=
———
——

e e

—

Wi
AR
WAL |l

AW .'
ARAN

—

e e

]

e~ —
o
e,

Mastering Social Media
Mining with R

Extract valuable data from social media sites and make better
business decisions using R

PACKT *



Mastering Social Media Mining
with R

Extract valuable data from social media sites and make
better business decisions using R

Sharan Kumar Ravindran

Vikram Garg

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI



Mastering Social Media Mining with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015
Production reference: 1180915

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-631-2

www . packtpub.com


www.packtpub.com

Credits

Authors
Sharan Kumar Ravindran

Vikram Garg

Reviewers
Richard lannone

Hasan Kurban
Mahbubul Majumder

Haichuan Wang

Commissioning Editor
Pramila Balan

Acquisition Editor
Rahul Nair

Content Development Editor
Susmita Sabat

Technical Editor
Manali Gonsalves

Copy Editor
Roshni Banerjee

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Disha Haria

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade



About the Authors

Sharan Kumar Ravindran is a data scientist with over five years of experience.
He is currently working for a leading e-commerce company in India. His primary
interests lie in statistics and machine learning, and he has worked with customers
from Europe and the U.S. in the e-commerce and IoT domains.

He holds an MBA degree with specialization in marketing and business analysis.
He conducts workshops for Anna University to train their staff, research scholars,
and volunteers in analytics.

In addition to coauthoring Social Media Mining with R, he has also reviewed R Data
Visualization Cookbook. He maintains a website, www . rsharankumar . com, with links
to his social profiles and blog.

I would like to thank the R community for their generous
contributions.

I am grateful to Mr. Derick Jose for the inspiration and opportunities
given to me.

I would like to thank all my friends, colleagues, and family
members, without whom I wouldn't have learned as much.

I would like to thank my dad and brother-in-law for all their support
and also helping me in proofreading and testing.

I would like to thank my wife, Aishwarya, and my sister, Saranya,
for the constant motivation, and also my son, Rithik, and niece,
Shravani, who make every day of mine joyful and fulfilling.

Most of all, I would like to thank my mother for always believing
in me.



www.rsharankumar.com

Vikram Garg (evikram garg) is a senior analytical engineer at a Big Data
organization. He is passionate about applying machine learning approaches to

any given domain and creating technology to amplify human intelligence. He
completed his graduation in computer science and electrical engineering from IIT,
Delhi. When he is not solving hard problems, he can be found playing tennis or in a
swimming pool.

I would like to dedicate all my books to my parents and my brother.
Without whom I am no one.




About the Reviewers

Richard Iannone is an R enthusiast and a very simple person. Those who know
him (and know him well) know that this is indeed true. He has authored many R
packages that have achieved great success. Those who have reviewed the code know
that it possesses a je ne sais quoi essence to it. In any case, the code coverage is quite
adequate (thanks to the many "test parties" he held), and he often offers builds that
pass muster according to Travis CI.

Although he has a tendency toward modesty, others have remarked that he's just a
straight shooter with upper management written all over him. You know what, we
couldn't agree more. We bet you'll hear a lof more about him in the near future.

Hasan Kurban is a PhD candidate from the School of Informatics and Computing
at Indiana University, Bloomington. He is majoring in Computer Science and
minoring in Statistics. His main fields of interest are Data Mining, Machine Learning,
Data Science, and Statistics. He also received his master's degree in Computer
Science from Indiana University, Bloomington, in 2012. You can contact him at
hakurbaneindiana.edu.

Mahbubul Majumder is an assistant professor of statistics in the Department of
Mathematics, the University of Nebraska at Omaha (UNO). He earned his PhD in
statistics with specialization in data visualization and visual statistical inference from
Iowa State University. He had the opportunity to work with some industries dealing
with data and creating data products. His research interests include exploratory data
analysis, data visualization, and statistical modeling. He teaches data science and he
is currently developing a data science program for UNO.


hakurban@indiana.edu

Haichuan Wang holds a PhD degree in computer science from the University

of Illinois at Urbana-Champaign. He has worked extensively in the field of
programming languages and on runtime systems, and he worked in the R language
and GNU-R system for a few years. He has also worked in the machine learning
and pattern recognition fields. He is passionate about bringing R into parallel and
distributed computing domains to handle massive data processing.

I'd like to thank Bo for always loving and supporting me.

I'd also like to thank my PhD advisors, Prof. Padua and Dr. Wu, and
my MS advisor, Prof. Zhang, who triggered my interest in this field
and guided me throughout this journey.




www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

*  On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub . com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.


www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface \4
Chapter 1: Fundamentals of Mining 1
Social media and its importance 1
Various social media platforms 3
Social media mining 4
Challenges for social media mining 4
Social media mining techniques 6
Graph mining 6
Text mining 7
The generic process of social media mining 7
Getting authentication from the social website — OAuth 2.0 8
Differences between OAuth and OAuth 2.0 10
Data visualization R packages 10
The simple word cloud 11
Sentiment analysis Wordcloud 12
Preprocessing and cleaning in R 14
Data modeling — the application of mining algorithms 14
Opinion mining (sentiment analysis) 14
Steps for sentiment analysis 15
Community detection via clustering 18
Result visualization 19
An example of social media mining 19
Summary 20
Chapter 2: Mining Opinions, Exploring Trends, and More
with Twitter 21
Twitter and its importance 21
Understanding Twitter's APIs 23
Twitter vocabulary 23

[il



Table of Contents

Creating a Twitter APl connection 24
Creating a new app 25
Finding trending topics 28
Searching tweets 29

Twitter sentiment analysis 30
Collecting tweets as a corpus 30
Cleaning the corpus 32
Estimating sentiment (A) 35
Estimating sentiment (B) 39

Summary 54

Chapter 3: Find Friends on Facebook 55

Creating an app on the Facebook platform 56

Rfacebook package installation and authentication 58
Installation 58
A closer look at how the package works 59

A basic analysis of your network 62

Network analysis and visualization 64
Social network analysis 64
Degree 66
Betweenness 67
Closeness 68
Cluster 68
Communities 69

Getting Facebook page data 7

Trending topics 73
Trend analysis 73

Influencers 74
Based on a single post 74
Based on multiple posts 76

Measuring CTR performance for a page 77

Spam detection 80
Implementing a spam detection algorithm 80

The order of stories on a user's home page 84

Recommendations to friends 87
Reading the output 89

Other business cases 920

Summary 90

Lii]



Table of Contents

Chapter 4: Finding Popular Photos on Instagram 93
Creating an app on the Instagram platform 94
Installation and authentication of the instaR package 96
Accessing data from R 97

Searching public media for a specific hashtag 97
Searching public media from a specific location 98
Extracting public media of a user 99
Extracting user profile 99
Getting followers 100
Who does the user follow? 101
Getting comments 102
Number of times hashtag is used 104
Building a dataset 105
User profile 106
User media 107
Travel-related media 108
Who do they follow? 109
Popular personalities 110
Who has the most followers? 110
Who follows more people? 111
Who shared most media? 111
Overall top users 112
Most viral media 112
Finding the most popular destination 113
Locations 114
Locations with most likes 115
Locations most talked about 115
What are people saying about these locations? 116
Most repeating locations 117
Clustering the pictures 118
Recommendations to the users 123
How to do it 123
Top three recommendations 130
Improvements to the recommendation system 131
Business case 132
Reference 132
Summary 133

[iii ]



Table of Contents

Chapter 5: Let's Build Software with GitHub 135
Creating an app on GitHub 136
GitHub package installation and authentication 139
Accessing GitHub data from R 141
Building a heterogeneous dataset using the most active users 142
Data processing 144
Building additional metrics 145
Exploratory data analysis 148
EDA - graphical analysis 150
Which language is most popular among the active GitHub users? 150
What is the distribution of watchers, forks, and issues in GitHub? 153
How many repositories had issues? 156
What is the trend on updating repositories? 157
Compare users through heat map 158
EDA - correlation analysis 161
How Watchers is related to Forks 162
Correlation with regression line 163
Correlation with local regression curve 164
Correlation on segmented data 165
Correlation between the languages that user's use to code 166
How to get the trend of correlation? 168
Reference 171
Business cases 172
Summary 173
Chapter 6: More Social Media Websites 175
Searching on social media 176
Accessing product reviews from sites 180
Retrieving data from Wikipedia 181
Using the Tumblr API 190
Accessing data from Quora 196
Mapping solutions using Google Maps 198
Professional network data from LinkedIn 203
Getting Blogger data 208
Retrieving venue data from Foursquare 211
Use cases 218
Yelp and other networks 218
Limitations 219
Summary 219

Index 221

[iv]



Preface

In recent times, the popularity of social media has grown exponentially and is
increasingly being used as a channel for mass communication, such that the brands
consider it as a medium of promotion and people largely use it for content sharing.
With the increase in the number of users online, the data generated has increased
many folds, bringing in the huge scope for gaining insights into the untapped gold
mine, the social media data.

Mastering Social Media Mining with R will provide you with a detailed step-by-step
guide to access the data using R and the APIs of various social media sites, such as
Twitter, Facebook, Instagram, GitHub, Foursquare, LinkedIn, Blogger, and a few
more networks. Most importantly, this book will provide you detailed explanations
of implementation of various use cases using R programming; and by reading this
book, you will be ready to embark your journey as an independent social media
analyst. This book is structured in such a way that people new to the field of data
mining or a seasoned professional can learn to solve powerful business cases with
the application of machine learning techniques on the social media data.

What this book covers

Chapter 1, Fundaments of Mining, introduces you to the concepts of social media
mining, various social media platforms, generic processes involved in accessing
and processing the data, and techniques that can be implemented, as well as the
importance, challenges, and applications of social media mining.

Chapter 2, Mining Opinions, Exploring Trends, and More with Twitter, focuses on steps
involved in collecting tweets using the Twitter API and solve business cases, such as
identifying the trending topics, searching tweets, collecting tweets, processing them,
performing sentiment analysis, exploring few business cases based on sentiment
analysis, and visualizing the sentiments in the form of word clouds.

[v]




Preface

Chapter 3, Find Friends on Facebook, discusses the usage of the Facebook API and uses
the extracted data to measure click-through rate performance, detect spam messages,
implement and explore the concepts of social graphs, and build recommendations
using the Apriori algorithm on pages to like.

Chapter 4, Finding Popular Photos on Instagram, helps you understand the procedure
involved in pulling the data using the Instagram API and helps you extract the
popular personalities and destinations, building different types of clusters, and
implementing recommendation engine based on the user-based collaborative
filtering approach.

Chapter 5, Let's Build Software with GitHub, teaches you to use the GitHub API from
R and also helps you understand the ways in which you can get the solutions to
business questions by performing graphical and nongraphical exploration data
analysis, which includes some basic charts, trend analysis, heat maps, scatter plots,
and much more.

Chapter 6, More Social Media Websites, helps you understand the functioning of APIs
of various social media websites and covers the business cases that can be solved.

What you need for this book

In order to make your learning efficient, you need to have a computer with either
Windows, Mac, or Ubuntu.

You need to download R to execute the codes mentioned in this book. You can
download and install R using the CRAN website available at http://cran.r-
project.org/. All the codes are written using RStudio. RStudio is an integrated
development environment for R and can be downloaded from http://www.
rstudio.com/products/rstudio/.

In order to access the APIs of the social media, it will be necessary to create an
app and follow certain instructions. All of these procedures are explained in their
respective chapters.

[vil
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Preface

Who this book is for

Mastering Social Media Mining with R is intended for those who have basic knowledge
of R in terms of its libraries and are aware of different machine learning techniques,
or if you are a data analyst and interested in mining social media data; however,
there is no need to have any prior knowledge of the usage of APIs of social media
websites. This book will make you master in getting the required social media data
and transforming them into actions resulting in improved business values.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[default]

post_id<- head(page$id, n = 100)
head (post_id, n=10)

post_id<- as.matrix(post_id)

Any command-line input or output is written as follows:
# Location (Country)

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Exercise to be tried by the readers and notes appear in a box
s like this.

[ vii ]



Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or

added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.
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Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[ix]






Fundamentals of Mining

Our approach in this book will be to use statistics and social science theory to mine
social media and we'll use R as our base programming language. We will walk

you through many important and recent developments in the field of social media.
We'll cover advanced topics such as Open Authorization (OAuth), Twitter's OAuth
API, Facebook's graph API, and so on, along with some interesting references and
resources. It is assumed that the target audience has a basic understanding of R,
along with basic concepts of social sciences.

In this chapter, we will cover the following topics:

* Importance of social media mining
* Basics of social media mining

* Social media mining techniques

* Basic data mining algorithms

* Opinion mining

* Social recommendations

Social media and its importance

In simple terms, social media is a way of communication using online tools such
as Twitter, Facebook, LinkedIn, and so on. Andreas Kaplan and Michael Haenlein
define social media as follows:

"A group of Internet-based applications that build on the ideological and
technological foundations of Web 2.0 and that allow the creation and exchange
of user-generated content".

[11]



Fundamentals of Mining

Social media spans lots of Internet-based platforms that facilitate human emotions

such as:

Networking, for example, Facebook, LinkedIn, and so on

Micro blogging, for example, Twitter, Tumblr, and so on

Photo sharing, for example, Instagram, Flickr, and so on

Video sharing, for example, YouTube, Vimeo, and so on

Stack exchanging, for example, Stack Overflow, Github, and so on

Instant messaging, for example, Whatsapp, Hike, and so on

The traditional media such as radio, newspaper, or television, facilitates one-way
communication with a limited scope of reach and usability. Though the audience
can interact (two-way communication) with these channels, particularly radio, the
quality and frequency of such communications are very limited. On the other hand,
Internet-based social media offers multi-way communication with features such as
immediacy and permanence. It is important to understand all the aspects of social
media today because real customers are using it.

[2]



Chapter 1

Today's corporate marketing departments are maturing in understanding the
promise or the impact of social media. In the early years, social media was perceived
as yet another broadcasting medium for publishing banner advertisements into

the world. Unfortunately, many still believe this to be the only use of social media.
While it's not deniable that social media is a great tool for banner advertisements in
terms of cost and reach, it's not limited to that. There is another use of social media
that can turn out to be more influential in the long term. Businesses need to heed to
the opinion of the consumer by mining social networks. By gathering information
on the opinions of consumers, they can understand current and potential customers'
outlook, and such informative data can guide business decisions, in the long run,
influencing the fate of any business.

Current customer relationship management (CRM) systems create consumer
profiles to help with marketing judgments using a mixture of demographics,
past buying patterns, and other prior actions. These methods basically empower
companies to keep a close eye on their consumers. The customer data available via
communities such as LinkedIn or Facebook is quite detailed. A financial business
with access to such data would not only know the intricate details of a customer,
but also the interests of the customer, and evidence that might be beneficial in
preparation of future marketing plans. Every minute of every day, Facebook,
Twitter, LinkedIn, and other online communities generate enormous amounts

of this data. If it could be mined, it might work like a real-time CRM, persistently
revealing new trends and opportunities.

Various social media platforms

Social media is not restricted to email or chat or media sharing; it is collection of a
larger group of content generating platforms such as:

* Blogs

*  Micro blogs

* Social news

* Social bookmarking

* Professional groups

* Community-based questions and answers

*  Wikis

[31]



Fundamentals of Mining

Social media mining

In simple terms, social media mining is a systematic analysis of information generated
from social media. It becomes necessary to tap into this enormous social media data
with the help of today's technology, which is not without its challenges. Data stream
is a prime example of Big Data. Dealing with data sets measured in petabytes is
challenging, and things like signal-to-noise ratio need to be taken into consideration.
It is estimated that around 20 percent of such social media data streams contain
relevant information.

The set of tools and techniques, which are used to mine such information, are
collectively called Data mining technique and in the context of social media it's

called social media mining (SMM). SMM can generate insights about how much
someone is influencing others on the Web. SMM can help businesses identify the
pain points of its customer in real time. In turn, this can be used for proactive
planning. Identification of potential customers is a very important problem every
business has been trying to solve for ages. SMMs can help us identify the potential
customers based on their online activities and based on their friend's online activities.
There has been a lot of research in multiple disciplines of social media:

*  Why does social media mining matter?

* If you can measure it, you can improve it
*  Modeling behavior

* Predictive analysis

* Recommending content

Challenges for social media mining

Social media mining is currently in a stage of infancy, and its practitioners are
learning and developing new approaches. Social media mining draws its roots

from many fields, such as statistics, machine learning, information retrieval, pattern
recognition, and bioinformatics. The parent fields themselves are not without their
challenges. The sheer amount of data being generated daily is staggering, but current
techniques allow for novel data mining solutions and scalable computational models
with help from the fundamental concepts and theories and algorithms.

[4]



Chapter 1

In social media theory, people are considered to be the basic building blocks of a
world created on the grounds provided by the social media. The measurements

of the interactions between these building blocks and other entities such as sites,
networks, content, and so on leads to the discovery of human nature. The knowledge
gained via these measurements constitutes the soul of the social worlds. Finding the
insights from this data where social relationships play a critical role can be termed

as the mining of social media data. This problem not only has to face the basic data
mining challenges but also those that emerge because of the social-relationship
aspect. We have listed down some of the important challenges here:

Big Data: Should we use the taste of a friend of a friend of the person of
interest, who has studied at one particular college and whose hometown was
one particular city to recommend something to the person of the interest? In
some applications, this might be overkill and in others this information could
lead to a very small but differentiating performance increase. The content
that can be used in social media data can be very deep. However, this can
lead to a problem called over fitting, which is well known in the domain of
machine learning. Using multiple sources of data can also complicate the
overall performance in a similar fashion.

Sufficiency: Should we restrict people to view only the person of interest's
alma mater and his/her hometown to recommend something and not use
the tastes of his/her friends? Common sense says this is not correct and

we may be missing out on something. This is a problem commonly known
as under fitting. This problem can also arise due to the fact that most social
media networks restrict the amount of information that can be accessed in a
certain time frame, so sometimes the data is not sufficient enough to generate
patterns and/or generate recommendations.

Noise removal error: Preprocessing steps are more or less always required

in any application of data mining. These steps not only make the actual
application run faster on the cleaned data, but they also improve overall
accuracy. Due to all the clutter, which is present in most social data, a large
amount of noise is always expected but effectively removing the noise from
the data we have is a very tricky business. You can always end up missing
some information while trying to remove this noise. Noise by its definition is
a subjective quantity and can always be confused; hence, this step can end up
introducing more error in pattern recognition.

[51]




Fundamentals of Mining

¢ Evaluation dilemma: Because of the sheer size of social media data, it's
not possible to obtain a properly annotated dataset to train a supervised
machine-learning algorithm. Without the proper ground truth data, there is
no way to judge the accuracy of any off-the-shell classification algorithms.
Since there can't be any accuracy measures without the ground truth data,
only a clustering (unsupervised machine learning) algorithm can be applied.
But the problem is that such algorithms rely heavily on the domain expertise.

Social media mining techniques

We'll go through a few of the standard social media mining techniques available.
We will consider examples with Facebook and Twitter as our data sources.

Graph mining

Network graphs make up the dominant data structure and appear, essentially, in all
forms of social media data/information. Typically, user communities constitute a
group of nodes in such graphs where nodes within the same community or cluster
tend to share common features.

Graph mining can be described as the process of extracting useful knowledge (patterns,
outliers and so on.) from a social relationship between the community members can be
represented as a graph. The most influential example of graph mining is Facebook
Graph Search.

Friends of friends of friends of mine who like Real Racing 3 Q "% Vikram  Home

E Friends of friends of friends of mine who like Real Racing 3

REAL Real Racing 3

RACING | S e Sports

Friends of friends of friends of friends of mine who like Real Racing 3 A8, Natansh Verma

) B m My friends of friends who are friends of friends of mine who like Real Racing 3

n Friends of friends of friends of mine who live nearby who like Real Racing 3

m Friends of friends of friends of mine who are students who like Real Racing 3

Play Now  Send to Mobile

More Than 1,000 People = Share

Gender Add... «
Friends of friends of my friends of friends and mine who like Real Racing 3 Relationship Add... ~

Employer Add... +

See more results for "Friends of friends of friends of mine who like Real Racing 3"
Current City | Add... v
v 1+ Add Friend | '™ Message -
Hometown | Add...
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Chapter 1

Text mining

Extraction of meaning from unstructured text data present in social media is
described as text mining. The primary targets of this type of mining are blogs and
micro blogs such as Twitter. It's applicable to other social networks such as Facebook
that contain links to posts, blogs, and other news articles.

/‘"',;:‘\
Social Media =
Sites —

s )

Extraction and preparation Applying Text Mining

(Extraction, categorization,
P o S
-\&g;;;\l clustering etc)
Lh-h___/ |
Text Collection \@

Results

The generic process of social media
mining
Any data mining activity follows some generic steps to gain some useful insights
from the data. Since social media is the central theme of this book, let's discuss these
steps by taking example data from Twitter:

* Getting authentication from the social website

* Data visualization

* (leaning and preprocessing

* Data modeling using standard algorithms such as opinion mining, clustering,
anomaly/spam detection, correlations and segmentations, recommendations

e Result visualization

[71



Fundamentals of Mining

Getting authentication from the social website
— OAuth 2.0

Most social media websites provide API access to their data. To do the mining, we
(as a third-party) would need some mechanism to get access to users' data, available
on these websites. But the problem is that a user will not share their credentials with
anyone due to obvious security reasons. This is where OAuth comes in the picture.
According to its home page (http://ocauth.net/), OAuth can be defined as follows:

An open protocol to allow secure authorization in a simple and standard method
from web, mobile and desktop applications.

To understand it better, let's take an example of Instagram where a user can

allow a printing service access to his/her private photographs stored on
Instagram's server, without sharing her credentials with the printing service.
Instead, they authenticate directly with Instagram, which issues the printing
service delegation-specific permissions. The user here is the primary owner of

the resource and the printing service is the third-party client. Social media websites
such as Instagram, Twitter, and Facebook allow various applications to access

user data for various advertisements or recommendations. Almost all cab service
applications access user location.

Here's a diagram illustrating the concept:

Log into game via

= "ﬂ Facehook ) .
| - - Game
- - ‘
A —
Access user data | ==
from Facebook v ‘
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OAuth 2.0 provides various methods in which different levels of authorizations of
the various resources can reliably be granted to the requesting client application.
One of the most frequently used and most important use cases is the authorization
of World Wide Web server data to another World Wide Web server/application.

The following image shows the authentication process:

Facebook/
Google/
Foursquare/,

Client App

Access App

v

A

Login via Google,
Facebook, Twitter
etc. Login to Client App via

Foursguare, Google etc.

.
L

A

Redirect to Client App,
include authentication
code

Access redirect URL || Send authentication code,
client id, client secret

L

4
-

Return access token

~ User logged in

Let's look at the various steps involved:

1. The client accesses the web app with the button Login via Twitter (or Login
via LinkedIn or Login via Facebook).

2. This takes the client to an app, which will authenticate it. The client app then
asks the user to allow it the access to his/her resources, that is, the profile
data. The user needs to accept it to go the next step.

[o]
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3.

The client is then redirected to a redirect link via the authenticating app,
which the client app has provided to the authenticating app. Usually, the
redirect link is delivered by registering the client app with the authenticating
app. The user of the client app also registers the redirect link and at the same
time authenticating app also gives the client app with client credentials.

Using the redirect link, the client contacts the website in the client app.
During this step, a connection between authenticating app and client
app is made and the authentication code received in the redirect request
parameters. So, an access token is returned by the authenticating app.

Depending on the network, the access provided by the access token can be
constrained not only in terms of the information but also the life of the access token
itself. As soon as the client app obtains an access token, this access token can be sent
to the respective social media organizations, such as Facebook, LinkedIn, Twitter,
and so on, to access resources in these servers that are related to the clients who gave
permission via the tokens.

Differences between OAuth and OAuth 2.0

Here are some of the major differences:

More flows in OAuth 2.0 to permit improved support for non-browser
based apps

OAuth 2.0 does not need the client app to have cryptography
OAuth 2.0 offers much less complicated signatures
OAuth 2.0 generates short-lived access tokens, hence it is more secure

OAuth 2.0 has a clearer segregation of roles concerning the server responsible
for handling user authorization and the server handling OAuth requests

Data visualization R packages

A number of visualization R packages for text data are available as R package.
These libraries, based on available data and objective, provide various options
varying from simple clusters of words to the one inline with semantic analysis or
topic modeling of the corpus. These libraries provide means to better understand
text data. In this book, we'll use the following libraries:

[10]
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The simple word cloud

One of the simplest and most frequently used visualization libraries is the simple
word cloud. The basic intent to using word cloud is to visualize the weights of the
words present. The "wordcloud" R library helps the user get an understanding

of weights of a word/term with respect to the tf-idf matrix. The weights are
proportional to the size and color of the word you see in the plot. Here's an
example of one such simple word cloud based on the corpus created from tweets:

Enow hitptcoyddprphyz eally
g 2 .
|- = .= pictures
.‘r! photos am
home courses neura R '.1==o
) googleresearch . developer
;r: published i engineer
: R automatically Sta rtl I n g ytimes
Z businessinsider -
. 'rlur‘-efu bigdata 1=eJ . Kar;zrl‘]se ;(
° . rst now W sday
=" machines
@ . using paci
@ &  authors meac
T 5% . thousand read
| trawe describe i
3 £ & . é job  joseph -
I tunes  worlds ©  worth  par
wants amp research &
word  POSt make  mgn research  §
mobile new sys‘[em @ Open C
P work 2 sirosh 3
. wigird o
. 3 algorithm data ™ g
J‘_E: : trading pooss tech top time cogritive
2 indicators  NEXt accuracy big & potwe .
2 iphone . 5
% ..  Pproduce microsoft g
interview ~ mac datascience @
y socid B res I 5 i predictiv
z_l:u—._ mzle cap‘rlons S al  words o . sai predictive
e _ e e o 4+« software
httptcotfufjnbr E g goog g 8¢ i
. via < g ©  kdnuggets
- - [+ Dusines: desige
~ teaching
progress ] webinar image  Ye4rS :;:'dome
L] " v aluabie =
machinelearnin -
|===’=1 sm:ttptcc:;.liz:bqy\k -E!?:ellige|1i:es ;:f.iz - I e

[11]




Fundamentals of Mining

Sentiment analysis Wordcloud

There are R packages that can generate a word cloud similar to the preceding figure,
along with the sentiments each word is representing. Such plots are one step ahead
of the basic word cloud because they let the user get an understanding of what kind
of sentiments are present and why the particular documents (collection of tweets)
are of a particular nature (joy, sadness, disgust, love, and so on.). Timothy Jurka
developed one such package, which we are going to use. The two main functions

of this package are as follows:

* Classify emotion: As the name suggests, the procedure helps the user
understand the type of sentiment that is present. This procedure also
clusters the words present in the query based on the sentiment and level of
emotions that particular word present. A voting-based classification is one
the algorithms used in this particular procedure. The Naive Bayes algorithm
is also used for more enhanced results. The training dataset used on the
above algorithms is from Carlo Strapparava and Alessandro Valitutti.
Here's a sample output:
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* Classify polarity: This procedure indicates the overall polarity of
the emotions (positive or negative). This is, in a way, an extension of
the procedure. The training data used here comes from Janyce Wiebe's
subjectivity lexicon.

The most commonly used visualization library for Facebook data is Gephi. The key
difference between Facebook and Twitter is the richness of the profile of a user

and the social connections one shares on Facebook. Gephi helps users visualize

both of the distinctions in a very pleasant way. It enables a user to understand the
impact one Facebook profile has, or could have, over the network. Gephi is highly
customizable and user-friendly library. We'll discuss this in Chapter 3, Find Friends on
Facebook. As a working example, here's the graph representation of a social network
of two friends.

Many more R packages are available to visualize most social media data. For more
information, refer to the following links:
® http://rcytoscape.systemsbiology.net/versions/current/index.html
®* http://cran.us.r-project.org/web/packages/sna/index.html

® http://statnetproject.org/
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Preprocessing and cleaning in R

Preprocessing and cleaning are the very basic and first steps in any data-mining
problem. A learning algorithm on a unified and cleaned dataset cannot only run
very fast, but can also produce more accurate results. The first steps involve the
annotation of target data, in the case of classification problems and understating
the feature vector space, to apply an appropriate distance measure for clustering
problems. Identification of noise samples and their clean up is a very tricky task but
the better it's done, the more accuracy one can expect in the results. As mentioned
previously, you need to be careful in cleaning tasks as this can lead to a rejection of
good samples. Furthermore, the preprocessing steps need to be a reversible process
because at the end of the exercise, the results need to be processed back to the
original sample space for it to make sense.

Data modeling — the application of mining
algorithms

Let's look at some of the standard mining algorithms.

Opinion mining (sentiment analysis)

In simple words, opinion mining or sentiment analysis is the method in which we
try to assess the opinion/sentiment present in the given phrase. The phrase could be
any sentence. Though our examples would be English, the sentiment analysis is not
limited to any language. Also, the sentence could come from any source —it could
be a 140-character tweet, Facebook post/chats, SMSs, and so on. Consider the
following examples:

* Visiting to the wonderful places in Europe. Feeling real happy — Positive.
e Jlove little sunshine in winters, make me feel live —Positive.
* Tamstuck in a same place, feeling sad —Negative.

* The cab driver was a nice person. Think many of them are actually good
people —Positive.

[14]
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Sentiment analysis can play a crucial role in understanding the costumer sentiment,
which can actually affect the growth of any business. With social media platforms
such as Twitter, the meaning of the saying words are mightier than swords, has reached
a whole new level. In the next chapter, we'll see how the customer sentiments can
affect the growth of business. Also, there is nothing like word of mouth marketing,
and again social media platforms can help you provide more business via the words
of real customers. This field has become so advanced that people have actually
predicted the outcomes of major elections based on the sentiments of the voters.
Similarly, stock market forecasts are now being generated based on the analysis

of customer tweets.

Steps for sentiment analysis

A belief or an opinion or sentiment to a computer can be described as a
quintuple; that is an object in a five dimensional space, where each axis
represents the following:

* Oy This is the objective (that is, product). It is realized via named
entity extraction.
* £, This is a feature of O, It is assessed using information mining theory

* SO, This is the sentiment value of the opinion of the opinion holder hi on
feature f, of object o, at time t,

* h; This is the information miner

e T, This is for data extraction
Perform the following steps to get the sentiment value SO,:

1. Part-of-speech tagging (pos) means the term in the text (or the sentence)
that are marked using a pos-tagger so that it allocates a label to each term,
allowing the system to do something with it.

2. Welook at sentiment orientation (SO) of the patterns we mined. For
example, we may have extracted Remarkable + Handset, which is, [J]]
+ [NN] (or adjective trailed by noun). The opposite might be "Awful" for
instance. In this phase, the system attempts to position the terms on an
emotive scale.

3. The average sentiment orientation of all the terms we gathered is computed.
This allows the system to say something like:
°  "Usually individuals like the fresh Handset." They recommend it

°  '"Usually individuals hate the fresh Handset." They don't
recommend it

[15]
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It's not easy to classify sentiments; nonetheless there are various classification
algorithms, which have been employed to aid opinion mining. These algorithms vary
from simple probabilistic classifiers such as Naive Bayes (probability classifier that
assumes all the features are independent and does not use any prior information)

to the more advanced classifiers such as maximum entropy (which uses the prior
information to a certain extent.

Many hyperspace classifiers such as Support Vector Machine (SVM) and Neural
Networks (NN) have also been used to correctly classify the sentiments. Between
SVM and NN, SV, in general, works wonders due to the kernel trick.

There are other methods being explored as well. For example, Anomaly/spam
detection or social spammer detection. Fake profiles created with a malicious
intention are known as spam or anomalous profiles. The user who creates such
profiles often pretend to be someone they are not and try to perform some
inappropriate activity, which can eventually cause problems for the person they
were imitating as well as to others. There has been an increase in the number of cases
of online bullying, trolling, and so on, which are direct causes of social spamming,.
We'll show you the various classification algorithms to detect these fake profiles in
Chapter 3, Find Friends on Facebook.

b ii.-.-_:_-_
TRUE 95 HIGH 0.20 1
FALSE 60 Low 0.22 1
Induction
FALSE 220 HIGH 0.89 -1 T
TRUE 85 HIGH 0.11 a Algarithm)
FALSE 90 LOW 0.49 1
FALSE 75 HIGH 0.74 Al
Test Se
FALSE 85 HIGH 0.11 ?
Deduction
TRUE 22 Low 0.19 Bl
FALSE 40 LOwW 0.44 ?
TRUE 55 HIGH 0.64 ?
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The algorithms we'll use to identify the spam and/or spammers based on a same
example datasets, fall under the general class of algorithms known as supervised
machine learning algorithms. The example dataset used in these algorithms is called
training set. For notational consistency, let's say each i record in the training set as
a pair consists of an input vector represented by x; and output label represented by
y,. The vector x, consists of a set of features representative of the i sample point.
The task of such an algorithm is to infer a function f (from a given possible set of
functions F) which can map the x/'s to the respective y 's, with high level of accuracy.
This function f is sometimes also called a learned/trained model. The process of
inferring f, using the training data is called learning. Once the model is trained, we
use this learned model with the new records to identify new labels. The ability of
such a model/algorithm to correctly identify the new example set (also called test
set) labels that differ from the training set, is known as generalization.

There are many algorithms under the class of supervised machine learning
algorithms such as the Naive Bayes classifier, Decision tree classifier, and so on. One
such algorithm is SVM. In a two-class (binary) classification problem, an SVM is the
maximal margin hyperplane that separate the two classes with the largest possible
margin. If there are more than two classes, then multiple SVMs are learned under
one-versus-rest or one-versus-one methods; discussing these two methods is beyond
the scope of the book.

The following figure illustrates a binary classification by SVM. The red and black
dots are part of training data point x/'s, representing the two types of the label y..
SVM comes with a neat transformation, which can transform the current feature
space to a new feature space using various kernels. Discussing the details is beyond
the scope of this book.

X4
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Community detection via clustering

In graph analogy, a community is a set of nodes between which the
communications/ interactions are rather more frequent than with those outside the
set. From a marketing point of view, community detection become very crucial and
has been proven to be very rewarding in terms of return-of-investments (ROIs). For
example, travel enthusiasts can be identified on various social media websites based
on their visited places, posts, comments, tweets, and so on. If such segmentation
can be done, then selling them some product related to travel (such as a handheld
compass, travel pillow, global alarm clock, binoculars, slim digital camera,
noise-cancelling headphones, and so on) would stand a higher chance of

purchase. Hence, with a focused marketing effort, the business can get

more ROIs.

While spam detection is a supervised machine-learning task, community detection
or clustering falls under the class of unsupervised learning algorithms. Social media
offers two types of communities. Some are explicitly created groups with people

of common location, hobbies, or occupation. There are several other people who
might not be connected to such groups. Identification of these people is a clustering
task. This is performed based on their interaction (for example, they mentioned a
common thing in their comments/posts/tweets) as features sets (x,'s) and without
label information (as in the case of supervised machine learning algorithms). These
features are passed to various unsupervised machine learning algorithms to find
the commonalities and hence the communities. Many algorithms also provide

the extent/degree/ affinity score with which a particular person belongs to a
specific community.

