
so sending the full fare cab"

The first tweet here is a grievance solution, while the second, fourth, and fifth are 
actually customer sentiments about the services provided by Meru Cabs. We see  
the following:

• Lots of meta information such as @people, URLs and #hashtags
• Punctuation marks, numbers, and unnecessary spaces
• Some of these tweets are retweets from other users; for the given application, 

we would not like to consider retweets (RTs) in sentiment analysis

We clean all these data by using the following code block:

MeruTweets <- sapply(Meru_tweets, function(x) x$getText())
OlaTweets = sapply(Ola_tweets, function(x) x$getText())
TaxiForSureTweets = sapply(TaxiForSure_tweets,  
function(x) x$getText())
UberTweets = sapply(Uber_tweets, function(x) x$getText())

catch.error = function(x)
{
  # let us create a missing value for test purpose
  y = NA
  # Try to catch that error (NA) we just created
catch_error = tryCatch(tolower(x), error=function(e) e)
  # if not an error
  if (!inherits(catch_error, "error"))
    y = tolower(x)
  # check result if error exists, otherwise the function works fine.
  return(y)
}

cleanTweets<- function(tweet){
  # Clean the tweet for sentiment analysis
  #  remove html links, which are not required for sentiment analysis
tweet = gsub("(f|ht)(tp)(s?)(://)(.*)[.|/](.*)", " ", tweet)
  # First we will remove retweet entities from  
the stored tweets (text)
  tweet = gsub("(RT|via)((?:\\b\\W*@\\w+)+)", " ", tweet)
  # Then remove all "#Hashtag"
  tweet = gsub("#\\w+", " ", tweet)
  # Then remove all "@people"



Mining Opinions, Exploring Trends, and More with Twitter

[ 34 ]

  tweet = gsub("@\\w+", " ", tweet)
  # Then remove all the punctuation
  tweet = gsub("[[:punct:]]", " ", tweet)
 # Then remove numbers, we need only text for analytics
 tweet = gsub("[[:digit:]]", " ", tweet)
  # finally, we remove unnecessary spaces (white spaces, tabs etc)
  tweet = gsub("[ \t]{2,}", " ", tweet)
  tweet = gsub("^\\s+|\\s+$", "", tweet)
  # if anything else, you feel, should be removed, you can.  
For example "slang words" etc using the above function and methods.
  # Next we'll convert all the word in lower case.  
This makes uniform pattern.
  tweet = catch.error(tweet)
  tweet
}

cleanTweetsAndRemoveNAs<- function(Tweets) {
TweetsCleaned = sapply(Tweets, cleanTweets)
# Remove the "NA" tweets from this tweet list
TweetsCleaned = TweetsCleaned[!is.na(TweetsCleaned)]
  names(TweetsCleaned) = NULL
# Remove the repetitive tweets from this tweet list
TweetsCleaned = unique(TweetsCleaned)
TweetsCleaned
}

MeruTweetsCleaned = cleanTweetsAndRemoveNAs(MeruTweets)
OlaTweetsCleaned = cleanTweetsAndRemoveNAs(OlaTweets)
TaxiForSureTweetsCleaned <-  
cleanTweetsAndRemoveNAs(TaxiForSureTweets)
UberTweetsCleaned = cleanTweetsAndRemoveNAs(UberTweets)

Here's the size of each of the cleaned tweet lists:

> length(MeruTweetsCleaned)
[1] 309
> length(OlaTweetsCleaned)
[1] 811
> length(TaxiForSureTweetsCleaned)
[1] 574
> length(UberTweetsCleaned)
[1] 1355



Chapter 2

[ 35 ]

Estimating sentiment (A)
There are many sophisticated resources available for estimating sentiments.  
Many research papers and software packages are available open source, and  
they implement very complex algorithms for sentiment analysis. After getting 
the cleaned Twitter data, we are going to use few such R packages to assess the 
sentiments in the tweets.

It's worth mentioning here that not all the tweets represent sentiments.  
A few tweets can be just information/facts, while others can be customer care 
responses. Ideally, they should not be used to assess the customer sentiment  
about a particular organization.

As a first step, we'll use a Naïve algorithm, which gives a score based on the number 
of times a positive or a negative word occurred in the given sentence (and, in our 
case, in a tweet).

Please download the positive and negative opinion/sentiment (nearly 68, 000) words 
from English language. This opinion lexicon will be used as a first example in our 
sentiment analysis experiment. The good thing about this approach is that we are 
relying on highly researched, and at the same time customizable, input parameters. 
Here are a few examples of existing positive and negative sentiment words:

• Positive: Love, best, cool, great, good, and amazing
• Negative: Hate, worst, sucks, awful, and nightmare

>opinion.lexicon.pos =  
scan('opinion-lexicon-English/positive-words.txt',  
what='character', comment.char=';')
>opinion.lexicon.neg =  
scan('opinion-lexicon-English/negative-words.txt',  
what='character', comment.char=';')
> head(opinion.lexicon.neg)
[1] "2-faced"    "2-faces"    "abnormal"   "abolish"     
"abominable" "abominably"
> head(opinion.lexicon.pos)
[1] "a+"         "abound"     "abounds"    "abundance"  "abundant"    
"accessable"

We'll add a few industry-specific and/or especially emphatic terms based on  
our requirements:

pos.words = c(opinion.lexicon.pos,'upgrade')
neg.words = c(opinion.lexicon.neg,'wait',  
'waiting', 'wtf', 'cancellation')



Mining Opinions, Exploring Trends, and More with Twitter

[ 36 ]

Now, we create a function, score.sentiment(), which computes the raw sentiment 
based on the simple matching algorithm:

getSentimentScore = function(sentences, words.positive,  
words.negative, .progress='none')
{
  require(plyr)
  require(stringr)

  scores = laply(sentences,  
function(sentence, words.positive, words.negative) {

    # Let first remove the Digit, Punctuation character and Control 
characters:
    sentence = gsub('[[:cntrl:]]', '', gsub('[[:punct:]]', '',  
gsub('\\d+', '', sentence)))

    # Then lets convert all to lower sentence case:
    sentence = tolower(sentence)

    # Now lets split each sentence by the space delimiter
    words = unlist(str_split(sentence, '\\s+'))

    # Get the boolean match of each words with the positive & negative 
opinion-lexicon
    pos.matches = !is.na(match(words, words.positive))
    neg.matches = !is.na(match(words, words.negative))

    # Now get the score as total positive sentiment minus the total 
negatives
    score = sum(pos.matches) - sum(neg.matches)

    return(score)
  }, words.positive, words.negative, .progress=.progress )

  # Return a data frame with respective sentence and the score
  return(data.frame(text=sentences, score=scores))
}



Chapter 2

[ 37 ]

Now, we apply the preceding function to the corpus of tweets collected and cleaned 
so far:

MeruResult = getSentimentScore(MeruTweetsCleaned, words.positive ,  
words.negative)
OlaResult = getSentimentScore(OlaTweetsCleaned, words.positive ,  
words.negative)
TaxiForSureResult = getSentimentScore(TaxiForSureTweetsCleaned,  
words.positive , words.negative) UberResult =  
getSentimentScore(UberTweetsCleaned, words.positive ,  
words.negative)

Here are some sample results:

Tweet for Meru Cabs Score
gt and other details at feedback com we ll check back and 
reach out soon

0

really disappointed with cab is never assigned on time driver 
calls after minutes why would i ride with meru

-1

so after years of bashing today i m pleasantly surprised 
clean car courteous driver prompt pickup mins efficient route

4

a min drive cost hrs used to cost less ur unreliable and 
expensive trying to lose ur customers

-3

Tweet For Ola Cabs Score
the service is going from bad to worse the drivers deny to 
come after a confirmed booking

-3

love the olacabs app give it a swirl sign up with my referral 
code dxf n and earn rs download the app from

1

crn kept me waiting for mins amp at last moment driver 
refused pickup so unreliable amp irresponsible

-4

this is not the first time has delighted me punctuality and 
free upgrade awesome that

4

Tweet For TaxiForSure Score
great service now i have become a regular customer of tfs 
thank you for the upgrade as well happy taxi ing saving

5

really disappointed with cab is never assigned on time driver 
calls after minutes why would i ride with meru

-1

horrible taxi service had to wait for one hour with a new 
born in the chilly weather of new delhi waiting for them

-4

what do i get now if you resolve the issue after i lost a 
crucial business because of the taxi delay

-3



Mining Opinions, Exploring Trends, and More with Twitter

[ 38 ]

Tweet For Uber India Score
that s good uber s fares will prob be competitive til they 
gain local monopoly then will go sky high as in new york amp 
delhi saving

3

from a shabby backend app stack to daily pr fuck ups its 
increasingly obvious that is run by child minded blow hards

-3

you say that uber is illegally running were you stupid to not 
ban earlier and only ban it now after the rape

-3

perhaps uber biz model does need some looking into it s not 
just in delhi that this happens but in boston too

0

From the preceding observations, it's clear that this basic sentiment analysis  
method works fine in normal circumstances, but in the case of Uber India, the results 
deviated too much from a subjective score. It's safe to say that basic word-matching 
gives a good indicator of overall customer sentiment, except in cases where the data 
itself is not reliable. In our case, the tweets from Uber India are not really related to 
the services that Uber provides, but rather the one incident of crime by its driver, 
which made the whole score go haywire:



Chapter 2

[ 39 ]

Let's not compute a point statistic for the scores we have computed so far. Since the 
numbers of tweets are not equal for each of the four organizations, we compute a 
mean and standard deviation for each.

Organization Mean Sentiment Score Standard Deviation
Meru Cabs -0.2218543 1.301846
Ola Cabs 0.197724 1.170334
TaxiForSure -0.09841828 1.154056
Uber India -0.6132666 1.071094

Estimating sentiment (B)
Let's now move one step further. Instead of using simple matching of opinion 
lexicon, we'll use something called Naive Bayes to decide on the emotion present 
in any tweet. We will require packages called Rstem and sentiment to assist with 
this. It's important to mention here that both these packages are no longer available 
in CRAN, so we have to provide the repository location as a parameter install.
package() function. Here's the R script to install the required packages:

install.packages("Rstem",  
repos = "http://www.omegahat.org/R", type="source")
require(devtools)
install_url("http://cran.r-project.org/src/contrib/Archive/sentiment/
sentiment_0.2.tar.gz") require(sentiment)
ls("package:sentiment")

Now that we have the sentiment and Rstem packages installed in our R workspace, 
we can build the bayes classifier for sentiment analysis:

library(sentiment)
# classify_emotion function returns an object of class data frame #  
with seven columns (anger, disgust, fear, joy, sadness, surprise,  #  
# best_fit) and one row for each document:
MeruTweetsClassEmo = classify_emotion(MeruTweetsCleaned,  
algorithm="bayes", prior=1.0)
OlaTweetsClassEmo = classify_emotion(OlaTweetsCleaned,  
algorithm="bayes", prior=1.0)
TaxiForSureTweetsClassEmo =  
classify_emotion(TaxiForSureTweetsCleaned, algorithm="bayes",  
prior=1.0)
UberTweetsClassEmo = classify_emotion(UberTweetsCleaned,  
algorithm="bayes", prior=1.0)



Mining Opinions, Exploring Trends, and More with Twitter

[ 40 ]

The following figure shows a few results from Bayesian analysis using the 
sentiment package for Meru Cabs tweets. Similarly, we generated results  
for other cab services from our problem setup.

The sentiment package was built to use a trained dataset of emotion words (nearly 
1,500 words). The function classify_emotion() generates results belonging to one 
of the following six emotions: anger, disgust, fear, joy, sadness, and surprise. When 
the system is not able to classify the overall emotion as any of the six, NA is returned:

Let's substitute these NA values with the word unknown to make further  
analysis easier:

# we will fetch emotion category best_fit for our analysis purposes.
MeruEmotion = MeruTweetsClassEmo[,7]
OlaEmotion = OlaTweetsClassEmo[,7]
TaxiForSureEmotion = TaxiForSureTweetsClassEmo[,7]
UberEmotion = UberTweetsClassEmo[,7]

MeruEmotion[is.na(MeruEmotion)] = "unknown"
OlaEmotion[is.na(OlaEmotion)] = "unknown"
TaxiForSureEmotion[is.na(TaxiForSureEmotion)] = "unknown"
UberEmotion[is.na(UberEmotion)] = "unknown"



Chapter 2

[ 41 ]

The best-fit emotions present in these tweets are as follows:

Further, we'll use another function, classify_polarity(), provided by the 
sentiment package, to classify the tweets into two classes, pos (positive sentiment) 
and neg (negative sentiment). The idea is to compute the log likelihood of a 
tweet, assuming it belongs to either of the two classes. Once these likelihoods are 
calculated, a ratio of the pos-likelihood to neg-likelihood is calculated, and, based on 
this ratio, the tweets are classified as belonging to a particular class. It's important 
to note that if this ratio turns out to be 1, then the overall sentiment of the tweet is 
assumed to be "neutral". The code is as follows:

MeruTweetsClassPol = classify_polarity(MeruTweetsCleaned,  
algorithm="bayes")
OlaTweetsClassPol = classify_polarity(OlaTweetsCleaned,  
algorithm="bayes")
TaxiForSureTweetsClassPol =  
classify_polarity(TaxiForSureTweetsCleaned, algorithm="bayes")
UberTweetsClassPol = classify_polarity(UberTweetsCleaned,  
algorithm="bayes")



Mining Opinions, Exploring Trends, and More with Twitter

[ 42 ]

We get the following output:

The preceding figure shows a few results obtained by using the classify_
polarity() function of the sentiment package for Meru Cabs tweets. We'll now 
generate consolidated results from the two functions in a data frame for each cab 
service for plotting purposes:

# we will fetch polarity category best_fit for our analysis purposes,
MeruPol = MeruTweetsClassPol[,4]
OlaPol = OlaTweetsClassPol[,4]
TaxiForSurePol = TaxiForSureTweetsClassPol[,4]
UberPol = UberTweetsClassPol[,4]

# Let us now create a data frame with the above results
MeruSentimentDataFrame = data.frame(text=MeruTweetsCleaned,  
emotion=MeruEmotion, polarity=MeruPol, stringsAsFactors=FALSE)
OlaSentimentDataFrame = data.frame(text=OlaTweetsCleaned,  
emotion=OlaEmotion, polarity=OlaPol, stringsAsFactors=FALSE)



Chapter 2

[ 43 ]

TaxiForSureSentimentDataFrame =  
data.frame(text=TaxiForSureTweetsCleaned,  
emotion=TaxiForSureEmotion, polarity=TaxiForSurePol,  
stringsAsFactors=FALSE)
UberSentimentDataFrame = data.frame(text=UberTweetsCleaned,  
emotion=UberEmotion, polarity=UberPol, stringsAsFactors=FALSE)

# rearrange data inside the frame by sorting it
MeruSentimentDataFrame = within(MeruSentimentDataFrame, emotion <-  
factor(emotion, levels=names(sort(table(emotion),  
decreasing=TRUE))))
OlaSentimentDataFrame = within(OlaSentimentDataFrame, emotion <-  
factor(emotion, levels=names(sort(table(emotion),  
decreasing=TRUE))))
TaxiForSureSentimentDataFrame =  
within(TaxiForSureSentimentDataFrame, emotion <- factor(emotion,  
levels=names(sort(table(emotion), decreasing=TRUE))))
UberSentimentDataFrame = within(UberSentimentDataFrame, emotion <-  
factor(emotion, levels=names(sort(table(emotion),  
decreasing=TRUE))))
plotSentiments1<- function (sentiment_dataframe,title) {
  library(ggplot2)
ggplot(sentiment_dataframe, aes(x=emotion)) +  
geom_bar(aes(y=..count.., fill=emotion)) +
scale_fill_brewer(palette="Dark2") +
ggtitle(title) +
    theme(legend.position='right') + ylab('Number of Tweets') +  
xlab('Emotion Categories')
}

plotSentiments1(MeruSentimentDataFrame, 'Sentiment Analysis of  
Tweets on Twitter about MeruCabs')
plotSentiments1(OlaSentimentDataFrame, 'Sentiment Analysis of  
Tweets on Twitter about OlaCabs')
plotSentiments1(TaxiForSureSentimentDataFrame, 'Sentiment Analysis  
of Tweets on Twitter about TaxiForSure')
plotSentiments1(UberSentimentDataFrame, 'Sentiment Analysis of  
Tweets on Twitter about UberIndia')



Mining Opinions, Exploring Trends, and More with Twitter

[ 44 ]

The output is as follows:

In the preceding figure, we showed sample results generated on Meru Cabs tweets 
using both the functions. Let's now plot them one by one. First, let's create a single 
function to be used by each business's tweets. We call it plotSentiments1() and 
then we plot it for each business:



Chapter 2

[ 45 ]

The following dashboard shows the analysis for Ola Cabs:

The following dashboard shows the analysis for TaxiForSure:



Mining Opinions, Exploring Trends, and More with Twitter

[ 46 ]

The following dashboard shows the analysis for Uber India:

These sentiments basically reflect observations broadly similar to those we 
made with the basic word-matching algorithm. The number of tweets with joy 
constitute the largest part of tweets for all these organizations, indicating that 
these organizations are trying their best to provide good business in the country. 
The sadness tweets are less numerous than the joy tweets. However, if compared 
with each other, they indicate the overall market share versus the level of customer 
satisfaction with each service provider. Similarly, these graphs can be used to assess 
the level of dissatisfaction in terms of anger and disgust in the tweets. Let's now 
consider only the positive and negative sentiments present in the tweets:

# Similarly we will plot distribution of polarity in the tweets
plotSentiments2 <- function (sentiment_dataframe,title) {
  library(ggplot2)
ggplot(sentiment_dataframe, aes(x=polarity)) +
geom_bar(aes(y=..count.., fill=polarity)) +
scale_fill_brewer(palette="RdGy") +
ggtitle(title) +
    theme(legend.position='right') + ylab('Number of Tweets') +  
xlab('Polarity Categories')
}

plotSentiments2(MeruSentimentDataFrame, 'Polarity Analysis of  
Tweets on Twitter about MeruCabs')
plotSentiments2(OlaSentimentDataFrame, 'Polarity Analysis of  
Tweets on Twitter about OlaCabs')



Chapter 2

[ 47 ]

plotSentiments2(TaxiForSureSentimentDataFrame, 'Polarity Analysis  
of Tweets on Twitter about TaxiForSure')
plotSentiments2(UberSentimentDataFrame, 'Polarity Analysis of  
Tweets on Twitter about UberIndia')

The output is as follows:

The following dashboard shows the polarity analysis for Ola Cabs:



Mining Opinions, Exploring Trends, and More with Twitter

[ 48 ]

The following dashboard shows the analysis for TaxiForSure:

The following dashboard shows the analysis for Uber India:

It's a basic human trait to inform others about what's wrong rather than informing 
them if there was something right. We tend to tweet/report if something bad 
happens rather reporting/tweeting if an experience was rather good. Hence, the 
negative tweets are expected to be larger than the positive tweets in general. Still, 
over a period of time (a week in our case), the ratio of the two easily reflects the 
overall market share versus the level of customer satisfaction for each service 
provider. Next, we try to get a sense of the overall content of the tweets by  
using the word clouds discussed in Chapter 1, Fundamentals of Mining.



Chapter 2

[ 49 ]

removeCustomeWords <- function (TweetsCleaned) {
  for(i in 1:length(TweetsCleaned)){
    TweetsCleaned[i] <- tryCatch({
      TweetsCleaned[i] =  removeWords(TweetsCleaned[i],  
c(stopwords("english"), "care", "guys", "can", "dis", "didn",  
"guy" ,"booked", "plz"))
      TweetsCleaned[i]
    }, error=function(cond) {
      TweetsCleaned[i]
    }, warning=function(cond) {
      TweetsCleaned[i]
    })
  }
  return(TweetsCleaned)
}

getWordCloud <- function  
(sentiment_dataframe, TweetsCleaned, Emotion) {
  emos = levels(factor(sentiment_dataframe$emotion))
  n_emos = length(emos)
  emo.docs = rep("", n_emos)
  TweetsCleaned = removeCustomeWords(TweetsCleaned)

  for (i in 1:n_emos){
    emo.docs[i] = paste(TweetsCleaned[Emotion ==  
emos[i]], collapse=" ")
  }
  corpus = Corpus(VectorSource(emo.docs))
  tdm = TermDocumentMatrix(corpus)
  tdm = as.matrix(tdm)
  colnames(tdm) = emos
  require(wordcloud)
  suppressWarnings(comparison.cloud(tdm, colors =  
brewer.pal(n_emos, "Dark2"),  scale = c(3,.5), random.order =  
FALSE, title.size = 1.5))
}
getWordCloud(MeruSentimentDataFrame, MeruTweetsCleaned,  
MeruEmotion)



Mining Opinions, Exploring Trends, and More with Twitter

[ 50 ]

getWordCloud(OlaSentimentDataFrame, OlaTweetsCleaned, OlaEmotion)
getWordCloud(TaxiForSureSentimentDataFrame, TaxiForSureTweetsCleaned, 
TaxiForSureEmotion)
getWordCloud(UberSentimentDataFrame, UberTweetsCleaned, UberEmotion)



Chapter 2

[ 51 ]

The preceding figure shows the word cloud from tweets about Meru Cabs.



Mining Opinions, Exploring Trends, and More with Twitter

[ 52 ]

The preceding figure shows the word cloud from tweets about Ola Cabs.



Chapter 2

[ 53 ]

The preceding figure shows the word cloud from tweets about TaxiForSure.

The preceding figure shows word cloud from tweets about Uber India.



Mining Opinions, Exploring Trends, and More with Twitter

[ 54 ]

Summary
In this chapter, you gained knowledge of the various Twitter APIs. We discussed 
how to create a connection with Twitter, and we saw how to retrieve tweets with 
various attributes. We saw the power of Twitter in helping us determine customers' 
attitudes toward today's various businesses. The activity can be done on a weekly 
basis, and one easily get the monthly, quarterly, or yearly changes in customer 
sentiment. This can not only help the customer decide the trending business, but also 
the business itself can get a well-defined metric of its own performance. It can use 
such scores/graphs to improve. We also discussed various methods of sentiment 
analysis, varying from basic word-matching the advanced Bayesian algorithms.  
In the next chapter, we will apply a similar analysis to Facebook.



[ 55 ]

Find Friends on Facebook
There is no need for an introduction about Facebook. It's a huge source of 
information, we are connected to a lot of people, and we keep following the things 
that happen in our network. We get to know not only about the people in our 
network but also about places, movies, companies, and so on. With over 1.44 billion 
active users monthly, Facebook is also used as a medium to make promotions. It is 
being used by individuals, companies, news channels, and so on. Let's see what we 
can do using the Facebook Graph API.

In this chapter, we will see how to use the R package Rfacebook, which provides 
access to the Facebook Graph API from R. It includes a series of functions that 
allow us to extract various data about our network such as friends, likes, comments, 
followers, newsfeeds, and much more.

The idea behind the chapter is to learn how to pull the data from our network and 
use suitable techniques to convert that data into valuable information that can be 
used to solve a problem or a business case. We will discuss how to visualize our 
Facebook network and we will see some methodologies to make use of the available 
data to implement business cases, such as identifying the influential persons in a 
network, methods to detect a spam post, and finally recommend your friends  
what they might be interested in based on your network information.

In this chapter, we will cover the following topics:

• Creating an app on the Facebook platform
• Installation and authentication of the Rfacebook package
• Basic analysis of your network



Find Friends on Facebook

[ 56 ]

• Network analysis and visualization
• Getting Facebook page data
• Measuring Click-through rate (CTR) performance for a page
• Trending topics
• Spam detection
• Influencers
• Order of stories on users' timeline
• Recommendations to friends

While the Facebook Graph API allows us to get so much useful 
data with the recent updates to Version 2.0, Facebook deprecated 
few of the functionalities. In Version 1.0, we were able to 
download the complete details about all our friends, and search 
based on keywords, but now we can access just our friend's data if 
the details are publicly available or if they are using our app.

A Facebook app is required to perform the authentication and access the data.  
We will see the steps involved in creation of an app and the authentication  
process to enable the data access in detail.

Creating an app on the Facebook 
platform
In this section, we will cover the steps involved in creating a Facebook app  
to connect to the Facebook Graph API. Version 2 of the API deprecated a lot of 
features compared to Version 1, but still Facebook provides access to a lot of  
public data that can be used to solve various use cases.

In order to create a Facebook app, go to https://developers.facebook.com/, 
register as a Facebook developer, click on the My Apps option, and then choose  
Add a New App.

https://developers.facebook.com/


Chapter 3

[ 57 ]

In the next window, choose Website, give a name to your app, and save the details 
by clicking on the Create New Facebook App ID button. In the next window, choose 
an appropriate category for your app and confirm by clicking on the Create App  
ID button.

Now, our app is created. Click on Skip Quick Start on the top-right corner of the 
page and move directly to the App Settings page. We will use this app to access  
our Facebook Graph API.

Kindly ensure Rtools of version 32 is installed before loading the 
package devtools.



Find Friends on Facebook

[ 58 ]

Rfacebook package installation and 
authentication
The Rfacebook package is authored and maintained by Pablo Barbera and Michael 
Piccirilli. It provides an interface to the Facebook API. It needs Version 2.12.0 or later 
of R and it is dependent on a few other packages, such as httr, rjson, and httpuv. 
Before starting, make sure those packages are installed. It is preferred to have 
Version 0.6 of the httr package installed.