There are many algorithms and techniques proposed in academia that we'll discuss
in detail in the following chapters. Basically, these methods are based on calculation
of the influence on the link between various edges (people, locations, and other
such entities). Similar people are likely to be linked, and edges between these links
indicate that linked users will influence each other and become more similar, two
users in the same group or community if they have higher similarity.

[18]
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Result visualization

Visualization helps one understand more about the data in hand. A picture is worth
a thousand words. We get a better understanding of the feature space by representing
data on a graphical platform. Trends, anomalies, relationships, and other similar
patterns help us think more about the possible algorithm and heuristics to use on
the given data for a given problem. There can be various levels of abstraction and
granularities present in the data. Here's a list of a few standard methods used to
visualize data:

* Boxplots

* Scatter plots

*  Word clouds

* Decision trees

* Various social networks analysis tools such as Igraph, MuxViz, NetworkX,

and so on

In the next chapters, we'll show you how these help us understand the results better.
How to interpret the results is a crucial part of the mining process.

An example of social media mining

Let's look at a few examples of well-known social media sites:
Twitter

* What are people talking about right now?
* Mining entities from user's tweets

* Sentiment analysis
Facebook

* Gender analysis of Facebook post likes

* Analysis of Facebook friends network

* Inferring community behavior dynamically
* Fraud prevention

* Questions such as "Who influences whom?"

* Getting peoples' interest based on their chat history, such as with whom they
are chatting, what they are chatting, where they are chatting, and so on.

[19]
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Summary

In this chapter, we tried to familiarize the user with the concept of social media
and mining.

We discussed the OAuth API, which offers a technique for clients to allow
third-party entry to their resources without sharing their credentials. It also
offers a way to grant controlled access in terms of scope and duration.

We saw examples of various R packages available to visualize the text data.

We discussed innovative ways to analyze and study the text data via plots. The
application of sentiment analysis along with topic mining was also discussed in the
same sections. To many, it's a new way to look at these kinds of data. Historically,
people have used plots to plot numerical data, but plotting words on 2D graphs

is very new. People have made more advances than 2D plots. With Facebook and
LinkedIn, the Gephi library allows visualizing the social networks in 3D.

Next, you learned the basic steps of any data-mining problem along with various
machine learning algorithms. We'll see the applications of many of these algorithms
in the coming chapters. We briefly talked about sentiment analysis, anomaly
detection, and various community detection algorithms. So far, we have not gone
deep into any of the algorithms, but will dive into them in the later chapters.

In the next chapter, we will apply the knowledge gained so far to mine Twitter
and give detailed information of the methods and techniques used there.

[20]




Mining Opinions, Exploring
Trends, and More with Twitter

Our approach in this book is to use statistics and social science theory to mine social
media, and we'll use R as our base programming language.

In this chapter, we will cover the following:

* Twitter and its importance
* Getting hands-on with Twitter's data and using various Twitter APIs

* Use of data to solve business problems —comparison of various businesses
based on tweets

Twitter and its importance

Twitter can be considered an extension of the short messages service, or SMS, but on
an Internet-based platform. In the words of Jack Dorsey, co-founder and co-creator
of Twitter:

"...We came across the word 'twitter', and it was just perfect. The definition was
'a short burst of inconsequential information,' and 'chirps from birds'. And that's
exactly what the product was."

[21]
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Twitter acts as a utility with which people can send their SMSs to the whole world.

It enables people to instantaneously get heard and get a response. Since the audience
of this SMS is so large, responses are often very quick. Twitter facilitates the basic
social instincts of humans. By sharing on Twitter, a user can easily express his/her
opinion for just about everything, and at any time. Friends who are connected, or, in
the case of Twitter, followers, immediately get the information about what's going on in
someone's life. This in turn serves another human emotion — the innate need to know
about what is going on in someone's life. Apart from being real-time, Twitter's Ul is
really easy to work with. It's naturally and instinctively understood. That is, the Ul is
very intuitive in nature.

Each tweet on Twitter is a short message with maximum of 140 characters. Twitter
is an excellent example of a microblogging service. As of July 2014, the Twitter user
base exceeded 500 million, with more than 271 million active users. Around 23
percent are adult Internet users, which is also about 19 percent of the entire

adult population.

If we can properly mine what users are tweeting about, Twitter can act as a great
tool for advertisement and marketing. However, this not the only information
Twitter provides. Due to its non-symmetric nature in terms of followers and
followings, Twitter assists better in terms of understanding user interests than for
its impact on the social network. An interest graph can be thought of as a way to
learn the links between individuals and their diverse interests. Computing the
degree of association or correlations between individuals' interests and the potential
advertisements is one of the most important applications of the interest graphs.
Based on these correlations, a user can be targeted so as to attain a maximum
response to an advertising campaign, along with followers' recommendations.

One interesting fact about Twitter (and Facebook) is that the user does not need to
be a real person. A user on Twitter (or on Facebook) can be anything and anyone;

for example, an organization, a campaign, or a famous but imaginary personality

(a fictional character recognizable in the media) apart from a real/actual person.

If a real person follows these users on Twitter, a lot can be inferred about their
personality and hence ads or other followers can be recommended based on such
information. For example, @fakingnews is an Indian blog that publishes news satires
on subjects ranging from Indian politics to typical Indian mindsets. People who
follow @efakingnews are ones who, in general, like to read sarcasm news. Hence,
these people can be thought of as to belonging to the same cluster or community. If
we have another sarcastic blog, we can always recommend it to this community and
improve on advertisement return on investment. The chances of getting more hits via
people belonging to this community will be higher than a community that doesn't
follow efakingnews, or any such news in general.
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Once you have comprehended that Twitter allows you to create, link, and investigate
a community with an interest in a random topic, the influence of Twitter and the
knowledge one can find from mining it becomes clearer.

Understanding Twitter's APIs

Twitter APIs provide a means to access the Twitter data; that is, tweets sent by its
millions of users. Let's get to know these APIs a bit better.

Twitter vocabulary

As described earlier, Twitter is a microblogging service with a social aspect. It

allows its users to express their views/sentiments through an Internet SMS, called
"tweets" in the context of Twitter. These tweets are entities formed of maximum of
140 characters. The content of these tweets can be anything ranging from a person's
mood to person's location to a person's curiosity. The platform on which these tweets
are posted is called a Timeline. To use Twitter's APIs, one must understand the basic
terminology.

Tweets are the crux of Twitter. Theoretically, a tweet is just 140 characters of text
content tweeted by a user, but there is more to it than just that. There is more
metadata associated with the same tweet, which are classified by Twitter as
entities and places:

* The entities consist of hashtags, URLs, and other media data that users have
included in their tweets.

* The places are nothing but the locations from which the tweets originate. It is
possible the place is the real world location from which the tweet was sent, or
it could be a location mentioned in the text of the tweet.

Take the following tweet as an example:

Learn how to consume millions of tweets with @twitterapi at #TDC2014 in Sio
Paulo #bigdata tomorrow at 2:10pm http://t.co/pTBIWzTvVd

The preceding tweet was tweeted by eTwitterDev and it's about 132 characters long.
The following are the entities mentioned in this tweet:

e Handle: etwitterapi

* Hashtags: #TDC2014, #bigdata

e URL: http://t.co/pTB1WzTvVd
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Sao Paulo is the place mentioned in this tweet.

This is an example of a tweet with a fairly good amount of metadata. Although

the actual tweet's length is well within the 140-character limit, it contains more
information than one can think of. This actually enables us to figure out that this
tweet belongs to a specific community based on the cross-referencing of the topics
present in the hashtags, the URL of the website, the different users mentioned, and
so on. The interface (web or mobile) on which the tweets are displayed is called
the timeline. The tweets are, in general, arranged in chronological order of posting
time. On a specific user's account, only a certain number of tweets are displayed by
Twitter. This is generally based on the users the given user is following and is
being followed by. This is the interface a user will see when he/she login his/her
Twitter account.

Twitter streams are different from a Twitter timeline in the sense that they are not
for a specific user. The tweets on a user's Twitter timeline will be displayed from
only a certain number of users, and will be displayed/updated less frequently, while
the Twitter stream is a chronological collection of the all the tweets posted by all the
users. The number of active users on Twitter is in the order of hundreds of millions.
All the users tweeting during some public events of widespread interest, such as
presidential debates, can achieve volumes of several hundreds of thousands of
tweets per minute. The behavior is very similar to a stream; hence the name of

such a collection is a Twitter stream.

You can try the following by creating a Twitter account (it would be more insightful
if you have few followers already with you). Before creating the account, it is advised
that you read all the terms and conditions of the site. You can also start reading its
API documentation, but that is not mandatory for the step we will discuss in the

next sections.

Creating a Twitter APl connection

We need to have an app created at https://dev.twitter.com/apps before making
any API requests to Twitter. It's a standard method for developers to gain API access,
and, more importantly, it helps Twitter to observe and restricts developer from
making high load API requests.

The roAuth package is the one we are going to use in our experiments. Recall that in
Chapter 1, Fundamentals of Mining, we discussed a lot about the oauth protocol to for
obtaining tokens. These tokens allow users to authorize third-party apps to access
the data from any user account without the need to have their passwords (or other
sensitive information). ROAuth basically facilitates the same thing.
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Creating a new app

The first step toward getting any kind of token access from Twitter is to create an
app on it. You have to go to https://dev.twitter.com/ and log in with your
Twitter credentials. Having logged in using your credentials, the step for creating
an app are as follows:

1. Gotohttps://apps.twitter.com/app/new.

2. Put the name of your application in the Name field. This name can be
anything you like.

3. Similarly, enter the description in the Description field.

The Website field needs to be filled with a valid URL, but, again,
that can be any random URL.

5. You can leave the Callback URL field blank.

B T 3§ Greate an application | T % |

- C i (@ hitps://apps.twitter.com/app/new

W Application Management
—_— s

Create an application

Application Details
Name *

Social Media Mining With R

Description *

A Twitter App to import Tweets in R

Website *

https://www.google.com|

Callback URL

Developer Agreement
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After the creation of this app, we need to find the API Key and API Secret
values from the Key and Access Token tab. Consider the example shown in
the following figure:

P e T TR e
] ® / W Sccial Media Mining With | % \ \

« C fi @ https://apps.twitter.com/app/7360738/keys

¥ Application Management ﬂ ~
e e T |

Social Media Mining With R

Details Settings Keys and Access Tokens Permissions

Application Settings

Consumer Key (API Key) 169TdiUIKMgE110k6F0Ybiacq

Consumer Secret (API Secret) ZKTusSEKVCs7TQMTKXTwEE]cj4ale87WVWNSzj4040LIkD9oig
Access Level Read-only (modify app permissions)

Owner Vikram_Garg

Owner ID 64227694

Application Actions

Regenerate Gonsumer Key and Secret Change App Permissions

Under the Key and Access Tokens tab, you will find a button to generate access
tokens. Click on it and you will be provided with an Access Token and Access
Token Secret value.

Before using the preceding keys, we need to install twitteR to access the data in R
using the app we just created. Use the following code:

install.packages (c("devtoolg", "rjson", "bité64", "httr"))
library(devtools)

install github("geoffjentry/twitteR").

library (twitteR)

Downloading the example code

\ You can download the example code files from your account at
~ http://www.packtpub.com for all the Packt Publishing books
Q you have purchased. If you purchased this book elsewhere, you
can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.
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Here's sample code that helps us access the tweets posted since any given date

and which contain a specific keyword. In this example, we are searching for tweets
containing the word Earthquake in the tweets posted since September 29, 2014. In
order to get this information, we provide four special types of information to get the
authorization token:

* Key
e Secret
e Access token

e Access token secret

We'll show you how to use the preceding information to get an app authorized by
the user and access its resources on Twitter. The ROAuh function in twitter will
make our next steps very smooth and clear:

api_key<- "your_ api key"

apl_ secret<- "your api secret"

access_token<- "your access_token"

access_token secret<- "your access_token secret"
setup_twitter_oauth

(api_key,api secret,access_token,access_ token secret)
EarthQuakeTweets = searchTwitter ("EarthQuake", since='2014-09-29'")

You can also download the code from:
https://github.com/gargvikram07/SMMR Twitter

The results of this example should simply display Using direct authentication with
25 tweets loaded in the EarthQuakeTweets variable, as shown here.

head (EarthQuakeTweets, 2)

[[1]1]

[1] "TamamiJapan: RT @HistoricalPics: Japan. Top: One Month After
Hiroshima, 1945. Bottom: One Month After The Earthquake and Tsunami,
2011. Incredible. http.."

[[2]]

[1] "OldhamDs: RT @HistoricalPics: Japan. Top: One Month After
Hiroshima, 1945. Bottom: One Month After The Earthquake and Tsunami,
2011. Incredible. http.."

We have shown the first two of the 25 tweets containing the word Earthquake since
September 29, 2014. If you closely observe the results, you'll find all the metadata we
discussed in the previous section using str (EarthQuakeTweets[1]).
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Finding trending topics

Now that you understand how to create API connections to Twitter and fetch data
using it, we will look at how to get answer to what is trending on Twitter to list what
topic (worldwide or local) is being talked about the most right now. Using the same
API, we can easily access the trending information:

#ireturn data frame with name, country & woeid.
Locs <- availableTrendLocations ()

# Where woeid is a numerical identification code describing a location
ID

# Filter the data frame for Delhi (India) and extract the woeid of the

same
LocsIndia = subset (Locs, country == "India")
woeidDelhi = subset (LocsIndia, name == "Delhi") Swoeid

# getTrends takes a specified woeid and returns the trending topics
associated with that woeid

trends = getTrends (woeid=woeidDelhi)

The function availableTrendLocations () returns R dataframe containing the
name, country, and woeid parameters. We then filter this data frame for a location of
our choosing; in this example, its Delhi, India. The function getTrends () fetches the
top 10 trends in the location determined by the woeid.

Here are the top four trending hashtags in the region defined by woeid = 20070458,
that is, Delhi, India:

head (trends)
name url query woeid

1 #AntiHinduNGOsExposed http://twitter.com/search?q=%23AntiHinduNGOsSEx
posed %23AntiHinduNGOsExposed 20070458

2 #KhaasAadmi http://twitter.com/search?g=%23Khaas
Aadmi %$23KhaasAadmi

20070458

3 #WinGOSF14 http://twitter.com/search?g=%23WinG
OSF14 %$23WinGOSF14

20070458

4 #ItsForRealONeBay http://twitter.com/search?g=%23ItsForReal
ONeBay

%23ItsForRealONeBay 20070458
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Searching tweets

Similar to trends, there is one more important function that comes with the Twitter
package: searchTwitter (). This function will return tweets containing the searched
string, along with the other constraints. Some of the constraints that can be imposed
are as follows:

* lang: This constraints the tweets of given language

* since/until: This constraints the tweets to be since the given date or until
the given date

* geocode: This constraints tweets to be from only those users who are located
within a certain distance from the given latitude/longitude

For example, extracting tweets about the cricketer Sachin Tendulkar in the month of
November 2014 returns the following:

head (searchTwitter ('Sachin Tendulkar', since='2014-11-01",
until= '2014-11-30"))

[[1]1]
[1] "TendulkarFC: RT @Moulinparikh: Sachin Tendulkar had a long
session with the Mumbai Ranji Trophy team after today's loss."

(211

[1] "tyagi_niharika: @WahidRuba @Anuj dvn @Neel D @alishatarig3
@VWellwishers @Meenal_ Rathore oh... Yaadaaya....hmaraesachuuu
sir\xed\xa0\xbd\xed\xb8\x8d..i mean sachin Tendulkar"

[[31]

[1] "Meenal Rathore: @WahidRuba @Anuj dvn @tyagi niharika @Neel D
@alishatarig3 @AliaaFcc @VWellwishers .. Sachin Tendulkar
\xed\xa0\xbd\xed\xb8\x8a0"

[[4]]

[1] "MishraVidyanand: Vidyanand Mishra is following the Interest
\"The Living Legend SachinTendu...\" on http://t.co/tveHXMB4BM -
http://t.co/CocNMcxFge"

[[51]
[1] "CSKalwaysWin: I have never tried to compare myself to anyone
else.\n - Sachin Tendulkar"
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Twitter sentiment analysis

Depending on the objective, and based on the functionality to search any type of
tweets from the public timeline, one can always collect the required corpus. For
example, you may want to learn about customer satisfaction levels with various cab
services, which are up and coming in the Indian market. These start-ups are offering
various discounts and coupons to attract customers, but at the end of the day, the
service quality determines the business of any organization. These start-ups are
constantly promoting themselves on various social media websites. Customers

are showing various sentiments on the same platform.

Let's target the following;:

e Meru Cabs: A radio cabs service based in Mumbai, India, launched in 2007

* Ola Cabs: A taxi aggregator company based in Bangalore, India, launched
in 2011

* TaxiForSure: A taxi aggregator company based in Bangalore, India, launched
in 2011

* Uber India: A taxi aggregator company headquartered in San Francisco,
California, launched in India in 2014

Let's make it our goal to get the general sentiments about each of the preceding
service providers based on the customer sentiments present in the tweets on Twitter.

Collecting tweets as a corpus

We'll start with the searchTwitter () function (discussed previously) on the
TwitteR package to gather the tweets for each of the preceding organizations.

Now, in order to avoid writing the same code again and again, we push the
following authorization code in the file called authenticate.R:

library (twitteR)

api key<- "xx"

apl secret<- "xx"

access token<- "xx"
access_token secret<- "xx"

setup twitter oauth(api key,api secret,access_ token,
access_token secret)
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We run the following scripts to get the required tweets:

# Load the necessary packages
source ('authenticate.R')

Meru tweets = searchTwitter ("MeruCabs", n=2000, lang="en")
Ola_tweets = searchTwitter ("OlaCabs", n=2000, lang="en")

TaxiForSure tweets =
searchTwitter ("TaxiForSure", n=2000, lang="en")
Uber tweets = searchTwitter ("Uber Delhi", n=2000, lang="en")

Now, as mentioned in Twitter's Rest API documentation, we get the message

"Due to capacity constraints, the index currently only covers about a week's
worth of tweets". We do not always get the desired number of tweets (for example,
here, it's 2,000). Instead, the following are the sizes of each of the preceding tweet
lists we get the following;:

>length (Meru_ tweets)

[1] 393

>length(Ola_tweets)

[1] 984

> length (TaxiForSure tweets)
[1]1 720

> length (Uber tweets)

[1] 2000

As you can see from the preceding code, the length of these tweets is not equal to the
number of tweets we asked for in our query scripts. There are many things to take
away from this information. Since these tweets are only from the last week's tweets
on Twitter, they suggest there is more discussion about these taxi services in the
following order:

e Uber India

e QOla Cabs
e TaxiForSure
e  Meru Cabs
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A ban was imposed on Uber India after an alleged rape incident by one Uber India
driver. The decision to put a ban on the entire organization because one of its
drivers committed a crime became a matter of public outrage. Hence, the number of
tweets about Uber increased on social media. Now, Meru Cabs have been in India
for almost seven years. Hence, they are quite a stable organization. The amount of
promotion Ola Cabs and TaxiForSure are doing is way higher than that done by
Meru Cabs. This could be one reason for Meru Cabs having the lowest number (393)
of tweets in last week. The number of tweets in the last week is comparable for Ola
Cabs (984) and TaxiForSure (720). There could be several reasons for this. They both
started their business in same year, and, more importantly, they follow the same
business model. Meru Cabs is a radio taxi service and they own and manage a fleet
of cars, while Ola Cabs, TaxiForSure, or Uber are a marketplace for users to compare
the offerings of various operators and book easily.

Let's dive deep into the data and get more insights.

Cleaning the corpus

Before applying any intelligent algorithms to gather more insights from the
tweets collected so far, let's first clean the corpus. In order to clean up, we need to
understand what the list of tweets looks like:

head (Meru_tweets)

[[1]]

[1] "MeruCares: @KapilTwitts 2&gt;...and other details at
feedback@merucabs.com We'll check back and reach out soon."

[[21]

[1] "vikasraidhan: @MeruCabs really disappointed with @GenieCabs.
Cab is never assigned on time. Driver calls after 30 minutes. Why
would I ride with Meru?"

[[31]
[1] "shiprachowdhary: fallback of #ubershame , #MERUCABS taking
customers for a ride"

[[41]

[1] "shiprachowdhary: They book Genie, but JIT inform of
cancellation &amp; send full fare #MERUCABS . Very
disappointed.Always used these guys 4 and recommend them."

[[511]
[1] "shiprachowdhary: No choice bt to take the #merucabs premium
service. Driver told me that this happens a lot with #merucabs."
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[[6]]

[1] "shiprachowdhary: booked #Merucabsyestrdy. Asked for Meru

Genie. 10 mins 4 pick up time, they call to say Genie not available,
so sending the full fare cab"

The first tweet here is a grievance solution, while the second, fourth, and fifth are
actually customer sentiments about the services provided by Meru Cabs. We see
the following:

* Lots of meta information such as @people, URLs and #hashtags
* Punctuation marks, numbers, and unnecessary spaces

* Some of these tweets are retweets from other users; for the given application,
we would not like to consider retweets (RTs) in sentiment analysis

We clean all these data by using the following code block:

MeruTweets <- sapply (Meru tweets, function(x) x$getText ())
OlaTweets = sapply(Ola tweets, function(x) x$getText ())

TaxiForSureTweets = sapply(TaxiForSure tweets,
function (x) x$getText ())

UberTweets = sapply(Uber tweets, function(x) x$getText())

catch.error = function (x)
{
# let us create a missing value for test purpose
y = NA
# Try to catch that error (NA) we just created
catch error = tryCatch(tolower (x), error=function(e) e)
# if not an error
if (!inherits(catch error, "error"))
y = tolower (x)
# check result if error exists, otherwise the function works fine.
return (y)

cleanTweets<- function (tweet) {

# Clean the tweet for sentiment analysis

# remove html links, which are not required for sentiment analysis
tweet = gsub (" (£|ht) (tp) (s?) (://) (.*) [.|[/1(.*)", " ", tweet)

# First we will remove retweet entities from
the stored tweets (text)

tweet = gsub (" (RT|via) ((?:\\b\\W*@\\w+)+)", " ", tweet)

# Then remove all "#Hashtag"

tweet = gsub ("#\\w+", " ", tweet)

# Then remove all "@people"
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tweet = gsub("e@\\w+", " ", tweet)
# Then remove all the punctuation
tweet = gsub("[[:punct:]]1", " ", tweet)
# Then remove numbers, we need only text for analytics
tweet = gsub("[[:digit:]]", " ", tweet)
# finally, we remove unnecessary spaces (white spaces, tabs etc)
tweet = gsub("[ \tl{2,}", " ", tweet)
tweet = gsub (""\\s+|\\s+$", "", tweet)

# if anything else, you feel, should be removed, you can.
For example "slang words" etc using the above function and methods.

# Next we'll convert all the word in lower case.
This makes uniform pattern.

tweet = catch.error (tweet)
tweet

cleanTweetsAndRemoveNAs<- function (Tweets) {

TweetsCleaned = sapply(Tweets, cleanTweets)

# Remove the "NA" tweets from this tweet list

TweetsCleaned = TweetsCleaned[!is.na (TweetsCleaned)]
names (TweetsCleaned) = NULL

# Remove the repetitive tweets from this tweet list

TweetsCleaned = unique (TweetsCleaned)

TweetsCleaned

}

MeruTweetsCleaned = cleanTweetsAndRemoveNAs (MeruTweets)
OlaTweetsCleaned = cleanTweetsAndRemoveNAs (OlaTweets)

TaxiForSureTweetsCleaned <-
cleanTweetsAndRemoveNAs (TaxiForSureTweets)

UberTweetsCleaned = cleanTweetsAndRemoveNAs (UberTweets)

Here's the size of each of the cleaned tweet lists:

> length (MeruTweetsCleaned)

[1] 309

> length (OlaTweetsCleaned)

[1] 811

> length (TaxiForSureTweetsCleaned)
[1] 574

> length (UberTweetsCleaned)

[1] 1355
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Estimating sentiment (A)

There are many sophisticated resources available for estimating sentiments.
Many research papers and software packages are available open source, and
they implement very complex algorithms for sentiment analysis. After getting
the cleaned Twitter data, we are going to use few such R packages to assess the
sentiments in the tweets.

It's worth mentioning here that not all the tweets represent sentiments.

A few tweets can be just information/facts, while others can be customer care
responses. Ideally, they should not be used to assess the customer sentiment
about a particular organization.

As a first step, we'll use a Naive algorithm, which gives a score based on the number
of times a positive or a negative word occurred in the given sentence (and, in our
case, in a tweet).

Please download the positive and negative opinion/sentiment (nearly 68, 000) words
from English language. This opinion lexicon will be used as a first example in our
sentiment analysis experiment. The good thing about this approach is that we are
relying on highly researched, and at the same time customizable, input parameters.
Here are a few examples of existing positive and negative sentiment words:

* Positive: Love, best, cool, great, good, and amazing

* Negative: Hate, worst, sucks, awful, and nightmare

>opinion.lexicon.pos =
scan('opinion-lexicon-English/positive-words.txt',
what="'character', comment.char="';")
>opinion.lexicon.neg =
scan('opinion-lexicon-English/negative-words.txt',
what="'character', comment.char="';")

> head (opinion.lexicon.neg)

[1] "2-faced" "2-faces" "abnormal" "aboligh"
"abominable" "abominably"

> head (opinion.lexicon.pos)

[1] "a+" "abound" "aboundg" "abundance" "abundant"
"accessable"

We'll add a few industry-specific and/or especially emphatic terms based on
our requirements:

pos.words = c(opinion.lexicon.pos, 'upgrade')
neg.words = c(opinion.lexicon.neg, 'wait',
'waiting', 'wtf', 'cancellation')
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Now, we create a function, score. sentiment (), which computes the raw sentiment
based on the simple matching algorithm:

getSentimentScore = function (sentences, words.positive,
words.negative, .progress='none')

{
require (plyr)
require (stringr)

scores = laply(sentences,
function (sentence, words.positive, words.negative) {

# Let first remove the Digit, Punctuation character and Control

characters:
sentence = gsub('[[:cntrl:]]"', '', gsub('[[:punct:]]"', '',
gsub ('\\d+', '', sentence)))

# Then lets convert all to lower sentence case:
sentence = tolower (sentence)

# Now lets split each sentence by the space delimiter
words = unlist(str split(sentence, '\\s+'))

# Get the boolean match of each words with the positive & negative
opinion-lexicon

pos.matches = !is.na(match(words, words.positive))

neg.matches = !is.na(match(words, words.negative))

# Now get the score as total positive sentiment minus the total
negatives
score = sum(pos.matches) - sum(neg.matches)

return (score)
}, words.positive, words.negative, .progress=.progress )

# Return a data frame with respective sentence and the score
return (data.frame (text=sentences, score=scores))
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Now, we apply the preceding function to the corpus of tweets collected and cleaned

so far:

MeruResult = getSentimentScore (MeruTweetsCleaned, words.positive ,

words .negative)

OlaResult = getSentimentScore (OlaTweetsCleaned, words.positive ,

words .negative)

TaxiForSureResult = getSentimentScore (TaxiForSureTweetsCleaned,
words.positive , words.negative) UberResult =
getSentimentScore (UberTweetsCleaned, words.positive ,

words .negative)

Here are some sample results:

Tweet for Meru Cabs Score
gt and other details at feedback com we 11 check back and 0
reach out soon

really disappointed with cab is never assigned on time driver | -1
calls after minutes why would i ride with meru

so after years of bashing today i m pleasantly surprised 4
clean car courteous driver prompt pickup mins efficient route

a min drive cost hrs used to cost less ur unreliable and -3
expensive trying to lose ur customers

Tweet For Ola Cabs Score
the service is going from bad to worse the drivers deny to -3
come after a confirmed booking

love the olacabs app give it a swirl sign up with my referral |1
code dxf n and earn rs download the app from

crn kept me waiting for mins amp at last moment driver -4
refused pickup so unreliable amp irresponsible

this is not the first time has delighted me punctuality and 4
free upgrade awesome that

Tweet For TaxiForSure Score
great service now i have become a regular customer of tfs 5
thank you for the upgrade as well happy taxi ing saving

really disappointed with cab is never assigned on time driver | -1
calls after minutes why would i ride with meru

horrible taxi service had to wait for one hour with a new -4
born in the chilly weather of new delhi waiting for them

what do i get now if you resolve the issue after i lost a -3
crucial business because of the taxi delay
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perhaps uber biz model does need some looking into it s not
just in delhi that this happens but in boston too

Tweet For Uber India Score
that s good uber s fares will prob be competitive til they 3
gain local monopoly then will go sky high as in new york amp
delhi saving
from a shabby backend app stack to daily pr fuck ups its -3
increasingly obvious that is run by child minded blow hards
you say that uber is illegally running were you stupid to not | -3
ban earlier and only ban it now after the rape

0

From the preceding observations, it's clear that this basic sentiment analysis

method works fine in normal circumstances, but in the case of Uber India, the results
deviated too much from a subjective score. It's safe to say that basic word-matching
gives a good indicator of overall customer sentiment, except in cases where the data
itself is not reliable. In our case, the tweets from Uber India are not really related to
the services that Uber provides, but rather the one incident of crime by its driver,

which made the whole score go haywire:

Histogram of MeruResult$score Histogram of OlaResult$score
g g
2 i1l - R I I
L.I': | | | LI.I: | | | | |
-2 0 2 4 -4 -2 0 2 4 5
MeruResult$score OlaResultfscore
Histogram of TaxiForSureResult$score Histogram of UberResult$score
=) =
2 2
[ (7]
= S g l_‘_m E— = g - ﬂ =
o f T I | z T — 1 T | 1
(TR [
-4 -2 0 2 4 43 -2 1 0 1 2 3
TaxiForSureResultSscore UberResultéscore
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Let's not compute a point statistic for the scores we have computed so far. Since the
numbers of tweets are not equal for each of the four organizations, we compute a
mean and standard deviation for each.

Organization Mean Sentiment Score Standard Deviation
Meru Cabs -0.2218543 1.301846
Ola Cabs 0.197724 1.170334
TaxiForSure -0.09841828 1.154056
Uber India -0.6132666 1.071094

Estimating sentiment (B)

Let's now move one step further. Instead of using simple matching of opinion
lexicon, we'll use something called Naive Bayes to decide on the emotion present

in any tweet. We will require packages called Rstem and sentiment to assist with
this. It's important to mention here that both these packages are no longer available
in CRAN, so we have to provide the repository location as a parameter install.
package () function. Here's the R script to install the required packages:

install.packages ("Rstem",

repos = "http://www.omegahat.org/R", type="source")

require (devtools)

install url("http://cran.r-project.org/src/contrib/Archive/sentiment/
sentiment 0.2.tar.gz") require (sentiment)

ls ("package:sentiment")

Now that we have the sentiment and Rstem packages installed in our R workspace,
we can build the bayes classifier for sentiment analysis:

library (sentiment)

# classify emotion function returns an object of class data frame #
with seven columns (anger, disgust, fear, joy, sadness, surprise, #
# best fit) and one row for each document:

MeruTweetsClassEmo = classify emotion (MeruTweetsCleaned,
algorithm="bayes", prior=1.0)

OlaTweetsClassEmo = classify emotion(OlaTweetsCleaned,
algorithm="bayes", prior=1.0)

TaxiForSureTweetsClassEmo =

classify emotion(TaxiForSureTweetsCleaned, algorithm="bayes",
prior=1.0)

UberTweetsClassEmo = classify emotion (UberTweetsCleaned,
algorithm="bayes", prior=1.0)
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The following figure shows a few results from Bayesian analysis using the
sentiment package for Meru Cabs tweets. Similarly, we generated results
for other cab services from our problem setup.

The sentiment package was built to use a trained dataset of emotion words (nearly

1,500 words). The function classify emotion () generates results belonging to one
of the following six emotions: anger, disgust, fear, joy, sadness, and surprise. When
the system is not able to classify the overall emotion as any of the six, NA is returned:
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[5.1

7.1

[14.]