Installation
We will now install the Rfacebook packages. We can download and install the  
latest package from GitHub using the following code and load the package using  
the library function. On the other hand, we can also install the Rfacebook  
package from the CRAN network. One prerequisite for installing the package  
using the function install_github is to have the package devtools loaded  
into the R environment. The code is as follows:

install.packages("devtools")
library(devtools)
install_github("Rfacebook", "pablobarbera", subdir="Rfacebook")
library(Rfacebook)

After installing the Rfacebook package for connecting to the API, make an 
authentication request. This can be done via two different methods. The first method 
is by using the access token generated for the app, which is short-lived (valid for two 
hours); on the other hand, we can create a long-lasting token using the OAuth function.

Let's first create a temporary token. Go to https://developers.facebook.com/
tools/explorer, click on Get Token, and select the required user data permissions.

https://developers.facebook.com/tools/explorer
https://developers.facebook.com/tools/explorer


Chapter 3

[ 59 ]

The Facebook Graph API explorer will open with an access token. This access token 
will be valid for two hours. The status of the access token as well as the scope can be 
checked by clicking on the Debug button. Once the tokens expire, we can regenerate 
a new token.

Now, we can access the data from R using the following code. The access token 
generated using the link should be copied and passed to the token variable. The use 
of username in the function getUsers is deprecated in the latest Graph API; hence, 
we are passing the ID of a user. You can get your ID from the same link that was 
used for token generation. This function can be used to pull the details of any user, 
provided the generated token has the access. Usually, access is limited to a few users 
with a public setting or those who use your app. It is also based on the items selected 
in the user data permission check page during token generation. In the following 
code, paste your token inside the double quotes, so that it can be reused across the 
functions without explicitly mentioning the actual token.

token<- "XXXXXXXXX"

A closer look at how the package works
The getUsers function using the token will hit the Facebook Graph API. Facebook 
will be able to uniquely identify the users as well as the permissions to access 
information. If all the check conditions are satisfied, we will be able to get the 
required data.

Copy the token from the mentioned URL and paste it within the double quotes. 
Remember that the token generated will be active only for two hours. Use the 
getUsers function to get the details of the user. Earlier, the getUsers function used 
to work based on the Facebook friend's name as well as ID; in API Version 2.0, we 
cannot access the data using the name. Consider the following code for example:

token<- "XXXXXXXXX"
me<- getUsers("778278022196130", token, private_info = TRUE)

Then, the details of the user, such as name and hometown, can be retrieved using  
the following code:

me$name

The output is also mentioned for your reference:

[1] "Sharan Kumar R"

For the following code:

me$hometown



Find Friends on Facebook

[ 60 ]

The output is as follows:

[1] "Chennai, Tamil Nadu"

Now, let's see how to create a long-lasting token. Open your Facebook app page by 
going to https://developers.facebook.com/apps/ and choosing your app.

On the Dashboard tab, you will be able to see the App ID and Secret Code values. 
Use those in the following code.

require("Rfacebook")
fb_oauth<-  
fbOAuth(app_id="11",app_secret="XX",extended_permissions = TRUE)

On executing the preceding statements, you will find the following message in  
your console:

Copy and paste into Site URL on Facebook App Settings:  
http://localhost:1410/
When done, press any key to continue...

Copy the URL displayed and open your Facebook app; on the Settings tab, click on 
the Add Platform button and paste the copied URL in the Site URL text box. Make 
sure to save the changes.

https://developers.facebook.com/apps/


Chapter 3

[ 61 ]

Then, return to the R console and press any key to continue, you will be prompted to 
enter your Facebook username and password. On completing that, you will return 
to the R console. If you find the following message, it means your long-lived token 
is ready to use. When you get the completion status, you might not be able to access 
any of the information. It is advisable to use the OAuth function a few minutes after 
creation of the Facebook application.

Authentication complete.
Authentication successful.

After successfully authenticating, we can save it and load on demand using the 
following code:

save(fb_oauth, file="fb_oauth")
load("fb_oauth")

When it is required to automate a few things or to use Rfacebook extensively, it will 
be very difficult as the tokens should be generated quite often. Hence, it is advisable 
to create a long-lasting token to authenticate the user, and then save it. Whenever 
required, we can just load it from a local file.

Note that Facebook authentication might take several minutes. 
Hence, if your authentication fails on the retry, please wait for 
some time before pressing any key and check whether you 
have installed the httr package Version 0.6. If you continue 
to experience any issues in generating the token, then it's not a 
problem. We are good to go with the temporary token.
Exercise
Create an app in Facebook and authenticate by any one of the 
methods discussed.



Find Friends on Facebook

[ 62 ]

A basic analysis of your network
In this section, we will discuss how to extract Facebook network of friends and  
some more information about the people in our network.

After completing the app creation and authentication steps, let's move forward  
and learn to pull some basic network data from Facebook. First, let's find out  
which friends we have access to, using the following command in R. Let's use  
the temporary token for accessing the data:

token<- "XXXXXXXXX"
friends<- getFriends(token, simplify = TRUE)
head(friends) # To see few of your friends

The preceding function will return all our Facebook friends whose data is accessible. 
Version 1 of the API would allow us to download all the friends' data by default. But 
in the new version, we have limited access. Since we have set simplify as TRUE, we 
will pull only the username and their Facebook ID. By setting the same parameter to 
FALSE, we will be able to access additional data such as gender, location, hometown, 
profile picture, relationship status, and full name.

We can use the function getUsers to get additional information about a particular 
user. The following information is available by default: gender, location, and language. 
We can, however, get some additional information such as relationship status, 
birthday, and the current location by setting the parameter private_info to TRUE:

friends_data<- getUsers(friends$id, token, private_info = TRUE)
table(friends_data$gender)

The output is as follows:

female   male
     5     21

We can also find out the language, location, and relationship status.  
The commands to generate the details as well as the respective outputs  
are given here for your reference:

#Language
table(substr(friends_data$locale, 1, 2))

The output is as follows:

en
26



Chapter 3

[ 63 ]

The code to find the location is as follows:

# Location (Country)
  table(substr(friends_data$locale, 4, 5))

The output is as follows:

GB US
 1 25

Here's the code to find the relationship status:

# Relationship Status
table(friends_data$relationship_status)

Here's the output:

Engaged Married  Single
      1       1       3

Now, let's see what things were liked by us in Facebook. We can use the function 
getLikes to get the like data. In order to know about your likes data, specify user as 
me. The same function can be used to extract information about our friends, in which 
case we should pass the user's Facebook ID. This function will provide us with a list 
of Facebook pages liked by the user, their ID, name, and the website associated with 
the page. We can even restrict the number of results retrieved by setting a value to the 
parameter n. The same function will be used to get the likes of people in our network; 
instead of the keyword me, we should give the Facebook ID of those users. Remember 
we can only access data of people with accessibility from our app. The code is as follows:

likes<- getLikes(user="me", token=token)
head(likes)

After exploring the use of functions to pull data, let's see how to use the Facebook 
Query Language using the function getFQL, which can be used to pass the queries. 
The following query will get you the list of friends in your network:

friends<- getFQL("SELECT uid2 FROM friend  
WHERE uid1=me()", token=token)

In order to get the complete details of your friends, the following query can be 
used. The query will return the username, Facebook ID, and the link to their profile 
picture. Note that we might not be able to access the complete network of friends' 
data, since access to data of all your friends are deprecated with Version 2.0. The 
code is as follows:

# Details about friends



Find Friends on Facebook

[ 64 ]

Friends_details<- getFQL("SELECT uid, name, pic_square FROM user  
WHERE uid = me() OR uid IN (SELECT uid2 FROM friend  
WHERE uid1 = me())", token=token)

In order to know more about the Facebook Query Language, check out the following 
link. This method of extracting the information might be preferred by people familiar 
with query language. It can also help extract data satisfying only specific conditions 
(https://developers.facebook.com/docs/technical-guides/fql).

Exercise
Download your Facebook network and do an exploration analysis 
on the languages your friends speak, places where they live, the total 
number of pages they have liked, and their marital status. Try all 
these with the Facebook Query Language as well.

Network analysis and visualization
So far, we used a few functions to get the details about our Facebook profile as 
well as friends' data. Let's see how to get to know more about our network. Before 
learning to get the network data, let's understand what a network is as well as a  
few important concepts about the network.

Anything connected to a few other things could be a network. Everything in real 
life is connected to each other, for example, people, machines, events, and so on. 
It would make a lot of sense if we analyzed them as a network. Let's consider a 
network of people; here, people will be the nodes in the network and the  
relationship between them would be the edges (lines connecting them).

Social network analysis
The technique to study/analyze the network is called social network analysis.  
We will see how to create a simple plot of friends in our network in this section.

To understand the nodes (people/places/etc) in a network in social network 
analysis, we need to evaluate the position of the nodes. We can evaluate the nodes 
using centrality. Centrality can be measured using different methods like degree, 
betweenness, and closeness. Let's first get our Facebook network and then get to 
know the centrality measures in detail.

https://developers.facebook.com/docs/technical-guides/fql


Chapter 3

[ 65 ]

We use the function getNetwork to download our Facebook network. We need to 
mention how we would like to format the data. When the parameter format is set 
to adj.matrix, it will produce the data in matrix format where the people in the 
network would become the row names and column names of the matrix and if they 
are connected to each other, then the corresponding cell in the matrix will hold a 
value. The command is as follows:

network<- getNetwork(token, format="adj.matrix")

We now have our Facebook network downloaded. Let's visualize our network before 
getting to understand the centrality concept one by one with our own network. To 
visualize the network, we need to use the package called igraph in R. Since we 
downloaded our network in the adjacency matrix format, we will use the same 
function in igraph. We use the layout function to determine the placement of 
vertices in the network for drawing the graph and then we use the plot function 
to draw the network. In order to explore various other functionalities in these 
parameters, you can execute the ?<function_name> function in RStudio and the 
help window will have the description of the function. Let's use the following code 
to load the package igraph into R.

require(igraph)

We will now build the graph using the function graph.adjacency; this function 
helps in creating a network graph using the adjacency matrix. In order to build a 
force-directed graph, we will use the function layout.drl. The force-directed  
graph will help in making the graph more readable. The commands are as follows:

social_graph<- graph.adjacency(network)
layout<- layout.drl(social_graph,
    options=list(simmer.attraction=0))

At last, we will use the plot function with various built in parameters to make 
the graph more readable. For example, we can name the nodes in our network, we 
can set the size of the nodes as well as the edges in the network, and we can color 
the graph and the components of the graph. Use the following code to see what 
the network looks like. The output that was plotted can be saved locally using the 
function dev.copy, and the size of the image as well as the type can be passed as a 
parameter to the function:

plot(social_graph, vertex.size=10, vertex.color="green",
vertex.label=NA,
vertex.label.cex=0.5,
edge.arrow.size=0, edge.curved=TRUE,



Find Friends on Facebook

[ 66 ]

layout=layout.fruchterman.reingold)
dev.copy(png,filename= 
"C:/Users/Sharan/Desktop/3973-03-community.png",  
width=600, height=600);
dev.off ();

With the preceding plot function, my network will look like the following one.  
In the following network, the node labels (name of the people) have been disabled. 
They can be enabled by removing the vertex.label parameter.

Degree
The number of direct connections a node has in a network is called the degree. A 
higher degree means that the node is connected to a lot of other nodes, which makes 
the nodes with a higher degree very important for various business cases. Degree can 
be further classified into in-degree and out-degree. To know more about the concept 
of networks, refer to the course Social Network Analysis by Lada Adamic available 
at coursera, which can be found at https://www.coursera.org/course/sna. 
Consider the following code to measure the degree of a network:

# MeasuringDegree for a network
degree(social_graph, v=V(social_graph), mode =  
c("all", "out", "in", "total"),loops = TRUE, normalized = FALSE)
degree.distribution(social_graph, cumulative = FALSE)

https://www.coursera.org/course/sna


Chapter 3

[ 67 ]

The degree function will produce output similar to the one shown here. The 
degree.distribution function is a numeric vector of the same length as the 
maximum degree plus one. The first element is the relative frequency of zero degree 
vertices and the second element is the relative frequency of vertices with degree one 
and so on. The use of degree as a measure of centrality is generally not preferred 
because it takes into account only the nodes that are directly connected to it.

Note that the preceding screenshot is just a part of the output.

Betweenness
Betweenness is also a concept of centrality. It is calculated based on how many pairs 
of individuals (other nodes in the network) would have to go through you (node for 
which it is calculated) in order to reach one another in the minimum number of hops. 
The node with higher Betweenness will have a greater influence in the flow of the 
information. Consider the following code to measure Betweenness:

#Measuring Betweenness
betweenness(social_graph, v=V(social_graph), directed = TRUE,  
weights = NULL, nobigint = TRUE, normalized = FALSE)

If our network is a directed one, then we need to set the parameter directed as 
TRUE. The preceding function measures the Betweenness for all the nodes in the 
network. If you would like to measure the Betweenness manually, it can be done 
using this formula:

The output to the preceding function will also be very similar to the degree function, 
but here we will see the Betweenness value for each of our friends in our network.



Find Friends on Facebook

[ 68 ]

Closeness
Closeness is also a measure of centrality; how central you are (node for which 
it is calculated) depends on the length of the average shortest path between the 
measuring node and all other nodes in the network. The nodes with high closeness 
are very important because they are in an excellent position to monitor what's 
happening in the network, that is, nodes with highest visibility. This measure might 
not be of much use when our network has many disconnected components. Consider 
the following code to measure closeness:

# Measuring Closeness
closeness(social_graph, vids=V(social_graph), mode = c("out",  
"in", "all", "total"), weights = NULL, normalized = FALSE)

The preceding function measures the closeness for all the nodes in the network.  
You can measure the closeness manually as well using the following formula:

The output to the preceding function will also be very similar to the degree function, 
but here we will see the closeness score for each of our friends in our network.

Cluster
Cluster is a measure of extent to which the nodes in the network tend to cluster  
with each other. We can see how many clusters there are in our network using  
the following function:

# Cluster in network
is.connected(social_graph, mode=c("weak", "strong"))

The first function is.connected is used to check whether the network is strongly 
clustered or not. The second function actually returns us the number of the clusters 
and the size of the clusters in the network.

The clusters function is used to identify the total number of clusters in the 
network. It computes the number of elements in each of the clusters, that is,  
the size of the cluster as well as the total number of clusters.



Chapter 3

[ 69 ]

The nodes that are not connected to anyone else in the network will be considered as 
a separate cluster. Let us identify the number of clusters present in the dataset using 
the following code.

clusters(social_graph, mode=c("weak", "strong"))

The output is as follows:

Communities
After checking the number of clusters in the network, let's check how these clusters are 
spread in the network. We can use the walktrap.community function. This function 
will identify the communities in the network, and we can see the communities using 
the plot function. From the output, we can clearly see the five different groups in the 
network, which match with the output of the cluster function. We can also check the 
strength of the division of network into subgroups. Networks with high modularity 
will have dense connections between the nodes in the subgroup. Consider the 
following code to plot communities:

# Plotting Community
network_Community<- walktrap.community(social_graph)

The modularity function is used to detect the communities in the network. It 
measures how modular a given division of a network graph into subgraphs is,  
that is, how strong a division within a network is. Networks with high a modularity 
score have strong connections between the nodes within their cluster (group/
community). Consider the following code to find the modularity:

modularity(network_Community)
plot(network_Community, social_graph, vertex.size=10,  
vertex.label.cex=0.5, vertex.label=NA, edge.arrow.size=0,  
edge.curved=TRUE,layout=layout.fruchterman.reingold)



Find Friends on Facebook

[ 70 ]

The output is as follows:

So far, we saw some of the concepts of social network analysis. Social network 
analysis is a huge area of research, and it is beyond the scope of this book. But at an 
abstract level, it helps us to detect the various communities in a network, identifying 
the people at the center of the network and measuring the shortest distance between 
two people in a network. The various business cases that could be solved using the 
social network analysis are as follows:

• Tracing the source of information dissemination as well as the  
opinion formation

• Identifying the most influential person in a network for social media 
campaign targeting

• For human resource, identifying the barrier for internal communication
• How fast can a flu spread?



Chapter 3

[ 71 ]

Exercise

• Identify the most influential person in your network.
• Identify the top ten people with the highest degree in  

your network.
• Identify the number of clusters in your network.
• Identify people who have the best centrality score based on 

degree, Betweenness, and Closeness. Use equal weightage 
to all of them and compute a single cumulative score.

Getting Facebook page data
Facebook is not only used by individuals but also by many businesses. Most of the 
businesses create a Facebook page to advertise about their company and to display 
their products, offers, and related content. Hence, it becomes really important to 
check what kinds of posts are liked by the user, perform experimentation with 
different content, and identify the content that results in a follower's engagement.

Let's see how to get the contents of a page. First, we need to get the name of the  
page. We can get this from the URL of the page. Let's take TED as an example;  
from the URL, we know that the name of the page is TED.



Find Friends on Facebook

[ 72 ]

We use the function getPage to get the contents posted in TED's page. For proper 
functioning of the function, ensure that Version 0.6 of the httr package is loaded in 
the R environment. Unlike Facebook friends' data, it is not necessary to like the page 
in order to pull the data. We can pull the data from any page provided the page, as 
well as the content, is public. The code is as follows:

######### Facebook Page data
page<- getPage("TED", token, n = 50)
head(page, n=2)

The output is as follows:

The preceding function will pull 50 posts (not necessarily latest) from the TED page. 
Using the head function, we can see the details of the top rows of the resultant 
dataset. The success of a Facebook post is usually measured by the number of people 
who liked it and the number of people who commented about it, as it tells us how 
much engagement was triggered by the post as well as the number of times it has 
been shared by different people on their Facebook profile. All these details can be 
obtained from the preceding function. With Version 1.0 of the Facebook Graph 
API, we were able to search for a post with a keyword, but that feature has been 
deprecated with Version 2.0. Hence, now we need to know the ID or the name of the 
post if we want to get the details of a particular post. The commands are as follows:

#Let's get the detail about the post which had the maximum number of 
likes.
# Page with maximum likes
page[which.max(page$likes_count), ]

Out of the 50 posts that we have pulled from the TED page, we got the post that had 
the maximum number of likes. From the output, we see that the most popular post 
had about 20,000 likes:

Now, let's see what kind of details are captured and what kind of analysis can be 
performed that would help us to measure the impact.



Chapter 3

[ 73 ]

Exercise

• Identify the top performing post as well as the lowest 
performing post and explore the difference between them

• Download the most recent 1000 posts from a page and see 
what time those posts are mostly made

Trending topics
The concept of trending topics is quite popular. We can see the trending topics in 
news websites, Twitter, and so on. But how can we identify the trending topic for a 
particular Facebook page or a group of Facebook pages? Let's see how it can be done 
in detail.

Trend analysis
Now, we will see how to learn which posts are doing well in recent times. After 
selecting the page that we are planning to do some analysis for, we will filter the 
posts' data based on a time range. Let's consider the same TED page and filter the 
recent data and see the posts that were popular:

# Most trending posts
page<- getPage("TED", token, n = 500)
head(page, n=20)

We pull the interactions, that is, messages posted in a page using the getPage function. 
In the following code, we are filtering the data. We are pulling the data that was posted 
after April 1, 2015. Then, we order the post based on the number of likes, and we use 
the head function to display the top posts and their details. The code is as follows:

pageRecent<- page[which(page$created_time> "2015-04-01"), ]
top<- pageRecent[order(- pageRecent$likes),]
head(top, n=10)

Here's the output:



Find Friends on Facebook

[ 74 ]

The preceding screenshot is just a part of the output.

We can use the which function in order to filter the recent posts made in the TED 
page. After filtering the recent posts, we can use the order function to sort all the 
posts based on popularity. In this case, we are considering the number of likes for  
the post as a proxy for a good post. By using the minus symbol, we are sorting the 
post in descending order. Hence, the top post will come at the top.

In order to check the trend for the top posts, we will obtain the preceding details on 
a daily basis and combine them using the function rbind, and finally, filter the posts 
based on the post ID as well as the date to check the trend for the posts. This will be 
helpful to know if there has been any spike in the popularity of a post.

If we increase the granularity of the analysis by repeating the preceding exercise 
more frequently, say every hour. We would be able to see the patterns of interaction. 
For example, we would be able to see the time when the interactions of the followers 
are highest.

Exercise

• Identify the trending post for a different group.
• How long does the post remain on top? This could be achieved 

only by continuously monitoring the data for a few days/weeks.

Influencers
Having seen the details of the post, let's see how to learn about the people who 
comment and like these posts and to check if there is anyone who is more influential. 
For doing such an analysis, first we need to pull the data about the user interaction  
in a particular post.

Based on a single post
Let's take the most recent post and pull all the user comments using the function 
getPost. For each of those comments, let's see how many people liked it using the 
following code:

post_id<- head(page$id, n = 1)  ## ID of most recent post
post<- getPost(post_id, token, n = 1000, likes = TRUE,  
comments = TRUE)
head(post$comments, n=2)



Chapter 3

[ 75 ]

The output is as follows:

samppost<- post$comments

The preceding command will copy all the comments of a particular post. After that, 
in order to check the user who had the maximum likes, we can write a query using 
the function sqldf. First, we need to import the package sqldf and write a query 
using sqldf. Since we are interested in only those users who had the most number 
of likes, we are pulling only the username and the number of likes for the various 
comments by the user. Then, we will arrange them in descending order to know the 
top users of this post in the TED page.

library(sqldf)
comments <- post$comments
influentialusers<- sqldf("select from_name, sum(likes_count)  
as totlikes from comments group by from_name")
head(Infusers)
head(Infusers)
influentialusers$totlikes<- as.numeric(influentialusers$totlikes)
# Sorting the users based on the number of likes they received
top<- influentialusers[order(- influentialusers$totlikes),]
head(top, n=10)

The output is as follows:



Find Friends on Facebook

[ 76 ]

Based on multiple posts
Based on a single post or a few comments, can we come to a conclusion on if a 
particular user is influential or not? In order to identify the overall favorite user, 
we will first download the comments posted in all the posts. Combine them using 
the rbind function, and finally write a SQL query using the sqldf function with 
groupby"user name".

For the Facebook page TED, let's check the most influential person. We will first 
download the top 100 posts from the page. Convert them into a matrix so that it 
becomes easy to access the comments based on their position, and initialize the  
data frame allcomments as null. The code is as follows:

post_id<- head(page$id, n = 100)
head(post_id, n=10)
post_id<- as.matrix(post_id)
allcomments<- ""

In the for loop, we will traverse post by post and append all the comments of the 
posts to the data frame allcomments. The following for loop might take some time 
because we are consolidating thousands of comments. Finally, we will sort the users 
based on the number of likes they got for their comments. Hence, we get to know  
the most influential person in the page. The code is as follows:

# Collecting all the commments from all the 100 posts
for (i in 1:nrow(post_id))
{
  # Get upto 1000 comments for each post
post<- getPost(post_id[i,], token, n = 1000,  
likes = TRUE, comments = TRUE)
comments<- post$comments
  # Append the comments to a single data frame
allcomments<- rbind(allcomments, comments)
}

Once we have consolidated all the comments, we use the sqldf function to 
aggregate the likes based on user. To know how many users have commented  
in the posts and in total how many liked their comments, the code is as follows:

# Consolidating the like for each user.
influentialusers<- sqldf("select from_name, sum(likes_count) as  
totlikes from allcomments group by from_name")
influentialusers$totlikes<- as.numeric(influentialusers$totlikes)
top<- influentialusers[order(- influentialusers$totlikes),]
head(top, n=20)



Chapter 3

[ 77 ]

Here's the output:

In the same way, we can do this for a group of related pages. Getting to know 
the most influential person is a very useful task, that is very helpful for executing 
marketing campaigns and making them successful.

Exercise
Repeat the preceding example for a different page. Try implementing 
with different weightages. Give more weightage to shares. For the 
positive comments, this could be achieved by building a list of positive 
words and checking the comments for any word from this list. At last, 
give least weightage for the likes to find the influential person.

Measuring CTR performance for a page
The performance of a page can be measured by the user activity in the page and the 
user's interaction in the posts published in the page. Let's measure the performance 
for a page. When we say measuring the performance, it is by means of counting the 
user interaction through likes, comments, and shares.

In order to come up with a trend, we will need the timestamp data. Then, we need 
to consolidate the data on a monthly basis so that we can draw the time-series 
performance chart.



Find Friends on Facebook

[ 78 ]

First, we need to convert the Facebook date format into R-supported date format. 
The following code is a function to convert the date format. We need to pass the date 
timestamp data to this function. The function will return the same date timestamp in 
R-supported format so that we can perform date operation. The code is as follows:

format.facebook.date<- function(datestring) {
date<- as.POSIXct(datestring,  
format = "%Y-%m-%dT%H:%M:%S+0000", tz = "GMT")
}

Then, we need to aggregate the data on a monthly basis. The aggregate.metric 
function will aggregate the required data on a monthly basis. We will pass the likes, 
comments, and shares count data to this function. We would have already converted 
the date to the required format using the previous function. The code is as follows:

aggregate.metric<- function(metric) {
m<- aggregate(page[[paste0(metric, "_count")]],  
list(month = page$month),
mean)
m$month<- as.Date(paste0(m$month, "-15"))
m$metric<- metric
return(m)
}

Then, let's see how our R code makes use of the preceding functions and to plot the 
performance trend. Finally, we use the ggplot function to plot the trend and save 
the plot using the function ggsave. The quality of image can be adjusted using the 
dpi parameter.