[1,1"
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e,1 "

[&.1 "
e.1"
[1e,1 "
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> head(MeruTweetsClassEmo,28)

ANGER DISGUST FEAR Jor SADNESS SURPRISE BEST_FIT
"1.46B71776464786" "3.09234031207392" "Z.0E7B35995550953" "1.02547755260094" "1.7277@74477352" "Z.78695866252273"

[

NA
"1.46871776464786" "3.09234031207392" "2.86783599555953" "1.82547755260094" "1.7277@74477352" "2.78695866252273" NA
"2.78695866252273" NA
NA
NA

1.46871776464786" "3.09234031207392" "Z.06783599555953" "1.02547755260094" "1.7277074477352" "2

"1.46871776464786" "3.09234031207392" "2.06783599555953" "1.82547755260094" "1.7277@74477352" "2.78695866252273"
"1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094" "1.7277@74477352" "2.78695866252273"
1.46871776464786" "3.09234031207392" "Z.0ETB3599555953" "7.34083555412328" "1.7277074477352" "2.78695866252273" "joy"
"1.46871776464786" "3.09234031207392" "2.86783599555953" "1.82547755260094" "1.7277874477352" "2.78695866252273" NA
1.46871776464786" "3.09234031207392" "Z.06TB3599555953" "13.6561935556456" "1.7277074477352" "7.34083555412327" "joy"
"1.46871776464786" "3.09234031207392" "Z.B6783599555953" "1.82547755260094" "1.7277@74477352" "Z.78695866252273" NA
1.46871776464786" "3.09234031207392" "Z.06783599555953" "7.34083555412328" "1.7277074477352" "2.78695866452273" "joy"
1.46871776464786" "3.09234031207392" "2Z2.06TB3599555953" "7.34083555412328" "1.7277074477352" "2.78695866252273" "joy"
"1.46871776464786" "3.09234031207392" "2.B6783599555953" "1.82547755260094" "7.34883555412328" "2.78695866252273" "sadness”
1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094" "1.7277074477352" "2.7B8695866252273" NA
"1.46B71776464786" "3.09234031207392" "Z.067B3599555953" "1.82547755260094" "7.34883555412328" "7.34@83555412327" "sadness”
1.46871776464786" "3.09234031207392" "Z.06783599555953" "1.02547755260094" "1.7277@74477352" "2.78095806252273" NA
1.46871776464786" "3.09234031207392" "Z.06TB3599555953" "7.34083555412328" "7 .34083555412328" "2.78695866252273" "joy"
"7.34B83555412328" "3.09234031207392" "2.06783599555953" "1.82547755260094" "1.7277@74477352" "2.78695866252273" "anger"
7.34@83555412328" "3.89234031207392" "Z.06783599555953" "1.02547755260094" "1.7277074477352" "2.78695866452273" "anger”
1.46871776464786" "3.09234031207392" "Z.0ETB3599555953" "13.6561935556456" "1.7277074477352" "2.78695866252273" "joy"
"1.46871776464786" "3.09234031207392" "2.86783599555953" "1.82547755260094" "1.7277@74477352" "2.78695866252273" NA

Let's substitute these Na values with the word unknown to make further
analysis easier:

# we will fetch emotion category best fit for our analysis purposes.
MeruEmotion = MeruTweetsClassEmol[, 7]

OlaEmotion = OlaTweetsClassEmol[, 7]

TaxiForSureEmotion = TaxiForSureTweetsClassEmol[, 7]

UberEmotion = UberTweetsClassEmol[, 7]

MeruEmotion[is.na (MeruEmotion)] = "unknown"
OlaEmotion[is.na(OlaEmotion)] = "unknown"
TaxiForSureEmotion[is.na (TaxiForSureEmotion)] = "unknown"
UberEmotion[is.na (UberEmotion)] = "unknown"

[40]



Chapter 2

The best-fit emotions present in these tweets are as follows:

> head{MeruEmotion,Z2@) > head(0laEmotion, 200 > head(TaxiForSureEmotion,2@) > head(UberEmotion,2@)
[1] NA NA [1] NA NA [1] NA NA [1] NA NA

[3] HA NA [3] "sadness” “sadness” [3] "sadness” "sadness" [31 NA "anger"
[51 NA "joy" [5] "sadness” “joy" [5] "sadness" “"sadness" [5] NA NA

[7]1 NA "joy" [71 NA NA [7] NA NA [7] Na NA

[l NA "joy" [9] NA NA (91 “joy" NA [9] NA NA
[11] “joy" "sadness”  [11] NA "Joy" [11] NA NA [11] NA "sadness”
[13] NA "sadness" [13] "fear" "joy" [13] NA NA [13] NA MA
[15] NA "joy" [15] "surprise” “joy" [15] "sadness" NA [15] NA NA
[17] "anger"  “anger" [17] NA “Joy" [17] NA "Joy" [17] NA NA
[197 "joy" NA [1.9] "joy" MA [19] NA MA [19] NA NA

Further, we'll use another function, classify polarity (), provided by the
sentiment package, to classify the tweets into two classes, pos (positive sentiment)
and neg (negative sentiment). The idea is to compute the log likelihood of a

tweet, assuming it belongs to either of the two classes. Once these likelihoods are
calculated, a ratio of the pos-likelihood to neg-likelihood is calculated, and, based on
this ratio, the tweets are classified as belonging to a particular class. It's important

to note that if this ratio turns out to be 1, then the overall sentiment of the tweet is
assumed to be "neutral". The code is as follows:

MeruTweetsClassPol = classify polarity (MeruTweetsCleaned,
algorithm="bayes")

OlaTweetsClassPol = classify polarity(OlaTweetsCleaned,
algorithm="bayes")

TaxiForSureTweetsClassPol =

classify polarity(TaxiForSureTweetsCleaned, algorithm="bayes")
UberTweetsClassPol = classify polarity(UberTweetsCleaned,
algorithm="bayes")
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We get the following output:

[1,]
(2,]
(3,]
[4,]
(5.1
(e,]
[7.]
(8,]
[e,]
[1e,]
11,7
f1z,]
[13,]
[14,]
[15,]
[186,]
[17,]
[18,]
[19,]
[ze,]

POS

"8.78232285939751"
"1.83127774142571"
"1.83127774142571"
"17.2265151579293"
"B.78232285939751"
"1.83127774142571"
"9.47547003995745"
"49.61628929@9363"
"1.83127774142571"
"17.2265151579293"
"17.2265151579293"
"B.78232285939751"

"25.67@707456461"

"16.5333679773603"
"17.9196623384832"
"8.78232285939751"
"8.78232285939751"
"17.2265151579293"
"1.83127774142571"
"B.78232285939751"

> head{MeruTweetsClassPol,28)

NEG
"0.445453222112551"
"9.47547003995745"
"@.445453222112551"
"18.5054868578024"
"@.445453222112551"
"18.5054868578024"
"0.445453222112551"
"@.445453222112551"
"@.445453222112551"
"9.47547003995745"
"9.47547003995745"
"9.47547003995745"
"9.47547003995745"
"17.8143396772424"
"@.445453222112551"
"9.47547003995745"
"9.47547003995745"
"0.4454532221172551"
"9.47547003995745"
"B.78232285939751"

POS/NEG
"19.7154772340574"

"@.108B3657B774127"

"Z2.31512017476245"

"@.930886892644 283"

"19.7154772340574"

"@.85572821452009216" "negative”

"21.2715265477714"
"111.38541@471674"
"2.31512017476245"
"1.B18@1167491282"
"1.B1B@1167491282"

"0.926848253686042"

"2.70917509613869"

"@.928197433742679"

"4@. 2273329207884 "

"B.926848253680042"
"B.926848253680042"

"38.6718R36070664"

"0.108B36578774127"

nyn

BEST_FIT

"positive”
"negative”
"positive”
"negative”
"positive"”

"positive"”
"positive”
"positive”
"neutral”

"neutral”

"negative”
"positive"”
"negative”
"positive”
"negative”
"negative”
"positive"”
"negative”
"neutral”

The preceding figure shows a few results obtained by using the classify

polarity () function of the sentiment package for Meru Cabs tweets. We'll now
generate consolidated results from the two functions in a data frame for each cab
service for plotting purposes:

# we will fetch polarity category best fit for our analysis purposes,

MeruPol
OlaPol

TaxiFor
UberPol

# Let us now create a data frame with the above results
MeruSentimentDataFrame

= MeruTweetsClassPoll[, 4]
= OlaTweetsClassPol [, 4]
SurePol =

= UberTweetsClassPoll[, 4]

TaxiForSureTweetsClassPol [, 4]

= data.frame (text=MeruTweetsCleaned,

emotion=MeruEmotion, polarity=MeruPol,

OlaSent
emotion

imentDataFrame
=0OlaEmotion,

polarity=0laPol,

stringsAsFactors=FALSE)
data.frame (text=0laTweetsCleaned,

stringsAsFactors=FALSE)
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TaxiForSureSentimentDataFrame =

data.frame (text=TaxiForSureTweetsCleaned,
emotion=TaxiForSureEmotion, polarity=TaxiForSurePol,
stringsAsFactors=FALSE)

UberSentimentDataFrame = data.frame (text=UberTweetsCleaned,
emotion=UberEmotion, polarity=UberPol, stringsAsFactors=FALSE)

# rearrange data inside the frame by sorting it
MeruSentimentDataFrame = within (MeruSentimentDataFrame, emotion <-
factor (emotion, levels=names (sort (table (emotion),
decreasing=TRUE) ) ))
OlaSentimentDataFrame = within (OlaSentimentDataFrame, emotion <-
factor (emotion, levels=names (sort (table (emotion),
decreasing=TRUE) ) ))
TaxiForSureSentimentDataFrame =
within (TaxiForSureSentimentDataFrame, emotion <- factor (emotion,
levels=names (sort (table (emotion), decreasing=TRUE))))
UberSentimentDataFrame = within (UberSentimentDataFrame, emotion <-
factor (emotion, levels=names (sort (table (emotion),
decreasing=TRUE) ) ))
plotSentimentsl<- function (sentiment dataframe, title) {
library (ggplot2)

ggplot (sentiment dataframe, aes(x=emotion)) +
geom bar (aes(y=..count.., fill=emotion)) +
scale fill brewer (palette="Dark2") +
ggtitle(title) +

theme (legend.position="'right') + ylab('Number of Tweets') +
xlab ('Emotion Categories')

}

plotSentimentsl (MeruSentimentDataFrame, 'Sentiment Analysis of
Tweets on Twitter about MeruCabs')

plotSentimentsl (OlaSentimentDataFrame, 'Sentiment Analysis of
Tweets on Twitter about OlaCabs')

plotSentimentsl (TaxiForSureSentimentDataFrame, 'Sentiment Analysis
of Tweets on Twitter about TaxiForSure')

plotSentimentsl (UberSentimentDataFrame, 'Sentiment Analysis of
Tweets on Twitter about UberIndia')
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The output is as follows:

> head(MeruSentimentDataFrame,2@)

text emotion polarity
1 gt and other details ot feedback com we 11 check back and reach out soon <NA> positive
2 really disappointed with cab is never assigned on time driver calls after minutes why would i ride with meru <MA> negative
3 fallback of taking customers for a ride <NA> positive
4 they book genie but jit inform of cancellation amp send full fare very disappointed always used these guys and recommend them <NA> negative
5 no choice bt to take the premium service driver told me that this happens a lot with <NA> positive
4] booked yestrdy asked for meru genie mins pick up time they call to say genie not available so sending the full fare cab joy negative
7 the ad is just fab but what s the use if the app is buggy i have a mbps connectien up and running <NA> positive
g effortless cab journeys with a great experience book through the amp enjoy amazing benefits joy positive
9 can anyene give me a cab tomorrow pm from kadugedi to kr puram bangalore anyocne <NA> positive
19 good afterncon and welcome to chennai do check out a new way of traveling in the city with meru cabs joy neutral
11 good afternoon and welcome to pune do check out a new way of traveling in the city with meru cabs joy neutral
12 hi we re sorry that this happened to help trace your booking plz share booking id or mobile no at feedback sadness negative
13 when you re in mumbai do experience the brand new meru cab journey to make road travel more effortless than ever before <NA> positive
14 catching up with family and friends this winter use a meru and get cash back on payments through sadness negative
15 nt gng to recommend meru to any one atleast learn from they have the courtesy to infm cust regd any issues <NA> positive
16 due to this got late for imp meeting tdy had really bad experience with meru change your slegan to don t rely on us joy negative
17 is there an email address i can mail my grievance mails feedback com bounce back as mailbox is full anger negative

In the preceding figure, we showed sample results generated on Meru Cabs tweets
using both the functions. Let's now plot them one by one. First, let's create a single
function to be used by each business's tweets. We call it plotSentiments1 () and

then we plot it for each business:

Sentiment Analysis of Tweets on Twitter about MeruCabs

emotion

-

Number of Tweets.

fear

53l
a
!

' ' ' ' '
joy sadness anger disgust surprise faar MNA
Emotion Categories

100 = . sadness

angar

disgust
Burpr

ise
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The following dashboard shows the analysis for Ola Cabs:

Sentiment Analysis of Tweets on Twitter about OlaCabs

200

jclI
-_———
o

l
oy sadness sUrprise anger disgust fear NA
Emotion Categories

Number of Tweets

emotion
Joy
sadness

The following dashboard shows the analysis for TaxiForSure:

Sentiment Analysis of Tweets on Twitter about TaxiForSure

300 -

Mumber of Tweels

-—
o-

i I ] ] ]
oy sadness anger faar surprise disgust MNA
Emotion Categories

. disgust
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The following dashboard shows the analysis for Uber India:

Sentiment Analysis of Tweets on Twitter about Uberindia

emotion
Joy
400 sadness
anger
BUrprise

200 . fear

disgust

Number of Tweets

- _ I B e—
o-
' | |
ii sadness e — surpris fag

|
ear disgust NA

SUrprise
Emotion Categories

These sentiments basically reflect observations broadly similar to those we

made with the basic word-matching algorithm. The number of tweets with joy
constitute the largest part of tweets for all these organizations, indicating that

these organizations are trying their best to provide good business in the country.
The sadness tweets are less numerous than the joy tweets. However, if compared
with each other, they indicate the overall market share versus the level of customer
satisfaction with each service provider. Similarly, these graphs can be used to assess
the level of dissatisfaction in terms of anger and disgust in the tweets. Let's now
consider only the positive and negative sentiments present in the tweets:

# Similarly we will plot distribution of polarity in the tweets
plotSentiments2 <- function (sentiment dataframe,title) {
library (ggplot2)
ggplot (sentiment dataframe, aes(x=polarity)) +
geom_bar (aes(y=..count.., fill=polarity)) +
scale fill brewer (palette="RdGy") +
ggtitle(title) +
theme (legend.position="'right') + ylab('Number of Tweets') +
xlab ('Polarity Categories')

}

plotSentiments2 (MeruSentimentDataFrame, 'Polarity Analysis of
Tweets on Twitter about MeruCabs')
plotSentiments2 (OlaSentimentDataFrame, 'Polarity Analysis of
Tweets on Twitter about OlaCabs')
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plotSentiments2 (TaxiForSureSentimentDataFrame,

'Polarity Analysis
of Tweets on Twitter about TaxiForSure')

plotSentiments2 (UberSentimentDataFrame, 'Polarity Analysis of
Tweets on Twitter about UberIndia')

The output is as follows:

Polarity Analysis of Tweets on Twitter about MeruCabs

100 =

polarity

-

neutral

-

50

Number of Tweets

0-
' v
negafive neutral

Polarity Categories

'
positive

The following dashboard shows the polarity analysis for Ola Cabs:

Polarity Analysis of Tweets on Twitter about OlaCabs

400 -
) -
0-
"

'
negative neutral

Polarity Categories

g

Number of Tweets
B

'
positive
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The following dashboard shows the analysis for TaxiForSure:

Polarity Analysis of Tweets on Twitter about TaxiForSure

200 -
neutral
100 - ith
0-
'

1 L}
negative neutral positive

Polarity Categories

Number of Tweets

The following dashboard shows the analysis for Uber India:

Polarity Analysis of Tweets on Twitter about Uberlndia

400 -

0= -

i " |
negafive neutral positive

Polarity Categories

g

Number of Tweets
B

=]
2

It's a basic human trait to inform others about what's wrong rather than informing
them if there was something right. We tend to tweet/report if something bad
happens rather reporting/tweeting if an experience was rather good. Hence, the
negative tweets are expected to be larger than the positive tweets in general. Still,
over a period of time (a week in our case), the ratio of the two easily reflects the
overall market share versus the level of customer satisfaction for each service
provider. Next, we try to get a sense of the overall content of the tweets by

using the word clouds discussed in Chapter 1, Fundamentals of Mining.
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removeCustomeWords <- function (TweetsCleaned) ({
for(i in 1:length(TweetsCleaned)) {
TweetsCleaned[i] <- tryCatch ({
TweetsCleaned[i] = removeWords (TweetsCleaned[i],
c (stopwords ("english"), "care", "guys", "can", "dis", "didn",
"guy" ,"booked", "plz"))
TweetsCleaned [i]
}, error=function(cond) {
TweetsCleaned [1i]
}, warning=function (cond) {
TweetsCleaned [1i]
1)
}

return (TweetsCleaned)

getWordCloud <- function
(sentiment dataframe, TweetsCleaned, Emotion) {

emos = levels (factor (sentiment dataframe$emotion))
n_emos = length (emos)

emo.docs = rep("", n_emos)

TweetsCleaned = removeCustomeWords (TweetsCleaned)

for (i in 1:n_emos) {

emo.docs [i] = paste(TweetsCleaned|[Emotion ==
emos [i]], collapse=" ")
}
corpus = Corpus (VectorSource (emo.docs))

tdm = TermDocumentMatrix (corpus)

tdm = as.matrix(tdm)

colnames (tdm) = emos

require (wordcloud)

suppressWarnings (comparison.cloud (tdm, colors =
brewer.pal (n_emos, "Dark2"), scale = c(3,.5), random.order =
FALSE, title.size = 1.5))
}
getWordCloud (MeruSentimentDataFrame, MeruTweetsCleaned,
MeruEmotion)

[49]



Mining Opinions, Exploring Trends, and More with Twitter

getWordCloud (OlaSentimentDataFrame,

getWordCloud (TaxiForSureSentimentDataFrame,
TaxiForSureEmotion)

getWordCloud (UberSentimentDataFrame,

OlaTweetsCleaned, OlaEmotion)

TaxiForSureTweetsCleaned,

UberTweetsCleaned, UberEmotion)
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The preceding figure shows the word cloud from tweets about Meru Cabs.
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The preceding figure shows the word cloud from tweets about Ola Cabs.
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The preceding figure shows the word cloud from tweets about TaxiForSure.
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The preceding figure shows word cloud from tweets about Uber India.
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Summary

In this chapter, you gained knowledge of the various Twitter APIs. We discussed
how to create a connection with Twitter, and we saw how to retrieve tweets with
various attributes. We saw the power of Twitter in helping us determine customers'
attitudes toward today's various businesses. The activity can be done on a weekly
basis, and one easily get the monthly, quarterly, or yearly changes in customer
sentiment. This can not only help the customer decide the trending business, but also
the business itself can get a well-defined metric of its own performance. It can use
such scores/ graphs to improve. We also discussed various methods of sentiment
analysis, varying from basic word-matching the advanced Bayesian algorithms.

In the next chapter, we will apply a similar analysis to Facebook.
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There is no need for an introduction about Facebook. It's a huge source of
information, we are connected to a lot of people, and we keep following the things
that happen in our network. We get to know not only about the people in our
network but also about places, movies, companies, and so on. With over 1.44 billion
active users monthly, Facebook is also used as a medium to make promotions. It is
being used by individuals, companies, news channels, and so on. Let's see what we
can do using the Facebook Graph APL

In this chapter, we will see how to use the R package Rfacebook, which provides
access to the Facebook Graph API from R. It includes a series of functions that
allow us to extract various data about our network such as friends, likes, comments,
followers, newsfeeds, and much more.

The idea behind the chapter is to learn how to pull the data from our network and
use suitable techniques to convert that data into valuable information that can be
used to solve a problem or a business case. We will discuss how to visualize our
Facebook network and we will see some methodologies to make use of the available
data to implement business cases, such as identifying the influential persons in a
network, methods to detect a spam post, and finally recommend your friends

what they might be interested in based on your network information.

In this chapter, we will cover the following topics:

* Creating an app on the Facebook platform
* Installation and authentication of the Rfacebook package

* Basic analysis of your network
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* Network analysis and visualization

* Getting Facebook page data

* Measuring Click-through rate (CTR) performance for a page
* Trending topics

* Spam detection

* Influencers

* Order of stories on users' timeline

¢ Recommendations to friends

While the Facebook Graph API allows us to get so much useful
_ data with the recent updates to Version 2.0, Facebook deprecated
% few of the functionalities. In Version 1.0, we were able to
S download the complete details about all our friends, and search
based on keywords, but now we can access just our friend's data if
the details are publicly available or if they are using our app.

A Facebook app is required to perform the authentication and access the data.
We will see the steps involved in creation of an app and the authentication
process to enable the data access in detail.

Creating an app on the Facebook
platform

In this section, we will cover the steps involved in creating a Facebook app

to connect to the Facebook Graph APIL. Version 2 of the API deprecated a lot of
features compared to Version 1, but still Facebook provides access to a lot of
public data that can be used to solve various use cases.

In order to create a Facebook app, go to https://developers. facebook.com/,
register as a Facebook developer, click on the My Apps option, and then choose
Add a New App.
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I Facebook Developers: % Y §
€ [ Bl=Whttps://developers.facebook.co
H Developers Products Docs Tools & Support News

fzd sharanapp

Add a New App

F8 Developer Conference

Thanks for jeining us at the intersection of creativity and technology.

WATCH ALL THE SESSIONS

= ([~ i > ol

Analytics for Apps Messenger Social Plugins App Invites App Monetization
Understand how people Easily make your Let people recommend Monetize with a

use your app app or website social your app to friends publisher to

Learn More Learn More Learn More Learn More Learn More

In the next window, choose Website, give a name to your app, and save the details
by clicking on the Create New Facebook App ID button. In the next window, choose
an appropriate category for your app and confirm by clicking on the Create App

ID button.

Start Over Skip and Create App ID

Quick Start for Website

appForLearning|

Create New Facebook App ID

Now, our app is created. Click on Skip Quick Start on the top-right corner of the
page and move directly to the App Settings page. We will use this app to access
our Facebook Graph APL

Kindly ensure Rtools of version 32 is installed before loading the
=" package devtools.
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Rfacebook package installation and
authentication

The rRfacebook package is authored and maintained by Pablo Barbera and Michael
Piccirilli. It provides an interface to the Facebook API. It needs Version 2.12.0 or later
of R and it is dependent on a few other packages, such as httr, rjson, and httpuv.
Before starting, make sure those packages are installed. It is preferred to have
Version 0.6 of the httr package installed.

Installation

We will now install the Rfacebook packages. We can download and install the
latest package from GitHub using the following code and load the package using
the 1ibrary function. On the other hand, we can also install the Rfacebook
package from the CRAN network. One prerequisite for installing the package
using the function install_github is to have the package devtools loaded

into the R environment. The code is as follows:

install.packages ("devtools")

library (devtools)

install github ("Rfacebook", "pablobarbera", subdir="Rfacebook")
library (Rfacebook)

After installing the Rfacebook package for connecting to the APL, make an
authentication request. This can be done via two different methods. The first method
is by using the access token generated for the app, which is short-lived (valid for two
hours); on the other hand, we can create a long-lasting token using the 0Auth function.

Let's first create a temporary token. Go to https://developers. facebook.com/
tools/explorer, click on Get Token, and select the required user data permissions.

3 pevelopers My Apps Products Docs Tools & Support News

All apps are being upgraded to Graph APl v2.0 or above. Learn more.

Graph APl Explorer Application: Graph API Explorer » | Locale: English (US) w | APl Version V23w

Access Token:  CAACEdE0se0cBAPKHTWVKIOCWNQBZuDCY 7TMXsRBGTUw2gPmv3szZBpgNyQBEIWZArO66RAY atpadL Fsoz Debug

% Get Token v

R o o
GET + | | — iv2 3imefields=id,name Debug Enabled ~ | [EETEY
Learn more about the Graph API syntax
MNode: me {
"id": "778278022196130",
@ i “name”: "Sharan Kumar R"
n
v name
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The Facebook Graph API explorer will open with an access token. This access token

will be valid for two hours. The status of the access token as well as the scope can be
checked by clicking on the Debug button. Once the tokens expire, we can regenerate
a new token.

Now, we can access the data from R using the following code. The access token
generated using the link should be copied and passed to the token variable. The use
of username in the function getUsers is deprecated in the latest Graph APL hence,
we are passing the ID of a user. You can get your ID from the same link that was
used for token generation. This function can be used to pull the details of any user,
provided the generated token has the access. Usually, access is limited to a few users
with a public setting or those who use your app. It is also based on the items selected
in the user data permission check page during token generation. In the following
code, paste your token inside the double quotes, so that it can be reused across the
functions without explicitly mentioning the actual token.

token<- "XXXXXXXXX"

A closer look at how the package works

The getUsers function using the token will hit the Facebook Graph API. Facebook
will be able to uniquely identify the users as well as the permissions to access
information. If all the check conditions are satisfied, we will be able to get the
required data.

Copy the token from the mentioned URL and paste it within the double quotes.
Remember that the token generated will be active only for two hours. Use the
getUsers function to get the details of the user. Earlier, the getUsers function used
to work based on the Facebook friend's name as well as ID; in API Version 2.0, we
cannot access the data using the name. Consider the following code for example:

token<- "XXXXXXXXX"
me<- getUsers("778278022196130", token, private info = TRUE)

Then, the details of the user, such as name and hometown, can be retrieved using
the following code:

meSname

The output is also mentioned for your reference:
[1] "Sharan Kumar R"

For the following code:

meShometown
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The output is as follows:

[1] "Chennai, Tamil Nadu"

Now, let's see how to create a long-lasting token. Open your Facebook app page by
going to https://developers.facebook.com/apps/ and choosing your app.

n Developers My Apps Products Docs Tools & Support News

All apps are being upgraded lo Graph AP| v2.0 or abave. Leam more.

appForLeaming - Dashboard
@ Dashboard
€ Setlings

“ Status & Review

Show

%F App Details

Getting Started

& Roles
Getting Started

& Open Graph

A Meris
Facebook Login
N Localze
Active Login Users Trend
= Canvas Paymenis
1% tonthiy Active Users [ ‘veckly Active Lisers Dty Actre Users 8 -

A Audience Nebwork

On the Dashboard tab, you will be able to see the App ID and Secret Code values.
Use those in the following code.

require ("Rfacebook")

fb ocauth<-
fbOAuth (app_1id="11", app secret="XX",extended permissions = TRUE)

On executing the preceding statements, you will find the following message in
your console:

Copy and paste into Site URL on Facebook App Settings:
http://localhost:1410/

When done, press any key to continue...

Copy the URL displayed and open your Facebook app; on the Settings tab, click on
the Add Platform button and paste the copied URL in the Site URL text box. Make
sure to save the changes.
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Website Quick Start

Site URL

Mobile Site URL

+ Add Platform

Then, return to the R console and press any key to continue, you will be prompted to
enter your Facebook username and password. On completing that, you will return
to the R console. If you find the following message, it means your long-lived token

is ready to use. When you get the completion status, you might not be able to access
any of the information. It is advisable to use the oauth function a few minutes after
creation of the Facebook application.

Authentication complete.
Authentication successful.

After successfully authenticating, we can save it and load on demand using the
following code:

save (fb_oauth, file="fb oauth")
load ("fb oauth")

When it is required to automate a few things or to use Rfacebook extensively, it will
be very difficult as the tokens should be generated quite often. Hence, it is advisable
to create a long-lasting token to authenticate the user, and then save it. Whenever
required, we can just load it from a local file.

Note that Facebook authentication might take several minutes.
Hence, if your authentication fails on the retry, please wait for
some time before pressing any key and check whether you
have installed the ht tr package Version 0.6. If you continue
% to experience any issues in generating the token, then it's not a
=" problem. We are good to go with the temporary token.

Exercise

Create an app in Facebook and authenticate by any one of the
methods discussed.
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A basic analysis of your network

In this section, we will discuss how to extract Facebook network of friends and
some more information about the people in our network.

After completing the app creation and authentication steps, let's move forward
and learn to pull some basic network data from Facebook. First, let's find out
which friends we have access to, using the following command in R. Let's use
the temporary token for accessing the data:

token<- "XXXXXXXXX"
friends<- getFriends (token, simplify = TRUE)
head (friends) # To see few of your friends

The preceding function will return all our Facebook friends whose data is accessible.
Version 1 of the API would allow us to download all the friends' data by default. But
in the new version, we have limited access. Since we have set simplify as TRUE, we
will pull only the username and their Facebook ID. By setting the same parameter to
FALSE, we will be able to access additional data such as gender, location, hometown,
profile picture, relationship status, and full name.

We can use the function getUsers to get additional information about a particular
user. The following information is available by default: gender, location, and language.
We can, however, get some additional information such as relationship status,
birthday, and the current location by setting the parameter private info to TRUE:

friends data<- getUsers(friends$id, token, private info = TRUE)
table (friends data$gender)

The output is as follows:

female male
5 21

We can also find out the language, location, and relationship status.
The commands to generate the details as well as the respective outputs
are given here for your reference:

#Language
table (substr (friends data$locale, 1, 2))

The output is as follows:

en
26
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The code to find the location is as follows:

# Location (Country)
table (substr (friends data$locale, 4, 5))

The output is as follows:

GB US
1 25

Here's the code to find the relationship status:

# Relationship Status
table (friends data$relationship status)

Here's the output:

Engaged Married Single
1 1 3

Now, let's see what things were liked by us in Facebook. We can use the function
getLikes to get the like data. In order to know about your likes data, specify user as
me. The same function can be used to extract information about our friends, in which
case we should pass the user's Facebook ID. This function will provide us with a list
of Facebook pages liked by the user, their ID, name, and the website associated with
the page. We can even restrict the number of results retrieved by setting a value to the
parameter n. The same function will be used to get the likes of people in our network;
instead of the keyword me, we should give the Facebook ID of those users. Remember
we can only access data of people with accessibility from our app. The code is as follows:

likes<- getLikes (user="me", token=token)
head (likes)

After exploring the use of functions to pull data, let's see how to use the Facebook
Query Language using the function getFQL, which can be used to pass the queries.
The following query will get you the list of friends in your network:

friends<- getFQL ("SELECT uid2 FROM friend
WHERE uidl=me ()", token=token)

In order to get the complete details of your friends, the following query can be
used. The query will return the username, Facebook ID, and the link to their profile
picture. Note that we might not be able to access the complete network of friends'
data, since access to data of all your friends are deprecated with Version 2.0. The
code is as follows:

# Details about friends
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Friends details<- getFQL("SELECT uid, name, pic_ square FROM user
WHERE uid = me() OR uid IN (SELECT uid2 FROM friend
WHERE uidl = me())", token=token)

In order to know more about the Facebook Query Language, check out the following
link. This method of extracting the information might be preferred by people familiar
with query language. It can also help extract data satisfying only specific conditions
(https ://developers. facebook.com/docs/technical —guides/fql).

Exercise

*  Download your Facebook network and do an exploration analysis
on the languages your friends speak, places where they live, the total
! number of pages they have liked, and their marital status. Try all
these with the Facebook Query Language as well.

Network analysis and visualization

So far, we used a few functions to get the details about our Facebook profile as
well as friends' data. Let's see how to get to know more about our network. Before
learning to get the network data, let's understand what a network is as well as a
few important concepts about the network.

Anything connected to a few other things could be a network. Everything in real
life is connected to each other, for example, people, machines, events, and so on.
It would make a lot of sense if we analyzed them as a network. Let's consider a
network of people; here, people will be the nodes in the network and the
relationship between them would be the edges (lines connecting them).

Social network analysis

The technique to study/analyze the network is called social network analysis.
We will see how to create a simple plot of friends in our network in this section.

To understand the nodes (people/places/etc) in a network in social network
analysis, we need to evaluate the position of the nodes. We can evaluate the nodes
using centrality. Centrality can be measured using different methods like degree,
betweenness, and closeness. Let's first get our Facebook network and then get to
know the centrality measures in detail.
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We use the function getNetwork to download our Facebook network. We need to
mention how we would like to format the data. When the parameter format is set
to adj .matrix, it will produce the data in matrix format where the people in the
network would become the row names and column names of the matrix and if they
are connected to each other, then the corresponding cell in the matrix will hold a
value. The command is as follows:

network<- getNetwork (token, format="adj.matrix")

We now have our Facebook network downloaded. Let's visualize our network before
getting to understand the centrality concept one by one with our own network. To
visualize the network, we need to use the package called igraph in R. Since we
downloaded our network in the adjacency matrix format, we will use the same
function in igraph. We use the layout function to determine the placement of
vertices in the network for drawing the graph and then we use the plot function

to draw the network. In order to explore various other functionalities in these
parameters, you can execute the ?<function_name> function in RStudio and the
help window will have the description of the function. Let's use the following code
to load the package igraph into R.

require (igraph)

We will now build the graph using the function graph . adjacency; this function
helps in creating a network graph using the adjacency matrix. In order to build a
force-directed graph, we will use the function layout .drl. The force-directed
graph will help in making the graph more readable. The commands are as follows:

social graph<- graph.adjacency (network)
layout<- layout.drl (social graph,
options=1list (simmer.attraction=0))

At last, we will use the plot function with various built in parameters to make

the graph more readable. For example, we can name the nodes in our network, we
can set the size of the nodes as well as the edges in the network, and we can color
the graph and the components of the graph. Use the following code to see what
the network looks like. The output that was plotted can be saved locally using the
function dev. copy, and the size of the image as well as the type can be passed as a
parameter to the function:

plot (social graph, vertex.size=10, vertex.color="green",
vertex.label=NA,

vertex.label.cex=0.5,

edge.arrow.size=0, edge.curved=TRUE,
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layout=layout.fruchterman.reingold)

dev.copy (png, filename=
"C:/Users/Sharan/Desktop/3973-03-community.png",
width=600, height=600) ;

dev.off ();

With the preceding plot function, my network will look like the following one.
In the following network, the node labels (name of the people) have been disabled.
They can be enabled by removing the vertex.label parameter.

Degree

The number of direct connections a node has in a network is called the degree. A
higher degree means that the node is connected to a lot of other nodes, which makes

the nodes with a higher degree very important for various business cases. Degree can

be further classified into in-degree and out-degree. To know more about the concept
of networks, refer to the course Social Network Analysis by Lada Adamic available
at coursera, which can be found at https://www.coursera.org/course/sna.
Consider the following code to measure the degree of a network:

# MeasuringDegree for a network

degree (social graph, v=V(social graph), mode =

c("all", "out", "in", "total"),loops = TRUE, normalized = FALSE)
degree.distribution(social graph, cumulative = FALSE)
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The degree function will produce output similar to the one shown here. The
degree.distribution function is a numeric vector of the same length as the
maximum degree plus one. The first element is the relative frequency of zero degree
vertices and the second element is the relative frequency of vertices with degree one
and so on. The use of degree as a measure of centrality is generally not preferred
because it takes into account only the nodes that are directly connected to it.

Anurup Raveendran samir Madhavan Prasanna Sankaranarayanan
8 15 2

Philip Solomon Pradeep Mohan Alok Goel

10 2 4

[ Note that the preceding screenshot is just a part of the output. ]

Betweenness

Betweenness is also a concept of centrality. It is calculated based on how many pairs
of individuals (other nodes in the network) would have to go through you (node for
which it is calculated) in order to reach one another in the minimum number of hops.
The node with higher Betweenness will have a greater influence in the flow of the
information. Consider the following code to measure Betweenness:

#Measuring Betweenness

betweenness (social graph, v=V(social graph), directed = TRUE,
weights = NULL, nobigint = TRUE, normalized = FALSE)

If our network is a directed one, then we need to set the parameter directed as
TRUE. The preceding function measures the Betweenness for all the nodes in the
network. If you would like to measure the Betweenness manually, it can be done
using this formula:

Cy(i)= Z Py i)/ Py Where p, =the number of shortest paths conncecting jk

j<k 3 .
! P (I) =the number thatactoriison

The output to the preceding function will also be very similar to the degree function,
but here we will see the Betweenness value for each of our friends in our network.
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Closeness

Closeness is also a measure of centrality; how central you are (node for which

it is calculated) depends on the length of the average shortest path between the
measuring node and all other nodes in the network. The nodes with high closeness
are very important because they are in an excellent position to monitor what's
happening in the network, that is, nodes with highest visibility. This measure might
not be of much use when our network has many disconnected components. Consider
the following code to measure closeness:

# Measuring Closeness
closeness (social_graph, vids=V(social graph), mode = c("out",
"in", "all", "total"), weights = NULL, normalized = FALSE)

The preceding function measures the closeness for all the nodes in the network.
You can measure the closeness manually as well using the following formula:

N !
C.(i)= [Z d(i, ;)} Whered (i, j )is theshortest distance between nodes (i) and ( /)

J=1

The output to the preceding function will also be very similar to the degree function,
but here we will see the closeness score for each of our friends in our network.

Cluster

Cluster is a measure of extent to which the nodes in the network tend to cluster
with each other. We can see how many clusters there are in our network using
the following function:

# Cluster in network
is.connected(social graph, mode=c("weak", "strong"))

The first function is.connected is used to check whether the network is strongly
clustered or not. The second function actually returns us the number of the clusters
and the size of the clusters in the network.