Use the getPage function to extract all the posts from the Facebook page bimtrichy. 
The number of pages to be retrieved can be altered using the parameter n. In this 
case, we are downloading the top 500 posts. The command is as follows:

page<- getPage("bimtrichy", token, n = 500)

We are passing the date timestamp to the function format.facebook.date created 
by us. So it will be converted to a format that would be supported by the aggregate 
function which will be used next. The code is as follows:

page$datetime<- format.facebook.date(page$created_time)
page$month<- format(page$datetime, "%Y-%m")

We are using the aggregate function to aggregate the number of likes, comments, 
and shares on a monthly basis. The code is as follows: 

df.list<- lapply(c("likes", "comments", "shares"),  
aggregate.metric)
df<- do.call(rbind, df.list)



Chapter 3

[ 79 ]

We need the ggplot2 and scales packages in order to make the plot. Hence, we 
need to load those packages using the library function. We plot the graph using the 
ggplot function and define a few parameters to make the graph readable. The code 
is as follows:

library(ggplot2)
library(scales)
ggplot(df, aes(x = month, y = x, group = metric))
+ geom_line(aes(color = metric))
+ scale_x_date(breaks = "years", labels = date_format("%Y"))
+ scale_y_log10("Average count per post", breaks =  
c(10, 100, 1000, 10000, 50000))
+ theme_bw()
+ theme(axis.title.x = element_blank())
+ ggtitle("Facebook Page Performance")
ggsave(file="C:/Users/Sharan/Desktop/3973-format-trend.png",  
dpi=500)

The output is as follows:

Hence, we can now see the performance trend chart. The same data can be used to 
plot the chart on an hourly, quarterly, or yearly basis with little modification to the 
existing code. Similarly, different metrics could be defined, computed, and the trend 
could be plotted.



Find Friends on Facebook

[ 80 ]

Exercise
Consider a few Facebook pages; give weightages to the likes, 
comments, and the shares; and then compute a new score that is a 
weighted sum of the measures. Then, aggregate the score for each of 
those pages on a monthly basis and plot the trend chart to compare the 
performance of multiple pages over the same period of time. This will 
help to identify patterns in the trend. This could be done for a similar 
set of pages and also diverse pages.
Along with the metrics, likes, comments, and shares, try to add the 
number of characters in the post. Also, try to have a filter based on the 
type of post, which could be video, message, and so on.

Spam detection
Spam detection is an important use case to deal with. With the growing number 
of users, the number of spam comments/messages is also increasing. Hence, it is 
important to build a model or a rule engine which would be capable of identifying 
the fraudulent user, posting some random message.

The implementation of this algorithm would be slightly difficult because there is no 
direct mechanism to tag a post as spam. In this section, we will teach you to build a 
basic model based on certain parameters as well as users' inputs to identify a spam 
post. This will definitely help you to understand the concept. Any such algorithm 
implemented would require a constant update since the spammers too, would 
change their strategy.

Implementing a spam detection algorithm
The following is a simple implementation of a spam detection algorithm using 
logistic regression. Let's see in detail what the code does to predict the spam 
messages as comments in the Facebook page posts:

page<- getPage("beach4all", token, n = 500)
post_id<- head(page$id, n = 100)
head(post_id, n=10)
post_id<- as.matrix(post_id)
allcomments<- ""
for (i in 1:nrow(post_id))
{
post<- getPost(post_id[i,], token, n = 1000,  
likes = TRUE, comments = TRUE)



Chapter 3

[ 81 ]

comments<- post$comments
allcomments<- rbind(allcomments, comments)
}
allcomments<- as.data.frame(allcomments)
allcomments$chars<- ""
allcomments$chars<- nchar(allcomments$message)
allcomments$url<- ""
allcomments$url<- grepl(".com", allcomments$message)
allcomments$spam<- ""
train<- allcomments[1:100,]
test<- allcomments[101:nrow(allcomments),]
write.csv(train,"comment-train.csv" )
write.csv(test,"comment-test.csv")
train<- read.csv("comment-train.csv" )
test<- read.csv("comment-test.csv" )
newTrain<- train[,c("likes_count", "chars", "url", "spam")]
newTest<- test[,c("likes_count", "chars", "url", "spam")]
glm.out = glm(spam ~ ., family=binomial(logit), data=newTrain)
prediction<- predict(glm.out,newTest, type = "response")
newTest$spam<- prediction
head(newTest)

First, we will download the post from a Facebook page. Using the following code,  
we download the latest 500 Facebook posts and then we choose the top 100 posts  
in the page. We use the head function to check the dataset. The code is as follows:

page<- getPage("beach4all", token, n = 500)
post_id<- head(page$id, n = 100)
head(post_id, n=10)

The following code had already been explained under the heading Influencers. 
This code is used to collect the comments made in the post. The final data frame, 
allcomments, will hold all the comments made in the forum.

post_id<- as.matrix(post_id)
allcomments<- ""
for (i in 1:nrow(post_id))
{
post<- getPost(post_id[i,], token, n = 1000,  
likes = TRUE, comments = TRUE)
comments<- post$comments
allcomments<- rbind(allcomments, comments)
}
allcomments<- as.data.frame(allcomments)



Find Friends on Facebook

[ 82 ]

We are going to build a few more vectors that will help in predicting the spam 
messages. We create two empty columns named chars and URL to hold the number 
of characters as well as the flag to predict messages with a URL. It has been found 
that most spam comments contain a URL. We use the nchar function to count the 
number of characters in the comments and then the grepl function to identify the 
comments with a URL in it. The code is as follows:

allcomments$chars<- ""
allcomments$chars<- nchar(allcomments$message)
allcomments$url<- ""
allcomments$url<- grepl(".com", allcomments$message)
allcomments$spam<- ""

We now divide the dataset into train and test. The first 100 rows are used as the 
train dataset and the others are used as the test dataset. Then, we write the new 
dataset into the local system. After writing the files locally, open the training dataset, 
manually identify the spam rows, flag them as 1 in the spam column, and save it. In 
our case, we consider the irrelevant comments with advertisement and spam links  
to be a spam message. Now, we will use the new train dataset as a training set  
and hence predict the spam comments in the test dataset. The code is as follows:

train<- allcomments[1:100,]
test<- allcomments[101:nrow(allcomments),]
write.csv(train,"comment-train.csv" )
write.csv(test,"comment-test.csv" )

We will read the new dataset, where we have flagged all the comments as either 
spam or normal. We choose the columns likes_count, chars, url, and spam 
to build the prediction model. We use the glm function with the parameter 
family=binomial(logit) to build the logistic regression model. The logistic model 
that has been built is stored in glm.out. While making the prediction, we have to  
pass this model to the prediction function. Based on this model, the prediction will  
be made for the test dataset. The code is as follows:

train<- read.csv("comment-train.csv" )
test<- read.csv("comment-test.csv" )
newTrain<- train[,c("likes_count", "chars", "url", "spam")]
newTest<- test[,c("likes_count", "chars", "url", "spam")]
glm.out = glm(spam ~ ., family=binomial(logit), data=newTrain)



Chapter 3

[ 83 ]

Finally, we use the predict function for the comments in the test dataset. We use 
the parameter type as response to make sure that the predictions fall into the range 
0 to 1. Update the test dataset's spam column with the prediction. Then, we merge 
the predicted column with the test dataset so that we can see the people whose 
comments were considered as spam by our algorithm.

The code is as follows:

prediction<- predict(glm.out,newTest, type = "response")
newTest$spam<- prediction
head(newTest)

Here's the output:

Now that we have the probability of the message being spam, we will decide on the 
threshold after preliminary analysis, based on its impact on accuracy. Values closer 
to 1 indicate that the probability of being spam is higher. Thus, we have built the 
model to predict if a comment is spam or not. The accuracy of this model could  
be improved by building a strong list of vectors.



Find Friends on Facebook

[ 84 ]

Exercise
From the preceding output, we can understand that the spam 
messages are mostly from a few users. Hence, in the exercise, 
try implementing a similar algorithm but instead of predicting 
whether a message is spam or not, predict whether the user 
is a spam user or not. This could also be achieved by building 
the vectors that would help in making the prediction. Like the 
attributes such as number of comments posted, number of likes 
received and their ratio, a few more vectors could be built.

The order of stories on a user's home 
page
In Facebook, when we open the home page we see multiple newsfeeds. These 
newsfeed are updated continuously, let's try to imitate the same in R. The following 
code will sort the newsfeeds in an order based on the interactions, as well as the 
recency of publishing. If you face any problems here, check the version of the API 
and retry with the API of Version 2.3. The code is as follows:

newsfeed<- getNewsfeed(token, n = 200)
head(newsfeed, 20)
newsfeed$datetime<- format.facebook.date(newsfeed$created_time)
currdate<- Sys.time()
maxdiff<-  
max(difftime(currdate, newsfeed$datetime, units="hours"))
newsfeed$priority<-  
maxdiff - difftime(currdate, newsfeed$datetime, units="hours")
newsfeed$priority<- as.numeric(newsfeed$priority)
fnpriority<- function(x){(x-min(x))/(max(x)-min(x))}
newsfeed$priority<- fnpriority(newsfeed$priority) *100
newsfeed$plikes_count<- fnpriority(newsfeed$likes_count) *100
newsfeed$pcomments_count<-  
fnpriority(newsfeed$comments_count) *100
newsfeed$pshares_count<- fnpriority(newsfeed$shares_count) *100
newsfeed$score<- newsfeed$plikes_count +  
newsfeed$pcomments_count + newsfeed$pshares_count +  
newsfeed$priority
newsfeed<- newsfeed[order(-newsfeed$score),]



Chapter 3

[ 85 ]

We will pull the newsfeed using the function getNewsfeed. The parameter n is  
used to specify the number of posts to be retrieved and we use the head function  
to display the top rows to check the data format. The code is as follows:

newsfeed<- getNewsfeed(token, n = 200)
head(newsfeed, 20)

We will then convert the date timestamp to a format that is supported by R using  
the function that we had created in the previous section while detecting spam 
messages. We use the function Sys.time to get the system's current timestamp.  
The code is as follows:

newsfeed$datetime<- format.facebook.date(newsfeed$created_time)
currdate<- Sys.time()

In the newsfeed that we see in our Facebook home page, recency holds a significant 
weightage. Hence, let's also try to bring in the recency factor. Using the function 
difftime, we will get the difference between the times when the post was made as 
well as the current time. We inverse the values by subtracting from the maximum 
value so that higher values would mean the post is recent. Save these values into a 
new column called priority. The code is as follows:

maxdiff<-  
max(difftime(currdate, newsfeed$datetime, units="hours"))
newsfeed$priority<-  
maxdiff - difftime(currdate, newsfeed$datetime, units="hours")
newsfeed$priority<- as.numeric(newsfeed$priority)

We have computed the priority but still we might find cases where there are posts 
that were very recent, may be just a few seconds old, as well as posts which are 
months old. Hence, we will use the fnpriority function to normalize the values 
between the range 0 and 1. Then, we use the function to normalize across a few of 
the columns that would be used to determine the priority score. In this case, we are 
multiplying the resultant value with 100 to bring it to the range 0 to 100:

fnpriority<- function(x){(x-min(x))/(max(x)-min(x))}
newsfeed$priority<- fnpriority(newsfeed$priority) *100
newsfeed$plikes_count<- fnpriority(newsfeed$likes_count) *100
newsfeed$pcomments_count<- fnpriority(newsfeed$comments_count) *100
newsfeed$pshares_count<- fnpriority(newsfeed$shares_count) *100



Find Friends on Facebook

[ 86 ]

Finally, we add up the individual scores and use the order function to sort all the 
feeds in descending order. The most important post would appear on the top. In this 
case, we computed the importance based on the recency as well as the number of 
interaction through the likes, comments, and shares:

newsfeed$score<- newsfeed$plikes_count +  
newsfeed$pcomments_count + newsfeed$pshares_count + newsfeed$priority
newsfeed<- newsfeed[order(-newsfeed$score),]
head(newsfeed)

The output is as follows:

Hence, we have come up with a basic approach to replicate the stories to be displayed 
in our home page. We will also work on a few aspects to improve the order of the 
posts, and make sure that the posts that appear on top are most likely the ones which 
we might like.



Chapter 3

[ 87 ]

Exercise
For each of the posts that are pulled using the Newsfeed function, get 
the post ID and then identify the number of comments, likes, and shares 
by friends. This could be achieved by getting our friends details and 
comparing with those of the posts. Then, use these parameters as well 
to compute the score. The posts that have more interaction from our 
friends would most likely to be our favorite.

Recommendations to friends
The objective of this chapter is to recommend to your friend, pages that they might 
like. We will build this recommendation using the Apriori algorithm. The following 
code will be useful for building the recommendation model. It makes use of the 
Apriori algorithm to build, generate the rules, and hence extract the patterns in  
the data that can be used as recommendation. Let's understand the code in detail:

friends<- getFriends(token, simplify = TRUE)
head(friends, 26)
friend1<- getLikes("500637447", n = 100, token)
friend2<- getLikes("505108142", n = 100, token)
friend1$user <- "friend1"
friend2$user <- "friend2"
friendlikedata<- rbind(friend1, friend2)
head(friendlikedata)
forRecc<- friendlikedata[,c("user", "id")]
write.csv(forRecc,"C:/Users/Sharan/Desktop/Chapter 3/forRecc.csv",  
row.names = FALSE, col.names = NA)
library(arules)
data = read.transactions(file="C:/Users/Sharan/Desktop/Chapter  
3/forRecc.csv", rm.duplicates= FALSE,  
format="single",sep=",",cols =c(1,2));
head(data, 10)
nrow(data)
inspect(data)
rules<- apriori(data,parameter = list(sup = 0.2, conf = 0.001,  
target="rules", minlen=3, maxlen=5));
inspect(rules);
itemFrequencyPlot(data)
image(data)



Find Friends on Facebook

[ 88 ]

We use the getFriends function to get the details of the friends in our network. Once 
you have completed this step, we can extract the likes of friends one by one using the 
user's Facebook ID. In order to map the likes to the user, we create a user column and 
name it with our friend's name. Once all the friend's details are extracted, we combine 
them using the rbind function. In order to build the recommendation using Apriori, 
we need only the username and the pages they like. Hence, select just these columns 
and then write it in a local machine. The code is as follows:

friends<- getFriends(token, simplify = TRUE)
head(friends, 26)
friend1<- getLikes("500637447", n = 100, token)
friend2<- getLikes("505108142", n = 100, token)
friend1$user <- "friend1"
friend2$user <- "friend2"
friendlikedata<- rbind(friend1, friend2)
head(friendlikedata)
forRecc<- friendlikedata[,c("user", "id")]
write.csv(forRecc,"C:/Users/Sharan/Desktop/Chapter 3/forRecc.csv",  
row.names = FALSE, col.names = NA)

We are going to build the rules using the arules package. For the first time, you have 
to install the package using the code install.packages. Load the package using the 
library function. The data has to be read using the read.transactions function 
so that the apriori function will understand the data. Then, we will inspect the data 
using the inspect function. It will show us the user and the pages in pairs, and we  
can generate the rules using the apriori function:

Install.packages("arules")
library(arules)
data = read.transactions(file="C:/Users/Sharan/Desktop/Chapter  
3/forRecc.csv", rm.duplicates= FALSE,  
format="single",sep=",",cols =c(1,2));
head(data, 10)
inspect(data)

Now that we understand more about the parameters used in the apriori function, 
the parameter support, sup, is the percentage of the population that satisfies the rule, 
while the parameter confidence, conf, is the percentage in which the consequent is 
also satisfied. We have set the threshold for these parameters. Try adjusting these 
parameters' thresholds so that we are able to generate a sufficient number of rules. 
We can check the number of rules generated using the inspect function:

rules<- apriori(data,parameter = list(sup = 0.2, conf = 0.001,  
target="rules", minlen=3, maxlen=5));
inspect(rules);



Chapter 3

[ 89 ]

The output is as follows:

Note that preceding screenshot is just a part of the output.

Reading the output
The output produced by the Apriori algorithm might not be self-explanatory. Let's 
see what it means. Those people who like the pages in the column lhs are most 
likely to like the page in the column rhs. We also get to know the support, as well 
as the confidence, for the rules generated. The lift ratio is the confidence of the rule 
divided by the confidence, assuming the independence of the consequent from the 
antecedent. A lift ratio higher than 1 suggests that there is a strong association, which 
means the rule generated is useful. For recommendations to the people, first, filter 
the users based on the pages in the column lhs and recommend them the pages in 
the column rhs.



Find Friends on Facebook

[ 90 ]

Exercise
Build a recommendation system to recommend friends to your network. 
In our existing application, we are tagging the people to the pages that 
they liked. In this case, we should tag the people to the friends. Once the 
data has been prepared, the other approach will be similar. In order to 
execute this, we would need to get the token authenticated using OAuth.

Other business cases
So far, we have implemented some of the business cases. Let's see some of the other 
possible business cases that could be solved using the Facebook data:

1. A well-established company can use Facebook data to select the people 
whom they can use for the social media campaign, such as providing offers 
so that they could reach these people faster.

2. Identify how the reviews of the product are across different zones among 
people speaking different languages, people belonging to different social 
groups, and so on.

3. How we can merge two different communities in our network who do not 
have any single attribute in common.

4. What is the time when the interactions in your network are high? Is there  
any difference in behavior between gender, location, and qualification of  
the people in the network?

Summary
In this chapter, we covered the sequential steps involved in the creation of a Facebook 
app and used the authentication details to connect to the Facebook Graph API. We also 
discussed how to use the various functions implemented in the Rfacebook package.

This chapter covers the important techniques that helps in performing vital network 
analysis and also enlightens us about the wide range of business problems that could 
be addressed with the Facebook data. It gives us a glimpse of the great potential for 
implementation of various analyses.



Chapter 3

[ 91 ]

We also discussed the trending topics, measuring CTR performance of a page, 
methodology to detect spam messages, identifying the influencers and providing 
recommendations to the users on pages to like, and much more.

In the next chapter we will discuss accessing the data from Instagram using its 
API and solve interesting use-cases such as identifying the most popular users 
and destinations. We will also explore implementation of a few machine learning 
techniques such as clustering and recommendation systems.





Chapter 4

[ 93 ]

Finding Popular Photos  
on Instagram

Instagram is not just a platform for sharing photos and videos; with more than  
300 million active users, it has become a popular platform for marketing. It becomes 
absolutely necessary for the brands and corporations to track the performance of 
various activities and users on Instagram to keep them ahead of the competition.

In this chapter, we will explore ways to get some interesting stats from the Instagram 
platform. Using the package instaR v0.1.4, we will pull the data and use the 
analytics capabilities in R, to explore and answer interesting questions. Some of the 
data that we will be extracting in this chapter will be public media from a specific 
hashtag, location, or user, and we will also get user profile information, followers, 
and following details. We can also get some of the picture details such as the likes, 
comments, or captions used while posting; picture type, and much more.

The objective of this chapter is to use the aforementioned data and get some really 
interesting metrics on users, brands, and location data, based on their activities 
on Instagram which solves some business use cases such as identifying popular 
personalities, identifying popular destinations, and providing recommendations  
to celebrities on the users they might be interested in following.

In this chapter, we will cover the following topics:

• Creating an app on the Instagram platform
• Installation and authentication of the instaR package
• Accessing data from R
• Building a dataset
• Popular personalities
• Finding the most popular destination



Finding Popular Photos on Instagram

[ 94 ]

• Clustering the pictures
• Recommendations to the users
• Business cases

Creating an app on the Instagram 
platform
We need to register our application with Instagram in order to access the data.  
In order to register an application, we need to create an Instagram account,  
which can be created only from a mobile device. Here are the steps involved  
in creating an application on Instagram.

After creating an Instagram account, open the URL https://instagram.com/
developer/:

Click on the Register Your Application button to create a new client and fill in the 
following details. In the Redirect URL textbox, type in http://localhost:1410/; 
this is the call back URL that Instagram will return to after successful authentication. 
After filling in all the relevant details, click on the Register button at the bottom of 
the page:

https://instagram.com/developer/
https://instagram.com/developer/


Chapter 4

[ 95 ]

On completion of the preceding steps, the app is created and the client information 
such as the OAuth, Client ID, and the Secret Key, will be generated and can be 
accessed through the link Manage Clients. Remember to keep the information safe. 
We will use the Client ID and the Client Secret key to authenticate and connect to 
Instagram from R, by doing so, we get better accessibility to the data. We can edit  
the client details or reset the ID and password using the EDIT option in the 
following page:



Finding Popular Photos on Instagram

[ 96 ]

Installation and authentication of the 
instaR package
The R package instaR is authored and maintained by Pablo Barbera and it helps 
R users to access the Instagram API through R. This package provides a series of 
functions to access information from Instagram.

We can install the latest instaR package directly from the GitHub repository  
using the following code and load the package into R using the library function. 
The package devtools is required in order to install directly from GitHub:

library(devtools)
install_github("pablobarbera/instaR/instaR")
library(instaR)

After installing the required package for enabling the access to the Instagram API,  
we will proceed to make the authentication process from R. In the following code, the 
variable app_id holds the actual Client ID of your app and the variable app_secret 
holds the Client Secret. Using the function instaOAuth, we generate the access token 
that makes it possible to make an authenticated call to the Instagram API. The token 
can be saved locally in the system so that it can be reused in the future:

app_id<- "<<paste your Client ID here>>"
app_secret<- "<<paste your key here>>"
token<- instaOAuth(app_id, app_secret)

On executing the preceding statement, you will find the following message in the  
R console:

Copy and paste into 'OAuthredirect_uri' on Instagram App Settings: 
http://localhost:1410/
When done, press any key to continue...

If the redirect URL is already specified while creating the app in Instagram, you can 
continue by pressing any key; the authentication would happen in the browser and 
on successful authentication, the following message will be shown:

Waiting for authentication in browser...
Press Esc/Ctrl + C to abort
Authentication complete.
Authentication successful.



Chapter 4

[ 97 ]

Now we are good to proceed with the data acquisition. There are multiple  
functions that will help us in getting the data. We will be going through it in  
detail in the next section.

Exercise:
Revoke the access to the app and try to access the data from R 
using the previous authentication.

Accessing data from R
The Instagram API provides access to some amazing content published on 
Instagram. It uses the OAuth 2.0 protocol for authentication and authorization as 
explained in the previous section. Let's see the functions present in the package 
instaR, which enables us to download data from R.

Searching public media for a specific hashtag
The function searchInstagram allows the users to download the public media 
posted on Instagram with a specific hashtag:

MachuPicchu<- searchInstagram("MachuPicchu", token,  
n=10, folder="MachuPicchu")

The preceding code will return the recent public media posts on Instagram with the 
hashtag MachuPicchu, and the media files will be downloaded in a folder named 
MachuPicchu (as specified in the preceding code) in the current working directory of 
R. The working directory of R can be changed using the function setwd(). You can 
explore the content downloaded using the below code. The function names will give 
the various columns present in the data:

names(MachuPicchu)

The output is as follows:

[1] "type"           "longitude"      "latitude"       "location_name"
 [5] "location_id"    "comments_count" "filter"         "created_time"
 [9] "link"           "likes_count"    "image_url"      "caption"
[13] "username"       "user_id"        "user_fullname"  "id"

The function head shows the snapshot of the output:

head(MachuPicchu,2)



Finding Popular Photos on Instagram

[ 98 ]

The output is as follows:

Searching public media from a specific 
location
We can also download the public media with a specific hashtag from a particular 
location. To the preceding code, we will add the location filter to make sure that the 
public media was posted from that particular location. This can be achieved using 
the function searchInstagram along with the location parameters. We can get the 
latitude and longitude of a location from Google maps by zooming in to the location, 
right-clicking, and selecting the option What's here?. The code is as follows:

MachuPicchu<- searchInstagram("MachuPicchu", token, n=10,  
lat= 13.1633, lng= 72.5456, distance=1000, folder="MachuPicchu")

In the preceding code, the latitude and the longitude specified correspond, to the 
location of MachuPicchu. The parameter distance allows us to extract the media 
content posted within a radius of 1000 meters, which can be increased up to a 
distance of 5000 meters.

The function searchInstagram returns the content that is up to 7 days old only,  
and it allows us to filter based on Hashtag or Location, or both.



Chapter 4

[ 99 ]

Extracting public media of a user
Using the function getUserMedia, we can download the public media of a particular 
user. We will use the function to download the public media contents posted by the 
user instagram. Using the following code, we download the latest 100 public posts 
by the user instagram. Alternatively, we can also download the content by using the 
user's Instagram ID. The code is as follows:

instag <- getUserMedia("instagram", token, n=100,  
folder="instagram")

The preceding function will download the content to a folder instagram in the current 
working directory of R. The following code is used to get an idea about the data:

names(instag)
head(instag)

The structure of the data downloaded will be similar to what we saw in the  
previous section.