The clusters function is used to identify the total number of clusters in the
network. It computes the number of elements in each of the clusters, that is,
the size of the cluster as well as the total number of clusters.
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The nodes that are not connected to anyone else in the network will be considered as
a separate cluster. Let us identify the number of clusters present in the dataset using
the following code.

clusters(social graph, mode=c("weak", "strong"))

The output is as follows:

$membership
1111212314431541413311111111

$csize

[1] 15 2 4 4 1& Size of each cluster
$no

1] 5 No. of cluster

Communities

After checking the number of clusters in the network, let's check how these clusters are
spread in the network. We can use the walktrap.community function. This function
will identify the communities in the network, and we can see the communities using
the plot function. From the output, we can clearly see the five different groups in the
network, which match with the output of the cluster function. We can also check the
strength of the division of network into subgroups. Networks with high modularity
will have dense connections between the nodes in the subgroup. Consider the
following code to plot communities:

# Plotting Community
network Community<- walktrap.community (social graph)

The modularity function is used to detect the communities in the network. It
measures how modular a given division of a network graph into subgraphs is,

that is, how strong a division within a network is. Networks with high a modularity
score have strong connections between the nodes within their cluster (group/
community). Consider the following code to find the modularity:

modularity (network Community)

plot (network Community, social graph, vertex.size=10,
vertex.label.cex=0.5, vertex.label=NA, edge.arrow.size=0,
edge.curved=TRUE, layout=1layout . fruchterman.reingold)
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The output is as follows:

So far, we saw some of the concepts of social network analysis. Social network
analysis is a huge area of research, and it is beyond the scope of this book. But at an
abstract level, it helps us to detect the various communities in a network, identifying
the people at the center of the network and measuring the shortest distance between
two people in a network. The various business cases that could be solved using the
social network analysis are as follows:

* Tracing the source of information dissemination as well as the
opinion formation

* Identifying the most influential person in a network for social media
campaign targeting

* For human resource, identifying the barrier for internal communication

* How fast can a flu spread?
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Exercise

* Identify the most influential person in your network.
. * Identify the top ten people with the highest degree in
& your network.
r~ * Identify the number of clusters in your network.
* Identify people who have the best centrality score based on
degree, Betweenness, and Closeness. Use equal weightage
to all of them and compute a single cumulative score.

Getting Facebook page data

Facebook is not only used by individuals but also by many businesses. Most of the
businesses create a Facebook page to advertise about their company and to display
their products, offers, and related content. Hence, it becomes really important to
check what kinds of posts are liked by the user, perform experimentation with
different content, and identify the content that results in a follower's engagement.

Let's see how to get the contents of a page. First, we need to get the name of the
page. We can get this from the URL of the page. Let's take TED as an example;
from the URL, we know that the name of the page is TED.

C | & https://www.facebook.com/TEL

P !m .
FEB@ “< .« ,
“News/ecia Websits *

Timeline About Photos Videos More ~

[71]



Find Friends on Facebook

We use the function getPage to get the contents posted in TED's page. For proper
functioning of the function, ensure that Version 0.6 of the httr package is loaded in
the R environment. Unlike Facebook friends' data, it is not necessary to like the page
in order to pull the data. We can pull the data from any page provided the page, as
well as the content, is public. The code is as follows:

#####H##H#HE Facebook Page data
page<- getPage ("TED", token, n = 50)
head (page, n=2)

The output is as follows:

> head(page, n=2)

from_id from_name message
1 29092950651 TED "Real faith has no easy answers. It involves an ongoing struggle, a continual questioning of what we think we know."
2 29092950651 TED what podcasts would you add to this list?

created_time type Tink id 1ikes_count comments_count shares_count

1 2015-05-24T16:22:04+0000 Tink http://t.ted.com/z8bnA7r 29092950651 10155571557845652 874 39 379
2 2015-05-24T15:36:36+0000 Tink http://t.ted.com/902kohM 29092950651 10155571291350652 2291 269 1391
>

The preceding function will pull 50 posts (not necessarily latest) from the TED page.
Using the head function, we can see the details of the top rows of the resultant
dataset. The success of a Facebook post is usually measured by the number of people
who liked it and the number of people who commented about it, as it tells us how
much engagement was triggered by the post as well as the number of times it has
been shared by different people on their Facebook profile. All these details can be
obtained from the preceding function. With Version 1.0 of the Facebook Graph

API, we were able to search for a post with a keyword, but that feature has been
deprecated with Version 2.0. Hence, now we need to know the ID or the name of the
post if we want to get the details of a particular post. The commands are as follows:

#Let's get the detail about the post which had the maximum number of
likes.

# Page with maximum likes
page [which.max (page$likes count), ]

Out of the 50 posts that we have pulled from the TED page, we got the post that had
the maximum number of likes. From the output, we see that the most popular post
had about 20,000 likes:

> page[which. max(page¥Tikes_count), T
from_id from_name
44 29092950651 TED

message
44 "you don’t think in depression that you've put on a gray veil and are seeing the world through the haze of a bad mood. You think that the veil ha
s been taken away, the veil of happiness, and that now you're seeing truly.” - aAndrew solomon

created_time type 14i id 1ikes_count comments_count shares_count
44 2015-05-17T22:20:15+0000 Tink http://t.ted.com/TIqThevq 29092950651_10155534196980652 20812 576 9546
>

Now, let's see what kind of details are captured and what kind of analysis can be
performed that would help us to measure the impact.
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Exercise

’ * Identify the top performing post as well as the lowest
performing post and explore the difference between them
* Download the most recent 1000 posts from a page and see
what time those posts are mostly made

Trending topics

The concept of trending topics is quite popular. We can see the trending topics in
news websites, Twitter, and so on. But how can we identify the trending topic for a
particular Facebook page or a group of Facebook pages? Let's see how it can be done
in detail.

Trend analysis

Now, we will see how to learn which posts are doing well in recent times. After
selecting the page that we are planning to do some analysis for, we will filter the
posts' data based on a time range. Let's consider the same TED page and filter the
recent data and see the posts that were popular:

# Most trending posts
page<- getPage ("TED", token, n = 500)
head (page, n=20)

We pull the interactions, that is, messages posted in a page using the get Page function.
In the following code, we are filtering the data. We are pulling the data that was posted
after April 1, 2015. Then, we order the post based on the number of likes, and we use
the head function to display the top posts and their details. The code is as follows:

pageRecent<- page [which(page$created time> "2015-04-01"), ]
top<- pageRecent [order (- pageRecent$likes),]
head (top, n=10)

Here's the output:

from_id from_name message created_time type
221 29092950651 TED At this school, kids can climb to class: 2015-04-24T16:20:32+0000 Tink
155 29092950651 TED watch a beautiful talk on happiness: http://t.ted.com/xnMdcbs 2015-05-03T16:12:52+0000 photo
Tink id Tikes_count
221 http://t.ted. com/znts50P 29092950651 _10155447292600652 39824
155 https://www.facebook. com/TED/photos/a. 10152228735380652. 917907. 29092950651 /10155482960520652/7type=1 29092950651 _10155482960520652 39010
comments_count shares_count
221 994 12072
155 221 11521
>
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[ The preceding screenshot is just a part of the output. ]

We can use the which function in order to filter the recent posts made in the TED
page. After filtering the recent posts, we can use the order function to sort all the
posts based on popularity. In this case, we are considering the number of likes for
the post as a proxy for a good post. By using the minus symbol, we are sorting the
post in descending order. Hence, the top post will come at the top.

In order to check the trend for the top posts, we will obtain the preceding details on
a daily basis and combine them using the function rbind, and finally, filter the posts
based on the post ID as well as the date to check the trend for the posts. This will be
helpful to know if there has been any spike in the popularity of a post.

If we increase the granularity of the analysis by repeating the preceding exercise
more frequently, say every hour. We would be able to see the patterns of interaction.
For example, we would be able to see the time when the interactions of the followers
are highest.

Exercise

% * Identify the trending post for a different group.
~ * How long does the post remain on top? This could be achieved
only by continuously monitoring the data for a few days/weeks.

Influencers

Having seen the details of the post, let's see how to learn about the people who
comment and like these posts and to check if there is anyone who is more influential.
For doing such an analysis, first we need to pull the data about the user interaction
in a particular post.

Based on a single post

Let's take the most recent post and pull all the user comments using the function
getPost. For each of those comments, let's see how many people liked it using the
following code:

post id<- head(page$id, n = 1) ## ID of most recent post
post<- getPost (post_id, token, n = 1000, likes = TRUE,
comments = TRUE)

head (post$comments, n=2)
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The output is as follows:

from_id from_name message created_time Tikes_count

L 634288236162 Tommy mccracken Hopefully will smith is sti1l alive, at that point. 2015-05-25T17:59:55+0000 29

P 939236089436290 Sandra Munsters That's what hammers are for. 2015-03-25T17:538:27+0000 21
id
L 10155576523120652_10155576541395652
P 10155576523130652_10155576535670652

samppost<- postS$comments

The preceding command will copy all the comments of a particular post. After that,
in order to check the user who had the maximum likes, we can write a query using
the function sqldf. First, we need to import the package sqldf and write a query
using sqldf. Since we are interested in only those users who had the most number
of likes, we are pulling only the username and the number of likes for the various
comments by the user. Then, we will arrange them in descending order to know the
top users of this post in the TED page.

library (sqgldf)
comments <- postScomments

influentialusers<- sqgldf ("select from name, sum(likes count)
as totlikes from comments group by from name")

head (Infusers)

head (Infusers)

influentialusersS$totlikes<- as.numeric (influentialusersS$Stotlikes)
# Sorting the users based on the number of likes they received
top<- influentialusers[order (- influentialusersS$totlikes),]

head (top, n=10)

The output is as follows:

from_name totlikes
74 Tommy McCracken 30
71 sandra Munsters 21
40 Kevin Kelly 12
10 Brainwire 11
g BO LuUC Lac 4
69 Ryan Baker 4
17 <¢ristobal zamarron 3
43 Lindy Madsen 3
11 Brigitte Mercier 2
18 pavid Bravo qQuerido 2
-
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Based on multiple posts

Based on a single post or a few comments, can we come to a conclusion on if a
particular user is influential or not? In order to identify the overall favorite user,
we will first download the comments posted in all the posts. Combine them using
the rbind function, and finally write a SQL query using the sqldf function with
groupby"user name".

For the Facebook page TED, let's check the most influential person. We will first
download the top 100 posts from the page. Convert them into a matrix so that it
becomes easy to access the comments based on their position, and initialize the
data frame allcomments as null. The code is as follows:

post_id<- head(page$id, n = 100)
head (post_id, n=10)

post_id<- as.matrix(post_id)
allcomments<- ""

In the for loop, we will traverse post by post and append all the comments of the
posts to the data frame allcomments. The following for loop might take some time
because we are consolidating thousands of comments. Finally, we will sort the users
based on the number of likes they got for their comments. Hence, we get to know
the most influential person in the page. The code is as follows:

# Collecting all the commments from all the 100 posts
for (i in 1l:nrow(post_id))
{
# Get upto 1000 comments for each post
post<- getPost (post id[i,], token, n = 1000,
likes = TRUE, comments = TRUE)
comments<- post$comments
# Append the comments to a single data frame
allcomments<- rbind(allcomments, comments)

}

Once we have consolidated all the comments, we use the sqldf function to
aggregate the likes based on user. To know how many users have commented
in the posts and in total how many liked their comments, the code is as follows:

# Consolidating the like for each user.

influentialusers<- sqgldf ("select from name, sum(likes_count) as
totlikes from allcomments group by from name")
influentialusersstotlikes<- as.numeric (influentialusersS$totlikes)
top<- influentialusers[order (- influentialusersS$Stotlikes),]

head (top, n=20)
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Here's the output:

le74
3538
6435
9998
7e44
8850
8075
5938
14263
14835
3432
4582
4959
14199
14228
75335
8751
13546
10606

=

= head(top, n=20)

from_name totlikes

Be Smart.

parren Fearnley
Jason de Luca
Mary Harnishfeger
Karen puffin

Levi Courtney
Kenneth v Butland
Iris Kirkwood

Tam Young

Tricia McLaren
Daniel Kolsi

Eric Brent wangner
Francine Lorriman
Sydney Murillo
TED

Justin Bibler

Lee sutton

shay voncreer
Miguel Claxton

14682 Todd william Ristau

494
465
409
355
342
273
264
260
251
200
193
180
173
169
165
160
160
152
146
138

In the same way, we can do this for a group of related pages. Getting to know

the most influential person is a very useful task, that is very helpful for executing

marketing campaigns and making them successful.

Exercise

. Repeat the preceding example for a different page. Try implementing
with different weightages. Give more weightage to shares. For the
e positive comments, this could be achieved by building a list of positive
words and checking the comments for any word from this list. At last,
give least weightage for the likes to find the influential person.

Measuring CTR performance for a page

The performance of a page can be measured by the user activity in the page and the
user's interaction in the posts published in the page. Let's measure the performance
for a page. When we say measuring the performance, it is by means of counting the

user interaction through likes, comments, and shares.

In order to come up with a trend, we will need the timestamp data. Then, we need

to consolidate the data on a monthly basis so that we can draw the time-series

performance chart.
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First, we need to convert the Facebook date format into R-supported date format.
The following code is a function to convert the date format. We need to pass the date
timestamp data to this function. The function will return the same date timestamp in
R-supported format so that we can perform date operation. The code is as follows:

format.facebook.date<- function(datestring) {
date<- as.POSIXct (datestring,
format = "%Y-%m-%dT%H:%M:%S+0000", tz = "GMT")

}

Then, we need to aggregate the data on a monthly basis. The aggregate.metric
function will aggregate the required data on a monthly basis. We will pass the likes,
comments, and shares count data to this function. We would have already converted
the date to the required format using the previous function. The code is as follows:

aggregate.metric<- function(metric)

m<- aggregate (page|[ [pasteO(metric, " count")]],
list (month = page$month),

mean)

m$month<- as.Date (pastel (m$Smonth, "-15"))
mémetric<- metric

return (m)

}

Then, let's see how our R code makes use of the preceding functions and to plot the
performance trend. Finally, we use the ggplot function to plot the trend and save
the plot using the function ggsave. The quality of image can be adjusted using the
dpi parameter.

Use the getPage function to extract all the posts from the Facebook page bimtrichy.
The number of pages to be retrieved can be altered using the parameter n. In this
case, we are downloading the top 500 posts. The command is as follows:

page<- getPage ("bimtrichy", token, n = 500)

We are passing the date timestamp to the function format . facebook.date created
by us. So it will be converted to a format that would be supported by the aggregate
function which will be used next. The code is as follows:

pagesdatetime<- format.facebook.date (pageScreated time)
page$Smonth<- format (page$datetime, "$Y-%m")

We are using the aggregate function to aggregate the number of likes, comments,
and shares on a monthly basis. The code is as follows:

df.list<- lapply(c("likes", "comments", "shares"),
aggregate.metric)

df<- do.call(rbind, df.list)
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We need the ggplot2 and scales packages in order to make the plot. Hence, we
need to load those packages using the 1ibrary function. We plot the graph using the
ggplot function and define a few parameters to make the graph readable. The code
is as follows:

library (ggplot2)

library (scales)

ggplot (df, aes(x = month, y = x, group = metric))

+ geom_line (aes(color = metric))

+ scale x date(breaks = "years", labels = date_ format ("%Y"))
+ scale_y loglO("Average count per post", breaks =

c(10, 100, 1000, 10000, 50000))

+ theme bw()

+ theme (axis.title.x = element blank())

+ ggtitle ("Facebook Page Performance")

ggsave (file="C:/Users/Sharan/Desktop/3973-format-trend.png",
dpi=500)

The output is as follows:

Facebook Page Performance
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Hence, we can now see the performance trend chart. The same data can be used to
plot the chart on an hourly, quarterly, or yearly basis with little modification to the

existing code. Similarly, different metrics could be defined, computed, and the trend
could be plotted.
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Exercise

Consider a few Facebook pages; give weightages to the likes,
comments, and the shares; and then compute a new score that is a
weighted sum of the measures. Then, aggregate the score for each of
those pages on a monthly basis and plot the trend chart to compare the
% performance of multiple pages over the same period of time. This will
"~ help to identify patterns in the trend. This could be done for a similar
set of pages and also diverse pages.

Along with the metrics, likes, comments, and shares, try to add the
number of characters in the post. Also, try to have a filter based on the
type of post, which could be video, message, and so on.

Spam detection

Spam detection is an important use case to deal with. With the growing number
of users, the number of spam comments/messages is also increasing. Hence, it is
important to build a model or a rule engine which would be capable of identifying
the fraudulent user, posting some random message.

The implementation of this algorithm would be slightly difficult because there is no
direct mechanism to tag a post as spam. In this section, we will teach you to build a
basic model based on certain parameters as well as users' inputs to identify a spam
post. This will definitely help you to understand the concept. Any such algorithm
implemented would require a constant update since the spammers too, would
change their strategy.

Implementing a spam detection algorithm

The following is a simple implementation of a spam detection algorithm using
logistic regression. Let's see in detail what the code does to predict the spam
messages as comments in the Facebook page posts:

page<- getPage ("beach4all", token, n = 500)
post id<- head(page$id, n = 100)

head (post_id, n=10)

post_id<- as.matrix(post_id)

allcomments<- ""

for (i in 1:nrow(post id))

{

post<- getPost (post idl[i,
likes = TRUE, comments =

, token, n

] 1000,
TRUE)
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comments<- post$comments

allcomments<- rbind(allcomments, comments)

}

allcomments<- as.data.frame (allcomments)
allcommentsS$Schars<- ""

allcomments$chars<- nchar (allcomments$Smessage)
allcommentsSurl<- ""

allcomments$url<- grepl(".com", allcomments$message)
allcomments$spam<- ""

train<- allcomments[1:100), ]

test<- allcomments[101l:nrow(allcomments), ]
write.csv(train, "comment-train.csv" )

write.csv(test, "comment-test.csv")

train<- read.csv("comment-train.csv" )

test<- read.csv("comment-test.csv" )

newTrain<- train[,c("likes count", "chars", "url", "spam")]
newTest<- test[,c("likes count", "chars", "url", "spam")]
glm.out = glm(spam ~ ., family=binomial (logit), data=newTrain)
prediction<- predict(glm.out,newTest, type = "response")
newTestS$spam<- prediction

head (newTest)

First, we will download the post from a Facebook page. Using the following code,
we download the latest 500 Facebook posts and then we choose the top 100 posts
in the page. We use the head function to check the dataset. The code is as follows:

page<- getPage ("beach4all", token, n = 500)
post_id<- head(page$id, n = 100)
head (post_id, n=10)

The following code had already been explained under the heading Influencers.
This code is used to collect the comments made in the post. The final data frame,
allcomments, will hold all the comments made in the forum.

post id<- as.matrix(post id)

allcomments<- ""

for (i in 1:nrow(post_id))

{

post<- getPost (post id[i,], token, n = 1000,
likes = TRUE, comments = TRUE)

comments<- post$comments

allcomments<- rbind(allcomments, comments)

}

allcomments<- as.data.frame (allcomments)
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We are going to build a few more vectors that will help in predicting the spam
messages. We create two empty columns named chars and URL to hold the number
of characters as well as the flag to predict messages with a URL. It has been found
that most spam comments contain a URL. We use the nchar function to count the
number of characters in the comments and then the grepl function to identify the
comments with a URL in it. The code is as follows:

allcomments$chars<- ""

allcomments$chars<- nchar (allcomments$Smessage)
allcommentsS$url<- ""

allcomments$url<- grepl(".com", allcomments$message)
allcomments$spam<- ""

We now divide the dataset into train and test. The first 100 rows are used as the
train dataset and the others are used as the test dataset. Then, we write the new
dataset into the local system. After writing the files locally, open the training dataset,
manually identify the spam rows, flag them as 1 in the spam column, and save it. In
our case, we consider the irrelevant comments with advertisement and spam links
to be a spam message. Now, we will use the new train dataset as a training set

and hence predict the spam comments in the test dataset. The code is as follows:

train<- allcomments[1:100,]

test<- allcomments[101:nrow(allcomments), ]
write.csv(train, "comment-train.csv" )
write.csv(test, "comment-test.csv" )

We will read the new dataset, where we have flagged all the comments as either
spam or normal. We choose the columns 1ikes_count, chars, url, and spam

to build the prediction model. We use the glm function with the parameter
family=binomial (logit) to build the logistic regression model. The logistic model
that has been built is stored in glm.out. While making the prediction, we have to
pass this model to the prediction function. Based on this model, the prediction will
be made for the test dataset. The code is as follows:

train<- read.csv("comment-train.csv" )

test<- read.csv("comment-test.csv" )

newTrain<- train[,c("likes count", "chars", "url", "spam")]
newTest<- test[,c("likes count", "chars", "url", "spam")]
glm.out = glm(spam ~ ., family=binomial (logit), data=newTrain)
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Finally, we use the predict function for the comments in the test dataset. We use
the parameter type as response to make sure that the predictions fall into the range
0 to 1. Update the test dataset's spam column with the prediction. Then, we merge
the predicted column with the test dataset so that we can see the people whose
comments were considered as spam by our algorithm.

The code is as follows:

prediction<- predict(glm.out,newTest, type = "response")
newTest$spam<- prediction
head (newTest)

Here's the output:
> head(newTest, 20)
test$from_name likes_count chars  url spam
1 Marina Beach 1 48 FALSE 0.15067290
2 aAkansha shergil 0 379 TRUE 0.99811825
3 aAkhilesh shukla 0 6 FALSE 0.07970752
4 Lavanya Logu 0 20 FALSE 0.09099393
5 Anton Prakash 0 17 FALSE 0.08846034
[ Islam Mehreliyev 0 43 TRUE 0.94263397
7 Joseph €. Holm 0 85 TRUE 0.96207681
8 Dinesh Singd 0 9 FALSE 0.08201298
9 Islam Mehreliyev 0 43 TRUE 0.94263397
10  Reshmavenugopal Pwv 0 3 FALSE 0.07746141
11 Janasheen sam 0 8 FALSE 0.08123783
12 Islam Mehreliyev 0 43 TRUE 0.94263397
13 aAkansha shergil 0 393 TRUE 0.99837146
14 Islam Mehreliyev 0 43 TRUE 0.94263397
15 Ilakkiya Babu 1 7 FALSE 0.10402343
16 akpnjoy Joy 0 5 FALSE 0.07895228
7 Arunima 5inha 0 3 FALSE 0.07746141
18 Jenima Raja 0 24 FALSE 0.09447355
19 Filippo Arturo Didio 0 9 FALSE 0.08201298
20 Ewromanis Euromanis 0 16 FALSE 0.08763008
=

Now that we have the probability of the message being spam, we will decide on the
threshold after preliminary analysis, based on its impact on accuracy. Values closer
to 1 indicate that the probability of being spam is higher. Thus, we have built the
model to predict if a comment is spam or not. The accuracy of this model could

be improved by building a strong list of vectors.
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Exercise

From the preceding output, we can understand that the spam
messages are mostly from a few users. Hence, in the exercise,
try implementing a similar algorithm but instead of predicting
% whether a message is spam or not, predict whether the user
is a spam user or not. This could also be achieved by building
the vectors that would help in making the prediction. Like the
attributes such as number of comments posted, number of likes
received and their ratio, a few more vectors could be built.

The order of stories on a user's home
page

In Facebook, when we open the home page we see multiple newsfeeds. These
newsfeed are updated continuously, let's try to imitate the same in R. The following
code will sort the newsfeeds in an order based on the interactions, as well as the
recency of publishing. If you face any problems here, check the version of the API
and retry with the API of Version 2.3. The code is as follows:

newsfeed<- getNewsfeed(token, n = 200)

head (newsfeed, 20)

newsfeed$datetime<- format.facebook.date (newsfeed$Screated time)
currdate<- Sys.time()

maxdiff<-

max (difftime (currdate, newsfeed$datetime, units="hours"))
newsfeed$priority<-

maxdiff - difftime (currdate, newsfeed$Sdatetime, units="hours")
newsfeed$priority<- as.numeric (newsfeed$priority)

fnpriority<- function (x){ (x-min(x))/ (max(x)-min(x)) }
newsfeedsSpriority<- fnpriority(newsfeed$priority) *100
newsfeed$plikes count<- fnpriority(newsfeed$likes count) *100
newsfeed$pcomments count<-

fnpriority (newsfeed$comments count) *100

newsfeed$pshares count<- fnpriority(newsfeed$shares count) *100
newsfeed$score<- newsfeed$plikes count +
newsfeed$pcomments count + newsfeed$pshares count +
newsfeed$priority

newsfeed<- newsfeed[order (-newsfeedS$Sscore) , ]
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We will pull the newsfeed using the function getNewsfeed. The parameter n is
used to specify the number of posts to be retrieved and we use the head function
to display the top rows to check the data format. The code is as follows:

newsfeed<- getNewsfeed(token, n = 200)
head (newsfeed, 20)

We will then convert the date timestamp to a format that is supported by R using
the function that we had created in the previous section while detecting spam
messages. We use the function Sys. time to get the system's current timestamp.
The code is as follows:

newsfeed$datetime<- format.facebook.date (newsfeed$Screated time)
currdate<- Sys.time()

In the newsfeed that we see in our Facebook home page, recency holds a significant
weightage. Hence, let's also try to bring in the recency factor. Using the function
difftime, we will get the difference between the times when the post was made as
well as the current time. We inverse the values by subtracting from the maximum
value so that higher values would mean the post is recent. Save these values into a
new column called priority. The code is as follows:

maxdiff<-
max (difftime (currdate, newsfeed$datetime, units="hours"))

newsfeedS$priority<-
maxdiff - difftime (currdate, newsfeed$Sdatetime, units="hours")

newsfeedS$priority<- as.numeric (newsfeedSpriority)

We have computed the priority but still we might find cases where there are posts
that were very recent, may be just a few seconds old, as well as posts which are
months old. Hence, we will use the fnpriority function to normalize the values
between the range 0 and 1. Then, we use the function to normalize across a few of
the columns that would be used to determine the priority score. In this case, we are
multiplying the resultant value with 100 to bring it to the range 0 to 100:

fnpriority<- function (x) { (x-min(x))/ (max(x)-min(x)) }
newsfeedS$priority<- fnpriority(newsfeedS$Spriority) *100
newsfeed$plikes count<- fnpriority (newsfeed$likes count) *100
newsfeed$pcomments count<- fnpriority(newsfeed$comments count) *100
newsfeed$pshares count<- fnpriority(newsfeed$shares count) *100
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Finally, we add up the individual scores and use the order function to sort all the
feeds in descending order. The most important post would appear on the top. In this
case, we computed the importance based on the recency as well as the number of
interaction through the likes, comments, and shares:

newsfeed$score<- newsfeeds$plikes count +

newsfeed$pcomments count + newsfeed$pshares count + newsfeed$Spriority
newsfeed<- newsfeed[order (-newsfeedS$score), ]

head (newsfeed)

The output is as follows:

= head{toppages, 20)

from_id from_name type score
133 174446452713479 Funniest and Craziest videos video 384.6045
142  199633956730875 Tyrese Gibson wideo 219.3952
a5 11830646821 8564 M5 phoni photo 206.7336
98 21785951839 9GAG photo 152.4283
97 10152256800766541 venkatesh sampath photo 149.0586
21 221671794535129 wWomansera photo 127.3815
15 437018853025060 Pinoy Rap Radio photo 124.8140
23 173770089577 Laughing Colours photo 121.6516
169  334718749959224 Filmygyan photo 118.8073
68 139729956046003 Grammar 1y photo 117.1519
188  334718749959224 Filmygyan photo 114.6187
119 115206468218564 M5 Dhoni photo 114.5282
59 334718749959224 Filmygyan photo 109.8243
190 236785033139638 The Love Page photo 107.1601
53 334718749959224 Filmygyan photo 107.0151
47 334718749959224 Filmygyan photo 107.0027
124 41036834883 Man vs. Wild Tink 106.3964
185 144234358966231 STUNTnews video 106.2344
55 181544941601 Chetan Bhagat photo 104.7491
108 19787703062 Save the Tiger photo 103.5861
=

Hence, we have come up with a basic approach to replicate the stories to be displayed
in our home page. We will also work on a few aspects to improve the order of the
posts, and make sure that the posts that appear on top are most likely the ones which
we might like.

[86]



Chapter 3

Exercise

For each of the posts that are pulled using the Newsfeed function, get
* the post ID and then identify the number of comments, likes, and shares
%%‘ by friends. This could be achieved by getting our friends details and
comparing with those of the posts. Then, use these parameters as well
to compute the score. The posts that have more interaction from our
friends would most likely to be our favorite.

Recommendations to friends

The objective of this chapter is to recommend to your friend, pages that they might
like. We will build this recommendation using the Apriori algorithm. The following
code will be useful for building the recommendation model. It makes use of the
Apriori algorithm to build, generate the rules, and hence extract the patterns in

the data that can be used as recommendation. Let's understand the code in detail:

friends<- getFriends (token, simplify = TRUE)

head (friends, 26)

friendl<- getLikes ("500637447", n = 100, token)

friend2<- getLikes ("505108142", n = 100, token)

friendlsSuser <- "friendl"

friend2suser <- "friend2"

friendlikedata<- rbind(friendl, friend2)

head (friendlikedata)

forRecc<- friendlikedatal[,c("user", "id")]

write.csv(forRecc, "C:/Users/Sharan/Desktop/Chapter 3/forRecc.csv",
row.names = FALSE, col.names = NA)

library (arules)

data = read.transactions(file="C:/Users/Sharan/Desktop/Chapter
3/forRecc.csv", rm.duplicates= FALSE,
format="single",sep=",",cols =c(1,2));

head (data, 10)

nrow (data)

inspect (data)

rules<- apriori(data,parameter = list(sup = 0.2, conf = 0.001,
target="rules", minlen=3, maxlen=5)) ;

inspect (rules) ;

itemFrequencyPlot (data)

image (data)
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We use the getFriends function to get the details of the friends in our network. Once
you have completed this step, we can extract the likes of friends one by one using the
user's Facebook ID. In order to map the likes to the user, we create a user column and
name it with our friend's name. Once all the friend's details are extracted, we combine
them using the rbind function. In order to build the recommendation using Apriori,
we need only the username and the pages they like. Hence, select just these columns
and then write it in a local machine. The code is as follows:

friends<- getFriends (token, simplify = TRUE)
head (friends, 26)

friendl<- getLikes ("500637447", n
friend2<- getLikes("505108142", n
friendlSuser <- "friendl"

100, token)
100, token)

friend2Suser <- "friend2"
friendlikedata<- rbind(friendl, friend2)
head (friendlikedata)

forRecc<- friendlikedatal,c("user", "id")]
write.csv (forRecc, "C:/Users/Sharan/Desktop/Chapter 3/forRecc.csv",
row.names = FALSE, col.names = NA)

We are going to build the rules using the arules package. For the first time, you have
to install the package using the code install.packages. Load the package using the
library function. The data has to be read using the read.transactions function

so that the apriori function will understand the data. Then, we will inspect the data
using the inspect function. It will show us the user and the pages in pairs, and we
can generate the rules using the apriori function:

Install.packages ("arules")

library (arules)

data = read.transactions(file="C:/Users/Sharan/Desktop/Chapter
3/forRecc.csv", rm.duplicates= FALSE,
format="single",sep=",",cols =c(1,2));

head (data, 10)

inspect (data)

Now that we understand more about the parameters used in the apriori function,
the parameter support, sup, is the percentage of the population that satisfies the rule,
while the parameter confidence, conf, is the percentage in which the consequent is
also satisfied. We have set the threshold for these parameters. Try adjusting these
parameters' thresholds so that we are able to generate a sufficient number of rules.
We can check the number of rules generated using the inspect function:

rules<- apriori(data,parameter = list(sup = 0.2, conf = 0.001,
target="rules", minlen=3, maxlen=5)) ;

inspect (rules) ;
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The output is as follows:

1

2

10

11

12

13

= inspectrules);
Ths
{1.
1.4708E+147}
{1.
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{1.
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1.
1.
1.
1.
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{3.
1.
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1.
{a.
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40113E+147%
470BE+14}

40113E+14F
08167E+147%
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00
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.00

.00
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[ Note that preceding screenshot is just a part of the output.

Reading the output

The output produced by the Apriori algorithm might not be self-explanatory. Let's
see what it means. Those people who like the pages in the column 1hs are most
likely to like the page in the column rhs. We also get to know the support, as well

as the confidence, for the rules generated. The lift ratio is the confidence of the rule
divided by the confidence, assuming the independence of the consequent from the
antecedent. A lift ratio higher than 1 suggests that there is a strong association, which
means the rule generated is useful. For recommendations to the people, first, filter
the users based on the pages in the column 1hs and recommend them the pages in
the column rhs.
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Exercise

. Build a recommendation system to recommend friends to your network.
In our existing application, we are tagging the people to the pages that
/<~ they liked. In this case, we should tag the people to the friends. Once the
data has been prepared, the other approach will be similar. In order to
execute this, we would need to get the token authenticated using OAuth.

Other business cases

So far, we have implemented some of the business cases. Let's see some of the other

possible business cases that could be solved using the Facebook data:

1. A well-established company can use Facebook data to select the people

whom they can use for the social media campaign, such as providing offers

so that they could reach these people faster.

2. Identify how the reviews of the product are across different zones among

people speaking different languages, people belonging to different social
groups, and so on.

3. How we can merge two different communities in our network who do not

have any single attribute in common.

4. What is the time when the interactions in your network are high? Is there
any difference in behavior between gender, location, and qualification of
the people in the network?

Summary

In this chapter, we covered the sequential steps involved in the creation of a Facebook
app and used the authentication details to connect to the Facebook Graph API. We also
discussed how to use the various functions implemented in the Rf acebook package.

This chapter covers the important techniques that helps in performing vital network
analysis and also enlightens us about the wide range of business problems that could
be addressed with the Facebook data. It gives us a glimpse of the great potential for

implementation of various analyses.
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We also discussed the trending topics, measuring CTR performance of a page,
methodology to detect spam messages, identifying the influencers and providing
recommendations to the users on pages to like, and much more.

In the next chapter we will discuss accessing the data from Instagram using its
API and solve interesting use-cases such as identifying the most popular users
and destinations. We will also explore implementation of a few machine learning
techniques such as clustering and recommendation systems.
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Finding Popular Photos
on Instagram

Instagram is not just a platform for sharing photos and videos; with more than

300 million active users, it has become a popular platform for marketing. It becomes
absolutely necessary for the brands and corporations to track the performance of
various activities and users on Instagram to keep them ahead of the competition.

In this chapter, we will explore ways to get some interesting stats from the Instagram
platform. Using the package instar v0.1.4, we will pull the data and use the
analytics capabilities in R, to explore and answer interesting questions. Some of the
data that we will be extracting in this chapter will be public media from a specific
hashtag, location, or user, and we will also get user profile information, followers,
and following details. We can also get some of the picture details such as the likes,
comments, or captions used while posting; picture type, and much more.

The objective of this chapter is to use the aforementioned data and get some really
interesting metrics on users, brands, and location data, based on their activities

on Instagram which solves some business use cases such as identifying popular
personalities, identifying popular destinations, and providing recommendations
to celebrities on the users they might be interested in following.

In this chapter, we will cover the following topics:

* Creating an app on the Instagram platform

* Installation and authentication of the instaR package
* Accessing data from R

* Building a dataset

* Popular personalities

* Finding the most popular destination
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* C(lustering the pictures
¢ Recommendations to the users

¢ Business cases

Creating an app on the Instagram
platform

We need to register our application with Instagram in order to access the data.
In order to register an application, we need to create an Instagram account,
which can be created only from a mobile device. Here are the steps involved
in creating an application on Instagram.

After creating an Instagram account, open the URL https://instagram.com/
developer/:

Instagram 4% ManageClients [*" rsharankumar

Overview

Authenticaton Hello Developers.