Extracting user profile
In order to extract the basic user profile, we can use the function getUser. We need 
to pass the username and the token as parameters to this function. This function 
provides us with the basic profile details such as username, basic biodata, website 
(if available), link to the profile picture, complete username, media published, and 
followed by, as well as the number of people the user follows. Using the following 
function, we get the profile information of Barack Obama:

usr<- getUser("barackobama", token)
head(usr)

The output is as follows:



Finding Popular Photos on Instagram

[ 100 ]

Getting followers
To know about the followers of a particular profile, we can use the function 
getFollowers. Similar to the getUser function, we need to pass the user's  
Instagram account name and the token for authentication. The code is as follows:

instaf<- getFollowers("instagram", token)

This function not only extracts the name of the followers, but also the profile 
information of the followers. We use the function names to get the details on the 
various variables extracted using getFollowers. This function might not extract  
the complete list of the followers if the number of followers is huge, but it will  
extract the recent followers:

names(instaf)

The output is as follows:

This code might run for few minutes as it is downloading details 
of a large number of followers.

The getFollowers function extracts the data in the data frame format. We can 
check the data using the function head. We have extracted the followers of the 
account instagram. We can use the function nrow to get to know about the number 
of follower's details downloaded by the function getFollowers. In the previous 
case, we extracted the basic profile details of about 521,851 followers of the account 
instagram, whose details were available as public. The code is as follows:

head(instaf,2)

The output is as follows:



Chapter 4

[ 101 ]

For the following code:

nrow(instaf)

The output is as follows:

   [1] 521851

Who does the user follow?
We have already seen how to extract details about the followers. Now, we will  
see how to extract the details about the people/accounts that the users follow.  
This can be achieved using the function getFollows and the same two parameters. 
This function will extract the data in the data frame format. We can check a sample  
of the data using the function head.

The following function extracts the basic details of the people/accounts who are 
followed by the account instagram. We can use the function nrow to know about  
the number of people whose information was extracted. In our case, we were able  
to extract basic profile details of 429 people. The code is as follows:

instaff<- getFollows("instagram", token)
head(instaff,3)

The output is as follows:

For the following code:

nrow(instaff)

The output is as follows:

  [1] 429



Finding Popular Photos on Instagram

[ 102 ]

Getting comments
We can get the comments posted on public media using the function getComments. 
This function will provide us with the recent comments posted on the specified media, 
and it can extract a maximum of 150 comments from a post. This function also extracts 
the details such as the text of the comments and details of the user who posted it, such 
as the name, ID, profile picture, and the comments ID. The code is as follows:

comm<- getComments("1027502496068994465_25025320", token)

The output is as follows:

  150 comments

For the following code:

names(comm)

The output is as follows:

In our example, we downloaded the most recent 150 comments, and all the details 
regarding the comments are stored in the data frame comm. Let's see what the 
snapshot of the output looks like using the following command:

tail(comm)



Chapter 4

[ 103 ]

The output is as follows:

This is a rich source of text data that can be used for performing text analytics 
to understand the sentiments of the people. We will cover a few concepts of text 
processing later in this chapter.



Finding Popular Photos on Instagram

[ 104 ]

Number of times hashtag is used
The function getTagCount helps us know the usage of the specified hashtag in the 
comments for the media post. We can use this function to get the occurrence of any 
hashtag. We will use this function to get the number of times the tags greece and 
obama are used:

Tag1<- getTagCount("greece", token)
Tag1

The output is as follows:

  [1] 7805055

For obama:

Tag2<- getTagCount("obama", token)
Tag2

The output is as follows:

  [1] 2416024

We can use this function to get the popularity of brands, users, and so on. We can 
also get trends by executing the function at a fixed time interval.

Exercise:

• Do a word cloud analysis on the recent comments posted in the 
account Instagram.

• Do an hourly trend analysis for a week on the number of times 
the following tags are used:

• #love
• #instagood
• #me
• #tbt
• #followme
• #photooftheday
• #happy
• #tagforlikes
• #selfie



Chapter 4

[ 105 ]

For the preceding tags, get the following information:

• What are the top 3 tags that have the highest growth rate?
• Is there any daily seasonality in the preceding tags?
• What are the pairs of tags with highest similarity?
• This can be implemented by executing the function to capture 

the tag count on an hourly basis.
• Extract the pictures posted from the New7wonders of the world.

Building a dataset
In this section, we will create multiple datasets using a specific set of users as well as 
the hashtags that will be used for further analysis, so we can answer some interesting 
questions. We have created a list of popular users as well as some popular hashtags 
that are commonly used while sharing media related to travelling. All the users 
and the hashtags used for the analysis will be provided. The name of the CSV file is 
UsersAndHashtags, this CSV file will have two columns: one with the popular users 
and the other with the hashtags.

Place the aforementioned CSV file in the current working directory. You can get the 
current working directory using the function getwd(); alternatively, you can also 
change the working directory using the function setwd(). After placing the file in 
the current working directory, execute the following commands:

userAndTags<- read.csv("UsersAndHashtags.csv")
names(userAndTags)
head(userAndTags)

The output is as follows:

This is the list of celebrity profiles as well as travel-related hashtags that will help us 
extract important information.



Finding Popular Photos on Instagram

[ 106 ]

User profile
First, we will get the complete profile information about these celebrity user profiles. 
We can get the profile information using the function getUser. We will loop through 
the preceding table to get the profile information about all the users. Since data 
extraction involves multiple API calls and, in some cases, might take more time, 
we will store the dataset in the local system using the function write.csv. In the 
following case, we have a counter on the number of users whose data has been 
processed so far; it will be printed on the screen. If the code breaks in between, it  
can be continued based on the counter. The code is as follows:

users<- userAndTags$Users
users<- as.matrix(users)
userprofiles = data.frame(matrix("", ncol = 8, nrow = 0))
for (i in 1:nrow(users))
{
  #uf<- getFollows(users[i,1], token)
usrp<- getUser(users[i,1], token)
userprofiles<- rbind(userprofiles, usrp)
print(i)

}
write.csv(userprofiles, "userprofiles.csv")
head(userprofiles, 3)

The output is as follows:



Chapter 4

[ 107 ]

User media
Let's extract all the user-specific data. In order to do so, we need to get all the 
usernames and convert them into a matrix so that we can easily refer to the positions 
of the usernames. Then, we can create an empty data frame of the same dimensions 
as the produced output. The code is as follows:

users<- userAndTags$Users
users<- as.matrix(users)

usermedia <- data.frame(matrix("", ncol = 16, nrow = 0))

We are using a for loop to extract all the user data. In the following code, we 
are extracting just the 20 most recent posts from all the users using the function 
getUserMedia. We will keep appending the data to the existing dataset using the 
function rbind. The following code will not only produce a large dataset with the 
20 most recent posts from all the users provided as input, but also download their 
media files to the folder named users in the current working directory. The code is 
as follows:

for (i in 7:nrow(users))
{
um<- getUserMedia(users[i,1], token, n=20, folder="users")
usermedia<- rbind(usermedia, um)
print(i)
}
head(usermedia)

The output is as follows:



Finding Popular Photos on Instagram

[ 108 ]

Travel-related media
After extracting the user data, we will now focus on the popular hashtags commonly 
used with regard to travel and sightseeing. The second column of the dataset provided 
has the list of hashtags. Similar to extracting the user data, we use the for loop 
to extract travel-related posts. In the following code, for each of the hashtags, we 
download 100 recent posts. Finally, we combine the data using the function rbind.  
The code is as follows:

tags<- userAndTags$Hashtags
tags<- as.matrix(tags)
for (i in 1:nrow(tags))
{
hm<- getUserMedia(tags[i,1], token, n=100, folder="tags")
hashmedia<- rbind(hashmedia, hm)
print(i)
}
head(hashmedia)

The output is as follows:



Chapter 4

[ 109 ]

Since the user data as well as the hashtag data are similar to each other, we combine 
the datasets to produce a common dataset that could be used for the analysis.  
The code is as follows:

alldata<- rbind(usermedia, hashmedia)
head(alldata)

Who do they follow?
In addition to the preceding datasets, we will also create a dataset on whom the 
celebrity users follow on Instagram. This information will be very useful to provide 
recommendations to various celebrity users whom they would like to follow based 
on similar user behavior. We will be discussing these recommendations in detail 
later in this chapter.

We will use the following code to read the list of users from our dataset 
userAndTags and convert them to matrix format using the function as.matrix and 
finally use a for loop on the users to extract basic details of the accounts they follow.

users<- userAndTags$Users
users<- as.matrix(users)
userfollows = data.frame(matrix("", ncol = 7, nrow = 0))
for (i in 1:nrow(users))
{
uf<- getFollows(users[i,1], token)
auf<- cbind(users[i,1], uf)
userfollows<- rbind(userfollows, auf)
print(i)
 
}
nrow(userfollows)
write.csv(userfollows, "userfollows.csv")
head(userfollows)

Note that the for loop in the preceding code will break if any of 
the users have zero follows. Hence we have the counter in place, 
so that we can change the starting pointer in the for loop, and 
continue to pull the data until the list is completed.



Finding Popular Photos on Instagram

[ 110 ]

The output is as follows:

Thus the preceding dataset has the celebrity username followed by the users they 
follow, along with their basic profile details. For the recommendation engine, the 
first two columns will be sufficient. We will be using this dataset for further analysis.

Popular personalities
From the dataset we built, we will work on identifying the most popular users using 
different aspects. Let's see those in detail.

Who has the most followers?
We can get the users with most number of followers from the dataset userprofiles 
by sorting the data using the column followed_by and using the function order. 
The following code will return the dataset by sorting the data in the descending 
order based on the column followed_by. The code is as follows:

mostfollowed<- userprofiles[with(userprofiles,  
order(-followed_by)), ]
head(mostfollowed$full_name, 15)



Chapter 4

[ 111 ]

The output is as follows:

Who follows more people?
To know the user who follows the most number of people, we use the same dataset 
userprofiles. Everything is similar to the previous one, but we need to use the 
column follows instead of followed_by. The code is as follows:

mostfollows<- userprofiles[with(userprofiles, order(-follows)), ]
head(mostfollows$full_name, 15)

The output is as follows:

The preceding output shows the users who follow the most number of people  
on Instagram.

Who shared most media?
Now, let's see who are the most active users and who have shared the most number 
of pictures/videos on Instagram. We use the dataset userprofiles:

mostmedia <- userprofiles[with(userprofiles,  
order(-media_count)), ]
head(mostmedia$full_name, 15)

The output is as follows:



Finding Popular Photos on Instagram

[ 112 ]

Overall top users
So far, we have explored the popular users based on the factors followed_by, 
follows, and media_count from the dataset userprofiles. In the following  
code, we will get the overall active users by using all of the aforementioned  
factors. The code is as follows:

userprofiles$overallmetric<-  
((userprofiles$media_count/max(userprofiles$media_count)) +  
(userprofiles$followed_by/max(userprofiles$followed_by))  
+(userprofiles$followed_by/max(userprofiles$followed_by)))*100

In the preceding code, we normalize the values of each of the factors to the range 
of 0-100. Then, we add them up to come up with the final score. The final score can 
have a maximum value of 300. The code is as follows:

overallmet<- userprofiles[with(userprofiles,  
order(-overallmetric)), ]
head(overallmet$full_name, 15)

The output is as follows:

These are the most active users based on all of the previously mentioned factors. 
These are the various analyses to get us the most popular users on Instagram.

Most viral media
We can find out about the media which went most viral. To get that information, we 
will use the dataset alldata, and the columns comments_count and likes_count. 
The following code will help us to identify the media that had the most number of 
comments as well as the one with the most number of likes:

mostcomm<- alldata[with(alldata, order(-comments_count)), ]
head(mostcomm, 1)



Chapter 4

[ 113 ]

The output is as follows:

We can get the media post with the maximum number of likes by sorting the content 
in descending order based on the column likes_count using the function order. 
This can be implemented using the following code:

mostlikes<- alldata[with(alldata, order(-likes_count)), ]
head(mostlikes, 1)

The output is as follows:

Finding the most popular destination
We explored some of the user metrics as well as the media metrics. Now, we will 
explore the geography of the media posts. We can get the geo-location if it has been 
enabled by the user. We will perform this analysis on the dataset alldata.



Finding Popular Photos on Instagram

[ 114 ]

Locations
In the following code, we are just getting the unique locations found in the dataset 
collected by us. Since we are getting the data with the help of a query, we need to 
load the sqldf package in the R console and use the function na.omit to remove 
the posts without any location details. The following code consolidates the locations 
and finally, using the function nrow, we get to know about the unique number of 
locations from where the posts were made.

library(sqldf)
names(alldata)
allloc<- sqldf("select distinct location_name from alldata")
allloc<- na.omit(allloc)
nrow(allloc)

The output is as follows:

  [1] 432

There are posts from 432 different location in the dataset collected by us. Let's get a 
snapshot of some of the locations:

head(allloc, 20)

The output is as follows:



Chapter 4

[ 115 ]

Locations with most likes
We have seen all the locations from where the posts were made. Now, we will see 
which location, the posts with the maximum number of likes were made from. We 
can get this data by using the group by function in SQL, and then sorting the data 
based on the descending order of the total likes received. The code is as follows:

loclikes<- sqldf("select location_name, sum(likes_count) as  
totlikes from alldata group by location_name")
loc<- loclikes[with(loclikes, order(-totlikes)), ]
loc<- na.omit(loc)
head(loc, 25)

The output is as follows:

Locations most talked about
We assume the total comments made in the post as a proxy for the location most 
talked about, though the comments might not really be about the place. This can 
be implemented in a way similar to the likes for a location by using the column 
comments_count instead of likes_count. The code is as follows:

loccomments<- sqldf("select location_name, sum(comments_count) as  
totcomm from alldata group by location_name")
loccomm<- loccomments[with(loccomments, order(-totcomm)), ]
loccomm<- na.omit(loccomm)



Finding Popular Photos on Instagram

[ 116 ]

The following output shows us the locations that had posts that were most talked 
about compared to others. We can see that the location with most likes is quite 
different from the location with most comments:

head(loccomm, 15)

The output is as follows:

What are people saying about these 
locations?
Having seen some of the quantitative measure of the locations, we will now see  
what people are saying about those locations, or in those posts made by them.  
For this analysis, we use the text and tags found under the caption. After collecting 
all the caption text, we perform the text analysis.

To perform text analysis, we need to load some packages that enable text analysis. 
For this section, we need to load the package wordcloud for plotting the word cloud 
and tm to perform some processing on the text data and make it usable for the text 
analysis. The code is as follows:

library(wordcloud)
library(tm)

We first break the sentences into words using the function strsplit. Then, we 
perform a series of steps to remove the special characters from the dataset, convert 
them into lower case words, and finally remove the standard stop words. The code  
is as follows:

words<- strsplit(as.character(alldata$caption), " ")



Chapter 4

[ 117 ]

words<- lapply(words, function(x) x[grep("^[A-Za-z0-9]+$", x)])
words<- unlist(words)
words<- tolower(words)
#Remove stop words
stopWords<- stopwords("en")
"%!in%" <- function(x,table) match(x,table, nomatch = 0) == 0
words<- words[words %!in% stopWords]

The function table creates a frequency on the number of times a certain word 
occurs. Using the function wordcloud, we plot the plot the word cloud. We pass 
some parameters, such as the color range for the text, to the function wordcloud and 
we plot only the words that had more than 20 occurrences. The code is as follows:

allwords<- as.data.frame(table(words))
wordcloud(allwords$words, allwords$Freq, random.order = FALSE,  
min.freq=20, colors = brewer.pal(2, "Dark2"))

The output is as follows:

Most repeating locations
Having seen some of the metrics on location, we will now look at the repetition of 
posts made from a particular location. The following query will get us the required 
information and sort the locations that were repeated the most. Since the dataset 
used in our case is not huge, it is possible that a location could have come out on top 
because of repeated posts from a single user. The code is as follows:

locations<- sqldf("select location_name, count(location_id) as  
locid from alldata group by location_name")



Finding Popular Photos on Instagram

[ 118 ]

location<- locations[with(locations, order(-locid)), ]
location<- na.omit(location)
head(location,5)

The output is as follows:

Exercise:
We have found some really interesting metrics that can be measured 
based on an Instagram post. Here are some more metrics that you can try:

• Which captions (hashtags) have the tendency to increase the likes?
• Which user's post has generated more likes as well as comments?
• Identify some new metrics for the geo-location and compute it 

using R.

Clustering the pictures
Clustering is an example of unsupervised learning as there is no prior knowledge of 
the groups present in the dataset. It is a method of dividing the dataset into different 
groups based on various parameters of the dataset. Each group is called a cluster, 
and the various objects present in a group will be share some similarities as well as 
dissimilarities when compared with the objects outside the group. We will cover the 
clustering algorithm in this section.

One of the greatest examples of the clustering algorithm would be the search engine; 
where the pages that are closely related to each other are shown together, and the 
pages that are different are kept away as far as possible. The most important factor 
here is the factor that we consider to measure the similarity or the dissimilarity 
between the objects.

In order to implement the clustering algorithms in R, we need to load the package 
fpc into the R environment. The package fpc, a flexible procedure for clustering, has 
multiple functions to implement various kinds of clustering techniques. The code is 
as follows:

library(fpc)
data<- alldata
cdata<- subset(data, select= c(type, comments_count,  
likes_count, filter)



Chapter 4

[ 119 ]

We will use the alldata dataset and select only a few numerical and categorical 
columns for performing the clustering analysis. After selecting the desired columns 
from the dataset, we convert the categorical columns to the integer format. Standard 
clustering algorithm can't be applied on the categorical data because the Euclidian 
distance function isn't meaningful on discrete values. By executing the following 
code, we also get to know the number of characters present in the column caption 
using the function nchar.

colnames(cdata) <- c("type","comments","likes","filter")
cdata$filter<- as.integer(cdata$filter)
cdata$type<- as.integer(cdata$type)
cdata$lencap<- nchar(as.character(data$caption))
head(cdata)

In the preceding code, for the purpose of learning, we are converting the categorical 
data into integer, as the clustering algorithm works for integer data. It is generally 
not preferred to do so. Also, it is advisable to scale the numerical columns to 
standardize the values so as to give equal weights to them.

The output is as follows:

The preceding dataset is the one we will use for clustering analysis. Before 
performing clustering analysis, it is good to identify the ideal number of clusters 
based on the patterns in the data. We can identify the ideal number of cluster by two 
different methods. Let's explore each one of them. First, we identify the ideal number 
of clusters using the function pamk. This calls the function pam or clara to perform 
partitioning around the medoids clustering with the number of clusters estimated  
by optimum average silhouette width. The code is as follows:

clusters<- pamk(cdata)
n<-clusters$nc



Finding Popular Photos on Instagram

[ 120 ]

This preceding function is computationally intensive so might take a very long time 
for even a slightly larger dataset. Hence, we will also cover a manual method to 
identify the ideal number of clusters. The code is as follows:

# Code from Tal Galili's post based on Kabacoff's book - http://www.r-
statistics.com/2013/08/k-means-clustering-from-r-in-action/
cdata<- data
wss<- (nrow(cdata)-1)*sum(apply(cdata,2,var))
for (i in 2:25) wss[i] <- sum(kmeans(cdata,
centers=i)$withinss)
plot(1:25, wss, type="b", xlab="Number of Clusters",
ylab="Within groups sum of squares")

The preceding code is taken from Tal Galili's post based on Kabacoff's book. It 
generates the following output and we need to read the graph to arrive at the ideal 
number of clusters. Logically, as the number of clusters increase, the sum of squared 
errors reduce. If there are n objects in a dataset then n clusters would result in 0 error, 
but ideally we need to stop at some point. As per the theories, the rate of decrease 
in the sum of errors will drop suddenly at a point and that should be considered as 
the ideal number of clusters. According to the following graph, the ideal number of 
cluster is 4.

The output is as follows:



Chapter 4

[ 121 ]

As per our observations, the ideal number of clusters should be 4. Hence, we will go 
ahead and implement the clustering algorithm with 4 clusters. We build the clusters 
using the function kmeans. We get the number of objects in each cluster using the 
function table. We can also perform the aggregation of the objects within the same 
group using the function aggregate. We can also plot cluster output using the 
function plotcluster. The code is as follows

fit<- kmeans(cdata, 4)
table(fit$cluster)

Here are the number of elements present in each of the clusters:

We use the function aggregate to get the mean value of the objects in each of the 
groups for the various columns.

aggregate(cdata,by=list(fit$cluster),FUN=mean)

The output is as follows:

From the preceding output, we get a better understanding about the dataset, such 
as the average value of various attributes in different clusters. Since the objects 
in a cluster exhibit a similar behavior, the clusters can be considered for different 
experiments. The code is as follows:

plotcluster(cdata, fit$cluster)



Finding Popular Photos on Instagram

[ 122 ]

The output is as follows:

The preceding output gives us the pictorial representation of the number of clusters 
based on the principal components of the variables in the dataset; with the color 
coding, it becomes easy to see the clusters.

Some of the problems that can be solved through the implementation of a clustering 
algorithm are as follows:

• In the medical field, it can be used to predict the likelihood of a disease
• It can be used for matching DNA to a suitable group
• It can be used for grouping similar customers for marketing campaigns



Chapter 4

[ 123 ]

• For academics, it can be used to group students based on their similarity of 
their various fields of research

Exercise:
Consider a dataset with only numerical values and implement the 
clustering algorithm by identifying the ideal number of clusters using 
the manual method as well as using the function. Also, try to implement 
the other clustering algorithm and check how the results vary.
Converting a categorical value into integer values is not advisable in any 
real world problem. In this case, we have performed this for ease  
of understanding.

Recommendations to the users
Recommendation has become very common nowadays. Many online companies 
like Amazon, Facebook, LinkedIn, and so on provide recommendations. These 
recommendations are produced by the recommendation system that is nothing  
but an algorithm that uses some of the historic data to predict what the user would 
like. The recommendation can be implemented using the collaborative filtering 
algorithm, which can be implemented using either user-based or item-based 
methodology. In this section, we will see in detail the implementation of  
the algorithm using user-based filtering.

How to do it
We will use the information of the users whose details we have downloaded, and  
the users whom they follow, and we will build the recommendation engine based  
on this data. Since we have already downloaded the data, we will read the data 
using the function read.csv:

userfollows<- read.csv("userfollows.csv")
names(userfollows)

The output is as follows:



Finding Popular Photos on Instagram

[ 124 ]

We have the preceding variable in the dataset. In order to build the recommendation 
engine and provide recommendations to the users, we would just need two columns. 
Hence, we select those two columns using the function data.frame:

fdata<- data.frame(userfollows$users.i..1., userfollows$username)
colnames(fdata) <- c("user","follows")
head(fdata)

The output is as follows:

Now, we have to pivot the dataset in such a way that the users become the column 
axis and the users whom they follow, as the rows. So, it becomes easy for us to 
compute the correlation between the users. In order to pivot the data, we need  
to use the function dcast.data.table, which requires the package data.table.  
The following code will pivot the raw dataset:

library(data.table)
pivoting<- data.table(fdata)
pivotdata<-dcast.data.table(pivoting,  
follows ~ user, fun.aggregate=length, value.var="user")
write.csv(pivotdata, "pivot-follows.csv")

The preceding pivot function might be slightly time consuming depending on  
the size of the actual dataset, and it is better to write the converted file in to the local 
system so that it can be reused. Let's see what the pivoted dataset would look like:

data<-read.csv("pivot-follows.csv")
colnames(data)
head(data)



Chapter 4

[ 125 ]

The output is as follows:

The preceding screenshot is just a part of the output.

After writing the file to the system, we need to remove the first two columns  
which are not required for building the recommendations. This can either be  
done manually; by deleting from the Excel file, or by using the following code:

data.ubs<- (data[,!(names(data) %in% c("users"))])



Finding Popular Photos on Instagram

[ 126 ]

We can compute the similarity of the users using different methods. In our case, 
we will use the cosine similarity technique to get the similarity score for all the 
user pairs. In our dataset, zero means that the user is not following. If we consider 
those rows with zero, while computing the similarity using correlation or any other 
technique, we will end up with a biased output that is far from reality. Hence,  
while computing the similarity score, we will consider only the nonzero rows.  
The following function computes the similarity between the users using the cosine 
similarity method .Other methods that could be used are Pearson correlation 
similarity and by also counting the co-occurrence:

getCosine<- function(x,y)
{
dat<- cbind(x,y)
  #f<- as.matrix(dat)
f<- as.data.frame(dat)
  # Remove the rows with zeros
datn<- f[-which(rowSums(f==0)>0),]
if(nrow(datn) > 2)
  {
this.cosine<- sum(x*y) / (sqrt(sum(x*x)) * sqrt(sum(y*y)))
  }
else
  {
this.cosine<- 0
  }
return(this.cosine)
}

Now, we need to build a similarity matrix that will tell us how similar the users are 
to each other. Before computing the similarity, we will build an empty matrix that 
can be used to store the similarity:

data.ubs.similarity<- matrix(NA,  
nrow=ncol(data.ubs),ncol=ncol(data.ubs),dimnames=list(colnames( 
data.ubs),colnames(data.ubs)))

We can now start replacing the empty cells in the similarity matrix with the actual 
similarity score. In case of the cosine similarity, the range will be from -1 to +1. The 
following loop will help in computing the similarity between all the users. If there 
isn't enough data to compute the similarity as per our function, it will return zero. 
The print statement in the following loop will help us understand the progress of  
the loop. Depending on the dataset, the time taken would vary. In general, for  
loops are time consuming. The code is as follows:

for(i in 1:ncol(data.ubs)) {



Chapter 4

[ 127 ]

  # Loop through the columns for each column
for(j in 1:ncol(data.ubs)) {
    # Fill in placeholder with cosine similarities
data.ubs.similarity[i,j] <- getCosine(as.matrix(data.ubs[i]),as.
matrix(data.ubs[j]))
  }
print(i)
}
# Back to dataframe - Similarity matrix
data.ubs.similarity<- as.data.frame(data.ubs.similarity)
head(data.ubs.similarity)

We get the following output:

The preceding screenshot is just a part of the output.