Secure APl Requests
The first version of the Instagram API is an

Real-time exciting step forward towards making it

easier for users to have open access to | [ \
o : |
MoblleSharng their data. We created it so that you can | \\ /’
1 N\
sthe i EBRtaREIR | S -
API Console surface the amazing content Instagram |\ | i
users share every second, in fun and -
Endpoints innovative ways.
Limits Build something great i RS SR B S e
Embedding e
EETE R GG then dive into the documentation
Libraries

Support

Getting Started

Platform Developers

Click on the Register Your Application button to create a new client and fill in the
following details. In the Redirect URL textbox, type in http://localhost:1410/;
this is the call back URL that Instagram will return to after successful authentication.
After filling in all the relevant details, click on the Register button at the bottom of
the page:
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fl“&tﬂ.g’w.m 'ﬁ’ Manage Clients F. rsharankumar

P— Register new Client ID

Authentication
Starting April 14th 2015, new

ients need to request access 1o be able to post likes, follows, and comments. For

Secure APl Requests more information please read the Developer Blog at hiip://developers.instagram.com
Real-time
Basic Security
Mobile Sharing
API| Console Application Name

Da not use Instagram. 1G, insta or gram in your app name. Make sure to adhere to the AP| Terms of Use and Brand

Endpoints

Hints Description

Embedding

Libraries 7
Support Website URL

Platform Developers Redirect URI(s)

The redirect_uri specifies where we redirect users after they have chosen whether or ot to authenticate your application.

Contact email

On completion of the preceding steps, the app is created and the client information
such as the oauth, Client ID, and the secret Key, will be generated and can be
accessed through the link Manage Clients. Remember to keep the information safe.
We will use the Client ID and the Client Secret key to authenticate and connect to
Instagram from R, by doing so, we get better accessibility to the data. We can edit
the client details or reset the ID and password using the EDIT option in the
following page:

* Tnstogram £3 Manage Cllents 1" rsharankumar

v Manage Clients ol eaisie o Mo Cllent

= m

Secure AP Requests

ELIENT BeF

Rval-time
CLENTID
Mahile Sharing CLIENT SECRET
WEBSITE URL e e T harankLImar S o
SERee REDIRECT Ui
SUPRORT EMAR
Endpoints
Limizs A simcle ape o
Embedding
Uibraries
Suppost

Platipem Developars
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Installation and authentication of the
instaR package

The R package instaRr is authored and maintained by Pablo Barbera and it helps
R users to access the Instagram API through R. This package provides a series of
functions to access information from Instagram.

We can install the latest instar package directly from the GitHub repository
using the following code and load the package into R using the 1ibrary function.
The package devtools is required in order to install directly from GitHub:

library (devtools)
install github ("pablobarbera/instaR/instaR")
library (instaR)

After installing the required package for enabling the access to the Instagram API,

we will proceed to make the authentication process from R. In the following code, the
variable app_id holds the actual Client ID of your app and the variable app_secret
holds the Client Secret. Using the function instaOAuth, we generate the access token
that makes it possible to make an authenticated call to the Instagram API. The token
can be saved locally in the system so that it can be reused in the future:

app_id<- "<<paste your Client ID here>>"
app_secret<- "<<paste your key here>>"
token<- instaOAuth(app id, app secret)

On executing the preceding statement, you will find the following message in the
R console:

Copy and paste into 'OAuthredirect uri' on Instagram App Settings:
http://localhost:1410/

When done, press any key to continue...

If the redirect URL is already specified while creating the app in Instagram, you can
continue by pressing any key; the authentication would happen in the browser and
on successful authentication, the following message will be shown:

Waiting for authentication in browser...
Press Esc/Ctrl + C to abort
Authentication complete.

Authentication successful.
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Now we are good to proceed with the data acquisition. There are multiple
functions that will help us in getting the data. We will be going through it in
detail in the next section.

Exercise:

Revoke the access to the app and try to access the data from R
using the previous authentication.

S

Accessing data from R

The Instagram API provides access to some amazing content published on
Instagram. It uses the OAuth 2.0 protocol for authentication and authorization as
explained in the previous section. Let's see the functions present in the package
instaR, which enables us to download data from R.

Searching public media for a specific hashtag

The function searchInstagram allows the users to download the public media
posted on Instagram with a specific hashtag;:

MachuPicchu<- searchInstagram("MachuPicchu", token,
n=10, folder="MachuPicchu")

The preceding code will return the recent public media posts on Instagram with the
hashtag MachuPicchu, and the media files will be downloaded in a folder named
MachuPicchu (as specified in the preceding code) in the current working directory of
R. The working directory of R can be changed using the function setwd (). You can
explore the content downloaded using the below code. The function names will give
the various columns present in the data:

names (MachuPicchu)

The output is as follows:

[1] "type" "longitude" "latitude" "location name"
[5] "location id" "comments count" "filter" "created time"
[9] "link" "likes count" "image url" "caption"

[13] "username" "user id" "user fullname" "id"

The function head shows the snapshot of the output:

head (MachuPicchu, 2)
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The output is as follows:

> head(Machuricchu,2)
type longitude latitude location_name location_id comments_count filter

1 image 72.54463 13.16512 Machu Picchu 482899168 1 Normal

2 image 72.54503 13.16221 <MA> NA 3 Normal
created_time Tink likes_count

1 2015-07-01 06:44:52 https://instagram.com/p/4kyBghPs59/ 43

2 2015-06-17 23:49:42 https://instagram. com/p/4CkLvateqgH/ 312

image_ur]

1 https://scontent. cdninstagram. com/hphotos-xfal/t51.2885-15/e15/11417288_4044349
618805852_n. ipg
2 https://scontent. cdninstagram. com/hphotos-xpal/t51.2885-15/e15,/10012466_86365378
628253868_n. ipg
caption username

1 Falta muito pras proximas férias? #nofilter #machupicchu rodrigocaina_
2 #wander TustQueenF #PeruMythologyTrip #machupicchu pupp_ns

user_id user_fullname id
1 368489016 Rodrigo Cainad <U+26Al><U+FEOF> 1019159421655106749_368489016
2 33253561 <U+E10E>Queen P 1009528375069878919_33253561
=

Searching public media from a specific
location

We can also download the public media with a specific hashtag from a particular
location. To the preceding code, we will add the location filter to make sure that the
public media was posted from that particular location. This can be achieved using
the function searchInstagram along with the location parameters. We can get the
latitude and longitude of a location from Google maps by zooming in to the location,
right-clicking, and selecting the option What's here?. The code is as follows:

MachuPicchu<- searchInstagram("MachuPicchu", token, n=10,
lat= 13.1633, 1lng= 72.5456, distance=1000, folder="MachuPicchu")

In the preceding code, the latitude and the longitude specified correspond, to the
location of MachuPicchu. The parameter distance allows us to extract the media
content posted within a radius of 1000 meters, which can be increased up to a
distance of 5000 meters.

The function searchInstagramreturns the content that is up to 7 days old only,
and it allows us to filter based on Hashtag or Location, or both.
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Extracting public media of a user

Using the function getUserMedia, we can download the public media of a particular
user. We will use the function to download the public media contents posted by the
user instagram. Using the following code, we download the latest 100 public posts
by the user instagram. Alternatively, we can also download the content by using the
user's Instagram ID. The code is as follows:

instag <- getUserMedia ("instagram", token, n=100,
folder="instagram")

The preceding function will download the content to a folder instagram in the current
working directory of R. The following code is used to get an idea about the data:

names (instag)
head (instag)

The structure of the data downloaded will be similar to what we saw in the
previous section.

Extracting user profile

In order to extract the basic user profile, we can use the function getUser. We need
to pass the username and the token as parameters to this function. This function
provides us with the basic profile details such as username, basic biodata, website
(if available), link to the profile picture, complete username, media published, and
followed by, as well as the number of people the user follows. Using the following
function, we get the profile information of Barack Obama:

usr<- getUser ("barackobama", token)
head (usr)

The output is as follows:

> head{usr)
username bio
1 barackobama This account is run by Organizing for Action staff.
website
1 http://barackobama. com
profile_picture
1 https://instagramimages-a.akamaihd. net/profiles/profile_10206720_7550_138B0839853. jpg
full_name media_count followed_by follows
1 Barack obama 183 4166366 12
=
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Getting followers

To know about the followers of a particular profile, we can use the function
getFollowers. Similar to the getUser function, we need to pass the user's
Instagram account name and the token for authentication. The code is as follows:

instaf<- getFollowers ("instagram", token)

This function not only extracts the name of the followers, but also the profile
information of the followers. We use the function names to get the details on the
various variables extracted using getFollowers. This function might not extract
the complete list of the followers if the number of followers is huge, but it will
extract the recent followers:

names (instaf)

The output is as follows:

> names (instaf)

[1] "username" "bio" "website” "profile_picture”
[5] "full_name" "id"

= |

This code might run for few minutes as it is downloading details
= of alarge number of followers.

The getFollowers function extracts the data in the data frame format. We can
check the data using the function head. We have extracted the followers of the
account instagram. We can use the function nrow to get to know about the number
of follower's details downloaded by the function getFollowers. In the previous
case, we extracted the basic profile details of about 521,851 followers of the account
instagram, whose details were available as public. The code is as follows:

head (instaf, 2)

The output is as follows:

> head{instaf,2)

username bio website
1 aditya_shettigar NA NA
2 ismachg Na NA

profile_picture
1 https://igcdn-photos-c-a. akamaihd. net /hphotos-ak-xfal,/t51.2885-19,/11242625_1106480702
701234_794638759_a. ipg
2 https://igcdn-photos-c-a. akamaihd. net /hphotos-ak-xfpl/t51.2885-19,/11005104_13871689215
98970_1174694445_a. ipg
full_name id
1 Aditya shettigar 612034694
2 ismary<U+2665> venezolana 654673380
=
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For the following code:

nrow (instaf)

The output is as follows:

[1] 521851

Who does the user follow?

We have already seen how to extract details about the followers. Now, we will

see how to extract the details about the people/accounts that the users follow.

This can be achieved using the function getFollows and the same two parameters.
This function will extract the data in the data frame format. We can check a sample
of the data using the function head.

The following function extracts the basic details of the people/accounts who are
followed by the account instagram. We can use the function nrow to know about
the number of people whose information was extracted. In our case, we were able
to extract basic profile details of 429 people. The code is as follows:

instaff<- getFollows ("instagram", token)
head (instaff, 3)

The output is as follows:

> head(instaff,3)
username bio website

1 freegrassfarmer Na NA
2 themertailor NA NA
3 giopastori NA NA

profile_picture
1 https://instagramimages-a. akamaihd. net/profiles /profile_4868101
6_7550_1371391216. jpg
2 https://igcdn-photos-f-a. akamaihd. net /hphotos-ak-xtpl,/t51.2885-19,/11111439_39590342725
6149_1369200645_a. jpg
3 https://instagramimages-a. akamaihd. net/profiles/profile_25198603
0_755g_1387005864. jpg

full_name id

48681016

Mertailor 369962997

Gio Pastori 251986030

VoW R

For the following code:
nrow (instaff)
The output is as follows:

[1] 429
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Getting comments

We can get the comments posted on public media using the function get Comments.
This function will provide us with the recent comments posted on the specified media,
and it can extract a maximum of 150 comments from a post. This function also extracts
the details such as the text of the comments and details of the user who posted it, such
as the name, ID, profile picture, and the comments ID. The code is as follows:

comm<- getComments ("1027502496068994465 25025320", token)
The output is as follows:
150 comments
For the following code:
names (comm)

The output is as follows:

= names {comm)

[1] "created_time" "text" "from_username"
(4] "from_id" "from_profile_picture” "from_full_name"
[z1 "4id"

=3

In our example, we downloaded the most recent 150 comments, and all the details
regarding the comments are stored in the data frame comm. Let's see what the
snapshot of the output looks like using the following command:

tail (comm)
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The output is as follows:

= talllcomm}
created_time
145 2015-07-13 11:26:03
146 2015-07-13 11:28:40
147 2015-07-13 11:36:19
148 2015-07-13 11:37:40
149 2015-07-13 11:39:48
150 2015-07-13 11:41:09

text

145

Fo || <U+25CB> widFo || <U+25CEB> w <ed><U+00A0><U+00BD><ed><U+00B0><U+004a4> / £ ik
€ 54 £ ik € 5 <ed=<U+00AQ0><U+00BD><ed><U+00B1l><U+008D>

146 <uH+0644=<U+0644><U4+062 52<U+063 9> <004 4><U+ 062 7 =<+ 064 6> <U+0641><U+0648= <U+
064 5><U+002C><H064 5><U+0639> <U+0635><U+0620=<U+0629> <U+0627><4+0644><U+0637><U
+0628><U+064A> «<U+0628><U+0627><U+0644><U+064 5«4 062F><U+084 A<+ 064 6><U+0829> <
U+062 7 ><U+0644><U+064 32<U+ 064 8=<U+064 B><U+0631><4+0629> <U+0627><U+0644><U+0631>
<U+062C=<U+0627><U+0621> <U+0627><+0644 ><U+062 A><U+064 8><U+ 0627 ><U+063 5=<U+ 0644 =
<U+064 B=<4+ 002 7><U+ 062>+ 063 3=<U+ 0627 =<+ 062 8> <U+0660><U+0665=<U+0660>=<U+0668>
<H0661><U+0667><U+0606><U+0661><U+0667 ><U+0667>

147

@paulthompson I Tike it

148

col

149

@instagram please stop deleting fan accounts. Too many have been deleted recently
and they have done nothing wrong, at all. They actually work for their followers
and it really makes them sad to see all their hard work & time get thrown away so
easily. Thank you.

150
Cool picture

from_username from_id
145 rizemania 33025362

146 seha_polyclinic 1386590280
147 moumitaswargiary 1145349660

148 sara_70003 1829928213
149 shawnmemendes 2093399411
150 bhaumikléll 1685725516

This is a rich source of text data that can be used for performing text analytics
to understand the sentiments of the people. We will cover a few concepts of text
processing later in this chapter.
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Number of times hashtag is used

The function getTagCount helps us know the usage of the specified hashtag in the
comments for the media post. We can use this function to get the occurrence of any
hashtag. We will use this function to get the number of times the tags greece and
obama are used:

Tagl<- getTagCount ("greece", token)
Tagl

The output is as follows:
[1] 7805055
For obama:

Tag2<- getTagCount ("obama", token)
Tag2

The output is as follows:

[1] 2416024

We can use this function to get the popularity of brands, users, and so on. We can
also get trends by executing the function at a fixed time interval.

Exercise:

* Do aword cloud analysis on the recent comments posted in the
account Instagram.

* Do an hourly trend analysis for a week on the number of times
the following tags are used:

| e #love
a e #instagood
~ *  #me
* #tbt

e #followme

* #photooftheday
* #happy

e f#itagforlikes

e f#selfie
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For the preceding tags, get the following information:

*  What are the top 3 tags that have the highest growth rate?
’ * Isthere any daily seasonality in the preceding tags?
% *  What are the pairs of tags with highest similarity?

*  This can be implemented by executing the function to capture
the tag count on an hourly basis.

*  Extract the pictures posted from the New7wonders of the world.

Building a dataset

In this section, we will create multiple datasets using a specific set of users as well as
the hashtags that will be used for further analysis, so we can answer some interesting
questions. We have created a list of popular users as well as some popular hashtags
that are commonly used while sharing media related to travelling. All the users

and the hashtags used for the analysis will be provided. The name of the CSV file is
UsersAndHashtags, this CSV file will have two columns: one with the popular users
and the other with the hashtags.

Place the aforementioned CSV file in the current working directory. You can get the
current working directory using the function getwd () ; alternatively, you can also
change the working directory using the function setwd (). After placing the file in
the current working directory, execute the following commands:

userAndTags<- read.csv("UsersAndHashtags.csv")
names (userAndTags)
head (userAndTags)

The output is as follows:

> head{userandTags)

Users Hashtags
1 beyonce monument
2 brooklynbeckham worldheritage
3 charlizeafrica amazing
4 prattprattpratt trip
5 theellenshow architecture
6 humansofy travel
=

This is the list of celebrity profiles as well as travel-related hashtags that will help us
extract important information.
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User profile

First, we will get the complete profile information about these celebrity user profiles.
We can get the profile information using the function getUser. We will loop through
the preceding table to get the profile information about all the users. Since data
extraction involves multiple API calls and, in some cases, might take more time,

we will store the dataset in the local system using the function write.csv. In the
following case, we have a counter on the number of users whose data has been
processed so far; it will be printed on the screen. If the code breaks in between, it

can be continued based on the counter. The code is as follows:

users<- userAndTags$Users
users<- as.matrix(users)
userprofiles = data.frame (matrix("", ncol = 8, nrow = 0))
for (i in 1l:nrow(users))
{
#uf<- getFollows (users[i,1l], token)
usrp<- getUser (users[i,1l], token)
userprofiles<- rbind(userprofiles, usrp)
print (i)

}

write.csv(userprofiles, "userprofiles.csv")
head (userprofiles, 3)

The output is as follows:

> head(userprofiTes)
username
beyonce
brooklynbeckham
charlizeafrica
prattprattpratt
popsugar
salmahayek

EEET

I use my twitter for jokes mostly. But I use my Instagram for deeper more meaningful stuff like pictures mostly.

EEEE

After hundreds of impostors, years of procrastination, and a self-imposed allergy to technology, FINALLY I'm here. jHola! This is truly salma.
website
http://www. bayonce. com

http://wewi. popsugar. com
http://twitter. com/salmahayek
profile_picture

1 https://igcdn-photos-g-a. akamaihd. net /hphotos-ak-xftl/t51.2885-19/11098624_1632794343609174_1724291661_a. jpg

2 https://igcdn-photos-b-a. akamaihd. net /hphotos-ak-xpal /t51. 2885-19/5150x150,/11191216_997536980258561_1248633090_a. jpg

3 https://igcdn-photos-h-a. akamaihd. net /hphotos-ak-xfal/t51. 2885-19,/10175122_246931378828975_568099733_a. jpg

4 https://igcdn-photos-e-a. akamaihd. net /hphotos-ak-xpal /t51. 2885-19/10570060_731177430282340_844528433_a. jpg

5 https://igcdn-photos-c-a. akamaihd. net /hphotos-ak-xaf1,/t51.2885-19/11410668_1623481421242586_1446105071_a. jpg

6 https://igcdn-photos-d-a. akamaihd. net/hphotos-ak-xapl/t51. 2885-19/11078688_903536949669427_1338825742_a. jpg
full_name media_count followed_by follows

1 Beyoncé 1068 39956644 Q

2 Brooklyn Beckham 86 3563310 142

3 Charlize Theron 64 357358 37

4 prattprattpratt 70 1793147 27

5 POPSUGAR 4099 138978 689

6 salma Hayek Pinault 70 192965 108

>
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User media

Let's extract all the user-specific data. In order to do so, we need to get all the
usernames and convert them into a matrix so that we can easily refer to the positions
of the usernames. Then, we can create an empty data frame of the same dimensions
as the produced output. The code is as follows:

users<- userAndTags$Users
users<- as.matrix(users)

usermedia <- data.frame (matrix("", ncol = 16, nrow = 0))

We are using a for loop to extract all the user data. In the following code, we

are extracting just the 20 most recent posts from all the users using the function
getUserMedia. We will keep appending the data to the existing dataset using the
function rbind. The following code will not only produce a large dataset with the
20 most recent posts from all the users provided as input, but also download their
media files to the folder named users in the current working directory. The code is
as follows:

for (i in 7:nrow(users))

um<- getUserMedia (users[i,1l], token, n=20, folder="users")
usermedia<- rbind(usermedia, um)
print (i)

head (usermedia)

The output is as follows:

= head(usermedia)

X type longitude latitude Tocation_name location_id comments_count filter
image NA NA <NA> NA 13336 Normal
image NA NA <NA= NA 3570 Normal
image NA NA <NA> NA 10636 Normal
image NA NA <NA= NA 7542 Normal
image NA NA <MNA> NA 12218  Aden
video NA NA <NA> NA 62584 Normal

created_time Tink Tikes_count

T
O

2015-07-07 05:53:43 https://instagram. com/p/40I8Lnvw2y,/ 998675
2015-07-06 06:20:24 https://instagram. com/p/4xnMu-vwyl/ 598587
2015-07-06 103: https://instagram. com/p/4x1svavw-u/ 1190717
2015-07-06 https://instagram. com/p/4xN-06vw_Z / 1186050
2015-07-03 https://instagram. com/p/4p7fwyPw_m/ 1145703
2015-07-01 https://instagram. com/p/4mis2Mvw8L / 1257908

EEET

image_url
https://scontent. cdninstagram. com/hphotos-xfal/t51.2885-15/e15/11421839_1599743283614039_899889751_n. jpg
https://scontent.cdninstagram. com/hphotos-xaf1,/t51.2885-15/5640x640/e35/sh0. 08/11379007_942460589144554_912328289_n. jpg
https://scontent. cdninstagram. com/hphotos-xatl,/t51.2885-15/5640x640/e35,/5h0. 08/10683799_944264715616129_2052940071_n. jpg
https://scontent.cdninstagram. com/hphotos-xaf1,/t51.2885-15/5640x640/e35/sh0. 08/11378179_123043894699043_637050024_n. jpg
https://scontent. cdninstagram. com/hphotos-xafl/t51.2885-15/5640x640/e15,/11374471_718666351594531_33970953_n. jpg
https://scontent. cdninstagram. com/hphotos-xfal/t51.2885-15/e15/11379338_136176490047591_1254096861_n. jpg

caption username user_id user_fullname

<NA> beyonce 247944034 Beyoncé

EEET

<NA> beyonce 247944034 Beyoncé

U.5.A beyonce 247944034 Beyoncé

<ed><U+00A0><U+00BD><ed><U+00B2><U+008B> beyonce 247944034 Beyoncé

<NA> beyonce 247944034 Beyoncé

Never Too Late #LoveWins <U+2764=<U+FEOF> beyonce 247944034 Beyoncé
id
1023482335338630578_247944034
1022770991420782676_247944034
1022762578058612654_247944034
1022660069537288153_247944034
1020608457570455526_247944034
1019653194373861131 247944034

EEETTE

T
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Travel-related media

After extracting the user data, we will now focus on the popular hashtags commonly
used with regard to travel and sightseeing. The second column of the dataset provided
has the list of hashtags. Similar to extracting the user data, we use the for loop

to extract travel-related posts. In the following code, for each of the hashtags, we
download 100 recent posts. Finally, we combine the data using the function rbind.
The code is as follows:

tags<- userAndTags$Hashtags

tags<- as.matrix(tags)

for (i in 1l:nrow(tags))

{

hm<- getUserMedia(tags[i,1l], token, n=100, folder="tags")
hashmedia<- rbind(hashmedia, hm)

print (1)

}

head (hashmedia)

The output is as follows:

¥

head(hashmedia)
X type longitude latitude Tocation_name Tocation_id comments_count
image NA NA <NA> NA
image 21.00484 52.24965 supreme Court of poland 274897269
image 21.01635 52.24837 Arkady Kubickiego 431186
image NA NA <NA> NA
image 21.01426 52.24381 Anegdoty warszawskie — 866051731
image 21.01340 52.23997 sofitel warsaw victoria 554801
filter created_time 1ink Tlikes_count
Ludwig 2015-07-14 00:34:05 https://instagram.com/p/SF17ImiLvu/
Normal 2015-07-14 00:33:06 https://instagram.com/p/SF10BNzZHI8/
Normal 2015-07-14 00:29:37 https://instagram.com/p/5FlajdTHIV/
Rise 2015-07-14 00:27:42 https://instagram.com/p/SFIMdxysIp/
Normal 2015-07-14 00:26:38 https://instagram.com/p/5F1EM7 THHr/
Normal 2015-07-14 00:24:06 https://instagram.com/p/SFKkyHQzHHL/ 1

W
G B
cocococoo

S
[NENRRTEE

image_url
1 https://scontent. cdninstagram. com/hphotos-xafl,/t51.2885-15/e15/11358262_134512496882553_1209888707_n. jpg
2 https://scontent. cdninstagram. com/hphotos-xfpl/t51. 2885-15/5640x640/e325/sh0. 08/927166_917176578368220_1125565774_n. jpg
3 https://scontent. cdninstagram. com/hphotos-xafl/t51.2885-15/5640x640/e35/5h0. 08/11419135_377134542479834_1287048671_n. jpg
4  https://scontent.cdninstagram. com/hphotos-xfal/t51.2885-15/5640x640/e35/sh0.08/113133686_1631187377164427_1408656725_n. jpg
5 https://scontent. cdninstagram. com/hphotos-xafl,/t51, 2885-15/5640x640/e35/5h0, 08/11351619_1025049187508263_1984030001_n. jpg
6 hrttps://scontent.cdninstagram. com/hphotos-xfal,/t51.2885-15/5640x640/e35/5h0.08,/11419070_833014000128720_1140642529_n. jpg

caption
1

igueldeallende #mexicomagico #mexicolindo #ig_mexico #worldheritage
2 Court House in warsaw. #warsaw #warszawa #130715 #insta
urthouse #design #architecture #unesco #worldheritage #trees #grass
3 01d house in Warsaw. #warsaw #warszawa #130715 #instawarsaw #iphoneéplus #oldtown #unesco #v
eau #architecture #design #facade #poland #summer #door #woodendoor
4 st. sophia Cathedral ‘n#Kiev #ukraine #explore #travel #cathedral #5tsophia #stSophiacathedral
jcanabroad #igtravel #beauty #architecture #love #worldheritagelist
5 statue in 0ld Town warsaw. #warsaw #warszawa #130715 #instawarsaw #iphoneéplus #poland #art #5
unesco #worldheritage #park #garden #flowers #trees #clouds #summer

6 Yellow grass... Warsaw needs more than one rain shower! #warsaw #warszawa #130715 #instawarsaw #iphoneéplus #grass #architect
ds #unesco #worldheritage #poland #summer #artdeco #artnouveau #art

username user_id user_fullname
1 soviore 1783287348 Marinelly Diaz Saporiti
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Since the user data as well as the hashtag data are similar to each other, we combine
the datasets to produce a common dataset that could be used for the analysis.
The code is as follows:

alldata<- rbind(usermedia, hashmedia)
head(alldata)

Who do they follow?

In addition to the preceding datasets, we will also create a dataset on whom the
celebrity users follow on Instagram. This information will be very useful to provide
recommendations to various celebrity users whom they would like to follow based
on similar user behavior. We will be discussing these recommendations in detail
later in this chapter.

We will use the following code to read the list of users from our dataset
userAndTags and convert them to matrix format using the function as.matrix and
finally use a for loop on the users to extract basic details of the accounts they follow.

users<- userAndTagsS$Users

users<- as.matrix(users)

userfollows = data.frame (matrix("", ncol = 7, nrow = 0))
for (i in 1:nrow(users))

{

uf<- getFollows (users([i, 1], token)

auf<- cbind(users([i, 1], uf)

userfollows<- rbind(userfollows, auf)

print (1)

}

nrow (userfollows)
write.csv(userfollows, "userfollows.csv")
head (userfollows)

. Note that the for loop in the preceding code will break if any of
% the users have zero follows. Hence we have the counter in place,
" so that we can change the starting pointer in the for loop, and

continue to pull the data until the list is completed.

[109]



Finding Popular Photos on Instagram

The output is as follows:

v

head{userfolTows)

X users.i..1. username bio website
1 1 brooklynbeckham uwheels NA NA
2 2 brooklynbeckham ashleycharlesid Na NA
3 3 brooklynbeckham  jorelljohnson NA NA
4 4 brooklynbeckham max_makaka NA NA
5 5 brooklynbeckham beezymason NA NA
6 6 brooklynbeckham nathangartside5 NA NA
profile_picture
1 https://igcdn-photos-a-a. akamaihd. net /hphotos-ak-xfal /t51. 2685-19,/11357945_1128703060488056_218082261_a. jpg
2 https://igcdn-photos-a-a. akamaihd. net /hphotos-ak-xpf1,/t51.2885-19,/11015560_793747430717560_2077439940_a. jpg
3 https://igcdn-photos-e-a. akamaihd. net /hphotos-ak-xpfl,/t51. 2885-19/10731578_732482456846260_1214795391_a. jpg
4 https://igcdn-photos-f-a. akamaihd. net /hphotos-ak-xafl/t51. 2885-19,/5150x150,/11419108_1606266189643405_516880645_a. jpg
5 https://igcdn-photos-e-a. akamaihd. net /hphotos-ak-xpf1,/t51. 2885-19,/11117015_616439008493772_115272205_a. jpg
g https://igcdn-photos-e-a. akamaihd. net/hphotos-ak-xatl,/t51. 2885-19/11055894_949534028420108_1355003259_a. jpg
full_name
1 u wheels
2 Ashley charles
3 Jorell Johnson
4 makaka B <U+26BD><ed><U+00A0><U+00BD><ed><U+00B2><U+00AF><ed><U+00A0><U+00BC><ed><U+00BC><U+009F>
5 Brandon Mason
[3 Nathan Gartside
id
1 2015755375
2 T3ETG6BGE42
3 699548027
4 1271798036
5 328411188
6 1077726241
=

Thus the preceding dataset has the celebrity username followed by the users they
follow, along with their basic profile details. For the recommendation engine, the
first two columns will be sufficient. We will be using this dataset for further analysis.

Popular personalities

From the dataset we built, we will work on identifying the most popular users using
different aspects. Let's see those in detail.

Who has the most followers?

We can get the users with most number of followers from the dataset userprofiles
by sorting the data using the column followed by and using the function order.
The following code will return the dataset by sorting the data in the descending
order based on the column followed by. The code is as follows:

mostfollowed<- userprofiles([with (userprofiles,
order (-followed by)), ]

head (mostfollowed$full name, 15)
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The output is as follows:

= head(mostfollowedifull_name, 15)
[1] "Beyoncé" "kim kardashian west" "selena Gomez"
[4] "khloé" "Miley Cyrus” "Ccristiano Ronaldo”
[7]1 "1ennifer Lopez" "Leo Messi" "therock"
[10] "kourtney Kardashian” "nike” "Cara Delevingne”
[13] "Justin Timberlake” "shakira” "champagnepapi”
>

Who follows more people?

To know the user who follows the most number of people, we use the same dataset
userprofiles. Everything is similar to the previous one, but we need to use the
column follows instead of followed by. The code is as follows:

mostfollows<- userprofiles[with (userprofiles, order(-follows)), ]
head (mostfollows$full name, 15)

The output is as follows:

= head(mostfollows$full_name, 15)
[1] "cara pelevingne" "Jesse williams" "Emma Roberts” "] 0OEJONAS"
[5] "Jaime King" "Jessica Alba" "champagnepapi” "Jennifer Lopez"
[9] "puff Daddy" " "Joy Bryant” "Lena punham”
[13] "POPSUGAR" "Candice Swanepoel” "Minka Kelly"

>

The preceding output shows the users who follow the most number of people
on Instagram.

Who shared most media?

Now, let's see who are the most active users and who have shared the most number
of pictures/videos on Instagram. We use the dataset userprofiles:

mostmedia <- userprofiles[with (userprofiles,
order (-media_count)), ]

head (mostmedia$full name, 15)

The output is as follows:

> head(mostmedias$full_name, 15)
[1] "puff Daddy" "POPSUGAR" "Miley Cyrus”
[4] "1ames Franco” "kim kardashian west" "ashley Benson"
[7] "khloé" "Cara Delewvingne” "Mmindy kaling"
[10] "Emmy Rossum” " "Lucy Hale"
[13] "Jessica Alba" "champagnepapi” "Mena. \xedg@' xedgp"”
-
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Overall top users

So far, we have explored the popular users based on the factors followed by,
follows, and media_count from the dataset userprofiles. In the following
code, we will get the overall active users by using all of the aforementioned
factors. The code is as follows:

userprofiles$overallmetric<-
((userprofiles$media_ count/max (userprofiles$media_count)) +
(userprofiles$followed by/max (userprofiles$followed by))

+ (userprofiles$followed by/max (userprofiles$followed by))) *100

In the preceding code, we normalize the values of each of the factors to the range
of 0-100. Then, we add them up to come up with the final score. The final score can
have a maximum value of 300. The code is as follows:

overallmet<- userprofiles[with (userprofiles,
order (-overallmetric)), ]
head (overallmet$full name, 15)

The output is as follows:

> head{overallmet$full_name, 15}
[1] "kim Kardashian west" "Beyoncé" "selena Gomez"
[4] "MiTey Cyrus" "Khloé" "Jennifer Lopez"
[7] "kourtney Kardashian" "puff Daddy” "Cristiano rRonaldo”
[10] "therock” "Cara Delevingne” "Leo Messi”
[13] "mike" "champagnepapi” "ashley Benson"
S

These are the most active users based on all of the previously mentioned factors.
These are the various analyses to get us the most popular users on Instagram.

Most viral media

We can find out about the media which went most viral. To get that information, we
will use the dataset alldata, and the columns comments count and likes count.
The following code will help us to identify the media that had the most number of
comments as well as the one with the most number of likes:

mostcomm<- alldata[with(alldata, order(-comments count)), ]
head (mostcomm, 1)
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The output is as follows:

= head(mostcomm, 1)
X  type longitude Tatitude Tocation_name location_id comments_count filter

1613 1613 image NA NA <NA> NA 84137 Normal
created_time T1ink likes_count

1612 2015-06-25 06:35:31 https://instagram. com/p/4VULVEPMZK,/ 1542382

image_url

1613 https://scontent. cdninstagram. com/hphotos-xafl,/t51.2885-15,/e15/11378271_144942091535
0014_2086564367_n. ipg
caption username user_id user_fullname id
16132 =NA> leomessi 427553890 Leo Messi 1014806059329310090_427553890
=

We can get the media post with the maximum number of likes by sorting the content
in descending order based on the column likes_count using the function order.
This can be implemented using the following code:

mostlikes<- alldatal[with(alldata, order(-likes count)), ]
head (mostlikes, 1)

The output is as follows:

= head({mostlikes, 1)
X type longitude latitude location_name location_id comments_count filter

1619 1619 image NA NA <NA> NA 37710 Normal
created_time Tink 1ikes_count

1619 2015-06-07 03:18:40 https://instagram. com/p/3ImmaQgvMxE,/ 1911646

image_url

1619 https://scontent. cdninstagram. com/hphotos-xafl,/t51.2885-15/e15,/11358981_144507450579

4826_49119342_n. jpg
caption username  user_id user_fullname

1619 campeonesssssss !ITIIIITTD vamossss carajooooo Teomessi 427553890 Leo Messi
id

1619 1001661020675820668_427553890

=

Finding the most popular destination

We explored some of the user metrics as well as the media metrics. Now, we will
explore the geography of the media posts. We can get the geo-location if it has been
enabled by the user. We will perform this analysis on the dataset alldata.
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Locations

In the following code, we are just getting the unique locations found in the dataset
collected by us. Since we are getting the data with the help of a query, we need to
load the sqldf package in the R console and use the function na.omit to remove
the posts without any location details. The following code consolidates the locations
and finally, using the function nrow, we get to know about the unique number of
locations from where the posts were made.

library (sqgldf)

names (alldata)

allloc<- sqgldf("select distinct location name from alldata")
allloc<- na.omit (allloc)

nrow (allloc)

The output is as follows:
[1] 432

There are posts from 432 different location in the dataset collected by us. Let's get a
snapshot of some of the locations:

head(allloc, 20)

The output is as follows:

> head(allloc, 20)
location_name
2 Cannes Film Festival
3 STONE ROSE NEW YORK
4 Shubert alley
5 The Jane Hotel
6 Belasco Theater on Broadway
7 jane hotel
8 USA
9 ancient city of Pompedi
10 san Domenico Palace
11 Siracusa Sicily
12 Savoca Sicily
13 Runyon Canyon Park
14 Grand Park wuxi
15 Mykonos, Kikladhes, Greece
16 soho House Istanbul
7 Istanbul -Turkey
18 Dolmabache, Istanbul, Turkey
19 Topaki Palace
20 Belasco Theatre New York
21 The Town Hall
> |
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Locations with most likes

We have seen all the locations from where the posts were made. Now, we will see
which location, the posts with the maximum number of likes were made from. We
can get this data by using the group by function in SQL, and then sorting the data
based on the descending order of the total likes received. The code is as follows:

loclikes<- sqgldf ("select location name, sum(likes count) as
totlikes from alldata group by location name")

loc<- loclikes([with(loclikes, order(-totlikes)), 1
loc<- na.omit (loc)
head (loc, 25)

The output is as follows:

= head(loc, 25)
location_name totlikes
343 stockholm Archipelago 451732
426 jane hotel 451014
387 Tower Bridge 436846
55 Berlin, Germany 434232
92 chula vista, california 426811
44 Barceloneta Beach 423563
124 Epsom View Point 396870
211 London Swl9 337544
386 Toronto, Canada 334469
413 wWinnipeg, Manitoba 332008
320 shubert alley 263100
323 Siracusa sicily 199881
393 usa 180262
36 Ancient City of Pompei 131510
314 Savoca Sicily 118466
302 STONE ROSE NEW YORK 110579
77 The white House south Lawn 106300
368 The Jane Hotel 74637
77 Istanbul -Turkey 71800
50 Belasco Theater on Broadway 60848
306 San Domenico Palace 38798
376 The white House Kitchen Garden 37264
233 Mykonos, Kikladhes, Greece 37202
51 Belasco Theatre New York 29072
333 soho House Istanbul 27230
> |

Locations most talked about

We assume the total comments made in the post as a proxy for the location most
talked about, though the comments might not really be about the place. This can
be implemented in a way similar to the likes for a location by using the column
comments_count instead of 1ikes count. The code is as follows:

loccomments<- sqgldf ("select location name, sum(comments_count) as
totcomm from alldata group by location name")

loccomm<- loccomments [with(loccomments, order (-totcomm)), ]
loccomm<- na.omit (loccomm)
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The following output shows us the locations that had posts that were most talked
about compared to others. We can see that the location with most likes is quite
different from the location with most comments:

head (loccomm, 15)

The output is as follows:

= head{Toccomm, 15)
location_name totcomm

314 Savoca Sicily 2630
323 Siracusa sicily 2408
92 chula vista, california 2305
36 Ancient City of Pompei 1882
44 Barceloneta Beach 1746

77 The white House South Lawn 1627
55 Berlin, Germany 1620
343 stockhoIm archipelago 1555
426 jane hotel 1497
320 Shubert Alley 1480
124 Epsom View Point 1446
387 Tower Bridge 137
393 Usa 1250
211 London Sw19 1183
413 winnipeg, Manitoba 1002
> |

What are people saying about these
locations?