Thus, the data frame data.ubs.similarity will hold the actual similarity between 
the users. After getting the similarity matrix, we need to get the top 10 neighbors for 
each user.



Finding Popular Photos on Instagram

[ 128 ]

The code is as follows:

# Get the top 10 neighbours for each
data.neighbours<- matrix(NA, nrow=ncol(data.ubs.similarity),ncol=11,di
mnames=list(colnames(data.ubs.similarity)))
for(i in 1:ncol(data.ubs))
{
  # Setting threshold for avoiding zeros
n<- length(data.ubs.similarity[,i])
thres<- sort(data.ubs.similarity[,i],partial=n-10)[n-10]
if(thres> 0.020)
  {
    # Choosing the top 10 recommendations
data.neighbours[i,] <- (t(head(n=11,rownames(data.ubs.
similarity[order(data.ubs.similarity[,i],decreasing=TRUE),][i]))))
  }
else
  {
data.neighbours[i,] <- ""
  }
}

In the preceding code, we take up one user at a time and then sort the similarity 
score of the user with all the other users such that the pair with highest similarity 
comes first. Then, we stop by just filtering the first 10 for each of the users. This is 
recommended for us. We can see the recommendations given for a few users using 
the following code:

head(data.neighbours)



Chapter 4

[ 129 ]

The output is as follows:

The preceding screenshot is just a part of the output.



Finding Popular Photos on Instagram

[ 130 ]

Top three recommendations
In the preceding recommendation list, we find that the first recommendation is 
the same as that of the original user. This is mostly because of the self-similarity 
computation and it has to be removed. The preceding data frame view is not very 
clear, so there is an Excel view below, where the first column is the celebrity users, 
who are the subject of our analysis, and the next three columns are the users who are 
similar to them. Here are some of the celebrity users and their top three similar users.

Celebrity Users Recommendation1 Recommendation2 Recommendation3
aliciakeys johnlegend ijessewilliams ellenpompeo

angelcandices caradelevingne krisjenner gisele

aw mindykaling lenadunham reesewitherspoon

brooklynbeckham itsashbenzo khloekardashian krisjenner

busyphilipps mindykaling lenadunham reesewitherspoon

camerondiaz reesewitherspoon msleamichele mindykaling

caradelevingne angelcandices popsugar emmaroberts

champagnepapi iamdiddy ijessewilliams khloekardashian

charlizeafrica randyjackson ellenpompeo aw

chrissyteigen johnlegend khloekardashian popsugar

derekhough juleshough glassofwhiskey msleamichele

dianekrugerperso katebosworth jaime_king reesewitherspoon

drewbarrymore reesewitherspoon minkak jaime_king

ellenpompeo reesewitherspoon jessicaalba minkak

emmaroberts itsashbenzo jaime_king jessicaalba

emmyrossum jessicaalba jaime_king reesewitherspoon

fergie joshduhamel mileycyrus popsugar

gisele angelcandices ellenpompeo jaime_king

glassofwhiskey juleshough msleamichele emmaroberts

iamdiddy champagnepapi ijessewilliams randyjackson

iansomerhalder khloekardashian normancook msleamichele

ijessewilliams iamdiddy champagnepapi aliciakeys

instagranph popsugar mindykaling reesewitherspoon

itsashbenzo emmaroberts jaime_king jessicaalba

jaime_king jessicaalba emmaroberts itsashbenzo



Chapter 4

[ 131 ]

In order to provide the recommendation on whom to follow, we can compare 
the most similar users. From the preceding example, we can see that the user 
aliciakeys is most similar to johnlegend, so we compare both of them to arrive 
at a recommendation. To provide a recommendation to aliciakeys, we check the 
people whom johnlegend follows, but not aliciakeys, and provide those users as 
a recommendation to aliciakeys. We can write the recommendations computed 
to a file so that it can be supplied as input to any other system. Similar to this user-
based recommendation, we can also implement item-based filtering. The decision 
to choose the user-based filtering or the item-based filtering should be taken based 
on the number of users and items. For example, when the number of users are more 
than the number of items, then it is better to go ahead with the item-based filtering 
approach. If the number of items are more than the number of users, we need to 
implement the user-based filtering.

Improvements to the recommendation system
We can compute the similarity based on the use of multiple methods and  
finally combine them to form an ensemble algorithm. We can also implement  
the hybrid methodology, which combines the user-based method as well as the  
item-based methods.

We will also introduce the concept of classification, that is, dividing the dataset  
into different groups and build recommendation engines for each of them. Generally, 
this improves the accuracy, as the recommendations are customized to the groups.

Exercise:
We have seen the implementation of the recommendation engine. Now, 
try the following exercises:

• Compute the similarity between the users using the Pearson 
methodology and give 50 percent weightage to both the 
methods.

• For the preceding dataset, try to implement the item-based 
recommendation. Instead of identifying the similarity between 
the users, identify the similarity between the items (in this case, 
it is the user accounts followed by our celebrity users).



Finding Popular Photos on Instagram

[ 132 ]

Business case
Some of the business cases that can be implemented using the Instagram data are  
as follows:

• Provide recommendations to users on places to travel
• Determine visitor trends to various tourist locations
• Find out what people say about various locations
• Determine the performance of various media posts and create a time  

series trend for them
• Find out the popularity trend of various celebrity users and brands  

on Instagram
• Compare Instagram popularity scores of brands with that of  

their competitors

Reference
• Amazon's Item-to-Item Collaborative Filtering.

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf

• More about clustering analysis
http://www.statmethods.net/advstats/cluster.html

• About the package instaR
https://github.com/pablobarbera/instaR/tree/master/instaR

• Online courses
https://www.coursera.org/course/clusteranalysis

https://class.coursera.org/ml-003/lecture/100

• Celebrity users and the location hashtags were obtained from here:

https://socialblade.com/instagram/top/100/followers

http://www.popsugar.com/celebrity/Celebrities-Using-Instagram-
21244293?stream_view=1#photo-23154687

http://top-hashtags.com/hashtag/monument/

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.statmethods.net/advstats/cluster.html
https://github.com/pablobarbera/instaR/tree/master/instaR
https://www.coursera.org/course/clusteranalysis
https://class.coursera.org/ml-003/lecture/100
https://socialblade.com/instagram/top/100/followers
http://www.popsugar.com/celebrity/Celebrities-Using-Instagram-21244293?stream_view=1#photo-23154687
http://www.popsugar.com/celebrity/Celebrities-Using-Instagram-21244293?stream_view=1#photo-23154687
http://top-hashtags.com/hashtag/monument/


Chapter 4

[ 133 ]

Summary
In this chapter, we covered the procedure involved in creation of an app on the 
Instagram platform. We covered the sequential steps for authentication and 
accessing the data from R using the package instaR. We also acquired competency 
to build a dataset of users and location from the Instagram platform.

We discussed the skill of using the collected data to solve critical business problems. 
Some of the problems that we have solved include identifying the popular users 
based on multiple metrics, exploring the destinations which people talk about the 
most, dividing the dataset into different groups by applying a clustering algorithm, 
building a recommendation system using the collaborative filtering algorithm on 
who the users might be interested to follow based on the behavior of similar users, 
and finally a quick brief about the various other business cases that could be solved 
using the Instagram data.

In the next chapter we will be learning about the implementation of some of the 
graphical and non-graphical EDA techniques such as histogram, pie chart, box plot, 
correlations and much more by using a heterogeneous dataset created by way of the 
GitHub API from R.





[ 135 ]

Let's Build Software  
with GitHub

GitHub is a Web-based Git repository hosting service and it offers distributed revision 
control, source code management functionality of Git, and much more. GitHub 
supports both private and public repositories. There are a vast number of public 
projects in GitHub to which contributions come from multiple people around the 
world. GitHub provides an API to access their data; the public data can be accessed  
by anyone whereas the private data can be accessed only by authorized users.

In this chapter, we will see how to access the public data of GitHub using its  
API from R, and we will see how to perform Exploratory Data Analysis (EDA)  
and mine significant patterns from the GitHub data extracted by us. As a part of  
this chapter, we will cover different methods to extract the data from GitHub and  
various graphical and non-graphical EDA techniques.

The objectives of this chapter are to show how to extract the public data from  
GitHub and focus on getting a better understanding of various EDA techniques, 
detecting anomalies, and extracting patterns from the data. We will start from the 
basics of EDA and discuss a few advanced visualizations that will be useful for 
getting answers to some interesting questions such as getting to know the most 
popular language, user comparison with other users, trends on updates made  
to the public repositories, different programming languages and their affinity 
towards one another, and much more.

The topics that will be covered in this chapter are as follows:

• Creating an app on GitHub
• GitHub package installation and authentication
• Accessing GitHub data from R



Let’s Build Software with GitHub

[ 136 ]

• Building a heterogeneous dataset of the most active users
• Building additional metrics
• Introduction to exploratory data analysis
• EDA—graphical analysis
• EDA—correlation analysis

Creating an app on GitHub
We need to register a new application on GitHub in order to access the public GitHub 
data from R with authentication. In Facebook, creating an app to access the data is 
not mandatory and we can generate a temporary token to access most of the data. 
In GitHub, we can access data without authentication but with a limitation on the 
number of calls that can be made, whereas authentication provides the access we need.

In order to create a GitHub app, we need to log in as a developer in GitHub. Go to 
https://developer.github.com/program/ and log in as a developer:

Click on the Register now button in the page and you can choose to pay and buy a 
developer login. The free account user cannot register as a developer. Alternatively, 
you can use an existing account and login.

https://developer.github.com/program/


Chapter 5

[ 137 ]

In this case, I logged in using an existing public account. To create an app, we need 
to click on the settings icon in the top-right corner of the page. You should be able 
to see your profile page as shown in the preceding screenshot. To create a new 
application, we need to click on the Applications link that appears on the left-hand 
side of the panel and then click on the Developer applications tab. Now, you will 
see a Register new application button.



Let’s Build Software with GitHub

[ 138 ]

Click on Register new application and the following page will open. Give a suitable 
name for the app and fill in other mandatory details. In the Authorization Callback 
URL textbox, please enter the following URL: http://localhost:1410. This is the 
call back URL that GitHub will return to after successful authentication of the app. 
Finally, confirm the creation of the app. This new app can be used to access all the 
public data, including the public repositories of other users.

Once you have registered your app, the Client ID and Client Secret values will be 
generated. These values will be unique to your app. Please be careful with these keys 
and don't share them with others or post them in the public forum. Now we are ready. 
From R, use the ID and key to get access to the public data. If necessary you can also 
generate a new secret key by clicking on the Reset client secret button or you can also 
choose to revoke access to the app by clicking on the Revoke all user tokens.



Chapter 5

[ 139 ]

GitHub package installation and 
authentication
We will use GitHub API Version 3 for accessing the data. All the API access that 
happens is over HTTPS and it is accessed from the domain api.github.com or 
yourdomain.com/api/v3 for the enterprise accounts. All the data received will  
be in the JSON format.

Now that you know how to create a GitHub app, we will see how to proceed further 
towards accessing the data from R. In order to connect to the GitHub app, we need 
to install the rgithub package and other dependent packages like devtools. The 
devtools package is required so that we can install the latest rgithub package 
directly from the source.

require(devtools)
install_github("cscheid/rgithub")
library(github)



Let’s Build Software with GitHub

[ 140 ]

After the installation and loading the required packages in R, we can use the  
client ID and the client secret that were generated to authenticate the access. In  
the following example, we are first passing the client ID and the client secret to  
a variable and then using the function interactive.login along with the  
client.id and client.secret parameters to authenticate the access.

# Authentication
client.id <- "paste your App's ID here"
client.secret<- "paste your secret key here"
ctx = interactive.login(client.id, client.secret)

On executing the preceding line, we might be prompted with the following question 
about caching the credentials. We have an option to cache the credentials into a 
local file so that it can be used to login for later R sessions. Otherwise, we need to 
authenticate each R session. I would prefer not to save the credentials to a file hence 
I would enter my preference as 2 or No. Then, you will be redirected to the GitHub 
website after authenticating the process.

On successful completion of all the steps, we will get the following message:

Waiting for authentication in browser...
Press Esc/Ctrl + C to abort
Authentication complete.

After completing the authentication, we are ready to go ahead and access the public 
data available in GitHub. This would include the public repositories, public user 
profiles, followers, and other details related to repositories, contributions, commits, 
and users. In order to know more about the API, kindly visit https://developer.
github.com/v3/.

Exercise:
Create an app in GitHub and authenticate from R.

https://developer.github.com/v3/
https://developer.github.com/v3/


Chapter 5

[ 141 ]

Accessing GitHub data from R
Accessing the GitHub data from R is simple. It can be accessed using the package 
rgithub developed by Carlos Scheidegger, which provides the binding for the 
GitHub web services API. We can also use the API URL directly in the function 
fromJSON, which will extract the JSON data in data frame format.

Previously, we saw how to authenticate using the package rgithub; now let's use 
some of the functions available in the package to pull data from GitHub.

First, let's pull our GitHub account data using the function get.myself and pass 
the variable ctx as a parameter, which is a GitHub context object holding the 
authentication results. This function will provide basic details about our account 
such as date created, last updated, location, e-mail, number of public repositories 
contributed, following and followers, and also about the number of API calls we 
have made in the current session. Let's execute the function get.myself and check 
the output.

get.myself(ctx)

We get the following output:



Let’s Build Software with GitHub

[ 142 ]

Here are a few more functions that can be used to pull additional information:

• get.my.repositories(ctx)

• get.my.following(ctx)

• get.public.events(ctx)

The function get.my.repositories will get the details of the repositories created 
by us and the function get.my.following will provide details about the people 
following us on GitHub. The result of all calls to the API is requested as HTTP and 
the response is automatically parsed into JSON, the message format used throughout 
the API. All the functions in the package will start with a verb, followed by the 
appropriate object. We will also extract the random public repositories of others 
users. This can be achieved using the function get.all.repositories. By default, 
the function would get the details of random 100 public repositories:

get.all.repositories(ctx = get.github.context())

Also, visit https://github.com/cscheid/rgithub to learn more about the other 
functions implemented in the package.

Exercise

• Extract the public repositories of a few active users and 
identify their languages capability.

• Identify if they have common followers.
• Filter the repositories that are currently having open issues.

Building a heterogeneous dataset using 
the most active users
Let's build a heterogeneous dataset based on the public repositories created by the 
most active users of GitHub. As we know how to extract data using the package 
rgithub, we will explore the other method too, for example, directly using the API's 
URL. In this method, we need to pass the API URL to the function fromJSON, which 
has a dependency on the package jsonlite. The API URL will also work from the 
browser and will be checked for accuracy of the data. Those URLs will return data in 
JSON format.

The most active users of GitHub will be obtained through the following URL, or you 
can use the CSV file named TopUsers.csv, which also holds the data of users who 
were active as of July 2015. We will make use of the username to pull the additional 
data about the users.

https://github.com/cscheid/rgithub


Chapter 5

[ 143 ]

Use the function read.csv to read the active users file from https://gist.github.
com/paulmillr/2657075/ and read the username column as characters using the 
function as.character. Now, the usernames of the active users are present in the 
object named uname:

topuser<- read.csv("TopUsers.csv")
uname<- as.character(topuser$Username)

In the following code, we are looping through the usernames to extract all the data 
about the public repositories published by those users. The for loop might fail for 
certain users and during those times the loop would break. In such cases, we can get 
the counter number when it failed and rerun the loop, starting with the value Failed 
Counter + 1. The code is as follows:

library(jsonlite)
library(stringr)
compdata <- ""
for (i in 1:nrow(topuser))
{
data2<- fromJSON(paste0("https://api.github.com/users/",  
str_trim(uname[i], side = "both"),  
"/repos?client_id=paste_your_client_id_here&client_secret= 
paste_your_key_here"))
  data2 <- data2[,-(4)]
compdata<- rbind(compdata, data2)
print(i)
}

The URL for pulling the repository would follow the following format, where 
rsharankumar is a username. All the usernames are unique.

By passing https://api.github.com/users/rsharankumar/repos we will be 
able to access the GitHub data of just 60 users as only 60 requests are permitted in 
an hour for unauthenticated access. By passing the client_id and client_secret 
values to the preceding URL we will be able to make 5000 requests in an hour. This 
can be achieved by making a few modifications to the URL.

In https://api.github.com/users/hadley/repos?client_id=paste_id_
here&client_secret=paste_key_here, we have to pass the username dynamically, 
which can be achieved using the function paste0. We use paste0 to avoid the 
whitespace between the strings and then use the rbind function to consolidate all 
the user's data. In general, for loops are time-consuming, hence we will print i to 
check the progress of the loop. Finally, we can write an aggregation function to write 
the aggregated data into a file so that it can be reused. Let this aggregated file be the 
master file with all the details and let's perform the data operations on top of this file:

write.csv(compdata, file ="ActiveUsers.csv")

https://gist.github.com/paulmillr/2657075/
https://gist.github.com/paulmillr/2657075/
https://api.github.com/users/rsharankumar/repos
https://api.github.com/users/hadley/repos?client_id=paste_id_here&client_secret=paste_key_here
https://api.github.com/users/hadley/repos?client_id=paste_id_here&client_secret=paste_key_here


Let’s Build Software with GitHub

[ 144 ]

Data processing
Though we have extracted the active user's data, it is not ready for usage. We need 
to perform a few data processing operations to make it ready to use for the analysis. 
Use the following code to read the master copy of the data which was saved by us:

activeusers<- read.csv("ActiveUsers.csv")

We need to change the date format so that it will be supported by R. This can be 
accomplished using the following function. It is better to use a function in this 
case because there are multiple date columns that need to be changed; hence, this 
function will reduce code redundancy. Since the time zone of the data is in GMT, 
we set the parameter tz to GMT. In your case, if the time zone corresponds to your 
present time zone, it should be set as empty double quotes:

# Change date to format supported by R
format.git.date<- function(datestring) {
date<- as.POSIXct(datestring, format = "%Y-%m-%dT%H:%M:%SZ",  
tz = "GMT")
}

The preceding function is required to convert the date format of three columns. 
Execute the following code to make the changes to the date format of the columns 
created_at, updated_at and pushed_at, which holds the information of the date 
on which the repository was created, last updated, as well as last pushed:

# Updating the column with new date format
activeusers$created_at<- format.git.date(activeusers$created_at)
activeusers$updated_at<- format.git.date(activeusers$updated_at)
activeusers$pushed_at<- format.git.date(activeusers$pushed_at)

The data frame activeusers holds additional URL data which is not required for 
the analysis that will be performed as a part of this chapter. Hence, we will select 
only the required columns through the column selection method. First, we use the 
function colnames to learn all the column names as well as their position, and then 
we use the respective column number to subset the required data:

# Subsetting required data
# To check which columns to select
colnames(activeusers)
# Selecting the required data



Chapter 5

[ 145 ]

ausersubset <-  
activeusers[,c("id","name","full_name","private","description", 
"fork","created_at","updated_at","pushed_at","homepage","size", 
"stargazers_count","watchers_count","language","has_issues", 
"has_downloads","has_wiki","has_pages","forks_count", 
"open_issues_count","forks","open_issues","watchers")]

We need to format the columns that hold values TRUE and FALSE to 1 and 0, 
respectively, so that the analysis will be simpler. This can be achieved simply  
by using the function as.integer. Execute the following code to format all the 
required columns:

# Replace True and False with 1 and 0
ausersubset$private<- as.integer(ausersubset$private)
ausersubset$fork<- as.integer(ausersubset$fork)
ausersubset$has_issues<- as.integer(ausersubset$has_issues)
ausersubset$has_downloads<- as.integer(ausersubset$has_downloads)
ausersubset$has_wiki<- as.integer(ausersubset$has_wiki)
ausersubset$has_pages<- as.integer(ausersubset$has_pages)

The column full_name holds the name of the user/account along with the 
repository name, separated by the symbol /. We use the strsplit function to  
extract the username alone. In the following code, we replace the username with  
the same column. Finally, we use the head function to check if the output is in line 
with the expectation:

# Getting the username
ausersubset$full_name<-  
sapply(strsplit(as.character(ausersubset$full_name),  
split='/', fixed=TRUE), function(x) (x[1]))
head(ausersubset$full_name)

Building additional metrics
We completed the data formatting part, and processed the data so that it can be  
used for our analysis. Before going to the analysis bit, let's see how to construct a  
few metrics, which will become a derived column in our dataset. Let's write code  
to create the following metrics:

1. Identify if there is a web page associated with the repository.
2. Count the number of characters in the description.
3. Identify how long it had been since the repository was created, updated,  

and pushed.



Let’s Build Software with GitHub

[ 146 ]

To identify if there is a website associated with the repository, we need to look at the 
column homepage. We will use the function grepl to identify the presence of a dot in 
the column homepage, which we would consider a proxy for the presence of a website 
entry, as this column either holds the website details or an empty string/number.

# Flag for presence of website/webpage
ausersubset$has_web<- as.numeric(grepl(".", ausersubset$homepage))

The preceding code will create a new column named has_web and will hold a value 
1, indicating the presence of a website or web page for the repository, or 0, which 
indicates no entries for a website or web page.

To count the number of characters in the description, we need to convert the 
description into characters using the function as.character, and then the number  
of characters can be counted using the function nchar. The number of characters  
will be stored in the new column desclen:

# Length of the description
ausersubset$desclen<- nchar(as.character(ausersubset$description))

We need to identify how long it has been since the repository was created, updated, 
and pushed. First, we use the function Sys.Date() to get the current date and then 
use the function difftime to get the day difference. Execute the following code to 
get the new metrics on the day difference:

# Day difference from current date for created, updated and pushed
ausersubset$dayscreated<-  
as.integer(difftime(Sys.Date(),ausersubset$created_at ,  
units = c("days")))
ausersubset$daysupdated<-  
as.integer(difftime(Sys.Date(),ausersubset$updated_at ,  
units = c("days")))
ausersubset$dayspushed<-  
as.integer(difftime(Sys.Date(),ausersubset$pushed_at ,  
units = c("days")))

After creating all the required metrics, use the function head to check the format of 
the data:

head(ausersubset)



Chapter 5

[ 147 ]

We get the following output:

Note that the preceding screenshot is just a part of the output.
Exercise:

• In addition to the preceding dataset, each user will also have 
information such as the number of followers as well as the 
number of accounts the user is following.

• For all the preceding repositories, identify the subscribers.
• Identify how many times the repositories were committed 

and how many unique users were involved in the commits 
with a comparison to the number of contributors.



Let’s Build Software with GitHub

[ 148 ]

Exploratory data analysis
EDA techniques are used for discovering patterns in the data, summarization,  
as well as for visualization of the data. It is an essential step in the data analysis 
process, which helps to formulate various hypotheses about the data.

The EDA techniques shall be broadly classified into three types: univariate, bivariate, 
and multivariate analysis. Let's implement a few of the EDA techniques on our dataset.

First, let's see what kind of data we are analyzing. Using the function sapply,  
we determine the various columns present in the dataset and the datatype of  
those columns:

sapply(ausersubset, class)

We get the following output:

Note that the preceding screenshot is just a part of the output.

In order to get a basic understanding of the whole dataset, such as the distribution of 
the values of the columns, we can use the summary function to get the highlights of 
the dataset. For example, we will get the minimum, mean, median, maximum, and 
quartile values for each column:

summary(ausersubset)



Chapter 5

[ 149 ]

We get the following output:

Note that the preceding screenshot is just a part of the output.

Let's now find the standard deviation for all the numeric columns in the dataset using 
the function apply. All the non-numeric columns in the dataset would come as NA. 
Other techniques are also used for EDA. We will use a few of those graphical, as well 
as non-graphical, techniques on this GitHub data to get a better understanding:

apply(ausersubset, 2, sd)

We get the following output:



Let’s Build Software with GitHub

[ 150 ]

Note that the preceding screenshot is just a part of the output.
Exercise

• Identify the skewness and kurtosis for the numeric columns 
from the preceding dataset.

• Use the functions skewness and kurtosis of the package 
moments.

• Identify all of the preceding measures after removing the 
outliers in the data and see how much it differs.

EDA – graphical analysis
"A picture is worth a thousand words."

Graphical analysis is quite popular, as it helps people grasp the content faster.  
The existence of so many dashboard tools in the market is also proof of this. With  
the recent innovation in the field of visualization, it is certainly one of the best 
mediums of communication.

In this section, let's explore a few graphical EDA. The graphical EDA techniques will 
help us get a more penetrative understanding of the data and also help in presenting 
complicated statistical analysis in a more understandable format. We will use some 
of the visualization packages in R that will help in making the output look better.

Which language is most popular among the 
active GitHub users?
We have the data at the repository level. Each repository is a project that could have 
been implemented in any language. Let's present the language data in a graphical 
format and understand the popularity. First, we will use the function table to see 
how many languages are used and how many times they are being used:

table(ausersubset$language)



Chapter 5

[ 151 ]

We get the following output:

Note that preceding screenshot is just a part of the output.