Having seen some of the quantitative measure of the locations, we will now see
what people are saying about those locations, or in those posts made by them.

For this analysis, we use the text and tags found under the caption. After collecting
all the caption text, we perform the text analysis.

To perform text analysis, we need to load some packages that enable text analysis.
For this section, we need to load the package wordcloud for plotting the word cloud
and tm to perform some processing on the text data and make it usable for the text
analysis. The code is as follows:

library (wordcloud)
library (tm)

We first break the sentences into words using the function strsplit. Then, we
perform a series of steps to remove the special characters from the dataset, convert
them into lower case words, and finally remove the standard stop words. The code
is as follows:

words<- strsplit(as.character(alldata$caption), " ")
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words<- lapply(words, function(x) x[grep("”[A-Za-z0-9]+$", x)])
words<- unlist (words)

words<- tolower (words)

#Remove stop words

stopWords<- stopwords ("en")

"$1in%" <- function(x,table) match(x,table, nomatch = 0) == 0
words<- words [words %!in% stopWords]

The function table creates a frequency on the number of times a certain word
occurs. Using the function wordcloud, we plot the plot the word cloud. We pass
some parameters, such as the color range for the text, to the function wordcloud and
we plot only the words that had more than 20 occurrences. The code is as follows:

allwords<- as.data.frame (table (words))

wordcloud (allwordssSwords, allwordsSFreq, random.order = FALSE,
min.freq=20, colors = brewer.pal (2, "Dark2"))

The output is as follows:
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Most repeating locations

Having seen some of the metrics on location, we will now look at the repetition of
posts made from a particular location. The following query will get us the required
information and sort the locations that were repeated the most. Since the dataset
used in our case is not huge, it is possible that a location could have come out on top
because of repeated posts from a single user. The code is as follows:

locations<- sqgldf ("select location name, count (location id)

as
locid from alldata group by location name")
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location<- locations[with(locations, order(-locid)), 1
location<- na.omit (location)
head(location, 5)

The output is as follows:

location_name locid
stonehenge 8

punston staithes 5
Shubert aAlley 4
Sibenska Katedrala 4

Exercise:
We have found some really interesting metrics that can be measured
based on an Instagram post. Here are some more metrics that you can try:
*  Which captions (hashtags) have the tendency to increase the likes?
*  Which user's post has generated more likes as well as comments?
* Identify some new metrics for the geo-location and compute it
using R.

Clustering the pictures

Clustering is an example of unsupervised learning as there is no prior knowledge of
the groups present in the dataset. It is a method of dividing the dataset into different
groups based on various parameters of the dataset. Each group is called a cluster,
and the various objects present in a group will be share some similarities as well as
dissimilarities when compared with the objects outside the group. We will cover the
clustering algorithm in this section.

One of the greatest examples of the clustering algorithm would be the search engine;
where the pages that are closely related to each other are shown together, and the
pages that are different are kept away as far as possible. The most important factor
here is the factor that we consider to measure the similarity or the dissimilarity
between the objects.

In order to implement the clustering algorithms in R, we need to load the package
fpc into the R environment. The package fpc, a flexible procedure for clustering, has
multiple functions to implement various kinds of clustering techniques. The code is
as follows:

library (fpc)

data<- alldata

cdata<- subset (data, select= c(type, comments count,
likes count, filter)
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We will use the alldata dataset and select only a few numerical and categorical
columns for performing the clustering analysis. After selecting the desired columns
from the dataset, we convert the categorical columns to the integer format. Standard
clustering algorithm can't be applied on the categorical data because the Euclidian
distance function isn't meaningful on discrete values. By executing the following
code, we also get to know the number of characters present in the column caption
using the function nchar.

colnames (cdata) <- c("type", "comments","likes","filter")
cdataSfilter<- as.integer (cdatasfilter)

cdataStype<- as.integer (cdataStype)

cdataS$lencap<- nchar (as.character (data$caption))

head (cdata)

In the preceding code, for the purpose of learning, we are converting the categorical
data into integer, as the clustering algorithm works for integer data. It is generally
not preferred to do so. Also, it is advisable to scale the numerical columns to
standardize the values so as to give equal weights to them.

The output is as follows:

= head{cdata)
type comments  Tikes filter lencap

1 1 13336 998675 25 2
2 1 3570 598587 25 2
3 1 10636 1190717 25 5
4 1 7542 1186050 25 40
5 1 12218 1145703 2 2
6 2 62584 1257908 25 41
>

The preceding dataset is the one we will use for clustering analysis. Before
performing clustering analysis, it is good to identify the ideal number of clusters
based on the patterns in the data. We can identify the ideal number of cluster by two
different methods. Let's explore each one of them. First, we identify the ideal number
of clusters using the function pamk. This calls the function pam or clara to perform
partitioning around the medoids clustering with the number of clusters estimated

by optimum average silhouette width. The code is as follows:

clusters<- pamk (cdata)
n<-clusterss$nc
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This preceding function is computationally intensive so might take a very long time
for even a slightly larger dataset. Hence, we will also cover a manual method to
identify the ideal number of clusters. The code is as follows:

# Code from Tal Galili's post based on Kabacoff's book - http://www.r-
statistics.com/2013/08/k-means-clustering-from-r-in-action/

cdata<- data

wss<- (nrow(cdata)-1)*sum(apply (cdata,2,var))

for (i in 2:25) wss[i] <- sum(kmeans (cdata,

centers=i) sSwithinss)

plot (1:25, wss, type="b", xlab="Number of Clusters",

ylab="Within groups sum of squares")

The preceding code is taken from Tal Galili's post based on Kabacoff's book. It
generates the following output and we need to read the graph to arrive at the ideal
number of clusters. Logically, as the number of clusters increase, the sum of squared
errors reduce. If there are n objects in a dataset then n clusters would result in 0 error,
but ideally we need to stop at some point. As per the theories, the rate of decrease

in the sum of errors will drop suddenly at a point and that should be considered as

the ideal number of clusters. According to the following graph, the ideal number of
cluster is 4.

The output is as follows:
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As per our observations, the ideal number of clusters should be 4. Hence, we will go
ahead and implement the clustering algorithm with 4 clusters. We build the clusters
using the function kmeans. We get the number of objects in each cluster using the
function table. We can also perform the aggregation of the objects within the same
group using the function aggregate. We can also plot cluster output using the
function plotcluster. The code is as follows

fit<- kmeans (cdata, 4)
table (fit$Scluster)

Here are the number of elements present in each of the clusters:

= table(fit$cluster)

1 2 3 4
3160 43 105 262
=

We use the function aggregate to get the mean value of the objects in each of the
groups for the various columns.

aggregate (cdata,by=1ist (fit$cluster) , FUN=mean)

The output is as follows:

= aggregate(cdata,by=1ist(fitScluster),FUN=maan)

Group.1 type  comments likes filter lencap
1 1.052848 263.7611 17051.44 23.34367 253.10791
2 1.023256 26602.2326 1410549.44 24.04651 89.60465
3 1.076190 8153.6857 8054B84.98 24.70476 109.52381
4 1.087786 3704.977 334015.77 24.42748 120. 81298

AU S VRN

From the preceding output, we get a better understanding about the dataset, such
as the average value of various attributes in different clusters. Since the objects

in a cluster exhibit a similar behavior, the clusters can be considered for different
experiments. The code is as follows:

plotcluster (cdata, fitscluster)
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The output is as follows:

20

15

10

dc

The preceding output gives us the pictorial representation of the number of clusters
based on the principal components of the variables in the dataset; with the color
coding, it becomes easy to see the clusters.

Some of the problems that can be solved through the implementation of a clustering

algorithm are as follows:

* In the medical field, it can be used to predict the likelihood of a disease

* It can be used for matching DNA to a suitable group

* It can be used for grouping similar customers for marketing campaigns
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* For academics, it can be used to group students based on their similarity of
their various fields of research

Exercise:

Consider a dataset with only numerical values and implement the
. clustering algorithm by identifying the ideal number of clusters using
& the manual method as well as using the function. Also, try to implement
L the other clustering algorithm and check how the results vary.

Converting a categorical value into integer values is not advisable in any
real world problem. In this case, we have performed this for ease
of understanding.

Recommendations to the users

Recommendation has become very common nowadays. Many online companies
like Amazon, Facebook, LinkedIn, and so on provide recommendations. These
recommendations are produced by the recommendation system that is nothing
but an algorithm that uses some of the historic data to predict what the user would
like. The recommendation can be implemented using the collaborative filtering
algorithm, which can be implemented using either user-based or item-based
methodology. In this section, we will see in detail the implementation of

the algorithm using user-based filtering.

How to do it

We will use the information of the users whose details we have downloaded, and
the users whom they follow, and we will build the recommendation engine based
on this data. Since we have already downloaded the data, we will read the data
using the function read. csv:

userfollows<- read.csv("userfollows.csv")
names (userfollows)

The output is as follows:

= names (userfollows)

[1] "=" "users.i..1." "username” "hio"
[5] "website" "profile_picture” "full_name" "id"
>
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We have the preceding variable in the dataset. In order to build the recommendation
engine and provide recommendations to the users, we would just need two columns.
Hence, we select those two columns using the function data. frame:

fdata<- data.frame (userfollowsSusers.i..1l., userfollowsS$Susername)
colnames (fdata) <- c("user","follows")
head (fdata)

The output is as follows:

= head(fdata)

user follows
1 brooklynbeckham uwheels
2 brooklynbeckham ashleycharlesid
3 brooklynbeckham  jorelljohnson
4 brooklynbeckham max_makaka
5 brooklynbeckham beezymason
6 brooklynbeckham nathangartside5
=

Now, we have to pivot the dataset in such a way that the users become the column
axis and the users whom they follow, as the rows. So, it becomes easy for us to
compute the correlation between the users. In order to pivot the data, we need

to use the function dcast .data.table, which requires the package data.table.
The following code will pivot the raw dataset:

library (data.table)

pivoting<- data.table(fdata)
pivotdata<-dcast.data.table (pivoting,

follows ~ user, fun.aggregate=length, value.var="user")
write.csv(pivotdata, "pivot-follows.csv")

The preceding pivot function might be slightly time consuming depending on
the size of the actual dataset, and it is better to write the converted file in to the local
system so that it can be reused. Let's see what the pivoted dataset would look like:

data<-read.csv("pivot-follows.csv")
colnames (data)
head (data)
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The output is as follows:
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%»‘ The preceding screenshot is just a part of the output.

After writing the file to the system, we need to remove the first two columns
which are not required for building the recommendations. This can either be

done manually; by deleting from the Excel file, or by using the following code:

data.ubs<- (datal, ! (names (data)

$in% c("users"))])
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We can compute the similarity of the users using different methods. In our case,
we will use the cosine similarity technique to get the similarity score for all the
user pairs. In our dataset, zero means that the user is not following. If we consider
those rows with zero, while computing the similarity using correlation or any other
technique, we will end up with a biased output that is far from reality. Hence,
while computing the similarity score, we will consider only the nonzero rows.

The following function computes the similarity between the users using the cosine
similarity method .Other methods that could be used are Pearson correlation
similarity and by also counting the co-occurrence:

getCosine<- function (x,y)
{
dat<- cbind(x,Vy)

#f<- as.matrix(dat)
f<- as.data.frame (dat)

# Remove the rows with zeros
datn<- f[-which(rowSums (£==0)>0),]
if (nrow(datn) > 2)

{

this.cosine<- sum(x*y) / (sgrt(sum(x*x)) * sqgrt(sum(y*y)))

}

else

{

this.cosine<- 0

}

return(this.cosine)

}

Now, we need to build a similarity matrix that will tell us how similar the users are
to each other. Before computing the similarity, we will build an empty matrix that
can be used to store the similarity:

data.ubs.similarity<- matrix(NA,
nrow=ncol (data.ubs) ,ncol=ncol (data.ubs),dimnames=1ist (colnames (
data.ubs) ,colnames (data.ubs)))

We can now start replacing the empty cells in the similarity matrix with the actual
similarity score. In case of the cosine similarity, the range will be from -1 to +1. The
following loop will help in computing the similarity between all the users. If there
isn't enough data to compute the similarity as per our function, it will return zero.
The print statement in the following loop will help us understand the progress of
the loop. Depending on the dataset, the time taken would vary. In general, for
loops are time consuming. The code is as follows:

for(i in 1:ncol (data.ubs)) {
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# Loop through the columns for each column
for(j in 1:ncol (data.ubs))
# Fill in placeholder with cosine similarities

data.ubs.similarity[i,j] <- getCosine(as.matrix(data.ubs[i]),as.
matrix(data.ubs[j]))

}
print (i)
}
# Back to dataframe - Similarity matrix
data.ubs.similarity<- as.data.frame(data.ubs.similarity)
head (data.ubs.similarity)

We get the following output:

= head(data.ubs.similarity)

aliciakeys andersoncooper angelcandices annejhathaway
aliciakeys 1.00000000 0.02102588 0.03937543 0
andersoncooper 0.02102586 1.00000000 0.02092753 0
angelcandices 0.03937543 0.02092753 1.00000000 0
annejhathaway 0. 00000000 0. 00000000 0. 00000000 1
aw 0.02175713 0. 00000000 0.03867033 0
brooklynbeckham 0.01396482 0.00000000 0.03309408 0

aw brooklynbeckham busyphilipps camerondiaz

aliciakeys 0.02175713 0.01396482 0.03357711 0. 0000000
andersoncooper 0.00000000 0. 00000000 0.01147230 0. 0000000
angelcandices 0.03867033 0.03309408 0.01392503 0. 0000000
annejhathaway 0. 00000000 0. 00000000 0. 00000000 0. 0000000
aw 1.00000000 0.04114425 0.07419563 0.0555937
brooklynbeckham 0.04114425 1.00000000 0.02539866 0. 0000000

caradelevingne champagnepapi charlizeafrica chrissyteigen
aliciakeys 0.061420459 0.04711529 0.027357685 0.03357134
andersoncooper 0.008394215 0. 00000000 0. 00000000 0. 00000000
angelcandices 0.115716456 0.01545987 0. 00000000 0.07019821
annejhathaway 0. 000000000 0. 00000000 0. 00000000 0. 00000000
aw 0.057002955 0.02242392 0.04E836194 0.05236439
brooklynbeckham 0.060398189 0. 040605286 0. 00000000 0.03883834

clarencehouse cristiano derekhough dianekrugerperso
aliciakeys 0.03144855 0 0.02496346 0.02564103
andersoncooper 0. 00000000 0 0.00000000 0. 00000000
angelcandices 0. 00000000 0 0.00000000 0.09114683
annejhathaway 0. 00000000 0 0.00000000 0.00000000
aw 0. 00000000 0 0.00000000 0.06345830
brooklynbeckham 0. 00000000 0 0.00000000 0.00000000

drewbarrymore ellenpompeo emmaroberts emmyrossum fergie
aliciakeys 0.02441931 0.07775528 0.03245785 0.01109400 0.01677256
andersoncooper 0.00000000 0.02277142 0.01901122 0.02526993 0.00000000

The preceding screenshot is just a part of the output.

Thus, the data frame data.ubs.similarity will hold the actual similarity between
the users. After getting the similarity matrix, we need to get the top 10 neighbors for
each user.
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The code is as follows:

# Get the top 10 neighbours for each

data.neighbours<- matrix (NA, nrow=ncol (data.ubs.similarity) ,ncol=11,di
mnames=1ist (colnames (data.ubs.similarity)))

for(i in 1l:ncol(data.ubs))
{

# Setting threshold for avoiding zeros
n<- length(data.ubs.similarity[,1i])
thres<- sort(data.ubs.similarity[,i],partial=n-10) [n-10]
if (thres> 0.020)

{

# Choosing the top 10 recommendations

data.neighbours[i,] <- (t(head(n=11, rownames (data.ubs.
similarity[order (data.ubs.similarity[,1i],decreasing=TRUE),] [i]))))

}

else

{

data.neighbours(i,] <- ""

}
}

In the preceding code, we take up one user at a time and then sort the similarity
score of the user with all the other users such that the pair with highest similarity
comes first. Then, we stop by just filtering the first 10 for each of the users. This is
recommended for us. We can see the recommendations given for a few users using
the following code:

head (data.neighbours)
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The output is as follows:

= head(data.neighbours)

aliciakeys
andersoncooper
angelcandices
annejhathaway
aw
brooklynbeckham

aliciakeys
andersoncooper
angelcandices
annejhathaway
aw
brooklynbeckham

aliciakeys
andersoncooper
angelcandices
annejhathaway
aw
brooklynbeckham

aliciakeys
andersoncooper
angelcandices
annejhathaway
aw
brooklynbeckham
=

[,1]

"aliciakeys"

"angelcandices"

Yo"

"brooklynbeckham"

[,4]

"ellenpompea”

"gisele” "dianekrugerperso” "jaime_king"

"reesewitherspoon” "popsugar” "msleamichele”

"krisjenner” "popsugar " "randyjackson"
i 7] [,8] [,9]

"popsugar” "Jamdi ddy" "khloekardashian"

"itsashbenzo” "emmaroberts” "mileycyrus”

"itsashbenzo” "emmaroberts” "busyphilipps”

"kimkardashian" "caradelevingne" "emmaroberts"

[,10] [,11]

"caradelevingne"

"jessicaalba"

"minkak™
"msleamichele"”

[.2]
"johnlegend"

"caradelevingne"

"mindykaling”
"itsashbenzo"

[.5]

"randyjackson"

"kimkardashian"

"ellenpompeo”

"ellenpompeo”
"leomessi"

[.3]
"ijessewilliams"

"krisjenner"

"1enadunham”
"khloekardashian”
[.6]

"krisjenner"

[ % The preceding screenshot is just a part of the output.
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Top three recommendations

In the preceding recommendation list, we find that the first recommendation is

the same as that of the original user. This is mostly because of the self-similarity
computation and it has to be removed. The preceding data frame view is not very
clear, so there is an Excel view below, where the first column is the celebrity users,
who are the subject of our analysis, and the next three columns are the users who are
similar to them. Here are some of the celebrity users and their top three similar users.

Celebrity Users Recommendationl Recommendation2 | Recommendation3
aliciakeys johnlegend ijessewilliams ellenpompeo
angelcandices caradelevingne krisjenner gisele

aw mindykaling lenadunham reesewitherspoon
brooklynbeckham itsashbenzo khloekardashian | krisjenner
busyphilipps mindykaling lenadunham reesewitherspoon
camerondiaz reesewitherspoon | msleamichele mindykaling
caradelevingne angelcandices popsugar emmaroberts
champagnepapi iamdiddy ijessewilliams khloekardashian
charlizeafrica randyjackson ellenpompeo aw

chrissyteigen johnlegend khloekardashian | popsugar
derekhough juleshough glassofwhiskey msleamichele
dianekrugerperso | katebosworth jaime_king reesewitherspoon
drewbarrymore reesewitherspoon | minkak jaime king
ellenpompeo reesewitherspoon jessicaalba minkak
emmaroberts itsashbenzo jaime king jessicaalba
emmyrossum jessicaalba jaime_king reesewitherspoon
fergie joshduhamel mileycyrus popsugar

gisele angelcandices ellenpompeo jaime_king
glassofwhiskey juleshough msleamichele emmaroberts
iamdiddy champagnepapi ijessewilliams randyjackson
iansomerhalder khloekardashian normancook msleamichele
ijessewilliams iamdiddy champagnepapi aliciakeys
instagranph popsugar mindykaling reesewitherspoon
itsashbenzo emmaroberts jaime_king jessicaalba
jaime king jessicaalba emmaroberts itsashbenzo
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In order to provide the recommendation on whom to follow, we can compare

the most similar users. From the preceding example, we can see that the user
aliciakeys is most similar to johnlegend, so we compare both of them to arrive
at a recommendation. To provide a recommendation to aliciakeys, we check the
people whom johnlegend follows, but not aliciakeys, and provide those users as
a recommendation to aliciakeys. We can write the recommendations computed
to a file so that it can be supplied as input to any other system. Similar to this user-
based recommendation, we can also implement item-based filtering. The decision
to choose the user-based filtering or the item-based filtering should be taken based
on the number of users and items. For example, when the number of users are more
than the number of items, then it is better to go ahead with the item-based filtering
approach. If the number of items are more than the number of users, we need to
implement the user-based filtering.

Improvements to the recommendation system

We can compute the similarity based on the use of multiple methods and
finally combine them to form an ensemble algorithm. We can also implement
the hybrid methodology, which combines the user-based method as well as the
item-based methods.

We will also introduce the concept of classification, that is, dividing the dataset
into different groups and build recommendation engines for each of them. Generally,
this improves the accuracy, as the recommendations are customized to the groups.

Exercise:

We have seen the implementation of the recommendation engine. Now,
try the following exercises:

- * Compute the similarity between the users using the Pearson
% methodology and give 50 percent weightage to both the
~ methods.

*  For the preceding dataset, try to implement the item-based
recommendation. Instead of identifying the similarity between
the users, identify the similarity between the items (in this case,
it is the user accounts followed by our celebrity users).

[131]



Finding Popular Photos on Instagram

Business case

Some of the business cases that can be implemented using the Instagram data are
as follows:

* Provide recommendations to users on places to travel

* Determine visitor trends to various tourist locations

* Find out what people say about various locations

* Determine the performance of various media posts and create a time
series trend for them

* Find out the popularity trend of various celebrity users and brands
on Instagram

* Compare Instagram popularity scores of brands with that of
their competitors

Reference
* Amazon's Item-to-Item Collaborative Filtering.

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf

* More about clustering analysis

http://www.statmethods.net/advstats/cluster.html

* About the package instaRr

https://github.com/pablobarbera/instaR/tree/master/instaR

*  Online courses
https://www.coursera.org/course/clusteranalysis

https://class.coursera.org/ml-003/lecture/100
* Celebrity users and the location hashtags were obtained from here:

https://socialblade.com/instagram/top/100/followers

http://www.popsugar.com/celebrity/Celebrities-Using-Instagram-
21244293?stream view=1#photo-23154687

http://top-hashtags.com/hashtag/monument/
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Summary

In this chapter, we covered the procedure involved in creation of an app on the
Instagram platform. We covered the sequential steps for authentication and
accessing the data from R using the package instaR. We also acquired competency
to build a dataset of users and location from the Instagram platform.

We discussed the skill of using the collected data to solve critical business problems.
Some of the problems that we have solved include identifying the popular users
based on multiple metrics, exploring the destinations which people talk about the
most, dividing the dataset into different groups by applying a clustering algorithm,
building a recommendation system using the collaborative filtering algorithm on
who the users might be interested to follow based on the behavior of similar users,
and finally a quick brief about the various other business cases that could be solved
using the Instagram data.

In the next chapter we will be learning about the implementation of some of the
graphical and non-graphical EDA techniques such as histogram, pie chart, box plot,
correlations and much more by using a heterogeneous dataset created by way of the
GitHub API from R.
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GitHub is a Web-based Git repository hosting service and it offers distributed revision
control, source code management functionality of Git, and much more. GitHub
supports both private and public repositories. There are a vast number of public
projects in GitHub to which contributions come from multiple people around the
world. GitHub provides an API to access their data; the public data can be accessed
by anyone whereas the private data can be accessed only by authorized users.

In this chapter, we will see how to access the public data of GitHub using its

API from R, and we will see how to perform Exploratory Data Analysis (EDA)
and mine significant patterns from the GitHub data extracted by us. As a part of
this chapter, we will cover different methods to extract the data from GitHub and
various graphical and non-graphical EDA techniques.

The objectives of this chapter are to show how to extract the public data from
GitHub and focus on getting a better understanding of various EDA techniques,
detecting anomalies, and extracting patterns from the data. We will start from the
basics of EDA and discuss a few advanced visualizations that will be useful for
getting answers to some interesting questions such as getting to know the most
popular language, user comparison with other users, trends on updates made

to the public repositories, different programming languages and their affinity
towards one another, and much more.

The topics that will be covered in this chapter are as follows:

* Creating an app on GitHub
* GitHub package installation and authentication

* Accessing GitHub data from R
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* Building a heterogeneous dataset of the most active users
* Building additional metrics

* Introduction to exploratory data analysis

* EDA —graphical analysis

* EDA —correlation analysis

Creating an app on GitHub

We need to register a new application on GitHub in order to access the public GitHub
data from R with authentication. In Facebook, creating an app to access the data is

not mandatory and we can generate a temporary token to access most of the data.

In GitHub, we can access data without authentication but with a limitation on the
number of calls that can be made, whereas authentication provides the access we need.

In order to create a GitHub app, we need to log in as a developer in GitHub. Go to
https://developer.github.com/program/ and log in as a developer:

W' ) Gariue Devetape ™ -

« =3 C t developergithub.com Pl -

GitHub Developer AP Developers Blog  Suppon

It takes a community to design,
build, and ship great software.

Stay in the know Scratch an itch Take on the enterprise

Click on the Register now button in the page and you can choose to pay and buy a
developer login. The free account user cannot register as a developer. Alternatively,
you can use an existing account and login.
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) Your Protile =

0
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| Profile

« C | 8 cittiub, Inc [US]| hitps://github.com/settings/profile

Explone Gist Hlog  Help

Public profile

Profile picture

= Upload new picture
Yo can alsa deivg and drog i pictune om yoor compuler

Name

Sharan

Public email

reharankumarigmal com ¥

URL

hatp-fiwww. rsharankumar. com

Company

Location

Dangalere
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In this case, I logged in using an existing public account. To create an app, we need
to click on the settings icon in the top-right corner of the page. You should be able

to see your profile page as shown in the preceding screenshot. To create a new

application, we need to click on the Applications link that appears on the left-hand
side of the panel and then click on the Developer applications tab. Now, you will

see a Register new application button.

(%)

Parsonal setiings

Applications

b, inc, US] | hitps:/ ‘github.com/settir

Explom Gist Blog Halp
Developer applications

Devaloper applications

’ sharan

(@ Thess are applications you have registered 16 uss

M chamnkemar +- O O B

Register new application

the Githius AP
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Click on Register new application and the following page will open. Give a suitable
name for the app and fill in other mandatory details. In the Authorization Callback
URL textbox, please enter the following URL: http://localhost:1410. This is the
call back URL that GitHub will return to after successful authentication of the app.
Finally, confirm the creation of the app. This new app can be used to access all the
public data, including the public repositories of other users.

- @ |8 Garub, ne. s hreps: github.com /sett plicar /8@ =

0 Explore Gist Blog Holp & shosnkumae - O &
Personal senings AUIGre Bppacar Develnper appications

Register 3 new OAuth application

P
(< 5}
| Applicatlons Application description

Authorization callback URL

Once you have registered your app, the Client ID and Client Secret values will be
generated. These values will be unique to your app. Please be careful with these keys
and don't share them with others or post them in the public forum. Now we are ready.
From R, use the ID and key to get access to the public data. If necessary you can also
generate a new secret key by clicking on the Reset client secret button or you can also
choose to revoke access to the app by clicking on the Revoke all user tokens.
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O Explors Gist Biog Halp M rmomar +- O @ F

Pevsonal settings Auhoreed apg ' Dervwloper apglicalbions

T [ ——

1 user

Hevoke all user tokens Heset client secret

Applicaticns

GitHub package installation and

authentication

We will use GitHub API Version 3 for accessing the data. All the API access that
happens is over HTTPS and it is accessed from the domain api.github.com or
yourdomain.com/api/v3 for the enterprise accounts. All the data received will
be in the JSON format.

Now that you know how to create a GitHub app, we will see how to proceed further
towards accessing the data from R. In order to connect to the GitHub app, we need
to install the rgithub package and other dependent packages like devtools. The
devtools package is required so that we can install the latest rgithub package
directly from the source.

require (devtools)
install github ("cscheid/rgithub")
library (github)
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After the installation and loading the required packages in R, we can use the
client ID and the client secret that were generated to authenticate the access. In
the following example, we are first passing the client ID and the client secret to
a variable and then using the function interactive.login along with the
client.id and client.secret parameters to authenticate the access.

# Authentication

client.id <- "paste your App's ID here"
client.secret<- "paste your secret key here"

ctx = interactive.login(client.id, client.secret)

On executing the preceding line, we might be prompted with the following question
about caching the credentials. We have an option to cache the credentials into a
local file so that it can be used to login for later R sessions. Otherwise, we need to
authenticate each R session. I would prefer not to save the credentials to a file hence
I would enter my preference as 2 or No. Then, you will be redirected to the GitHub
website after authenticating the process.

> CCX = interactive. login(client.id, client.secret)

Use a local file to cache oauth access credentials between R sessions?
1: ves

2: NO

selection:

On successful completion of all the steps, we will get the following message:

Waiting for authentication in browser...
Press Esc/Ctrl + C to abort
Authentication complete.

After completing the authentication, we are ready to go ahead and access the public
data available in GitHub. This would include the public repositories, public user
profiles, followers, and other details related to repositories, contributions, commits,
and users. In order to know more about the API, kindly visit https://developer.
github.com/v3/.

& Exercise:

Create an app in GitHub and authenticate from R.
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Accessing GitHub data from R

Accessing the GitHub data from R is simple. It can be accessed using the package
rgithub developed by Carlos Scheidegger, which provides the binding for the
GitHub web services API. We can also use the API URL directly in the function
fromJSoN, which will extract the JSON data in data frame format.

Previously, we saw how to authenticate using the package rgithub; now let's use
some of the functions available in the package to pull data from GitHub.

First, let's pull our GitHub account data using the function get .myself and pass
the variable ctx as a parameter, which is a GitHub context object holding the
authentication results. This function will provide basic details about our account
such as date created, last updated, location, e-mail, number of public repositories
contributed, following and followers, and also about the number of API calls we
have made in the current session. Let's execute the function get .myself and check
the output.

get .myself (ctx)

We get the following output:

$ok
[1] TRUE

$content
$content$login
[1] "rsharankumar"”

fcontent$id
[1] 3078066

fcontent$avatar_url
[1] "https://avatars.githubusercontent. com/u,/3078066%7v=3"

$content$gravatar_id

fx1 "~

fcontent$url
[1] "https://api.github. com/users/rsharankumar”

$content$html_url
[1] "https://github. com/rsharankumar"

$content$followers_url
[1] "https://api.github. com/users/rsharankumar /followers”

[141]




Let’s Build Software with GitHub

Here are a few more functions that can be used to pull additional information:

® get.my.repositories (ctx)
®* get.my.following(ctx)

® get.public.events (ctx)

The function get .my . repositories will get the details of the repositories created
by us and the function get .my. following will provide details about the people
following us on GitHub. The result of all calls to the API is requested as HTTP and
the response is automatically parsed into JSON, the message format used throughout
the API. All the functions in the package will start with a verb, followed by the
appropriate object. We will also extract the random public repositories of others
users. This can be achieved using the function get.all.repositories. By default,
the function would get the details of random 100 public repositories:

get.all.repositories(ctx = get.github.context())

Also, visit https://github.com/cscheid/rgithub to learn more about the other
functions implemented in the package.

Exercise

’ *  Extract the public repositories of a few active users and
identify their languages capability.

* Identify if they have common followers.

»  Filter the repositories that are currently having open issues.

Building a heterogeneous dataset using
the most active users

Let's build a heterogeneous dataset based on the public repositories created by the
most active users of GitHub. As we know how to extract data using the package
rgithub, we will explore the other method too, for example, directly using the API's
URL. In this method, we need to pass the API URL to the function fromgsoN, which
has a dependency on the package jsonlite. The API URL will also work from the
browser and will be checked for accuracy of the data. Those URLs will return data in
JSON format.

The most active users of GitHub will be obtained through the following URL, or you
can use the CSV file named TopUsers . csv, which also holds the data of users who
were active as of July 2015. We will make use of the username to pull the additional
data about the users.
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Use the function read.csv to read the active users file from https://gist.github.
com/paulmillr/2657075/ and read the username column as characters using the
function as.character. Now, the usernames of the active users are present in the
object named uname:

topuser<- read.csv("TopUsers.csv")
uname<- as.character (topuser$Username)

In the following code, we are looping through the usernames to extract all the data
about the public repositories published by those users. The for loop might fail for
certain users and during those times the loop would break. In such cases, we can get
the counter number when it failed and rerun the loop, starting with the value Failed
Counter + 1.The code is as follows:

library(jsonlite)

library (stringr)

compdata <- ""

for (i in 1:nrow(topuser))

{

data2<- fromJSON (pasteO ("https://api.github.com/users/",
str trim(uname[i], side = "both"),

"/repos?client id=paste your client id here&client secret=
paste_your key here"))

data2 <- data2l[,-(4)]
compdata<- rbind(compdata, data2)
print (1)

}

The URL for pulling the repository would follow the following format, where
rsharankumar is a username. All the usernames are unique.

By passing https://api.github.com/users/rsharankumar/repos we will be
able to access the GitHub data of just 60 users as only 60 requests are permitted in
an hour for unauthenticated access. By passing the client_idand client_secret
values to the preceding URL we will be able to make 5000 requests in an hour. This
can be achieved by making a few modifications to the URL.

Inhttps://api.github.com/users/hadley/repos?client id=paste id
here&client_secret=paste_key here, we have to pass the username dynamically,
which can be achieved using the function pasteo. We use paste0 to avoid the
whitespace between the strings and then use the rbind function to consolidate all

the user's data. In general, for loops are time-consuming, hence we will print i to
check the progress of the loop. Finally, we can write an aggregation function to write
the aggregated data into a file so that it can be reused. Let this aggregated file be the
master file with all the details and let's perform the data operations on top of this file:

write.csv(compdata, file ="ActiveUsers.csv")
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Data processing

Though we have extracted the active user's data, it is not ready for usage. We need
to perform a few data processing operations to make it ready to use for the analysis.
Use the following code to read the master copy of the data which was saved by us:

activeusers<- read.csv("ActiveUsers.csv")

We need to change the date format so that it will be supported by R. This can be
accomplished using the following function. It is better to use a function in this

case because there are multiple date columns that need to be changed; hence, this
function will reduce code redundancy. Since the time zone of the data is in GMT,
we set the parameter tz to GMT. In your case, if the time zone corresponds to your
present time zone, it should be set as empty double quotes:

# Change date to format supported by R

format.git.date<- function(datestring)

date<- as.POSIXct (datestring, format = "%Y-%m-%dT$H:%M:%SzZ",
tz = "GMT")

}

The preceding function is required to convert the date format of three columns.
Execute the following code to make the changes to the date format of the columns
created_at,updated_at and pushed_at, which holds the information of the date
on which the repository was created, last updated, as well as last pushed:

# Updating the column with new date format
activeusers$created_at<- format.git.date(activeusers$created at)
activeuserss$updated_at<- format.git.date(activeusers$updated at)
activeusers$pushed at<- format.git.date(activeusers$pushed at)

The data frame activeusers holds additional URL data which is not required for
the analysis that will be performed as a part of this chapter. Hence, we will select
only the required columns through the column selection method. First, we use the
function colnames to learn all the column names as well as their position, and then
we use the respective column number to subset the required data:

# Subsetting required data

# To check which columns to select
colnames (activeusers)

# Selecting the required data
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ausersubset <-

activeusers|[,c("id", "name", "full name", "private", "description",
"fork", "created at","updated at","pushed at", "homepage", "size",
"stargazers count","watchers count","language", "has issues",
"has downloads", "has wiki", "has pages", "forks count",

"open issues_count", "forks", "open issues", "watchers")]

We need to format the columns that hold values TRUE and FALSE to 1 and o,
respectively, so that the analysis will be simpler. This can be achieved simply
by using the function as. integer. Execute the following code to format all the
required columns:

# Replace True and False with 1 and 0

ausersubset$private<- as.integer (ausersubsetS$private)
ausersubset$fork<- as.integer (ausersubset$fork)

ausersubsetS$has issues<- as.integer (ausersubset$has issues)
ausersubset$has downloads<- as.integer (ausersubset$has downloads)
ausersubset$has wiki<- as.integer (ausersubset$has wiki)
ausersubsetS$has pages<- as.integer (ausersubset$has pages)

The column full name holds the name of the user/account along with the
repository name, separated by the symbol /. We use the strsplit function to
extract the username alone. In the following code, we replace the username with
the same column. Finally, we use the head function to check if the output is in line
with the expectation:

# Getting the username

ausersubset$full name<-

sapply (strsplit (as.character (ausersubset$full name),
split='/', fixed=TRUE), function(x) (x[1]))

head (ausersubset$full name)

Building additional metrics

We completed the data formatting part, and processed the data so that it can be
used for our analysis. Before going to the analysis bit, let's see how to construct a
few metrics, which will become a derived column in our dataset. Let's write code
to create the following metrics:

1. Identify if there is a web page associated with the repository.

2. Count the number of characters in the description.

3. Identify how long it had been since the repository was created, updated,
and pushed.
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To identify if there is a website associated with the repository, we need to look at the
column homepage. We will use the function grepl to identify the presence of a dot in
the column homepage, which we would consider a proxy for the presence of a website
entry, as this column either holds the website details or an empty string/number.

# Flag for presence of website/webpage
ausersubset$has web<- as.numeric(grepl(".", ausersubsetS$homepage))

The preceding code will create a new column named has_web and will hold a value
1, indicating the presence of a website or web page for the repository, or 0, which
indicates no entries for a website or web page.

To count the number of characters in the description, we need to convert the
description into characters using the function as. character, and then the number
of characters can be counted using the function nchar. The number of characters
will be stored in the new column desclen:

# Length of the description
ausersubset$desclen<- nchar (as.character (ausersubset$description))

We need to identify how long it has been since the repository was created, updated,
and pushed. First, we use the function Sys.Date () to get the current date and then
use the function difftime to get the day difference. Execute the following code to
get the new metrics on the day difference:

# Day difference from current date for created, updated and pushed
ausersubset$dayscreated<-

as.integer (difftime (Sys.Date () ,ausersubset$created at ,

units = c("days")))

ausersubset$daysupdated<-

as.integer (difftime (Sys.Date(),ausersubsets$updated at ,

units = c("days")))

ausersubset$dayspushed<-

as.integer (difftime (Sys.Date () ,ausersubsets$pushed at ,

units = c("days")))

After creating all the required metrics, use the function head to check the format of
the data:

head (ausersubset)
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We get the following output:

= head(ausersubset)

id name
20219396 AdminLTE
10198601 annotations
20619143 Ardent
11644698 Artax
12464701 asm89. github. com

5399871 AssetManager

[= S RSV

hown B B

fork created_at
1 2014-05-27 12:35:28
1 2013-05-21 15:10:28
1 2014-06-08 15:09:17
1 2013-07-24 20:37:20
1 2013-08-29 15:59:11
1 2012-08-12 14:18:58

L= I R T

http://wew. almsaeedst

http://rdlowrey. github. co

o B ow R

full_name private

ocramius
ocramius
ocramius
ocramius
ocramius
ocramius

2015-02-07
2014-04-21
2014-06-08
2014-09-24
2013-11-25
2014-03-26
homepage
udio. com
<NA> 1

m/Artax,/
<NA>
<NA

[= BT By I Y

An asset
updated_at

71301

23

language has_issues has_downloads has_wiki has_page

manager module for zend framework 2

2014-05-05
2014-12-20
2014-06-08
2013-08-12
2013-11-25
2014-03-25

pushed_at

b = = s I R VY

AdminLTE - Free Premium Admin control Panel Theme That Is Based On Bootstrap 3.x

Annotations Docblock Parser
A collections l1ibrary for PHP.
An object-oriented HTTP/1.1 Client for PHP 5.4+

orks_count

description

HOoOOoOOoOOoOw

5
1 JavaScript 0 1 1 0 4
2 PHP 0 1 0 0 0
3 PHP 0 1 0 0 0
4 PHP 0 1 0 0 1
5 css 0 1 1 0 0
& PHP 0 1 1 0 0
open_issues_count forks open_issues watchers has_web desclen dayscreated
1 0 4 0 3 1 80 3188
Note that the preceding screenshot is just a part of the output.
Exercise:
* Inaddition to the preceding dataset, each user will also have
4 information such as the number of followers as well as the
% number of accounts the user is following.

*  For all the preceding repositories, identify the subscribers.

* Identify how many times the repositories were committed
and how many unique users were involved in the commits
with a comparison to the number of contributors.
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Exploratory data analysis

EDA techniques are used for discovering patterns in the data, summarization,
as well as for visualization of the data. It is an essential step in the data analysis
process, which helps to formulate various hypotheses about the data.

The EDA techniques shall be broadly classified into three types: univariate, bivariate,
and multivariate analysis. Let's implement a few of the EDA techniques on our dataset.

First, let's see what kind of data we are analyzing. Using the function sapply,
we determine the various columns present in the dataset and the datatype of
those columns:

sapply (ausersubset, class)

We get the following output:

sfork
[1] "integer"

fcreated_at
[1] "posIxct" "PosIxt"

Jupdated_at
[1] "POSIXct" "POSIXT"

$pushed_at
[1] "POSIXct" "POSIXt"

$homepage
[1] "factor”

§s5ize
[1] "integer”

[ Note that the preceding screenshot is just a part of the output. ]

In order to get a basic understanding of the whole dataset, such as the distribution of
the values of the columns, we can use the summary function to get the highlights of
the dataset. For example, we will get the minimum, mean, median, maximum, and
quartile values for each column:

summary (ausersubset)
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We get the following output:

pushed_at homepage size
Min. :2008-03-26 19:11:40 12307 Min. H 0
15t Qu.:2012-12-26 13:19:09 https://gjcampbell.co.uk/: 19 1st Qu.: 132
Median :2014-04-10 06:33:50 http://angularjs.org 10  Median : 287
Mean :2013-10-31 19:39:02 http://bower.io 10 Mean 10269
3rd qQu. :2015-02-05 10:09:00 http://webtorrent.io 10 3rd qQu.: 1323
Max. 12015-06-16 19:34:32 (other) 207 Max. 18134718
NA'S 114 NA'S 12712
stargazers_count  watchers_count language has_issues
Min. : 0.00  Min. : 0.00 Javascript:2183  Min. :0.000
1st qQu. : 0.00 1st qQu.: 0.00 Ruby © 658 1st qQu.:0.000
Median : 2.00 Median : 2.00 python 508 Median :1.000
Mean B82.67 Mean B82.67 PHP 443 Mean :0.585
3rd qQu. : 10.00 3rd qQu. : 10.00 C55 : 265 3rd qQu.:1.000
Max. :40586. 00 Max. :40586. 00 (other) 12240 Max. :1.000

NA'S 1 847

has_downloads has_wiki has_pages forks_count
Min. :0. 0000 Min. :0. 0000 Min. :0. 000 Min. 0.00
1st qQu.:1.0000 1st Qu.:1.0000 1st Qu.:0.000 1st qu.: 0.00
Median :1.0000 Median :1.0000 Median :0.000 Median : 0.00
Mean :0.9763 Mean :0. 8515 Mean :0.148 Mean 7.66
3rd qQu. :1.0000 3rd qQu. :1.0000 3rd qQu.:0.000 3rd qQu.: 2.00
Max. 1.0000 Max. 1.0000 Max. :1.000 Max. 9242.00

Note that the preceding screenshot is just a part of the output.

Let's now find the standard deviation for all the numeric columns in the dataset using
the function apply. All the non-numeric columns in the dataset would come as NA.
Other techniques are also used for EDA. We will use a few of those graphical, as well
as non-graphical, techniques on this GitHub data to get a better understanding:

apply (ausersubset,

2, sd)

We get the following output:

size

stargazers_count

pushed_at homepage

NA NA
watchers_count Tlanguage
7.694698e+02 NA
has_wiki has_pages
3.55635%-01 3.550815e-01
forks open_issues
2.163168=+02 1.723065e+01

1.321590e+05
has_issues
4,.927623e-01
forks_count
2.163168e+02
watchers
7.694698e+02

open_issues_count

7.694698e+02
has_downloads
1.519863e-01

1.723065e+01
has_web
4.571693e-01
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Note that the preceding screenshot is just a part of the output.

Exercise
) * Identify the skewness and kurtosis for the numeric columns
% from the preceding dataset.
== *  Use the functions skewness and kurtosis of the package
moments.

* Identify all of the preceding measures after removing the
outliers in the data and see how much it differs.

EDA - graphical analysis

"A picture is worth a thousand words."

Graphical analysis is quite popular, as it helps people grasp the content faster.
The existence of so many dashboard tools in the market is also proof of this. With
the recent innovation in the field of visualization, it is certainly one of the best
mediums of communication.

In this section, let's explore a few graphical EDA. The graphical EDA techniques will
help us get a more penetrative understanding of the data and also help in presenting
complicated statistical analysis in a more understandable format. We will use some
of the visualization packages in R that will help in making the output look better.

Which language is most popular among the
active GitHub users?

We have the data at the repository level. Each repository is a project that could have
been implemented in any language. Let's present the language data in a graphical
format and understand the popularity. First, we will use the function table to see
how many languages are used and how many times they are being used:

table (ausersubset$language)

[150]




Chapter 5

We get the following output:

Actionscript
13

Apex

1

Assembly

3

gatchfile

1

C++

118
coffeescript
122

Crystal

1

DIGITAL Command Language
1

Emacs Lisp
a0

GO

205

Groovy

g

Haxe

3

Java

255

Agda

2
Arduino
5

ATS

1

c

207
Clojure
79
common Lisp
13

€55

265
Elixir
10
Erlang
20

GoOsU

1
Haskel]l
111
HTML
104
Javascript
2183

ApacheConf
3

ASP

1
AutoHotkey
1

C#

84

CMake

1

coq

2

Dart

15

Elm

19

Gnuplot

1

Groff

1

Haxe
1
Ioke
1
Julia
2

Note that preceding screenshot is just a part of the output.

Though the tabular representation of the data provides us with the required
information, it becomes difficult to understand the relative popularity of the languages.
Hence, a graphical view of the same data is required. We will use the histogram
function, using the packages ggplot2 to see the distribution of various languages:

g <- gplot (ausersubset$language,
geom="histogram",

binwidth = 1,

main = "Histogram for Language",
xlab = "Language",
£fill=I("blue"),

col=I("red"))
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The preceding code will plot the histogram based on the column language. However,
since there are many different languages, the labels would overlap each other. It would
be difficult to read the plot with the overlapping labels, so we use the parameter

theme and set the text angle to 90 degrees to make the labels appear vertical and

avoid overlapping. The following plot can be saved using the function ggsave:

g + theme (axis.text.x = element text (angle = 90, hjust = 1))

ggsave (file="C:/Users/Sharan/Desktop/SMM/Chapter
5/Pics/language.png", dpi=500)

We get the following output:

Histogram for Language

count

Language

From the preceding graph, we understand that the spread of the languages is wide
but there are a few languages that are very popular. We find that the most popular
language among the active users is JavaScript, and more than 2000 repositories are
developed using JavaScript. Also, it now becomes easy for us to learn the relative
popularity. Through visualization, we can make out that out of the 68 different
languages only 23 have been used in at least 20 plus repositories.

Because of the presence of many languages in the dataset as well as the skewness
in the dataset, it becomes difficult to notice the difference between the counts for
the other top languages. Hence, we filter the most popular languages and plot a bar
chart only for those languages. The code is as follows:

# Bar chart for the top languages
a <- table(ausersubset$language)
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a <- as.data.frame(a)

a <- alwith(a, order(-Freq)), ]

toplang<- a[2:21,]

colnames (toplang) <- c("Language", "Count")

The preceding code first converts the data in the tabular format to a data frame, then

we use the function order to sort the data in descending order, and then we filter the
top 21 languages, except the topmost language, that is, JavaScript, to avoid skewness

in the result. After filtering the data we use the following code to draw a bar chart of

the top languages. Thus, we have a clearer view on the use of the other top languages
in the repositories. The code is as follows:

g <- gplot (x=Language, y=Count,
data=toplang, geom="bar", stat="identity",
position="dodge")

g + theme(axis.text.x = element text (angle = 90, hjust = 1))

We get the following output:

Count

HTML

Language

What is the distribution of watchers, forks,
and issues in GitHub?

In the introduction to the EDA section, we already saw the distribution of all the
columns in the dataset. Now, we will see how it would be to view it in a graphical
representation. We will use the box plot to explore the distribution of the dataset.
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First, let's perform a univariate analysis and have a look at the variables one at a time.
We will analyze the variables watchers_Count, Forks_Count, Open_Issues and
Stargazers. We will draw the box plot using the following function:

boxplot (ausersubset$watchers count, outline = FALSE)
boxplot (ausersubset$forks count, outline = FALSE)

boxplot (ausersubset$open issues, outline = FALSE)

(
(
(
boxplot (ausersubset$stargazers count, outline = FALSE)

The preceding code will plot the variables one by one. We can also have them
together in a single chart across the same scale to gain a better comparison using the
following code. Due to the presence of a large number of outliers, we will disable it
from appearing to the plots by setting the parameter outline to FALSE:

forbplot<- ausersubset [c("watchers count", "forks count",
"open issues", "stargazers_ count")]

boxplot (forbplot, outline = FALSE)

We get the following output:

|
|

20

15

10

T T T
watchers_count  forks_count stargazers_count

From the preceding plot, we understand that the distribution of the variables
watchers_count and startgazers_count is very similar. Also, the distribution of
the variable open_issues is almost equal to zero. This suggests that the repositories
are healthy.
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Now, we will perform a bivariate analysis using the boxplot. We will consider the
variable watchers count and see how it trends across the variable open issues
count. We use the following code for plotting, and we have set the parameter notch
to TRUE to see if the plot is overlapping or not:

library (reshape2)

colnames (ausersubset)

dat.m<- melt (ausersubset, id.vars='open issues count',
measure.vars=c ('watchers count'))

library (ggplot2)

p <- ggplot(dat.m) +

geom_boxplot (aes (x=open_issues count, y=value, color=variable),
outlier.shape = NA, notch = TRUE, notchwidth= 0.5) +

scale y continuous (limits = quantile (ausersubset$stargazers_ count,
c(0, 0.6)))

ggsave (file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/boxplot-bi.
png", dpi=500)

We get the following output:

value

variable
watchers_count

open_issues_count

The overlapping in the preceding box plot clearly proves to us that the median of
the variable watchers_count doesn't differ much across the range of the variable
open_issues_count.
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How many repositories had issues?
A pie chart is a data presentation technique where the data is represented in the
form of circle, where the circle will be in turn divided into multiple segments. Each
segment represents a certain proportion or percentage of the total. Though a pie
chart is a popular graphical representation among sales teams as well as print and
digital media, it has some limitations:

* [t can represent only one continuous variable.

* It occupies too much space.

* Itis difficult to compare and interpret multiple pie charts

Let's use the pie chart to understand how many of the repositories had issues.
In the following code, we have used the ggplot function to draw the pie chart:

# Pie chart: Issues in the repositary

pie<- ggplot (ausersubset, aes(x = factor(l), fill =
factor (ausersubset$has issues))) + geom bar(width = 1)
pie + coord polar(theta = "y")

ggsave (file="C:/Users/Sharan/Desktop/SMM/Chapter 5/
Pics/pie-chart.png", dpi=500)

We get the following output:

bset$has_i

factor(1)

2000

4000

count
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In the preceding pie chart, 1 represents the repositories which had issues, and o
represents those that did not have any issues. From the preceding chart, it is clear
that the majority of the repositories had issues at some point in time.

What is the trend on updating repositories?

Trend analysis is a method of analysis that helps us in understanding the patterns
in a parameter across time. We can get a clear view on the trend of the dataset.
Let's perform trend analysis through a line chart.

We will consider only the columns updated_at and id for this analysis. After
updating the new data frame with the following values, we will convert the date
time into date format using the function as.PosIxct and we will consolidate the
data to a daily level using the function table:

library(data.table)
trenddata<- ausersubset [c("updated at", "id")]

trenddatasupdated_at<-
as.POSIXct (strptime (trenddata$updated at, "%Y-%m-%d"))

tdata<- table(trenddata$updated at)

The data needs to be converted to the data frame format and then we can rename
the columns for ease of readability. For this analysis, let's consider the data around
a recent time period; let's consider only the last 75 days, data:

tdata<- as.data.frame (tdata)

colnames (tdata) <- c("Date", "Repositories")
tdata$hate <- as.Date(tdataSDate)

tdatal <- tail (tdata, 75)

Finally, we will plot the trend chart using the function ggplot and with the help of
additional parameters such as geom_line and geom point, we can make the chart
better looking as well as more communicative:

g <- ggplot (data=tdatal, aes(x=Date, y=Repositories, group=1l)) +

geom_ line() +
geom_point ()
g + theme(axis.text.x = element text (angle = 90, hjust = 1))

ggsave (file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/
line-chart.png", dpi=500)
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We get the following output:

Repositories

Date

From the preceding line chart, we see that a vast number of repositories were
updated in recent days and more than 200 repositories were updated on the last
day. Also, very few repositories have been without any updates for a long time.

Compare users through heat map

Heat map is a popular visualization tool. It is one of the best tools for multivariate
and timeseries analysis and helps us in comparing the multiple variables visually.

We will learn to use the heat map to study the GitHub users. First, we will aggregate

some information at the user level and then compare it across multiple users. We
will consider the following variables to perform this analysis at the user level and
perform aggregation based on the variable at the user level (full_name).

Variable Aggregation Details

full name N.A. User's name

id Count Number of repositories

Size Average Average size of repositories
Watchers_count Sum Total Watchers to user's repositories
forks count Sum Total Forks to his repositories
open_issues_count | Sum Total Issues in his repositories
desclen Average Average length of title description
dayscreated Average Average age of user's repositories
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Variable Aggregation Details
daysupdated Average Average time since last updated
dayspushed Average Average time since last push

The preceding data selection is performed using the following code by selecting the
desired columns from the master dataset and moving it to the new dataset named
newdata. The aggregations are then performed using the SQL query. In order to use
the SQL query, we need to load the package sqldf using the library function and
then write the following query to the function sqldf:

colnames (ausersubset)

library (sqgldf)

newdata<- ausersubset[c("id","full name", "size", "watchers count",
"forks count", "open issues count", "desclen", "dayscreated",
"daysupdated", "dayspushed")]

sd<- sqgldf("select full name, count(id), avg(size),

sum (watchers count), count (forks count), count (open issues count),
avg (desclen), avg(dayscreated), avg(daysupdated), avg(dayspushed)
from newdata group by full name")

Now, we have the data in the required format, we can give the desired name to the
metrics created in the new data frame using the colnames function. For plotting the
heat map, we will consider only a subset of the data, since it would be impossible to
visualize and interpret the heat map for all the users at the same time. We will sort
the users based on the number of repositories in descending order and select the top
40 users for the visualization:

colnames (sd) <- c("Name", "Repositories", "AverageSize",
"Watchers", "Forks", "Issues", "Avg desc_length",
"Avg days since created", "Avg days since updated",

"Avg days since pushed")
row.names (sd) <- sd$Name

sd<- sd[order (-sd$Repositories), ]
sd<- sd[1:40,]

We will select the numeric columns in the dataset and then convert the dataset into a
matrix so that we can plot using the function heatmap. We will then copy the image
to the system using the dev. copy function. After copying the image, it is always
advisable to switch it off using the function dev.of£. The code is as follows:

names (sd)

sd<- sd[,2:10]

sdmat<- as.matrix(sd)

sd_heatmap<- heatmap (sdmat, Rowv=NA, Colv=NA, col =
cm.colors (256), scale="column", margins=c(5,8))
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dev.copy (png, filename="C: /Users/Sharan/Desktop/SMM/Chapter
5/Pics/heatmap-users.png", width=600, height=875) ;
dev.off ();

Using the heat map, we get a quick understanding about the users. The shade
towards red indicates a higher value and towards green indicates a lower value,
while white indicates the value lies in the median. With a glance at the heat map,
we can easily answer the following questions about the users:

*  Which user has got the highest number of repositories?

*  Which user has got a comparatively higher number of watchers?
* How many of those users have been relatively inactive?

*  Which users have the most, as well as the least, issues open in

their repositories?

Also, this view will give us an idea about the correlation between different parameters
about the users. For example, from the following output, we can see the average days
since creation, as well as the average days since it has been pushed, have a higher
correlation between them, as they share a similar color pattern. Similarly, there seems
to be a strong relationship between the Issues, Watcher, and Forks variables.

We get the following output:

bergie
benoitc:
benbatter
bbatsov
bastianallgeier
barryvdh
balupton
ayende
avelina
audreyt
ashiurrow
arunoda
armon
apotonick
antirez
andyque
andrewsmedina
andrew
alsotang
aloy

alex

ai

agentzh
addyosmani
aFarkas
TooTallNate
Shougo
SamyPesse
Samgafiron
STRAS
RubyLouvre
Raynos
PaulKinlan
Ocramius
JakeWharton
HugoGiraude!
Henricloreteg
FooBarWidget
ErisDS
3rd-Eden

Watchers
Forks
Issues

Repositories
AverageSize
since_created

Avg_desc_length

Avg_days since_updated
Avg_days_since_pushed

Avg_days
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Exercise
* Plot a multiseries line chart using the preceding GitHub dataset.
¢ Implement a heat map on the date column to prove that heat
% map can be a good visualization tool for time series datasets.
* Plot a pie chart with percentages instead of values.

¢ Write the box plot code to include the outlier data and see how
the visualization appears.

EDA - correlation analysis

Correlation analysis measures the statistical relationship between two different
variables. The result will show how the change in one parameter would impact

the other parameter. Correlation analysis is a very important concept, popular in

the field of predictive analytics. Also, it is mandatory to complete the correlations
analysis before building the model and before arriving at a conclusion about variable
relationships. Though correlation analysis helps us in understanding the association
between two variables in a dataset, it can't explain, or measure, the cause.

So far, we haven't explored the relationship between different parameters. In this
section, we will focus on the bivariate and multivariate analysis of the GitHub dataset.

We will use the dataset that was created for plotting the heat map to perform the
correlation analysis. The following code will get us the required dataset:

cordata<- ausersubset[c("id","full name", "size", "watchers count",
"forks count", "open issues count", "desclen", "dayscreated",
"daysupdated", "dayspushed")]

cdata<- sqgldf ("select full name, count(id), avg(size),

sum (watchers count), sum(forks count), sum(open issues count),
avg(desclen), avg(dayscreated), avg(daysupdated),

avg (dayspushed) from cordata group by full name")

colnames (cdata) <- c("Name", "Repositories", "AverageSize",
"Watchers", "Forks", "Issues", "Avg desc length",
"Avg days since created", "Avg days since updated",

"Avg days since pushed")

First let's check the relationship between the parameters watchers and Forks.
We can identify the relationship between these parameters using the function cor:

cor (cdata$Forks, cdatas$Watchers)
We get the following output:

[1] 0.8934664
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Correlation values will range from -1 to +1, where the positive value indicates a
positive relationship between the parameters and the negative value indicates a
negative relationship. The positive relationship means that the increase in value of
one variable would increase the value of the other variable, whereas in the negative
relationship, the increase in one variable would decrease the value in the other
variable. In the preceding example, the correlation value of 0.8934 means that

the parameters are highly correlated to each other.

How Watchers is related to Forks

The correlation can also be represented in a graphical format using the scatter plot.
We will plot the scatter plot using ggplot. The following code will generate the
scatter plot where the two variables passed as inputs will be considered as two
axes and the values will be plotted.

ggplot (cdata, aes(x=Forks, y=Watchers)) +

geom_point (shape=1) +

geom_smooth (method=1m)

ggsave (file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/
scatter-plot.png", dpi=500)

We get the following output:

Wa_tch ers

Forké
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We plotted the relationship between the number of watchers and number of forks for
the GitHub users. We saw that these two parameters have a very positive relationship
between them though there is a concentration of the values towards the lower range.
Also, using the function geom_smooth and setting the parameter method = 1m, we get
the regression line with a default confidence region of 95 percent. The regression line
tells us that the two parameters have a linear relationship. Let's perform the correlation
analysis on a few more parameters and understand the data better.

Correlation with regression line

We have already seen in the heat map that the parameters Avg_days_since_created
and Avg_days_since_pushed seem to have a very good positive relationship. We can
test out the same using the correlation function as well as the scatter plot:

cor (cdata$Avg days since created, cdata$Avg days since pushed)
We get the following output:

[1] 0.7899095
For generating the scatter plot, use the following code:

ggplot (cdata, aes(x=Avg days_since created,
y=Avg_days_ since pushed)) +

geom_point (shape=1) +

geom_smooth (method=1m)

ggsave (file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/
scatter-plot2.png", dpi=500)

We get the following output:
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Even in correlation analysis, there is a strong positive relationship between the
parameters Avg_days_since created and Avg_days_since_pushed. In this
case, the values are also widely distributed.

Correlation with local regression curve

We have successfully embedded the linear regression line over the scatter plots but
let's try to replace it with the Loess smoothed fit curve. This will give us a detailed view
and show us how the relationship is at different ranges of values. Let's repeat the
preceding plot using this method. In order to bring in the smoothed curve, we use
the function geom_smooth, the default smoothed curve will be plotted based on the
method loess. We can change it using the parameter method. The code is as follows:

ggplot (cdata, aes(x=Avg days_since created,
y=Avg_days_ since pushed)) +

geom_point (shape=1) + # Use hollow circles
geom_smooth ()

ggsave (file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/
scatter-plot3.png", dpi=500)

We get the following output:

Avg_days_since_pushed

Avg_days_siﬁ[:é_crealed
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From the preceding plot, we can understand that the relationship is consistent across
most of the range of values but towards the higher range it is slightly steeper.

Correlation on segmented data

Now, let's go to the previous scatter plot add a third variable. We will create an issues
flag, where the users who had less than 10 issues in all the repositories considered
together will be flagged as 0, whereas the other users will be flagged as 1. This can be
implemented through the following code:

cordata<- ausersubset[c("id","full name", "size", "watchers count",
"forks count", "open issues count", "desclen", "dayscreated",
"daysupdated", "dayspushed", "has issues")]

cdata<- sqgldf ("select full name, count(id), avg(size),

sum (watchers count), sum(forks count), sum(open issues count),
avg (desclen), avg(dayscreated), avg(daysupdated), avg(dayspushed),
sum (has_issues) from cordata group by full name")

colnames (cdata) <- c("Name", "Repositories", "AverageSize",
"Watchers", "Forks", "Issues", "Avg desc length",
"Avg_days_since_created", "Avg_days_since_updated",

"Avg days since pushed", "IssuesF")

cdataSIssuesF<- as.factor(cdata$IssuesF)

cdataSIssuesF [cdata$Issues< 10] = 0

cdataSIssuesF [cdata$Issues>= 10] = 1

cdataSIssuesF<- as.factor(cdata$IssuesF)

After getting the desired data, we will convert the £1ag column to a factor using the
function as. factor. Now, we will use the plotting function as before, but we will
add one more parameter, color, to differentiate the different categories. Hence, the
first line of the code would be something like this:

ggplot (cdata, aes(x=Avg days_since created,
y=Avg_days_ since pushed, color=IssuesF)) +
geom_point (shape=1) + # Use hollow circles
geom_smooth ()

ggsave (file="scatter-plot3.png", dpi=500)
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We get the following output:

IssuesF
-~ 0

-1

Avg_days_since_pushed

Avg_days_since_created

From the preceding scatter plot, we can see that there is a slight difference between
the users with lesser issues and those with more issues. These are the different
representations in the scatter plot; we can also see how each one of them is different
and the value addition it brings in while interpreting the results. Also, the correlation
function we used actually computes the correlation co-efficient using the default
technique, the Pearson correlation. Alternatively, we can also try other correlation
techniques such as Spearman and Kendall. It is advisable to read about which
correlation technique is suitable for a particular dataset.

Correlation between the languages that user's
use to code

In this section, we will answer just one question: given a programmer programs in one
language, what would be the other languages that they might know to code?
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In order to answer the preceding question, we need only the username and the
languages the user had coded, from the master dataset. We can get that information
by selecting the columns full name and language:

ldata<- ausersubset [c("full name","language")]

To find the correlation between the languages that the user's code in, we need

to transpose the data. But in order to transpose the data, we need to format the
datatype to data table using the R function data.table. Then, we can pivot the
data using the function dcast .data. table, which comes along with the package
data.table. Thus, we can convert the data to a required format:

library(data.table)

pivoting<- data.table(ldata)
pivotdata<-dcast.data.table(pivoting, full name ~ language,
fun.aggregate=length, value.var="language")

We can find the correlation between the different languages using the cor function.
The cor function would result in a matrix that will have correlation values between
different languages. It will be complex to identify the combination that yields greater
correlation; hence, we will again have to format the data to make our study easier:

ncol (pivotdata)

head (pivotdata)

pivotdata<- as.data.frame(pivotdata)
pivotdata<- pivotdatal,2:70]
cormatrix<- cor (pivotdata)

We will format the data using the following code, where we first remove the data in
the diagonal, which is nothing but a self-correlation and will be always equal to 1.
Then, we will remove the data in the upper diagonal as that is the redundant data.
Finally, we will flatten the data into a table format using the function melt, which
comes with the package reshape. Thus, we transformed the correlation data into
an easily readable format. Now, we can filter the data based on a cut-off. It is the
combination of languages that most likely comes together, which means if a user
knows one of those languages, then it is most likely that they will know the other
language in the combination. The code is as follows:

diag(cormatrix) <- NA

cormatrix [upper.tri (cormatrix)] <- NA

finalcor<- melt (cormatrix)

head (finalcor)

filteredcordata<- finalcor[ which(finalcorsvalue> 0.4),]
filteredcordata
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We get the following output:

= filteredcordata

varl varz2 value
4 Apacheconf <NA= 0.4980870
135 TypeScript Actionscript 0.6234449
157 coq Agda 0.4960474
380 Haxe arduino 0.4291291
512 GO assembly 0.4392629
635 C++  AutoHotkey 0.4145410
7568 Typescript patchfile 0.4047566
879 Powershell C# 0.4994814
1275 Haskell Cogq 0.5657372
2756 Tex Julia 0.4438608
2803 Makefile LiveScript 0.4436783
2875 Moonscript Lua 0.8919895
3089 swift Mercury 0.4884314
3237 swift Objective-C 0.6130211
3518 XML Powershell 0.7057135
3782 rRebol R 0.76385384
7ol Tex R 0.6266375
3860 Tex Rebol 0.4438608
= |

The preceding output is the solution to the question that we framed in the
beginning of the chapter. In the preceding output, the pair MoonScript and
Lua has the highest correlation.

How to get the trend of correlation?

So far, we have explored the correlation between different parameters and plotted
the same in the scatter plot to visualize the relationship. Now, let's explore a
methodology to find the trend in the correlation. We will check how the correlation
between different parameters is affected by time. The rolling correlation will help
us understand the volatility in the relationship between the parameters.