Though the tabular representation of the data provides us with the required 
information, it becomes difficult to understand the relative popularity of the languages. 
Hence, a graphical view of the same data is required. We will use the histogram 
function, using the packages ggplot2 to see the distribution of various languages:

q <- qplot(ausersubset$language,
geom="histogram",
binwidth = 1,
main = "Histogram for Language",
xlab = "Language",
fill=I("blue"),
col=I("red"))



Let’s Build Software with GitHub

[ 152 ]

The preceding code will plot the histogram based on the column language. However, 
since there are many different languages, the labels would overlap each other. It would 
be difficult to read the plot with the overlapping labels, so we use the parameter  
theme and set the text angle to 90 degrees to make the labels appear vertical and  
avoid overlapping. The following plot can be saved using the function ggsave:

q + theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggsave(file="C:/Users/Sharan/Desktop/SMM/Chapter  
5/Pics/language.png", dpi=500)

We get the following output:

From the preceding graph, we understand that the spread of the languages is wide 
but there are a few languages that are very popular. We find that the most popular 
language among the active users is JavaScript, and more than 2000 repositories are 
developed using JavaScript. Also, it now becomes easy for us to learn the relative 
popularity. Through visualization, we can make out that out of the 68 different 
languages only 23 have been used in at least 20 plus repositories.

Because of the presence of many languages in the dataset as well as the skewness 
in the dataset, it becomes difficult to notice the difference between the counts for 
the other top languages. Hence, we filter the most popular languages and plot a bar 
chart only for those languages. The code is as follows:

# Bar chart for the top languages
a <- table(ausersubset$language)



Chapter 5

[ 153 ]

a <- as.data.frame(a)
a <- a[with(a, order(-Freq)), ]
toplang<- a[2:21,]
colnames(toplang) <- c("Language","Count")

The preceding code first converts the data in the tabular format to a data frame, then 
we use the function order to sort the data in descending order, and then we filter the 
top 21 languages, except the topmost language, that is, JavaScript, to avoid skewness 
in the result. After filtering the data we use the following code to draw a bar chart of 
the top languages. Thus, we have a clearer view on the use of the other top languages 
in the repositories. The code is as follows:

q <- qplot(x=Language, y=Count,
data=toplang, geom="bar", stat="identity",
position="dodge")
q + theme(axis.text.x = element_text(angle = 90, hjust = 1))

We get the following output:

What is the distribution of watchers, forks, 
and issues in GitHub?
In the introduction to the EDA section, we already saw the distribution of all the 
columns in the dataset. Now, we will see how it would be to view it in a graphical 
representation. We will use the box plot to explore the distribution of the dataset.



Let’s Build Software with GitHub

[ 154 ]

First, let's perform a univariate analysis and have a look at the variables one at a time. 
We will analyze the variables Watchers_Count, Forks_Count, Open_Issues and 
Stargazers. We will draw the box plot using the following function:

boxplot(ausersubset$watchers_count, outline = FALSE)
boxplot(ausersubset$forks_count, outline = FALSE)
boxplot(ausersubset$open_issues, outline = FALSE)
boxplot(ausersubset$stargazers_count, outline = FALSE)

The preceding code will plot the variables one by one. We can also have them 
together in a single chart across the same scale to gain a better comparison using the 
following code. Due to the presence of a large number of outliers, we will disable it 
from appearing to the plots by setting the parameter outline to FALSE:

forbplot<- ausersubset[c("watchers_count", "forks_count",  
"open_issues", "stargazers_count")]
boxplot(forbplot, outline = FALSE)

We get the following output:

From the preceding plot, we understand that the distribution of the variables 
watchers_count and startgazers_count is very similar. Also, the distribution of 
the variable open_issues is almost equal to zero. This suggests that the repositories 
are healthy.



Chapter 5

[ 155 ]

Now, we will perform a bivariate analysis using the boxplot. We will consider the 
variable watchers_count and see how it trends across the variable open_issues_
count. We use the following code for plotting, and we have set the parameter notch 
to TRUE to see if the plot is overlapping or not:

library(reshape2)
colnames(ausersubset)
dat.m<- melt(ausersubset, id.vars='open_issues_count',  
measure.vars=c('watchers_count'))
library(ggplot2)
p <- ggplot(dat.m) +
geom_boxplot(aes(x=open_issues_count, y=value, color=variable),  
outlier.shape = NA, notch = TRUE, notchwidth= 0.5) + 
scale_y_continuous(limits = quantile(ausersubset$stargazers_count,  
c(0, 0.6)))
ggsave(file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/boxplot-bi.
png", dpi=500)

We get the following output:

The overlapping in the preceding box plot clearly proves to us that the median of  
the variable watchers_count doesn't differ much across the range of the variable 
open_issues_count.



Let’s Build Software with GitHub

[ 156 ]

How many repositories had issues?
A pie chart is a data presentation technique where the data is represented in the 
form of circle, where the circle will be in turn divided into multiple segments. Each 
segment represents a certain proportion or percentage of the total. Though a pie 
chart is a popular graphical representation among sales teams as well as print and 
digital media, it has some limitations:

• It can represent only one continuous variable.
• It occupies too much space.
• It is difficult to compare and interpret multiple pie charts

Let's use the pie chart to understand how many of the repositories had issues.  
In the following code, we have used the ggplot function to draw the pie chart:

# Pie chart: Issues in the repositary
pie<- ggplot(ausersubset, aes(x = factor(1), fill =  
factor(ausersubset$has_issues))) + geom_bar(width = 1)
pie + coord_polar(theta = "y") =
ggsave(file="C:/Users/Sharan/Desktop/SMM/Chapter 5/ 
Pics/pie-chart.png", dpi=500)

We get the following output:



Chapter 5

[ 157 ]

In the preceding pie chart, 1 represents the repositories which had issues, and 0 
represents those that did not have any issues. From the preceding chart, it is clear 
that the majority of the repositories had issues at some point in time.

What is the trend on updating repositories?
Trend analysis is a method of analysis that helps us in understanding the patterns  
in a parameter across time. We can get a clear view on the trend of the dataset.  
Let's perform trend analysis through a line chart.

We will consider only the columns updated_at and id for this analysis. After 
updating the new data frame with the following values, we will convert the date 
time into date format using the function as.POSIXct and we will consolidate the 
data to a daily level using the function table:

library(data.table)
trenddata<- ausersubset[c("updated_at", "id")]
trenddata$updated_at<-  
as.POSIXct(strptime(trenddata$updated_at, "%Y-%m-%d"))
tdata<- table(trenddata$updated_at)

The data needs to be converted to the data frame format and then we can rename  
the columns for ease of readability. For this analysis, let's consider the data around  
a recent time period; let's consider only the last 75 days, data:

tdata<- as.data.frame(tdata)
colnames(tdata) <- c("Date","Repositories")
tdata$Date <- as.Date(tdata$Date)
tdata1 <- tail(tdata, 75)

Finally, we will plot the trend chart using the function ggplot and with the help of 
additional parameters such as geom_line and geom_point, we can make the chart 
better looking as well as more communicative:

q <- ggplot(data=tdata1, aes(x=Date, y=Repositories, group=1)) +
geom_line() + 
geom_point()
q + theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggsave(file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/ 
line-chart.png", dpi=500)



Let’s Build Software with GitHub

[ 158 ]

We get the following output:

From the preceding line chart, we see that a vast number of repositories were 
updated in recent days and more than 200 repositories were updated on the last  
day. Also, very few repositories have been without any updates for a long time.

Compare users through heat map
Heat map is a popular visualization tool. It is one of the best tools for multivariate 
and timeseries analysis and helps us in comparing the multiple variables visually. 
We will learn to use the heat map to study the GitHub users. First, we will aggregate 
some information at the user level and then compare it across multiple users. We 
will consider the following variables to perform this analysis at the user level and 
perform aggregation based on the variable at the user level (full_name).

Variable Aggregation Details
full_name N.A. User's name
id Count Number of repositories
Size Average Average size of repositories
Watchers_count Sum Total Watchers to user's repositories
forks_count Sum Total Forks to his repositories
open_issues_count Sum Total Issues in his repositories
desclen Average Average length of title description
dayscreated Average Average age of user's repositories



Chapter 5

[ 159 ]

Variable Aggregation Details
daysupdated Average Average time since last updated
dayspushed Average Average time since last push

The preceding data selection is performed using the following code by selecting the 
desired columns from the master dataset and moving it to the new dataset named 
newdata. The aggregations are then performed using the SQL query. In order to use 
the SQL query, we need to load the package sqldf using the library function and 
then write the following query to the function sqldf:

colnames(ausersubset)
library(sqldf)
newdata<- ausersubset[c("id","full_name","size","watchers_count",  
"forks_count", "open_issues_count", "desclen", "dayscreated",  
"daysupdated", "dayspushed")]
sd<- sqldf("select full_name, count(id), avg(size),  
sum(watchers_count), count(forks_count), count(open_issues_count),  
avg(desclen), avg(dayscreated), avg(daysupdated), avg(dayspushed)  
from newdata group by full_name")

Now, we have the data in the required format, we can give the desired name to the 
metrics created in the new data frame using the colnames function. For plotting the 
heat map, we will consider only a subset of the data, since it would be impossible to 
visualize and interpret the heat map for all the users at the same time. We will sort 
the users based on the number of repositories in descending order and select the top 
40 users for the visualization:

colnames(sd) <- c("Name", "Repositories", "AverageSize",  
"Watchers", "Forks", "Issues", "Avg_desc_length",  
"Avg_days_since_created", "Avg_days_since_updated",  
"Avg_days_since_pushed")
row.names(sd) <- sd$Name
sd<- sd[order(-sd$Repositories),]
sd<- sd[1:40,]

We will select the numeric columns in the dataset and then convert the dataset into a 
matrix so that we can plot using the function heatmap. We will then copy the image 
to the system using the dev.copy function. After copying the image, it is always 
advisable to switch it off using the function dev.off. The code is as follows:

names(sd)
sd<- sd[,2:10]
sdmat<- as.matrix(sd)
sd_heatmap<- heatmap(sdmat, Rowv=NA, Colv=NA, col =  
cm.colors(256), scale="column", margins=c(5,8))



Let’s Build Software with GitHub

[ 160 ]

dev.copy(png,filename="C:/Users/Sharan/Desktop/SMM/Chapter  
5/Pics/heatmap-users.png", width=600, height=875);
dev.off ();

Using the heat map, we get a quick understanding about the users. The shade 
towards red indicates a higher value and towards green indicates a lower value, 
while white indicates the value lies in the median. With a glance at the heat map,  
we can easily answer the following questions about the users:

• Which user has got the highest number of repositories?
• Which user has got a comparatively higher number of watchers? 
• How many of those users have been relatively inactive?
• Which users have the most, as well as the least, issues open in  

their repositories?

Also, this view will give us an idea about the correlation between different parameters 
about the users. For example, from the following output, we can see the average days 
since creation, as well as the average days since it has been pushed, have a higher 
correlation between them, as they share a similar color pattern. Similarly, there seems 
to be a strong relationship between the Issues, Watcher, and Forks variables.

We get the following output:



Chapter 5

[ 161 ]

Exercise
• Plot a multiseries line chart using the preceding GitHub dataset.
• Implement a heat map on the date column to prove that heat 

map can be a good visualization tool for time series datasets.
• Plot a pie chart with percentages instead of values.
• Write the box plot code to include the outlier data and see how 

the visualization appears.

EDA – correlation analysis
Correlation analysis measures the statistical relationship between two different 
variables. The result will show how the change in one parameter would impact 
the other parameter. Correlation analysis is a very important concept, popular in 
the field of predictive analytics. Also, it is mandatory to complete the correlations 
analysis before building the model and before arriving at a conclusion about variable 
relationships. Though correlation analysis helps us in understanding the association 
between two variables in a dataset, it can't explain, or measure, the cause.

So far, we haven't explored the relationship between different parameters. In this 
section, we will focus on the bivariate and multivariate analysis of the GitHub dataset.

We will use the dataset that was created for plotting the heat map to perform the 
correlation analysis. The following code will get us the required dataset:

cordata<- ausersubset[c("id","full_name","size","watchers_count",  
"forks_count", "open_issues_count", "desclen", "dayscreated",  
"daysupdated", "dayspushed")]
cdata<- sqldf("select full_name, count(id), avg(size),  
sum(watchers_count), sum(forks_count), sum(open_issues_count),  
avg(desclen), avg(dayscreated), avg(daysupdated),  
avg(dayspushed) from cordata group by full_name")
colnames(cdata) <- c("Name", "Repositories", "AverageSize",  
"Watchers", "Forks", "Issues", "Avg_desc_length",  
"Avg_days_since_created", "Avg_days_since_updated",  
"Avg_days_since_pushed")

First let's check the relationship between the parameters Watchers and Forks.  
We can identify the relationship between these parameters using the function cor:

cor(cdata$Forks, cdata$Watchers)

We get the following output:

[1] 0.8934664



Let’s Build Software with GitHub

[ 162 ]

Correlation values will range from -1 to +1, where the positive value indicates a 
positive relationship between the parameters and the negative value indicates a 
negative relationship. The positive relationship means that the increase in value of 
one variable would increase the value of the other variable, whereas in the negative 
relationship, the increase in one variable would decrease the value in the other 
variable. In the preceding example, the correlation value of 0.8934 means that  
the parameters are highly correlated to each other.

How Watchers is related to Forks
The correlation can also be represented in a graphical format using the scatter plot. 
We will plot the scatter plot using ggplot. The following code will generate the 
scatter plot where the two variables passed as inputs will be considered as two  
axes and the values will be plotted.

ggplot(cdata, aes(x=Forks, y=Watchers)) +
geom_point(shape=1) +
geom_smooth(method=lm)
ggsave(file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/ 
scatter-plot.png", dpi=500)

We get the following output:



Chapter 5

[ 163 ]

We plotted the relationship between the number of watchers and number of forks for 
the GitHub users. We saw that these two parameters have a very positive relationship 
between them though there is a concentration of the values towards the lower range. 
Also, using the function geom_smooth and setting the parameter method = lm, we  get 
the regression line with a default confidence region of 95 percent. The regression line 
tells us that the two parameters have a linear relationship. Let's perform the correlation 
analysis on a few more parameters and understand the data better.

Correlation with regression line
We have already seen in the heat map that the parameters Avg_days_since_created 
and Avg_days_since_pushed seem to have a very good positive relationship. We can 
test out the same using the correlation function as well as the scatter plot:

cor(cdata$Avg_days_since_created, cdata$Avg_days_since_pushed)

We get the following output:

[1] 0.7899095

For generating the scatter plot, use the following code:

ggplot(cdata, aes(x=Avg_days_since_created,  
y=Avg_days_since_pushed)) +
geom_point(shape=1) +
geom_smooth(method=lm)
ggsave(file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/ 
scatter-plot2.png", dpi=500)

We get the following output:



Let’s Build Software with GitHub

[ 164 ]

Even in correlation analysis, there is a strong positive relationship between the 
parameters Avg_days_since_created and Avg_days_since_pushed. In this  
case, the values are also widely distributed.

Correlation with local regression curve
We have successfully embedded the linear regression line over the scatter plots but 
let's try to replace it with the Loess smoothed fit curve. This will give us a detailed view 
and show us how the relationship is at different ranges of values. Let's repeat the 
preceding plot using this method. In order to bring in the smoothed curve, we use 
the function geom_smooth, the default smoothed curve will be plotted based on the 
method loess. We can change it using the parameter method. The code is as follows:

ggplot(cdata, aes(x=Avg_days_since_created,  
y=Avg_days_since_pushed)) +
geom_point(shape=1) +    # Use hollow circles
geom_smooth()
ggsave(file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/ 
scatter-plot3.png", dpi=500)

We get the following output:



Chapter 5

[ 165 ]

From the preceding plot, we can understand that the relationship is consistent across 
most of the range of values but towards the higher range it is slightly steeper.

Correlation on segmented data
Now, let's go to the previous scatter plot add a third variable. We will create an issues 
flag, where the users who had less than 10 issues in all the repositories considered 
together will be flagged as 0, whereas the other users will be flagged as 1. This can be 
implemented through the following code:

cordata<- ausersubset[c("id","full_name","size","watchers_count",  
"forks_count", "open_issues_count", "desclen", "dayscreated",  
"daysupdated", "dayspushed", "has_issues")]
cdata<- sqldf("select full_name, count(id), avg(size),  
sum(watchers_count), sum(forks_count), sum(open_issues_count),  
avg(desclen), avg(dayscreated), avg(daysupdated), avg(dayspushed),  
sum(has_issues) from cordata group by full_name")
colnames(cdata) <- c("Name", "Repositories", "AverageSize",  
"Watchers", "Forks", "Issues", "Avg_desc_length",  
"Avg_days_since_created", "Avg_days_since_updated",  
"Avg_days_since_pushed", "IssuesF")
cdata$IssuesF<- as.factor(cdata$IssuesF)
cdata$IssuesF[cdata$Issues< 10]  = 0
cdata$IssuesF[cdata$Issues>= 10]  = 1
cdata$IssuesF<- as.factor(cdata$IssuesF)

After getting the desired data, we will convert the flag column to a factor using the 
function as.factor. Now, we will use the plotting function as before, but we will 
add one more parameter, color, to differentiate the different categories. Hence, the 
first line of the code would be something like this:

ggplot(cdata, aes(x=Avg_days_since_created,  
y=Avg_days_since_pushed, color=IssuesF)) +
geom_point(shape=1) +    # Use hollow circles
geom_smooth()
ggsave(file="scatter-plot3.png", dpi=500)



Let’s Build Software with GitHub

[ 166 ]

We get the following output:

From the preceding scatter plot, we can see that there is a slight difference between 
the users with lesser issues and those with more issues. These are the different 
representations in the scatter plot; we can also see how each one of them is different 
and the value addition it brings in while interpreting the results. Also, the correlation 
function we used actually computes the correlation co-efficient using the default 
technique, the Pearson correlation. Alternatively, we can also try other correlation 
techniques such as Spearman and Kendall. It is advisable to read about which 
correlation technique is suitable for a particular dataset.

Correlation between the languages that user's 
use to code
In this section, we will answer just one question: given a programmer programs in one 
language, what would be the other languages that they might know to code?



Chapter 5

[ 167 ]

In order to answer the preceding question, we need only the username and the 
languages the user had coded, from the master dataset. We can get that information 
by selecting the columns full_name and language:

ldata<- ausersubset[c("full_name","language")]

To find the correlation between the languages that the user's code in, we need 
to transpose the data. But in order to transpose the data, we need to format the 
datatype to data table using the R function data.table. Then, we can pivot the  
data using the function dcast.data.table, which comes along with the package 
data.table. Thus, we can convert the data to a required format:

library(data.table)
pivoting<- data.table(ldata)
pivotdata<-dcast.data.table(pivoting, full_name ~ language,  
fun.aggregate=length, value.var="language")

We can find the correlation between the different languages using the cor function. 
The cor function would result in a matrix that will have correlation values between 
different languages. It will be complex to identify the combination that yields greater 
correlation; hence, we will again have to format the data to make our study easier:

ncol(pivotdata)
head(pivotdata)
pivotdata<- as.data.frame(pivotdata)
pivotdata<- pivotdata[,2:70]
cormatrix<- cor(pivotdata)

We will format the data using the following code, where we first remove the data in 
the diagonal, which is nothing but a self-correlation and will be always equal to 1. 
Then, we will remove the data in the upper diagonal as that is the redundant data. 
Finally, we will flatten the data into a table format using the function melt, which 
comes with the package reshape. Thus, we transformed the correlation data into 
an easily readable format. Now, we can filter the data based on a cut-off. It is the 
combination of languages that most likely comes together, which means if a user 
knows one of those languages, then it is most likely that they will know the other 
language in the combination. The code is as follows:

diag(cormatrix) <- NA 
cormatrix[upper.tri (cormatrix)] <- NA
finalcor<- melt(cormatrix)
head(finalcor)
filteredcordata<- finalcor[ which(finalcor$value> 0.4),]
filteredcordata



Let’s Build Software with GitHub

[ 168 ]

We get the following output:

The preceding output is the solution to the question that we framed in the  
beginning of the chapter. In the preceding output, the pair MoonScript and  
Lua has the highest correlation.

How to get the trend of correlation?
So far, we have explored the correlation between different parameters and plotted 
the same in the scatter plot to visualize the relationship. Now, let's explore a 
methodology to find the trend in the correlation. We will check how the correlation 
between different parameters is affected by time. The rolling correlation will help  
us understand the volatility in the relationship between the parameters.

To solve this problem, let's consider the two parameters watchers_count and 
forks_count. First, we need to extract the data from the master dataset. We will  
use the following code to select those columns by their names:

mdata<- ausersubset[c("created_at", "watchers_count",  
"forks_count")]

After extracting the data, we need to convert the column created_at, which is in the 
date-time format, to the date format supported by R using the function as.POSIXct. 
Also, we need to convert the other two columns to the numeric format so that we 
can perform aggregation at a daily level based on the date column and then find 
correlation between the two numeric columns. The code is as follows:

mdata$created_at<- as.POSIXct(strptime(mdata$created_at,  
"%Y-%m-%d"))



Chapter 5

[ 169 ]

mdata$watchers_count<- as.numeric(mdata$watchers_count)
mdata$forks_count<- as.numeric(mdata$forks_count)

Now we have the required data, but before going ahead with the correlation, we need 
to remove the duplicate rows by grouping the data on a date basis. To accomplish this, 
we need to use the package data.table, to convert the data into data table format and 
then we will perform the aggregation as mentioned using the following code. After 
the aggregation, we convert the data into the data frame format using the function 
as.data.frame. At last, we will use the function merge to get the data in the required 
format. The code is as follows:

library(data.table)
DT <- data.table(mdata)
m1 <- DT[, sum(forks_count ), by = created_at]
m2 <- DT[, sum(watchers_count ), by = created_at]
m1 <- as.data.frame(m1)
m2 <- as.data.frame(m2)
mdata<- merge(m1, m2, by = "created_at") 
colnames(mdata) <- c("Date", "forks", "watchers")

Instead of performing the correlation on the complete set of historic data, we 
will select the latest 300 days of data using the function tail, since the data is in 
ascending order based on the date column. We will then make the date column a 
row name, and remove the date column. The code is as follows:

mdata1 <- tail(mdata, 300)
rownames(mdata1) <- mdata1$Date
mdata1 <- mdata1[,-1]

We will perform the rolling correlation using the rollapplyr function, which belongs 
to the package zoo and pass the parameter moving range set at 30 days. The computed 
correlation is saved to the data frame r1. We will then attach the actual date column to 
the correlation dataset by executing the following series of codes:

Library(zoo)
r1 <- rollapplyr(mdata1, 30, function(x) cor(x[,1],x[,2]),  
by.column=FALSE)
r1 <- as.data.frame(r1)
r0 <- tail(mdata$Date, 271)
r0 <- as.data.frame(r0)
resultcor<- cbind(r0,r1)
colnames(resultcor) <- c("Date","Corr")

The data frame resultcor will actually hold the rolling correlation for the entire 
time period. But for visualization purposes, we will consider only the latest 75  
days of data for plotting:

resultcor<- tail(resultcor, 75)



Let’s Build Software with GitHub

[ 170 ]

All of the preceding code is of no use if we don't add the visualization layer to the 
analysis. Hence, we will plot the trend of the correlation between the parameters 
watchers_count and forks_count using the function ggplot and save the plot 
using the ggsave function. In the following code, the parameter geom_point() is 
used to highlight the data points with a dot, and the parameter geom_line() is  
used for joining the dots with a line:

q <- ggplot(data=resultcor, aes(x=Date, y=Corr, group=1)) +
geom_line() + geom_point()
q + theme(axis.text.x = element_text(angle = 90, hjust = 1))
ggsave(file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/ 
roll-corr.png", dpi=500)

We get the following output:

From the preceding output, we can see that the correlation between watchers_count 
and forks_count was very high until a few weeks back, but then in recent times 
the correlation has reached a minimum. In the preceding case, the low correlation 
in the recent data could be because of the lack of sufficient data or any other factor, 
for example, maybe these are very new repositories and it takes time to acquire 
Watchers or Forks. But, we successfully achieved our objective of exploring the  
data with different methods.



Chapter 5

[ 171 ]

Note that EDA is the most important step in the process of data 
analysis; it is absolutely necessary to spend quality time in EDA 
as it will help in the following ways:

• It ensures better understanding of the data
• It allows us to test various hypotheses
• It allows us to uncover important insights from the data
• It allows us to detect anomalies
• It allows us to improve the accuracy of the predictive 

model based on the inputs from the EDA study

Reference
• For improvisation of the chart appearance, you can refer to the  

following links:
 ° http://www.cookbook-r.com/Graphs/

 ° http://www.statmethods.net/advgraphs/ggplot2.html

 ° http://cran.r-project.org/web/packages/ggplot2/index.
html

 ° http://www.r-bloggers.com/search/ggplot2

• For more information on the GitHub package in R and the GitHub API,  
visit the following links:

 ° https://github.com/cscheid/rgithub

 ° https://developer.github.com/v3/

• Online courses on EDA can be found at:

 ° https://www.coursera.org/course/exdata

 ° https://www.udacity.com/course/data-analysis-with-r--
ud651

http://www.cookbook-r.com/Graphs/
http://www.statmethods.net/advgraphs/ggplot2.html
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html
http://www.r-bloggers.com/search/ggplot2
https://github.com/cscheid/rgithub
https://developer.github.com/v3/
https://www.coursera.org/course/exdata
https://www.udacity.com/course/data-analysis-with-r--ud651 
https://www.udacity.com/course/data-analysis-with-r--ud651 


Let’s Build Software with GitHub

[ 172 ]

Exercise
• Identify the set of parameters that have the most dynamic 

relationship in the last year.
• Choose any one parameter, aggregate on a daily level, and 

then plot the heat map  
to visualize the pattern across time.

• Try the scatter plot with the linear regression line and 
confidence interval of  
75 percent.

• Identify the most popular repository as well as the most 
popular user.

• Instead of a moving correlation, perform correlation on a 
weekly and monthly basis. (Note that data will not be in 
moving range; it will be mutually exclusive.)

Business cases
Some of the business cases that can be implemented using the GitHub data are  
as follows:

• Identify the popular programmers in different languages.
• The online courses' websites can target potential subscribers based  

on suitable patterns in behavior.
• Provide recommendations to users on which user to follow as well as  

which repository to look out for.
• Identify the best people to target for a new open source project  

development in Java.
• Plot the trend on languages; here, the data point will be the number of 

repositories in a language. In order to get the trend, we need to pull the  
data on a daily basis to know how many new repositories are created and 
which language is used to develop them. This will help in understanding  
the lifecycle of language popularity.

• Build a regression model to predict the number of watchers a repository 
would get within a month of launch.



Chapter 5

[ 173 ]

Summary
In this chapter, we covered the steps involved in the creation of the app on GitHub 
as well as the procedure for the installation and authentication using the GitHub 
package for R. We also discussed the public data that can be accessed using the 
GitHub API from R, implementation of some graphical and nongraphical EDA 
techniques on the GitHub data, and how to perform, as well as, interpret the 
correlation analysis.

By implementing the various EDA techniques and exploring the questions that  
were answered using it, we get a better understanding of when to use what kind  
of techniques for easier communication.

In the next chapter we will explore APIs of a few more social media sites such  
as LinkedIn, Tumblr, Wikipedia, Google Maps, Blogger, Foursquare and Quora.  
We will also cover use-cases that can be implemented.





[ 175 ]

More Social Media Websites
So far, we have discussed how to use the APIs of Twitter, Facebook, Instagram, 
and GitHub to make use of vital concepts and some machine learning techniques/
algorithms to answer critical business questions. In this chapter, we will see APIs of 
other social media websites, the methodology involved to pull data, the analysis that 
can be implemented, and cover some critical problems that can be solved.

Social media data is generally massive, noisy, and dynamic in nature; hence,  
taming data and performing the data analysis becomes challenging, but with a  
good grasp on the concepts it will be an amazing journey. With such huge data,  
they become rich sources of information that can help in various research fields  
and the business world.

The objective of this chapter is to understand the methodology involved in accessing 
data from social media websites, understanding the huge scope that social data 
analysis uncovers, as well as highlights on business cases that could be solved and 
the limitations involved.

The topics that will be covered in this chapter are as follows:

• Searching on social media
• Accessing product reviews from sites
• Retrieving data from Wikipedia
• Using the Tumblr API
• Accessing data from Quora
• Mapping solutions using Google Maps
• Professional network data using LinkedIn
• Getting Blogger data
• Retrieving venue data from Foursquare
• Yelp and other networks



More Social Media Websites

[ 176 ]

Searching on social media
We will discuss how to use the package SocialMediaMineR in R, which would allow 
us to consider a few URLs and learn about the reach of those URLs in various social 
media websites. This package can get us details such as number of likes, shares, and 
comments on social media websites such as Facebook, Twitter, LinkedIn, Pinterest, 
reddit, and a few others. This package also has functions for pulling data specific to 
individual social networking sites.

We need to install the package and load it to the R environment, which can be done 
using the following code:

install.packages("SocialMediaMineR")
library(SocialMediaMineR)

After loading the package using the function library, we will proceed with using 
the various functions of the package. Let's start with the function get_facebook. 
This function will search for the mentioned URL in the social networking site 
Facebook, and it will return the mentioned URL; the normalized URL; and the 
number of Facebook shares, likes, comments, total hits, and clicks. This function  
can take input as any URL, normalize the URL, and then retrieve the details.  
The code is as follows:

get_facebook("http://www.bbc.com/")

We get the following output:

The get_pinterest function will give us the number of pins on Pinterest for the 
mentioned URL. This function can take any URL as input—blogs, YouTube videos 
shared, marketing campaigns, and so on. The code is as follows:

get_pinterest("http://www.bbc.com/")

We get the following output:

  url count
  1 http://www.bbc.com/  1281

We can perform analysis such as correlation on performance across different sites, 
trend analysis to decode the seasonality, reach to the audience, and much more on 
the preceding dataset.



Chapter 6

[ 177 ]

The other site-specific functions that are part of the package SocialMediaMineR 
are get_reddit, get_stumbleupon and get_twitter. The function get_reddit 
will return a data frame associated with the performance of the URL on reddit, 
the function get_stumbleupon will give us the number of views on the website, 
the stumbleupon variable and the function get_twitter will return the count of 
number of tweets. Here's the code for get_reddit:

get_reddit("http://www.bbc.com/")

We get the following output:

Here's the code for get_stumbleupon:

get_stumbleupon("http://www.bbc.com/")

We get the following output:

Here's the code for get_twitter:

get_twitter("http://www.bbc.com/")

We get the following output:

  counturl
  1 585637 http://www.bbc.com/



More Social Media Websites

[ 178 ]

If there is access only to the shortened URL, then we can use the following function 
to retrieve the actual URL so that we can use it in any of the preceding functions:

get_url("http://goo.gl/muN6lV")

We get the following output:

  .          http://goo.gl/muN6lV
  "http://www.rsharankumar.com/"

Now, we will see the get_socialmedia function of the SocialMediaMineR  
package. This function will return the popularity of the URL from multiple social 
networking websites. This function can take multiple URLs as input, so we first 
hold a few sets of news channel URLs in the variable news_urls. In the following 
example, we will compare the performance of different news channel websites in 
social networking websites:

news_urls<- c(
  "http://www.bbc.com/",
  "http://www.euronews.com/",
  "http://www.cnn.com/",
  "http://www.nytimes.com/",
  "http://www.guardian.co.uk/",
  "http://www.globalpost.com/",
  "http://www.france24.com/",
  "http://www.aljazeera.com/",
  "http://www.reuters.com/",
  "http://www.foxnews.com/",
  "http://www.nbcnews.com/",
  "http://www.huffingtonpost.com/",
  "http://www.wsj.com/",
  "http://www.ndtv.com/")

We use the function get_socialmedia and pass the variable that holds all these 
URLs as an input parameter. The optional parameter sleep.time is used to specify 
the number of seconds the function should wait before proceeding to the next URL. 
This will be very useful in case there are multiple URLs and we don't want to reach 
the API call limit. For the preceding URLs, we have got the popularity metrics across 
different websites. The code is as follows:

allresults<- get_socialmedia(news_urls, sleep.time = 0)
allresults



Chapter 6

[ 179 ]

Note that the preceding function might throw some errors, but most 
likely the right result will be generated.

We get the following output:

The SocialMediaMineR package will be very useful to identify the performance of 
a list of blogs, brands, and businesses. It will be a convenient way to measure the 
performance across multiple online sites. Please note that the data generated by each 
of the preceding functions is very different in each case, as the data format depends 
on the availability and accessibility provided by the social media sites.

Exercise
Consider the English Premier League, create a list of websites 
of your favorite teams, and evaluate their performance in social 
networking websites. Check out which team had the maximum 
penetration in social media.



More Social Media Websites

[ 180 ]

Accessing product reviews from sites
Online product reviews are a very good source of information. They can be used to 
judge a brand or a product. It becomes very difficult to read all the reviews, so we 
can write a program to get the product reviews. Let's see one of the ways to extract 
the customer review data from Amazon. For example, let's consider the movie 
Transformers – Age of Extinction and see the customer reviews:

urll<-  
'http://www.amazon.com/gp/video/detail/B00L83TQR6?ie=UTF8&redirect 
=true&ref_=s9_nwrsa_gw_g318_i1'

First, we get the relevant URL and store it in a variable so that it can be used in the 
functions. Then, we need to parse the HTML content of the page and save it to the 
variable doc. In order to do so, we need to import the package XML. Now, the parsed 
HTML is stored in the variable doc. Please follow the link for more details on the 
HTML DOM: http://www.w3schools.com/jsref/dom_obj_document.asp. The 
code is as follows:

library(XML)
doc<- htmlParse(urll)

From this parsed data, we can get the required information by specifying the class 
in which the content is present, using the function xpathSApply. In our case, the 
customer reviews are present in the tag div with the class name a-section. The 
following code will extract the customer reviews.

review<- xpathSApply(doc,'//div[@class="a-section"]',xmlValue)
data.frame(review)

Note that the websites, in the preceding case Amazon, might 
change the DOM structure. Hence, verify the DOM structure before 
executing the preceding code. Also, note that this data would require 
processing before consumption in the analysis.

http://www.w3schools.com/jsref/dom_obj_document.asp


Chapter 6

[ 181 ]

We get the following output:

The preceding output is just a part of the actual output.

This customer feedback is a rich source of information, and it can be used for  
a variety of use cases. Brands can monitor their product performance across  
different geographic locations. It can also be used for product enhancement.

The logic discussed here can be used to parse the data from any website. Hence,  
the use cases are not only limited to ecommerce reviews, it can also be used in cases 
where the data is present in the form of websites.

Retrieving data from Wikipedia
Wikipedia is an open source encyclopedia project developed collaboratively by 
multiple people across the world. This is a rich source of information, and we can 
find content about anything in this world. In this section, we are going to check out 
the ways to extract the content from Wikipedia for our analysis. We will concentrate 
only on the tabular content.



More Social Media Websites

[ 182 ]

We will consider the Wikipedia page on List of countries and dependencies by 
population. This page has tabular content about the countries and their population. 
This is shown in the following screenshot:

Now, we will see how to bring the preceding tabular content to R so that we can 
perform some computation. Before going into the coding, you have to understand 
that the method explored is just one way of implementing it. This can be performed 
in multiple ways.

For the method we are discussing, we need to load the package httr and then read 
the URL of the mentioned Wikipedia page. We need to pass the URL to the function 
GET. The GET method will retrieve the data identified by the requested URL. If the 
URL refers to the data producing process, then the data that will be produced will 
be returned and not the actual text content at source. Then, we pass on the content 
to tabs. The function readHTMLTable is a robust method of extracting the data from 
the tables in HTML documents. This function will read all the tables present in the 
specified URL. Also, this function attempts to perform heuristic computation to get 
the headers for the columns. The code is as follows:

library(httr)
url1 <-  
"https://en.wikipedia.org/wiki/ 
List_of_countries_and_dependencies_by_population"
tabs<- GET(url1)
tabs<-  
readHTMLTable(rawToChar(tabs$content), stringsAsFactors = F)



Chapter 6

[ 183 ]

Now, all the tabular data is copied to tabs. This content will be of the type list. 
Browse through the list that has been extracted; you will find that the first list 
contains the actual table. Hence, we filter out the first table data and leave the  
other data:

class(tabs)

We get the following output:

  [1] "list"

We use the following code to extract the table content alone from the preceding list.

tablecontent<- tabs$'NULL'
head(tablecontent)

We get the following output:

The same function and methods can be used for multiple purposes. We can read 
any Wikipedia page that has content in a table. This data can now be used for any 
visualization/exploratory analysis.

Apart from the method discussed here, there are other ways to retrieve data. Instead 
of using the function GET, we can also use the function getURL. However, this 
function also needs to load the package RCurl.

Now that we know how to download tabular content from Wikipedia, we will 
explore ways of getting the details on the Wikipedia users who contributed to the 
content, the difference between the revisions made to a page, and more. Let's review 
some of it.



More Social Media Websites

[ 184 ]

In order to retrieve the preceding details, we use the package WikipediR. Download 
the latest package from GitHub. First load the package devtools, and then install the 
package WikipediR using the function install_github to make sure that the latest 
package is downloaded:

install.packages("Rtools")
library(devtools)
install_github("Ironholds/WikipediR")
library(WikipediR)

We can get the text content of various pages in Wikipedia. First, let's see how  
to get the text content from a random page. We can get this using the function 
random_page. Every time we run the function, we would get the data of a new  
page in Wikipedia. The content extracted is of the type pcontent, it is a parsed  
text. The code is as follows:

randomContent<- random_page("en","wikipedia")
head(randomContent)

We get the following output:



Chapter 6

[ 185 ]

This output is just a screenshot of the actual output.

We will now see how to extract the text from a specific page on Wikipedia. We can 
do this using the function page_content and extract the contents from a specific 
Wikipedia page. Here's the code to extract the contents from the page about Dr. 
A.P.J. Abdul Kalam:

pageContent<- page_content("en","wikipedia",  
page_name = "A._P._J._Abdul_Kalam")
head(pageContent)

We get the following output:

This output is just a screenshot of the actual output.



More Social Media Websites

[ 186 ]

We can get to know about the revisions made to the Wikipedia page using the 
function revision_diff; we need to pass the page ID in order to get the revision 
details. The following code generates the revision details for the page titled A.P.J. 
Abdul_Kalam:

revision_diff("en","wikipedia", revisions = 674484862,  
direction = "next")

We get the following output:

This output is just a screenshot of the actual output.

The package WikipediR allows us to extract the backlinks. In the following code,  
we will extract the backlinks of the page A._P._J._Abdul_Kalam:

page_backlinks("en","wikipedia", page = "A._P._J._Abdul_Kalam")



Chapter 6

[ 187 ]

We get the following output:

This output is just a screenshot of the actual output.

Now that we know how to extract and parse tabular content, let's see how to extract 
the details of the users who actually edited and worked on the various URLs. We 
can use the following code to extract the details on the contributions made as well 
as the general user information. The function ucontribution can be used to get the 
contribution made by a specific user. In the following case, we are retrieving only 
the timestamp of those contributions, but we can also get the comments for those 
contributions by replacing timestamp with comment:

user_contributions("en", "wikipedia",  
username = "Ironholds", properties = "timestamp")



More Social Media Websites

[ 188 ]

We get the following output:

This output is just a screenshot of the actual output.

The function user_information gives us the basic information about the users.  
To the parameter properties, we pass all the information required to be captured. 
Here's the code to get the details of the user rsharankumar:

user_information("en", "wikipedia", user_names = "rsharankumar",  
properties = c("blockinfo", "groups", "implicitgroups", "rights",  
"editcount", "registration", "emailable", "gender"))



Chapter 6

[ 189 ]

We get the following output:

This output is just a screenshot of the actual output.



More Social Media Websites

[ 190 ]

The preceding dataset includes a lot of junk data as well, but by using the functions 
we discussed in the chapters so far, such as the fromJSON, GET, and as.data.frame, 
we can process the data and convert it to a consumable format. Here's a sample 
method that can be used to get the user details in the data frame format from the 
above dataset:

data <- user_information("en", "wikipedia", user_names =  
"rsharankumar", properties = c("blockinfo", "groups",  
"implicitgroups", "rights", "editcount", "registration",  
"emailable", "gender"))
sample <- data$query$users[[1]]
sample <- as.data.frame(sample)

The objective of this book is to show you the art of getting the required data from 
different social media sites. Initially, we were using the URL of the various pages 
and were parsing the data to extract the required data. Later, we saw how to use 
the WikipediR package, which was built to communicate with Wikipedia and give 
us the required information. The latter is always preferable because of the effort 
that would have been needed to provide the data in a readable format. In the case 
of Wikipedia, authentication was not required to extract the data, but in most other 
cases it will be required to authenticate before extracting the data. Wikipedia has 
good information about various topics, so knowing how to access the data provides 
us a huge advantage.

Exercise
Since most country's pages in Wikipedia are similar to each other, we 
can write scripts to pull data about different countries and compare the 
difference. Similar analysis can be done across different domains.
You can find the list of top contributors from https://
en.wikipedia.org/wiki/Wikipedia:List_of_Wikipedians_
by_number_of_edits.
Identify if there is correlation between the users' contribution and the 
time they registered with Wikipedia. Also, try to get some information 
like the gender breakups and so on.

Using the Tumblr API
Tumblr is a microblogging and social networking platform. Tumblr, as of August 
2015, hosts around 248 million blogs and about 117 billion posts, and over 75 million 
posts are created on a daily basis. In this section, we will see how to access the data 
from Tumblr and, in the process, understand how the steps involved are different 
from the methodology discussed so far.

https://en.wikipedia.org/wiki/Wikipedia:List_of_Wikipedians_by_number_of_edits
https://en.wikipedia.org/wiki/Wikipedia:List_of_Wikipedians_by_number_of_edits
https://en.wikipedia.org/wiki/Wikipedia:List_of_Wikipedians_by_number_of_edits


Chapter 6

[ 191 ]

There is a package in R that allows interaction with Tumblr. We need to install  
the package tumblR. The package has little dependency, so use the following  
code for installation:

install.packages("tumblR")
install.packages("base64enc")
install.packages("httpuv")
library(tumblR)

The preceding code installs the related packages, as well as loads the required 
package on to the working environment.

We need to have an account in Tumblr and have the app for enabling authentication 
in order to access the data. Once we create the app, we get the consumer key and the 
secret key. We can use these to access the data, or we can authenticate and save the 
details as a token and use just the token for data access. We can register for an app at 
http://www.tumblr.com/oauth/apps.

In order to authenticate, we need some more information such as the consumer key 
and the secret key. Hence, we save those to a variable so that we can simply use these 
variables instead of having to mention it in several places. The code is as follows:

consumer_key<-'Paste your key here'
consumer_secret<- 'Paste your secret key here'
appname<- 'Paste your App name here'
tokenURL<- 'http://www.tumblr.com/oauth/request_token'
accessTokenURL<- 'http://www.tumblr.com/oauth/access_token'
authorizeURL<- 'http://www.tumblr.com/oauth/authorize'

http://www.tumblr.com/oauth/apps


More Social Media Websites

[ 192 ]

Now we will see how to use the preceding details to complete the authentication 
process. The first variable will hold the app details, the name, consumer key, and the 
consumer secret code and the variable endpoint holds the details about end points 
to hit. The code is as follows:

app<- oauth_app(appname, consumer_key, consumer_secret)
endpoint<- oauth_endpoint(tokenURL, authorizeURL, accessTokenURL)
token<- oauth1.0_token(endpoint, app)

The function oauth1.0_token uses the app details and the end point details 
to initiate the authentication. Similar to the action performed in Facebook and 
Instagram, the authentication function opens the browser on providing the user 
name and password. Approving the following message in the popup completes  
the authentication process:

We get a confirmation note in the R environment also. Now, the authentication 
process is completed and we can go ahead and access the data that is available. 
We can also get a few blogs present in Tumblr and start accessing the data. In this 
section, we will explore some of the functions and some of the use cases that could  
be implemented using the available data.



Chapter 6

[ 193 ]

We will consider the ifpaintingscouldtext.tumblr.com blog in Tumblr and 
figure out the usage of a few functions belonging to the package tumblR. First,  
let's retrieve the avatar of the blog. The avatar is the visual representation or the 
profile picture used in the blog's profile. We can get the blog's avatar using the 
function avatar. The second parameter represents the size of the image. The  
code is as follows:

avatar(base_hostname = url, size =64)

We get the following output:

  [1] "https://33.media.tumblr.com/avatar_e4ac5327294d_64.png"

In the output, we get the URL of the avatar of the blog. We can visit the mentioned 
URL to get the avatar of the mentioned blog. We can also get the details of a blog 
using the function info.blog:

info.blog(base_hostname = url, api_key = consumer_key)

Here's the output of the function. We get some basic information about the blog:

ifpaintingscouldtext.tumblr.com


More Social Media Websites

[ 194 ]

We can get the post and the reposts that were liked in the blog. To get that,  
we need to use the function likes. This function retrieves the publicly exposed  
likes from a blog:

likes(base_hostname = url, limit = 20, offset = 0,  
api_key = consumer_key)

Let's see the likes in the preceding blog.

While this package allows us to retrieve the data from the blog, it also has a  
few functions that would allow us to update the blog of a particular user and  
also to perform certain action such as following a blog, liking a blog plot,  
and so on. In order to know more about the data that could be captured,  
visit https://cran.r-project.org/web/packages/tumblR/tumblR.pdf.

https://cran.r-project.org/web/packages/tumblR/tumblR.pdf


Chapter 6

[ 195 ]

While the preceding package provides all of the specified functionalities, we can also 
make use of the alternative package, which has a similar name to get some additional 
data. Kindly note that the API from Tumblr, or for that matter any website, is subject 
to changes from time to time. Hence, there could be some functions in the packages 
that could be possibly deprecated. Try out the following code as well:

library(devtools)
install_github("klapaukh/tumblR")
setup_tumblr_apikey(consumer_secret)
all = get_posts("staff.tumblr.com")
posts = all$posts
head(posts)

We get the following output:



More Social Media Websites

[ 196 ]

To know more about the second package, visit https://github.com/klapaukh/
tumblR.

Exercise:
Find out the most popular blogs on Tumblr, start collecting details 
about these blogs, and apply a clustering algorithm to figure out 
the blogs that are similar to each other. In the process, get the most 
popular blogs based on the likes and other factors, if any.

Accessing data from Quora
Quora is a popular question and answer website where questions are asked, 
answered, and managed by the community members and the entire operations is 
gamified. The interesting answers can get some points and the users could also shell 
out some points to get some of their questions answered by certain people.

There are ways to get the data from Quora, but there is an unofficial API which 
returns the data in the JSON format. It is actually a set of URLs that will provide us 
with the required information. These URLs will also work in browsers. Once we get 
the data in the JSON format, we can convert it into the data frame format later.

Let's see some of the URLs and ways to use it in R. The API's base URL is  
http://quora.christopher.su. To the base URL, we need to add the  
following to get the relevant data:

• /users/<user>/activity/answers

• /users/<user>/activity/user_follows

• /users/<user>/activity/want_answers

• /users/<user>/activity/upvotes

• /users/<user>/activity/review_requests

First, we will try to get the user's profile details. The following code will provide 
us with the details of the specified user in the JSON format. It provides some basic 
information like the followers, following, number of posts and the total number of 
edits made, questions asked, and the answers made:

udata<- fromJSON("http://quora.christopher.su/users/ 
Sharan-Kumar-R")

https://github.com/klapaukh/tumblR
https://github.com/klapaukh/tumblR
http://quora.christopher.su


Chapter 6

[ 197 ]

We get the following output:

Given that we know the questions in Quora, we can get to know about its  
category, as well as the number of answers it received. This can be done with  
the following code:

fromJSON("http://quora.christopher.su/questions/ 
If-space-is-3-dimensional-can-time-also-be-3-dimensional")



More Social Media Websites

[ 198 ]

We get the following output:

Due to recent changes in the Quora API, some of the preceding URLs might be 
broken. Moreover, Quora is not very open with the unofficial APIs. Hence, please 
refer to the API provided by Quora at http://www.quora.com/Edmond-Lau/
Edmond-Laus-Posts/Quora-Extension-API.

The preceding URL provides the API that would retrieve the data of 
the currently logged in user. This official API provides data such as the 
name, the Quora URL, number of unread messages, and some of the 
notifications. With more social networks becoming open to the API, I 
believe that Quora might soon provide official API access.

Mapping solutions using Google Maps
Google Maps provides mapping solutions. By using the R package RgoogleMaps, we 
can get the static images from Google Maps using the name of the place or using the 
latitude and longitude of that place. We can also use the map as the background and 
plot location-specific charts.

In this section, we will see how to access the Google Maps API from R. We need to 
first install the package RgoogleMaps:

install.packages("RgoogleMaps")
library(RgoogleMaps)

http://www.quora.com/Edmond-Lau/Edmond-Laus-Posts/Quora-Extension-API
http://www.quora.com/Edmond-Lau/Edmond-Laus-Posts/Quora-Extension-API


Chapter 6

[ 199 ]

We can use the function getGeoCode to get the exact latitude and longitude of a 
specific place. We will get the latitude and the longitude of some of the most famous 
places. The code is as follows:

getGeoCode("Big Ben")
getGeoCode("10 Downing Street")
getGeoCode("London Eye")

We get the following output:

We can get the static maps for the preceding places using the function GetMap.  
Let's look at London's iconic timepiece on a map:

BigBenMap<- GetMap(center="Big Ben", zoom=13)
PlotOnStaticMap(BigBenMap)

We get the following output:



More Social Media Websites

[ 200 ]

We can also plot multiple locations on the map. Now, let's plot all of the preceding 
locations with colored markers to identify their locations. We will store the latitude 
and longitude in a numeric vector and make the mean of all three, the center of the 
map. After setting the zoom level, we can plot the map using the same function 
GetMap. We use the parameter markers to mark the points of the locations.  
The code is as follows:

lat = c(51.5007292,51.5033635,51.503324);
lon = c(-0.1246254,-0.1276248,-0.119543);
center = c(mean(lat), mean(lon));
zoom<- min(MaxZoom(range(lat), range(lon)));
Map <- GetMap(center=center, zoom=zoom,markers =  
paste0("&markers=color:blue|label:B|",  
"51.5007292,-0.1246254&markers=color:green|label:D|51.5033635, 
-0.1276248&markers=",  
"color:red|color:red|label:L|51.503324,-0.119543"),  
destfile = "MyTile1.png");
PlotOnStaticMap(Map)

We get the following output:



Chapter 6

[ 201 ]

We will use the data that we created in Chapter 4, Finding Popular Photos on Instagram. 
In that chapter, we extracted the data on the number of comments and likes from 
various users with their geographical location whenever it was enabled. In order to 
create the data, that is geodata, we considered the data that had a geo-location and 
filtered out the top 150 records based on the number of comments. Let's use the data 
to plot on the map. The code is as follows:

geodata<- read.csv("geodata.csv")
head(geodata)

We get the following output:

We compute the mean to mark the center of the map and then we use the function 
GetMap to get the map along with the specified parametric settings. In order to create 
the bubble chart on the map, we use the function bubbleMap and pass the map and 
the dataset as the parameter. Thus, the bubble chart can be plotted:

center = c(mean(geodata$latitude), mean(geodata$longitude));
map<- GetMap(center=center,
zoom=3,
size=c(480,480),
destfile = file.path(tempdir(),"meuse.png"),
maptype="mobile",
SCALE = 1);
par(cex=1)

We can change the zoom level by tuning the zoom parameter, and the size of 
the bubble can be changed using the cex parameter. Note that the output covers 
only a fraction of the complete plotting; by adjusting the zoom level, the complete 
geography can be covered. The code is as follows:

bubbleMap(geodata
coords = c("longitude", "latitude"),
map=map,
zcol='comments_count',
key.entries = 100+ 100 * 2^(0:4));



More Social Media Websites

[ 202 ]

We get the following output:

The package RgoogleMaps allows multiple functions to make the map look different; 
print text at various geographic locations on the map, plot charts keeping a specific 
location's map as the background image, and much more. Have a look at the various 
functions offered through this package in R at https://cran.r-project.org/web/
packages/RgoogleMaps/RgoogleMaps.pdf.

We can also visualize the spatial data and models on top of Google Maps using  
the other popular packages in R. Refer to the documentation of the package at 
https://cran.r-project.org/web/packages/ggmap/ggmap.pdf.

https://cran.r-project.org/web/packages/RgoogleMaps/RgoogleMaps.pdf
https://cran.r-project.org/web/packages/RgoogleMaps/RgoogleMaps.pdf
https://cran.r-project.org/web/packages/ggmap/ggmap.pdf


Chapter 6

[ 203 ]

The Google Maps API has a limit of 2,500 requests per day.

Exercise
Now, let's see the use cases that could be solved using this 
functionality in R. We can plot any geo-location-specific data such 
as the number of startups in different cities across the world. In the 
previous chapters, we had the opportunity to extract the geolocation 
of the users, like in Twitter, GitHub, and Instagram. Now, we can 
use that location information to plot on the map. For example, we 
can check out the number of tweets from a specific location. We had 
seen how to evaluate the popularity of the brands, people, and places 
through social network data. Now, we can plot the popularity based 
on the location. This study will be extremely useful to understand 
their strength and weaknesses based on the location, as it usually has a 
higher influence on the sentiments of the people.
The exercise would be to pull the location data for the top users in 
Instagram and then plot the number of users across the world.

Professional network data from LinkedIn
LinkedIn is a social networking website for people in professional jobs. It has  
over 364 million users across the world. Many companies have started using 
LinkedIn to publish their job requirements and as a medium to showcase their 
skillset to the world.

In order to access the LinkedIn data, we need to use the package Rlinkedin.  
Get the latest package from the GitHub repository using the following code:

install_github("mpiccirilli/Rlinkedin")
library(Rlinkedin)

For authentication, we need to have a LinkedIn app. It can be registered at  
https://www.linkedin.com/developer/apps. Similar to the way we had  
created an app in Facebook, Instagram, and GitHub, we need to create an app at 
LinkedIn as well. Once the app is created, it will appear in your developers login. 

https://www.linkedin.com/developer/apps


More Social Media Websites

[ 204 ]

Please refer to the following screenshot to know what it looks like:

The details of the app, such as the client ID and client secret can be found by clicking 
and opening the app. After creating the app and specifying the redirect URL, we can 
go ahead with the authentication using the following code:

app_name<- "Enter your App name here"
consumer_key<- " Enter your client ID here "
consumer_secret<- " Enter your client secret here "
in.auth<- inOAuth(app_name, consumer_key, consumer_secret)



Chapter 6

[ 205 ]

The preceding code will initiate the authentication; it will open a new window in the 
browser and request the following permissions:

Once the permissions are granted, the authentication will be completed.  
The LinkedIn API is used to provide all the information about our network  
such as the connections, profile information about the user, their first degree 
connections, search for companies based on the keywords or location, and much 
more. But with the latest changes in the way the API operated, only some of the  
basic details are available to all the users whereas most of the vital information is 
available only to the partners.



More Social Media Websites

[ 206 ]

The only detail that can be now downloaded is your own basic profile, and you can 
search about a company or get their basic details. This can be implemented using the 
function searchCompanies. The following code retrieves the details of six different 
companies, including the LinkedIn Corporation:

search.comp<- searchCompanies(in.auth, keywords = "LinkedIn")
head(search.comp)

We get the following output:

In order to get your basic profile, you can use the function getProfile.  
This function will return details such as the name, location, designation,  
industry, number of connections, a brief description about the current position,  
and start date of the current position. When you set the parameter connections  
to TRUE, the access request will be rejected as the API doesn't allow public access  
to the connection details. 



Chapter 6

[ 207 ]

The code is as follows:

getProfile(token = in.auth, connections = FALSE, id = NULL)

We get the following output:

Even though LinkedIn has blocked most of its API to the public, you can still get 
access by getting into the partnership program. You can sign in for a partnership 
program by going to https://developer.linkedin.com/partner-programs.

By signing into the partnership program, you get access to additional API 
functionalities as well as increased call limits with support. There are multiple 
programs based on the relevance and the requirements, you can request for a 
suitable program.

https://developer.linkedin.com/partner-programs


More Social Media Websites

[ 208 ]

Getting Blogger data
Blogger is a blog publishing service that was bought by Google in the year 2003 and 
it has more than 500,000 blogs. Blogger provides numerous APIs to access the data, 
provided you have the API key and know some required data such as the blog ID, 
user ID, and post ID based on the data that you are trying to access.

In order to get the API key, one has to create a project in the Google developer's 
console. Here's the screenshot of the Google developer's console:

On opening the console, create a new project, open it and click on the link APIs 
&auth, select the credential, look to see if any client IDs and client keys are available, 
and if not then create one. On creation, you will be provided with a client ID and an 
API key that can be used to access the data.



Chapter 6

[ 209 ]

To know about the various data that can be accessed, visit https://developers.
google.com/apis-explorer/#p/blogger/v3/. This link has a list of services.  
Let's check out a few to understand how it would work.

First, let's try to get the number of blog posts. Click on the service blogger.blogs.get 
and provide the relevant details, as shown in the following screenshot:

The preceding window shows the actual request URL and the response in the 
JSON format. We can now take the request URL and make the request from the R 
environment using the function fromJSON:

fromJSON("https://www.googleapis.com/blogger/v3/blogs/ 
263662486407512058?key=<Paste your API key here>")

https://developers.google.com/apis-explorer/#p/blogger/v3/
https://developers.google.com/apis-explorer/#p/blogger/v3/


More Social Media Websites

[ 210 ]

We get the following output:

The user doesn't need to be authenticated in order to retrieve the public blog  
post, but they will be required to provide the API key. However, in order to  
retrieve the private content, it is necessary to include the authorization HTTP  
header in the request. We can also monitor the number of requests made at the 
developer's console.



Chapter 6

[ 211 ]

This API provides functionality to, not only retrieve the data from the blog, but also 
update a blog, publish a blog post that is on the draft, delete a blog post, search for 
keywords across the blogs, get a user profile, approve a comment, and numerous 
other things. To learn about the Blogger API usage, visit https://developers.
google.com/blogger/docs/3.0/using.

Retrieving venue data from Foursquare
Foursquare is a local search services company that offers its service on the mobile 
platform as well as a website. Log in to Foursquare as a developer in order to get the 
idea of the API request and response patterns. On registering, a unique OAuth token 
is generated.

https://developers.google.com/blogger/docs/3.0/using
https://developers.google.com/blogger/docs/3.0/using


More Social Media Websites

[ 212 ]

In the developer's login, open the explorer from the list of links on the left-hand side 
panel. Here's a screenshot of the developer's landing page:



Chapter 6

[ 213 ]

In the explorer panel, we can see how the request is being sent, which can again be 
replicated in R using either the function fromJSON or GET. The data will be retrieved 
in the JSON format. Here's the screenshot of the explorer panel:



More Social Media Websites

[ 214 ]

We can now execute the API request from R using the function fromJSON.  
First, let's get the user details:

fromJSON("https://api.foursquare.com/v2/users/ 
self?oauth_token=<Paste your OAuth token here>")

We get the following output:

The preceding API request provides many details about the user such as name, 
location, check-ins, groups, badges, follower counts, and much more.



Chapter 6

[ 215 ]

Next, we will use the functionality to extract details about a location. The following 
API requests complete details about the specified venue such as the name, address, 
contact number, latitude and longitude, ratings, venue's category, user count, tip 
count, visit count, price tier, currency accepted, likes, about our friends' visits and 
their tips, restaurant timings, and facilities provided. The code is as follows:

fromJSON("https://api.foursquare.com/v2/venues/ 
40a55d80f964a52020f31ee3?oauth_token=<Paste your OAuth token here>")

We get the following output:



More Social Media Websites

[ 216 ]

Other details that could be obtained here are the venues, various tips data, 
or basic details about the users who gave those tips, how many of those 
tips were liked, and so on. In the URL https://api.foursquare.com/v2/
venues/514d613de4b0ab03fe0601fb/tips?oauth_token=<Paste your OAuth 
token here>, the following code identifies the venue 514d613de4b0ab03fe0601fb. 
Here's the API request that would provide the required details:

fromJSON("https://api.foursquare.com/v2/venues/ 
514d613de4b0ab03fe0601fb/tips?oauth_token=<Paste your OAuth  
token here>")

We get the following output:

https://api.foursquare.com/v2/venues/514d613de4b0ab03fe0601fb/tips?oauth_token=<Paste your OAuth token here>
https://api.foursquare.com/v2/venues/514d613de4b0ab03fe0601fb/tips?oauth_token=<Paste your OAuth token here>
https://api.foursquare.com/v2/venues/514d613de4b0ab03fe0601fb/tips?oauth_token=<Paste your OAuth token here>


Chapter 6

[ 217 ]

We can drill down one more level to know more about an individual tip. Each tip 
will have a unique ID and we can use this ID to get the details of a tip. The request 
would provide us with the details about the tip. In the following URL, the following 
code identifies the tip 49f083e770c603bbe81f8eb4:

fromJSON("https://api.foursquare.com/v2/tips/ 
49f083e770c603bbe81f8eb4?oauth_token=<Paste your OAuth token  
here>")

We get the following output:

These are the various levels of details that could be obtained using the API of 
Foursquare. In order to know more about the API provided by Foursquare, visit 
https://developer.foursquare.com/docs/.

https://developer.foursquare.com/docs/


More Social Media Websites

[ 218 ]

Use cases
This enormous amount of data could be very powerful. Some of the use cases 
possible include details such as the items that are most liked by the user based on 
mining the user's tips, performing correlations between different venues and getting 
to know more about the most similar venues, and, based on the likes data, we can 
also provide recommendations using collaborative filtering. Based on the venue data, 
we can also compute the clusters.

There are few more use cases that would help the venues, such as finding out the 
performance of a venue in terms of likes and positive tips from user, and comparing 
it with other nearby venues in the same category. Mining the text data would help 
the venues in knowing the areas of improvement. With exploration of the data, we 
can also get to know about the services that are most valued by the customers. This 
would help the venues in improving their rating.

Yelp and other networks
Yelp is a crowdsourced local business review and social networking site. Over 31 
million people access Yelp's website each month. Getting the data from Yelp is quite 
similar to how we get it from the other social networks. The steps are as follows:

1. First, log in as a developer.
2. Then, register and get the authentication credentials.
3. Get the standard API request URL.
4. Pass the URL along with the authentication credentials to either the function 

fromJSON or GET.
5. Data will be retrieved in the JSON format.
6. Read the required data and convert it to data frame for further analysis.

To know about the various API services offered by Yelp, visit https://www.yelp.
com/developers/documentation/v2/overview.

Websites such as Glassdoor and Indeed provide API access on request. The process 
involved in working with those APIs would be similar to those we have covered  
so far.

https://www.yelp.com/developers/documentation/v2/overview
https://www.yelp.com/developers/documentation/v2/overview


Chapter 6

[ 219 ]

Limitations
The only limitation in performing social media mining is that the APIs consistently 
undergo changes with respect to the accessibility of the data and also in the way in 
which they work. Using the LinkedIn API, users were able to download the complete 
information about their network, but later it was made on request. Similarly, the 
Facebook API went through lot of changes too. When the data is accessed through 
the R package, the user needs to update. Alternatively, when accessed using the URL 
in the function fromJSON, then the API needs to be updated.

The other limitation is on the quality of the data. Since all this data is created by 
people online, there is always a possibility for skewness in the data. Therefore, 
measures should be taken to keep a check on the quality.

Summary
In this chapter, we saw how to access many of the social media websites and also 
discussed the various use cases that could be implemented. The methodology 
involved in accessing data through the APIs are similar to one another; while most 
APIs require authentication, some APIs can be accessed without authentication even 
in a browser. Most APIs provide the data in the JSON format, but for some popular 
sites there are packages built in R that can convert the data to a data frame while 
retrieving. This helps in speeding up the analysis. These APIs provide us the data in 
a variety of formats: structured in some cases, but unstructured in most cases. With 
a higher limit on the API requests that can be called, the volume at which we can 
generate data is also quite high.

In this book, we covered the methodologies to access the data from R using the 
APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub, 
Foursquare, LinkedIn, Blogger, and a few more networks. This book also provided 
details on the implementation of various use cases using R programming. Now, you 
should be completely equipped to embark on your journey as a social media analyst.





[ 221 ]

Index
A
active users

used, for building heterogeneous  
dataset  142, 143

additional metrics
building  145-147

app
creating, on Facebook platform  56, 57
creating, on GitHub  136-138

avatar  193

B
Betweenness  67
Blogger  208
Blogger API usage

URL  211
Blogger data

obtaining  208-211
URL  209

business cases
defining  132, 172
implementing  90

C
celebrity users and location hashtags

reference  132
challenges, social media mining

Big Data  5
evaluation dilemma  6
noise removal error  5
sufficiency  5

Click-through rate (CTR)  56
closeness  68

cluster  68
clustering  118
clustering analysis

reference  132
community detection

via clustering  18
correlation analysis, EDA

correlation, between languages  166-168
correlation, on segmented data  165, 166
correlation, with local regression  

curve  164, 165
correlation, with regression line  163
defining  161, 162
references  171, 172
trend of correlation, obtaining  168-170
watchers, relating to forks  162, 163

CTR performance
measuring, for page  77-80

customer relationship  
management (CRM)  3

D
data

accessing, from Quora  196-198
accessing, from R  97
retrieving, from Wikipedia  181-190

data access
comments, obtaining  102, 103
followers, obtaining  100
hashtag, using  104
public media, searching from specific  

location  98
public media, searching for  

specific hashtag  97



[ 222 ]

public media of user, extracting  99
user, following  101
user profile, extracting  99

data processing  144, 145
dataset

building  105
travel-related media  108, 109
user media  107
user profile  106
users, following  109, 110

data visualization R packages
sentiment analysis Wordcloud  12, 13
simple word cloud  11

degree  66

E
EDA techniques

bivariate  148
multivariate  148
univariate  148

emotions, sentiment package
anger  40
disgust  40
fear  40
joy  40
sadness  40
surprise  40

entities, tweet  23
exploratory data analysis

defining  148-150

F
Facebook app

about  56
URL  56

Facebook Graph API  56
Facebook Graph Search  6
Facebook page data

obtaining  71, 72
Facebook platform

app, creating  56, 57
Foursquare

about  211

references  216, 217
use cases  218
venue data, retrieving from  211-217

G
GitHub

about  135
app, creating  136-138
data, accessing from R  141, 142
URL  142

GitHub package
authentication  139, 140
installing  139, 140

Google Maps
URL  203
used, for mapping solutions  198-203

graphical analysis, EDA
defining  150
distribution of forks, in GitHub  153-155
distribution of issues, in GitHub  153-155
distribution of watchers, in GitHub  153-155
language, for active GitHub users  150-152
repositories, updating  157, 158
repositories, with issues  156, 157
users, comparing through  

heat map  158-161
graph mining  6

H
heterogeneous dataset

building, active users used  142, 143
HTML DOM

URL  180

I
igraph  65
influencers

about  74
based, on multiple posts  76, 77
based, on single post  74, 75

Instagram  
about  93
account, creating  94
app, creating  94, 95



[ 223 ]

instaR package
authentication  96
installing  96
URL  132

L
LinkedIn

about  203
professional network data,  

defining from  203-207
LinkedIn app

URL  203

M
methods

used, for visualizing data  19
mining algorithms

defining  14
opinion mining (sentiment analysis)  14

most popular destination
finding  113
locations  114
locations, most talked about  115
locations, with most likes  115
people, talking about locations  116, 117
repeating locations  117, 118

multiple newsfeeds
updating  84-86

N
Naive Bayes  39
network analysis

Betweenness  67
closeness  68
cluster  68
communities  69, 70
defining  62-64
degree  66
social network analysis  64-66

network visualization
defining  64

Neural Networks (NN)  16
new app, Twitter

URL  25

O
Oauth 2.0

and OAuth, comparing  10
defining  8-10

Open Authorization (OAuth)
about  1
URL  8

P
partnership program

URL  207
part-of-speech tagging (pos)  15
pictures

clustering  118-123
pie chart  156
popular personalities

active users  111
defining  110
overall top users  112
users, with most number of followers  110
user, who follows most number  

of people  111
viral media, finding  112

product reviews
accessing, from sites  180, 181

Q
quintuple  15
Quora

about  196
data, accessing from  196-198
references  196-198

R
R

cleaning  14
data, accessing from  97
GitHub data, accessing from  141, 142
preprocessing  14

rbind function
URL  143



[ 224 ]

read.csv
URL  143

recommendations to friends
defining  87-89
output, reading  89

recommendation system
improvements  131

recommendation, to users
implementing  123-129
providing  123
top three recommendations  130, 131

repos
URL  143

result visualization  19
return-of-investments (ROIs)  18
retweets (RTs)  33
Rfacebook package

defining  58
installation  58, 59
working  59-61

RgoogleMaps package
URL  202

S
sentiment analysis

steps  15-18
sentiment analysis Wordcloud

Classify_emotion  12
Classify_polarity  13

sentiment orientation (SO)  15
sentiment package  40
sites

product reviews, accessing from  180, 181
social media

defining  1-3
platforms  3
searching on  176-179

social media data
about  175
references  13

social media mining
about  4
authentication, obtaining from social  

website  8-10

challenges  4, 5
data visualization R packages  10
example  19
process  7
techniques  6

social network analysis
using  70

solutions
mapping, Google Maps used  198-203

spam detection  80
spam detection algorithm

implementing  80-83
supervised machine learning algorithms  17
Support Vector Machine (SVM)  16

T
techniques, social media mining

graph mining  6
text mining  7

temporary token
URL  58

text mining  7
timeline  24
trending topics

defining  73
trend analysis  73, 74

Tumblr
references  194-196

Tumblr API
URL  191
using  190-196

tweets
about  23
constraints  29

Twitter
about  23
defining  21, 22
URL  25

Twitter API connection
creating  24
new app, creating  25-27
trending topics, finding  28
tweets, searching  29



[ 225 ]

Twitter APIs
about  23
Twitter vocabulary  23, 24

Twitter app
URL  24

Twitter sentiment analysis
corpus, cleaning  32-34
defining  30
sentiment (A), estimating  35-39
sentiment (A), sample results  37
sentiment (B), estimating  39-53
tweets, collecting as corpus  30-32

Twitter stream  24
Twitter timeline  24

W
Wikipedia

data, retrieving from  181-190

Y
Yelp

about  218
data, obtaining from  218
limitations  219
URL  218





Thank you for buying  
Mastering Social Media Mining with R

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Social Media Mining with R
ISBN: 978-1-78328-177-0               Paperback: 122 pages

Deploy cutting-edge sentiment analysis techniques to 
real-world social media data using R

1. Learn how to face the challenges of analyzing 
social media data.

2. Get hands-on experience with the most 
common, up-to-date sentiment analysis tools 
and apply them to data collected from social 
media websites through a series of in-depth 
case studies, which includes how to mine 
Twitter data.

3. A focused guide to help you achieve practical 
results when interpreting social media data.

Learning Data Mining with R
ISBN: 978-1-78398-210-3              Paperback: 314 pages

Develop key skills and techniques with R to create 
and customize data mining algorithms

1. Develop a sound strategy for solving predictive 
modeling problems using the most popular 
data mining algorithms.

2. Gain understanding of the major methods of 
predictive modeling.

3. Packed with practical advice and tips to help 
you get to grips with data mining.

Please check www.PacktPub.com for information on our titles



R for Data Science
ISBN: 978-1-78439-086-0             Paperback: 364 pages

Learn and explore the fundamentals of data science 
with R

1. Familiarize yourself with R programming 
packages and learn how to utilize them 
effectively.

2. Learn how to detect different types of data 
mining sequences.

3. A step-by-step guide to understanding R scripts 
and the ramifications of your changes.

Instant Social Media Marketing 
with HootSuite
ISBN: 978-1-84969-666-1             Paperback: 60 pages

Manage and enhance your social media marketing 
with HootSuite

1. Learn something new in an Instant!  
A short, fast, focused guide delivering 
immediate results.

2. Presents you with an insight into your 
organization’s social assets.

3. Packed with useful tips to automate your social 
media sharing and tracking.

4. Analyze social media traffic and generate 
reports using HootSuite.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Fundamentals of Mining
	Social media and its importance
	Various social media platforms
	Social media mining
	Challenges for social media mining
	Social media mining techniques
	Graph mining
	Text mining

	The generic process of social media mining
	Getting authentication from the social website – OAuth 2.0
	Differences between OAuth and OAuth 2.0

	Data visualization R packages
	The simple word cloud
	Sentiment analysis Wordcloud


	Preprocessing and cleaning in R
	Data modeling – the application of mining algorithms
	Opinion mining (sentiment analysis)
	Steps for sentiment analysis
	Community detection via clustering 


	Result visualization
	An example of social media mining
	Summary

	Chapter 2: Mining Opinions, Exploring Trends, and More with Twitter
	Twitter and its importance
	Understanding Twitter's APIs
	Twitter vocabulary

	Creating a Twitter API connection
	Creating a new app
	Finding trending topics
	Searching tweets

	Twitter sentiment analysis
	Collecting tweets as a corpus
	Cleaning the corpus
	Estimating sentiment (A)
	Estimating sentiment (B)

	Summary

	Chapter 3: Find Friends on Facebook
	Creating an app on the Facebook platform
	Rfacebook package installation and authentication
	Installation
	A closer look at how the package works

	A basic analysis of your network
	Network analysis and visualization
	Social network analysis
	Degree
	Betweenness
	Closeness
	Cluster
	Communities

	Getting Facebook page data
	Trending topics
	Trend analysis

	Influencers
	Based on a single post
	Based on multiple posts

	Measuring CTR performance for a page
	Spam detection
	Implementing a spam detection algorithm

	The order of stories on a user's home page
	Recommendations to friends
	Reading the output

	Other business cases
	Summary

	Chapter 4: Finding Popular Photos on Instagram
	Creating an app on the Instagram platform
	Installation and authentication of the instaR package
	Accessing data from R
	Searching public media for a specific hashtag
	Searching public media from a specific location
	Extracting public media of a user
	Extracting user profile
	Getting followers
	Who does the user follow?
	Getting comments
	Number of times hashtag is used

	Building a dataset
	User profile
	User media
	Travel-related media
	Who do they follow?

	Popular personalities
	Who has the most followers?
	Who follows more people?
	Who shared most media?
	Overall top users
	Most viral media

	Finding the most popular destination
	Locations
	Locations with most likes
	Locations most talked about
	What are people saying about these locations?
	Most repeating locations

	Clustering the pictures
	Recommendations to the users
	How to do it
	Top three recommendations
	Improvements to the recommendation system

	Business case
	Reference
	Summary

	Chapter 5: Let's Build Software with GitHub
	Creating an app on GitHub
	GitHub package installation and authentication
	Accessing GitHub data from R
	Building a heterogeneous dataset using the most active users
	Data processing

	Building additional metrics
	Exploratory data analysis
	EDA – graphical analysis
	Which language is most popular among the active GitHub users?
	What is the distribution of watchers, forks, and issues in GitHub?
	How many repositories had issues?
	What is the trend on updating repositories?
	Compare users through heat map

	EDA – correlation analysis
	How Watchers is related to Forks
	Correlation with regression line
	Correlation with local regression curve
	Correlation on segmented data
	Correlation between the languages that user's use to code
	How to get the trend of correlation?
	Reference

	Business cases
	Summary

	Chapter 6: More Social Media Websites
	Searching on social media
	Accessing product reviews from sites
	Retrieving data from Wikipedia
	Using the Tumblr API
	Accessing data from Quora
	Mapping solutions using Google Maps
	Professional network data from LinkedIn
	Getting Blogger data
	Retrieving venue data from Foursquare
	Use cases

	Yelp and other networks
	Limitations

	Summary

	Index