To solve this problem, let's consider the two parameters watchers_count and
forks_count. First, we need to extract the data from the master dataset. We will
use the following code to select those columns by their names:

mdata<- ausersubset [c("created at", "watchers count",
"forks count")]

After extracting the data, we need to convert the column created_at, which is in the
date-time format, to the date format supported by R using the function as.pPosIxct.
Also, we need to convert the other two columns to the numeric format so that we
can perform aggregation at a daily level based on the date column and then find
correlation between the two numeric columns. The code is as follows:

mdata$Screated at<- as.POSIXct (strptime (mdata$created at,
"$Y-%m-%d4"))
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mdata$watchers count<- as.numeric(mdatas$watchers count)
mdata$forks count<- as.numeric (mdata$forks count)

Now we have the required data, but before going ahead with the correlation, we need
to remove the duplicate rows by grouping the data on a date basis. To accomplish this,
we need to use the package data.table, to convert the data into data table format and
then we will perform the aggregation as mentioned using the following code. After
the aggregation, we convert the data into the data frame format using the function
as.data.frame. At last, we will use the function merge to get the data in the required
format. The code is as follows:

library (data.table)

DT <- data.table(mdata)

ml <- DT[, sum(forks count ), by = created atl]

m2 <- DT[, sum(watchers count ), by = created at]
ml <- as.data.frame (ml)

m2 <- as.data.frame (m2)

mdata<- merge(ml, m2, by = "created at")

colnames (mdata) <- c("Date", "forks", "watchers")

Instead of performing the correlation on the complete set of historic data, we
will select the latest 300 days of data using the function tail, since the data is in
ascending order based on the date column. We will then make the date column a
row name, and remove the date column. The code is as follows:

mdatal <- tail (mdata, 300)
rownames (mdatal) <- mdatal$Date
mdatal <- mdatall[, -1]

We will perform the rolling correlation using the rollapplyr function, which belongs
to the package zoo and pass the parameter moving range set at 30 days. The computed
correlation is saved to the data frame r1. We will then attach the actual date column to
the correlation dataset by executing the following series of codes:

Library (zoo)

rl <- rollapplyr(mdatal, 30, function(x) cor(x[,1],x[,2]),
by.column=FALSE)

rl <- as.data.frame(rl)

r0 <- tail (mdata$bhate, 271)

r0 <- as.data.frame (r0)

resultcor<- cbind(r0,rl)

colnames (resultcor) <- c("Date", "Corr")

The data frame resultcor will actually hold the rolling correlation for the entire
time period. But for visualization purposes, we will consider only the latest 75
days of data for plotting:

resultcor<- tail (resultcor, 75)
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All of the preceding code is of no use if we don't add the visualization layer to the
analysis. Hence, we will plot the trend of the correlation between the parameters
watchers_count and forks_count using the function ggplot and save the plot
using the ggsave function. In the following code, the parameter geom_point () is
used to highlight the data points with a dot, and the parameter geom_1line() is
used for joining the dots with a line:

g <- ggplot (data=resultcor, aes(x=Date, y=Corr, group=1l)) +
geom_line() + geom point ()

g + theme(axis.text.x = element text (angle = 90, hjust = 1))
ggsave (file="C:/Users/Sharan/Desktop/SMM/Chapter 5/Pics/
roll-corr.png", dpi=500)

We get the following output:

Corr

Date

From the preceding output, we can see that the correlation between watchers_count
and forks_count was very high until a few weeks back, but then in recent times

the correlation has reached a minimum. In the preceding case, the low correlation

in the recent data could be because of the lack of sufficient data or any other factor,
for example, maybe these are very new repositories and it takes time to acquire
Watchers or Forks. But, we successfully achieved our objective of exploring the

data with different methods.
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Note that EDA is the most important step in the process of data

analysis; it is absolutely necessary to spend quality time in EDA

as it will help in the following ways:

. * It ensures better understanding of the data
% * Itallows us to test various hypotheses
’ * Itallows us to uncover important insights from the data
* Itallows us to detect anomalies
* Itallows us to improve the accuracy of the predictive
model based on the inputs from the EDA study

Reference

* For improvisation of the chart appearance, you can refer to the
following links:

°  http://www.cookbook-r.com/Graphs/
°  http://www.statmethods.net/advgraphs/ggplot2.html

®  http://cran.r-project.org/web/packages/ggplot2/index.
html

°  http://www.r-bloggers.com/search/ggplot2

* For more information on the GitHub package in R and the GitHub API,
visit the following links:

°  https://github.com/cscheid/rgithub
o

https://developer.github.com/v3/

*  Online courses on EDA can be found at:

®  https://www.coursera.org/course/exdata

°  https://www.udacity.com/course/data-analysis-with-r--

ud6e51
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Exercise

* Identify the set of parameters that have the most dynamic
relationship in the last year.

¢ Choose any one parameter, aggregate on a daily level, and

then plot the heat map
. to visualize the pattern across time.
% * Try the scatter plot with the linear regression line and
= confidence interval of
75 percent.

* Identify the most popular repository as well as the most
popular user.

* Instead of a moving correlation, perform correlation on a
weekly and monthly basis. (Note that data will not be in
moving range; it will be mutually exclusive.)

Business cases

Some of the business cases that can be implemented using the GitHub data are
as follows:

Identify the popular programmers in different languages.

The online courses' websites can target potential subscribers based
on suitable patterns in behavior.

Provide recommendations to users on which user to follow as well as
which repository to look out for.

Identify the best people to target for a new open source project
development in Java.

Plot the trend on languages; here, the data point will be the number of
repositories in a language. In order to get the trend, we need to pull the
data on a daily basis to know how many new repositories are created and
which language is used to develop them. This will help in understanding
the lifecycle of language popularity.

Build a regression model to predict the number of watchers a repository
would get within a month of launch.
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Summary

In this chapter, we covered the steps involved in the creation of the app on GitHub
as well as the procedure for the installation and authentication using the GitHub
package for R. We also discussed the public data that can be accessed using the
GitHub API from R, implementation of some graphical and nongraphical EDA
techniques on the GitHub data, and how to perform, as well as, interpret the
correlation analysis.

By implementing the various EDA techniques and exploring the questions that
were answered using it, we get a better understanding of when to use what kind
of techniques for easier communication.

In the next chapter we will explore APIs of a few more social media sites such
as LinkedIn, Tumblr, Wikipedia, Google Maps, Blogger, Foursquare and Quora.
We will also cover use-cases that can be implemented.
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So far, we have discussed how to use the APIs of Twitter, Facebook, Instagram,

and GitHub to make use of vital concepts and some machine learning techniques/
algorithms to answer critical business questions. In this chapter, we will see APIs of
other social media websites, the methodology involved to pull data, the analysis that
can be implemented, and cover some critical problems that can be solved.

Social media data is generally massive, noisy, and dynamic in nature; hence,
taming data and performing the data analysis becomes challenging, but with a
good grasp on the concepts it will be an amazing journey. With such huge data,
they become rich sources of information that can help in various research fields
and the business world.

The objective of this chapter is to understand the methodology involved in accessing
data from social media websites, understanding the huge scope that social data
analysis uncovers, as well as highlights on business cases that could be solved and
the limitations involved.

The topics that will be covered in this chapter are as follows:

* Searching on social media

* Accessing product reviews from sites

* Retrieving data from Wikipedia

* Using the Tumblr API

* Accessing data from Quora

* Mapping solutions using Google Maps

* Professional network data using LinkedIn
* Getting Blogger data

* Retrieving venue data from Foursquare

* Yelp and other networks
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Searching on social media

We will discuss how to use the package socialMediaMineR in R, which would allow
us to consider a few URLs and learn about the reach of those URLs in various social
media websites. This package can get us details such as number of likes, shares, and
comments on social media websites such as Facebook, Twitter, LinkedIn, Pinterest,
reddit, and a few others. This package also has functions for pulling data specific to
individual social networking sites.

We need to install the package and load it to the R environment, which can be done
using the following code:

install.packages ("SocialMediaMineR")
library (SocialMediaMineR)

After loading the package using the function 1ibrary, we will proceed with using
the various functions of the package. Let's start with the function get_facebook.
This function will search for the mentioned URL in the social networking site
Facebook, and it will return the mentioned URL; the normalized URL; and the
number of Facebook shares, likes, comments, total hits, and clicks. This function
can take input as any URL, normalize the URL, and then retrieve the details.

The code is as follows:

get facebook ("http://www.bbc.com/")

We get the following output:

= Thresults

url normalized_url share_count Tike_count comment_count total_count

1 http://www. bbc. com/ http:/ www. bbc. com/ 171627 120839 64653 357119
click_count comments_fbid commentsbox_count
1 7571 10130177473930506 3

The get_pinterest function will give us the number of pins on Pinterest for the
mentioned URL. This function can take any URL as input—blogs, YouTube videos
shared, marketing campaigns, and so on. The code is as follows:

get pinterest ("http://www.bbc.com/")
We get the following output:

url count
1 http://www.bbc.com/ 1281

We can perform analysis such as correlation on performance across different sites,
trend analysis to decode the seasonality, reach to the audience, and much more on
the preceding dataset.
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The other site-specific functions that are part of the package SocialMediaMineR
are get_reddit, get stumbleupon and get twitter. The function get reddit
will return a data frame associated with the performance of the URL on reddit,
the function get_stumbleupon will give us the number of views on the website,
the stumbleupon variable and the function get twitter will return the count of
number of tweets. Here's the code for get reddit:

get_reddit ("http://www.bbc.com/")

We get the following output:

get_reddit("http:/ www. bbc. com/™)
domain banned_by subreddit selftext_html selftext Tikes secure_media Tink_flair_text
bbc. com NA news NA NA NA NA
id gilded clicked stickied author media score approved_by over_18 hidden
2wifs7 0  FALSE FALSE Tisalondon NA 1 NA  FALSE FALSE
thumbnail subreddit_id edited Tink_flair_css_class author_flair_css_class downs saved
t5_2gh31 FALSE MNA MA 0 FALSE
is_self permalink name created url
FALSE /r/news/comments/2wjfs7/bbc/ t3_2wjf57 1424433155 http://www. bbc. com/
author_flair_text title created_utc distinguished num_comments visited num_reports ups
NA  BBC 1424433155 NA 0  FALSE Na 1

Here's the code for get _stumbleupon:

get_stumbleupon ("http://www.bbc.com/")

We get the following output:

= get_stumbleupon("http:/ /www.bbc. com/™")

1

1

result.url result.in_index result.publicid result.views result.title
http://bbc. com/ TRUE 1cMT38 123 BBC - Homepage
result. thumbnail
http://cdn. stumble-upon. com/mchumb,/329/895329. jpg
result. thumbnail_b
http://cdn. stumble-upon. com/bthumb,/329/895329. jpg
result.submit_Tink
http://www. stumbleupon. com/badge/?url=http://bbc. com/
result.badge_link
http://www. stumbleupon. com/badge/7ur1=http://bbc. com/
result.info_link tTimestamp success
http://www. stumbleupon. com/url/bbc. com/ 1438451988 TRUE

Here's the code for get _twitter:

get_twitter ("http://www.bbc.com/")

We get the following output:

counturl
1 585637 http://www.bbc.com/
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If there is access only to the shortened URL, then we can use the following function
to retrieve the actual URL so that we can use it in any of the preceding functions:

get_url ("http://goo.gl/muN6elv")
We get the following output:

. http://goo.gl/muN61Vv
"http://www.rsharankumar.com/"

Now, we will see the get _socialmedia function of the SocialMediaMineR
package. This function will return the popularity of the URL from multiple social
networking websites. This function can take multiple URLs as input, so we first
hold a few sets of news channel URLs in the variable news_urls. In the following
example, we will compare the performance of different news channel websites in
social networking websites:

news_urls<- c(
"http://www.bbc.com/",
"http://www.euronews.com/",
"http://www.cnn.com/",
"http://www.nytimes.com/",
"http://www.guardian.co.uk/",
"http://www.globalpost.com/",
"http://www.france24.com/",
"http://www.aljazeera.com/",
"http://www.reuters.com/",
"http://www.foxnews.com/",
"http://www.nbcnews.com/",
"http://www.huffingtonpost.com/",
"http://www.wsj.com/",
"http://www.ndtv.com/")

We use the function get_socialmedia and pass the variable that holds all these
URLs as an input parameter. The optional parameter sleep.time is used to specify
the number of seconds the function should wait before proceeding to the next URL.
This will be very useful in case there are multiple URLs and we don't want to reach
the API call limit. For the preceding URLs, we have got the popularity metrics across
different websites. The code is as follows:

allresults<- get socialmedia(news urls, sleep.time = 0)
allresults
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Note that the preceding function might throw some errors, but most
likely the right result will be generated.

We get the following output:

= allresults

url normalized_url fbk_shares fbk_likes fbk_comments

1 http://www.bbc. com/ http://www.bbc. com/ 171627 120839 64653
2 http://wew. euronews. com/ http://weaw. euronews. com/ 12771 5871 1906
3 http://www. cnn. com/ http://www. cnn. com/ 478271 684519 157865
4 http:// www. nytimes. com/ http:/ www. nytimes. com/ 317849 252538 94082
5 http://wew. guardian. co. uk/ http://www. guardian. co. uk/ 464 686 423
6 http://wew. globalpost. com/ http://wew. globalpost. com/ 1243 539 433
7 http://www. france24. com/ http://www. francez4. com/ 25077 26415 10040
8 http://www. aljazeera. com/ http://ww. aljazeera. com/ 1545 1749 698
2] http://wew. reuters. com/ http:/ /wemw. reuters. com/ 22890 9747 7021
10 http:// www. foxnews. com/ http:/ www. foxnews. com/ 119292 120634 7277
11 http://www. nbcnews. com/ http:/ /wewi. nbcnews. com/ 75463 40457 31550
12 http://www. huffingtonpost. com/ http://www. huffingtonpost. com/ 156657 104087 63456
13 http://www.wsj.com/ http://www.wsj. com/ 9789 40677 1809
14 http://ww. ndtv. com/ http:///www. ndtv. com/ 12300 7022 1236
fbk_clicks twt_tweets rdt_score rdt_downs rdt_ups rdt_comments Tkn_shares stu_views pin_counts

1 7571 585637 1 0 1 0 NA 123 1281
2 0 12937 26 0 26 3 NA 136 17
3 0 9837943 39 0 39 25 NA 26365 94495
4 5353 278BT792 0 0 o] 6 NA 285429 21280
5 0 193790 1 0 1 0 NA 44616 9787
a 17 1883 0 0 0 0 NA 1747 Eal
7 132 13 NA NA NA NA NA 10 0
8 0 197256 1 0 1 0 NA 392 297
a9 0 460708 ] 0 9 3 NA 48472 247
10 3103 400966 3 0 3 0 Na 10027 13616
11 0 1180847 183 0 183 31 NA 402 13515
12 515 296312 1 0 1 0 NA 119398 28556
12 3266 53413 5 0 5 1 Na 12 313
14 0 79042 5 0 5 0 NA 157 28

fbk_total
357119
20548
1320655
664469
1573
2215
61532
3992
39658
312704
147470
324200
16275
20558

The socialMediaMineR package will be very useful to identify the performance of

a list of blogs, brands, and businesses. It will be a convenient way to measure the
performance across multiple online sites. Please note that the data generated by each
of the preceding functions is very different in each case, as the data format depends
on the availability and accessibility provided by the social media sites.

Exercise

Consider the English Premier League, create a list of websites
of your favorite teams, and evaluate their performance in social
networking websites. Check out which team had the maximum

penetration in social media.
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Accessing product reviews from sites

Online product reviews are a very good source of information. They can be used to
judge a brand or a product. It becomes very difficult to read all the reviews, so we
can write a program to get the product reviews. Let's see one of the ways to extract
the customer review data from Amazon. For example, let's consider the movie
Transformers — Age of Extinction and see the customer reviews:

urll<-
'http://www.amazon.com/gp/video/detail/BO0L83TQR6?1ie=UTF8&redirect
=true&ref_ =s9 nwrsa gw_g318_il'

First, we get the relevant URL and store it in a variable so that it can be used in the
functions. Then, we need to parse the HTML content of the page and save it to the
variable doc. In order to do so, we need to import the package xML. Now, the parsed
HTML is stored in the variable doc. Please follow the link for more details on the
HTML DOM: http://www.w3schools.com/jsref/dom obj document.asp. The
code is as follows:

library (XML)
doc<- htmlParse (urll)

From this parsed data, we can get the required information by specifying the class
in which the content is present, using the function xpathsapply. In our case, the
customer reviews are present in the tag div with the class name a-section. The
following code will extract the customer reviews.

review<- xpathSApply(doc,'//div[@class="a-section"]',xmlValue)
data.frame (review)

. Note that the websites, in the preceding case Amazon, might
change the DOM structure. Hence, verify the DOM structure before
— executing the preceding code. Also, note that this data would require
processing before consumption in the analysis.
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We get the following output:

“n I Tove all
the transformers movies, just because they're entertaining. I know they’re not critical
Ty acclaimed for the acting or the heart-wrenching story like say a Terms of Endearment,

but they're not supposed to be. They're action, they're visually spectacular, and very
fun! It's escapism at it's best. watching these movies with a nice surround system is
a must. The explosions, the sounds of the transforming, all of it is a much better exp
erience with surround and a good subwoofer! I can do without 2 things in the movies...t
he eye candy that is the chicks in short shorts! To me, it just doesn’t add to the movi
e. I guess because I'm not a adolescent teenage boy. Secondly, is the Tanguage. it se
ems Tike all sequels, things are pushed further each time another one is made. There wa
s more profanity in this one than the others. It too doesn't add to the movie. My 4 ye
ar old son loves Transformers, too and I don’t want him picking up the language. I know
one day he will be exposed to it, but c'mon! These movies are enjoyed by all age group
5, Michael Bay, please tone down those 2 things and all will be well. mMark wahlberg di
d a good job in the movie... I 1ike his movies anyway. I didn’t miss shia LaBeouf or an
y of the other actors from the previous ones. Also, this one had more work done on the
video side. The greens were way greener. My wife noticed that almost everyone had colo
red eyes, and over exaggerated at that. I didn't mind all that, but it did seem a 1littl
e weird. I Tloved the robots! All of them were too cool...Lockdown is a bad dude! His
walk, his whole demeanor...I found myself T1iking him. Those Dinobots were massive! I c
an't wait to watch it again...and for the next one, which is probably already in the wor
ks."\n

3

%ﬁx“ The preceding output is just a part of the actual output.

This customer feedback is a rich source of information, and it can be used for
a variety of use cases. Brands can monitor their product performance across
different geographic locations. It can also be used for product enhancement.

The logic discussed here can be used to parse the data from any website. Hence,
the use cases are not only limited to ecommerce reviews, it can also be used in cases
where the data is present in the form of websites.

Retrieving data from Wikipedia

Wikipedia is an open source encyclopedia project developed collaboratively by
multiple people across the world. This is a rich source of information, and we can
find content about anything in this world. In this section, we are going to check out
the ways to extract the content from Wikipedia for our analysis. We will concentrate
only on the tabular content.
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We will consider the Wikipedia page on List of countries and dependencies by
population. This page has tabular content about the countries and their population.
This is shown in the following screenshot:

Countries and dependencies by population [edi

Note: All dependent territories or countries that are parts of sovereign states are shown in ifalics

Rank # Country (or dependent territory) 4 | Population ¢ Date * % ofwo_rld 4 Source

population

1 | fll Chinaltoe 2] 1,371,300,000 August 3, 2015 18.9% | Official population clock &
2 | == India 1,275,070,000 August 3, 2015 17.6% | Official population clock @
3 | BES United States 321,537,000 August 3, 2015 4.43% | Official population clock @
4 | = ndonesia 255,770,000 July 1, 2015 3.52% | Official projection &
5 | g8 Brazil 204,695,000 August 3, 2015 2 B2% | Official population clock &
3 Pakistan 190.521.000 August 3, 2015 2 62% | Official population clock &
7 | 1 W Nigeria 182,202,000 July 1, 2015 2.53% | UN projection | &
2 | Il Bangladesh 158,785,000 August 3, 2015 2.19% | Official population clock &
9 | g Russialllote 2 146,539,530 August 3, 2015 2.02% | Official population clock &
10| @ Japan 126,865,000 July 1, 2015 1.75% | Monthly official estimate &

Now, we will see how to bring the preceding tabular content to R so that we can
perform some computation. Before going into the coding, you have to understand
that the method explored is just one way of implementing it. This can be performed
in multiple ways.

For the method we are discussing, we need to load the package httr and then read
the URL of the mentioned Wikipedia page. We need to pass the URL to the function
GET. The GET method will retrieve the data identified by the requested URL. If the
URL refers to the data producing process, then the data that will be produced will
be returned and not the actual text content at source. Then, we pass on the content
to tabs. The function readHTMLTable is a robust method of extracting the data from
the tables in HTML documents. This function will read all the tables present in the
specified URL. Also, this function attempts to perform heuristic computation to get
the headers for the columns. The code is as follows:

library (httr)

urll <-

"https://en.wikipedia.org/wiki/

List of countries and dependencies by population"

tabs<- GET (urll)

tabs<-

readHTMLTable (rawToChar (tabsScontent), stringsAsFactors = F)
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Now, all the tabular data is copied to tabs. This content will be of the type 1ist.
Browse through the list that has been extracted; you will find that the first list
contains the actual table. Hence, we filter out the first table data and leave the
other data:

class (tabs)
We get the following output:
[1] "list™
We use the following code to extract the table content alone from the preceding list.

tablecontent<- tabs$'NULL'
head (tablecontent)

We get the following output:

= head{tabTecontent, 10)
Rank Country (or dependent territory) Population Date
1 1 china[Note 2] 1,371,300,000 August 3, 2015
2 2 India 1,275,070,000 August 3, 2015
3 3 united states 321,537,000 August 3, 2015
4 4 Indonesia 255,770,000 July 1, 2015
5 5 prazil 204,695,000 August 3, 2015
6 6 Pakistan 190,521,000 August 3, 2015
7 7 Nigeria 182,202,000 July 1, 2015
8 8 Bangladesh 158,785,000 August 3, 2015
9 9 Russia[Note 3] 146,539,530 August 3, 2015
10 10 lapan 126,865,000 July 1, 2015
% of world'npopulation source
1 18.9% official population clock
2 17.6% official population clock
3 4.43% official population clock
4 3.52% official projection
5 2.82% official population clock
6 2.62% official population clock
7 2.53% UN projection
8 2.19% official population clock
9 2.02% official population clock
10 1.75% Monthly official estimate

The same function and methods can be used for multiple purposes. We can read
any Wikipedia page that has content in a table. This data can now be used for any
visualization/exploratory analysis.

Apart from the method discussed here, there are other ways to retrieve data. Instead
of using the function GET, we can also use the function getURL. However, this
function also needs to load the package RCurl.

Now that we know how to download tabular content from Wikipedia, we will
explore ways of getting the details on the Wikipedia users who contributed to the
content, the difference between the revisions made to a page, and more. Let's review
some of it.
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In order to retrieve the preceding details, we use the package wikipedir. Download
the latest package from GitHub. First load the package devtools, and then install the
package WwikipediR using the function install_github to make sure that the latest
package is downloaded:

install.packages ("Rtools™")

library (devtools)

install github ("Ironholds/WikipediR")
library (WikipediR)

We can get the text content of various pages in Wikipedia. First, let's see how
to get the text content from a random page. We can get this using the function
random_page. Every time we run the function, we would get the data of a new
page in Wikipedia. The content extracted is of the type pcontent, it is a parsed
text. The code is as follows:

randomContent<- random page("en", "wikipedia")
head (randomContent)

We get the following output:

= head(randomContent)
Sparse

Sparsestitie

[1] "Anwar Hamed"

$parse$revid
[1] 607840000

Sparseftext
$parseftext§’ ="
[1] "<p=<b=Anwar Hamed</b> (born 1957) is a <a href=\"/wiki/Palestinian_people’” title="
"Palestinian peopled” class=\"mw-redirect'"=Palestinian</a=-<a href=""/wiki /Hungary'"” ti
tle=""Hungary" "=Hungarian</a= novelist, poet and author.<sup id="cite_ref-1" class=\"r
eference’"><a href=""#cite_note-1'"><span>[</span>l<span=]</span></a></sup> He was born
in the <a href=""/wiki/west_Bank'" title=\"west Bank""=>West Bank</a> and went to Hungary
for college. His first short stories were published in <a href=\"/wiki/arabic\” title=\
"arabich"=arabic</a> when he was still a teenager in the west Bank, but after his move t
0 Hungary, he started writing in Hungarian. His first novels were written in this Tangua
ge. Since 2004, he has been living in London, where he works for <a href=\"/wiki/BBC_Ara
bich" title=\"BBC Arabic\"=BBC Arabic</a=.<sup id=\"cite_ref-2'" class=\"reference"><a
href=\"#cite_note-2""><span>[</span>2<span>=]</span></a></sup></p>\n<p>His novel <i>Jaffal
Prepares Morning Coffee</i> was longlisted for the 2013 <a href=\"/wiki/arabic_Booker_p
rize\" title=\"Arabic Booker Prize\" class=""mw-redirect"=Arabic Booker Prize</a=.</p>\
n<h2=<span class=""mw-headline\" id=\"selected_works">5elected works</span=<span class=
Ymw-editsection'"=<span class=""mw-editsection-bracket"=[</span=<a href=\"/w/index. php
7ritle=Anwar_Hamed&amp; action=edit&amp; section=1%" title=\"Edit section: Selected works®
"=edit</a=<span class=\"mw-editsection-bracket\"=]</span=</span=</h2>\n=ul=\n<li=<i>The
Bridge of Babylon</i=</1iz\n<li=<i=5tones of Pain</i=</li=\n<li=<i=scheherazade Tells Ta
Tes Mo More</i=</li=\n<li><i>The Game of Love and Pride and other Idiocies</i></1i>'n<li
=<ixValse Triste</i=</1ix\n<liz<i=Seventy-Two Virgins and a Confused Lad</i=</Tix\n<liz<
i=Jaffa Prepares Morning Coffee</i=</liz\n<li=Jenin 2002</Ti=\n<li=<i=Mind the Gap</i= (
poetryl</Tiz'\n<1i><i=0oh, Those Days!</i> (short stories)</liz'\n<li=<i=Literary theory: A
n attempt towards the definition of the function of Titerature«/i> (theory)</Tiz=\n</ul=Y
n<h2=<span class=""mw-headline\" id=\"References' "=References</span=<span class=\"mw-adi
tsection'"=<span class=""mw-editsection-bracket\">[</span=<a href=\"/w/index. php?title=4
nwar_Hamed&amp; action=edit&amp;section=2"" title=""Edit section: rReferences"'>edit</a»<s
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This output is just a screenshot of the actual output.

We will now see how to extract the text from a specific page on Wikipedia. We can
do this using the function page_content and extract the contents from a specific
Wikipedia page. Here's the code to extract the contents from the page about Dr.
A.P.]. Abdul Kalam:

pageContent<- page content ("en","wikipedia",
page name = "A. P. J. Abdul Kalam")
head (pageContent)

We get the following output:

= head(pageContent)

$parse

jparsestitie

[11 "a. p. 1. Abdul Kalam"

$parsefrevid
[1] 674484862

fparseftext
$parse$text§ ¥
[1] "=div class=""hatnote"">This article is about the former President of India. For th
e Indian freedom fighter, see <a href=\"/wiki/abul_kalam_azad " title=\"abul kalam azad"
"=Abul Kalam Azad</a=.</div=\n<table class=\"infobox wvcard\"” style=\"width: 22em;\">'n<t
r=\n<th colspan=4"2%" class="n\" style=\"text-align: center; font-size: 132%;‘"><span c
Tass="\"fn\">=. u. Om. HOxmd sare<br /S\na. P I, Abdul kalam</spans=<br />\n<span clas
s=""honorific-suffix\" style=\"font-size:76%; font-weight:normal;" " "=<small style=\"font-
size:85%; " "»<a href=""/wiki/Bharat_Ratna\" title='"Bharat Ratna‘\'">Bharat Ratna</a></smal
1=</span=</th="n</tr="\n<tr="n<td colspan=""2" style=""text-align: center’"=<a href=""/w
iki/File:apj_abdul_kalam. JrG\" class=\"image'"=<img alt=""aApj abdul kalam.1PG\" src=\"//
upload.wikimedia. org/wikipedia/commons /thumb/3/34 /Apj_abdul_kalam. IPG/230px-Apj_abdul_ka
Tam. IJPGY" width=\"230%" height=\"274"" srcset=\"//upload.wikimedia.org/wikipedia/commons
Jthumb/3/34 /apj_abdul_kalam. 1pG,/345px-Apj_abdul_kalam. JrpG 1.5x, //upload.wikimedia.org/w
ikipedia/commons /thumb/3 /34 /Apj_abdul_kalam. IPG/460px-Apj_abdul_kalam. JrG 2x\" data-file
-width=""644"" data-file-height=\"768\" /=</a=</td=\n</tr>\n<tr=n<td colspan='"2%" styl
e=\"text-align: center’"=Kalam at the International Book Fair, Trivandrum, 2014</td>'n</
tr=yn<tr=‘n<th colspan=""2%" style=\"background-color: lawvender; text-align: center’"=<a
href=""/wiki/List_of_Presidents_of_India“" title=""List of Presidents of India\"=llth</
a= =a href=""/wiki/President_of_1ndia‘"” title=""pPresident of India‘"=President of India<
Ja=</th="\n</tr=\n<tr='n<td colspan=\"2." style=\"border-bottom:none; text-align:center”
==<span class=""nowrap"'=<b>=In office</b></span=<br /='\n23 July 2002&#160;- 25 July 2007<
Jtd=\n</tr='\n<tr='n<th style=\"text-align:Teft; " "><span class=\"nowrap'">=Prime Minister<
/spans=</th='\n<td><a href=""/wiki/atal_Bihari_vajpayee'" title=\"atal Bihari vajpayee'=a
tal Bihari vajpayee</a=<br /='n<a href=\"/wiki/Manmohan_singh%" title=%"Manmohan Singh"
=Manmohan singh</a=</td>\n</tr=\n<tr>\n<th style=\"text-align:left; " "><span class=""nowr
ap\"=vice President</spans</th=\n<td=<a href="\"/wiki/krishan_kant’" title=\"Krishan kant
Y'=Krishan Kant</a=<br /=‘n<a href=\"/wiki/Bhairon_singh_shekhawat'" title=\"Bhairon 5in
h shekhawat’ ">Bhairon Singh Shekhawat</as</td=\n</tr>'n<tr=‘n<th stvle=""text-align:lef

% This output is just a screenshot of the actual output.
v
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We can get to know about the revisions made to the Wikipedia page using the
function revision_diff; we need to pass the page ID in order to get the revision
details. The following code generates the revision details for the page titled A.P.].
Abdul_Kalam:

revision diff ("en", "wikipedia", revisions = 674484862,
direction = "next")

We get the following output:

= revision_diff("en","wikipedia”, revisions = 674484862, direction = "next")
$hatchcomplete

[1]

fquery

fqueryipages

fqueryipages$ 62682°
fquery3pages$ 62682 $pageid
[1] 628682

fqueryipages$ 62682 %ns
[1] ©

fqueryipages$ 62682 ftitle
[1] "a. p. 1. Abdul kalam"

fquery3pages$ 62682 frevisions
Squery$pages$ 62682 Srevisions[[1]]
fqueryipages$ 62682 frevisions[[1]]%revid
[1] 674484862

fqueryipages$ 62682 Srevisions[[1]]%parentid
[1] 674460628

[ This output is just a screenshot of the actual output. ]

The package wikipedir allows us to extract the backlinks. In the following code,
we will extract the backlinks of the pageA._P._J._Abdul_ Kalam:

page_backlinks ("en", "wikipedia", page = "A._P._J._Abdul_ Kalam")
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We get the following output:

= page_backTinks("en™, "wikipadia™, page = "A._F._J._Abdul_kKaTam™)
$warnings

Swarnings$query

fwarnings$query§ ="

[1] "Formatting of continuation data has changed. To receive raw query-continue data, us
e the 'rawcontinue’ parameter. To silence this warning, pass an empty string for "contin
ue' in the initial query."”

$batchcomplete
[

Scontinue
Scontinues$blcontinue
[1] "O]49708"

Scontinue$continue

[x1 "=

Squery

$queryibacklinks
$query$backlinks[[1]]
$querysbacklinks[[1]1]3$pageid
[1] 14604

$query$backlinks[[1]]%ns
[1] 0O

Squery$backlinks[[1]]%title
[1] "Foreign relations of India"

This output is just a screenshot of the actual output.
v

Now that we know how to extract and parse tabular content, let's see how to extract
the details of the users who actually edited and worked on the various URLs. We
can use the following code to extract the details on the contributions made as well
as the general user information. The function ucontribution can be used to get the
contribution made by a specific user. In the following case, we are retrieving only
the timestamp of those contributions, but we can also get the comments for those
contributions by replacing timestamp with comment:

user contributions("en", "wikipedia",
username = "Ironholds", properties = "timestamp")
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We get the following output:

fquery

fquery$usercontribs
fquery$usercontribs[[1]]
$query$usercantribs[[1]]%userid
[1] 6804626

fquery$usercontribs[[1]] $user
[1] "Ironholds"

$query$usercantribs[[1]]$timestamp
[1] "2015-08-04T07:19:13z2"

fquery$usercontribs[[2]]
fquery$usercontribs[[2]]%userid
[1] 6804626

$query$usercantribs[[2]]%user
[1] "Ironholds”

fquery$usercontribs[[2]]$timestamp
[1] "2015-08-03T21:00:052"

fquery$usercontribs[[3]]
$query$usercantribs[[3]]%userid
[1] 6804626

fquery$usercontribs[[3]] $user
[1] "Ironholds"

$query$usercantribs[[3]]$timestamp
[1] "2015-08-03T20:59:352"

This output is just a screenshot of the actual output.
A

The function user_information gives us the basic information about the users.
To the parameter properties, we pass all the information required to be captured.
Here's the code to get the details of the user rsharankumar:

user information("en", "wikipedia", user names = "rsharankumar",
properties = c("blockinfo", "groups", "implicitgroups", "rights",
"editcount", "registration", "emailable", "gender"))
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We get the following output:

$hatchcomplete

[1] "

fquery

fquerylusers
Squerysusers[[1]]
fquerySusers[[1]]3userid
[1] 15168084

$queryiusers[[1]]$name
[1] "Rsharankumar™

fquerySusers[[1]]%editcount
[1] o

fquerySusers[[1]]%registration
[1] "2011-08-19T05:38:152"

fquery$users[[1]]$groups
$querysusers[[1]1]1%groups[[1]]
[1] &

$query$users[[1]]$groups[[2]]
[1] "user”

fqueryiusers[[1]]%implicitgroups
fquerySusers[[1]]%implicitgroups[[1]]
[1] "e"

$querySusers[[1]]%implicitgroups[[2]]

[1] "user"

Squery$users[[1]]%rights
fquerySusers[[1]]%rights[[1]]

[ & This output is just a screenshot of the actual output. ]
K
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The preceding dataset includes a lot of junk data as well, but by using the functions
we discussed in the chapters so far, such as the £romJsoN, GET, and as.data. frame,
we can process the data and convert it to a consumable format. Here's a sample
method that can be used to get the user details in the data frame format from the
above dataset:

data <- user information("en", "wikipedia", user names =
"rsharankumar", properties = c("blockinfo", "groups",
"implicitgroups", "rights", "editcount", "registration",
"emailable", "gender"))

sample <- dataSquerysSusers([[1]]
sample <- as.data.frame (sample)

The objective of this book is to show you the art of getting the required data from
different social media sites. Initially, we were using the URL of the various pages
and were parsing the data to extract the required data. Later, we saw how to use
the wikipedir package, which was built to communicate with Wikipedia and give
us the required information. The latter is always preferable because of the effort
that would have been needed to provide the data in a readable format. In the case
of Wikipedia, authentication was not required to extract the data, but in most other
cases it will be required to authenticate before extracting the data. Wikipedia has
good information about various topics, so knowing how to access the data provides
us a huge advantage.

Exercise

Since most country's pages in Wikipedia are similar to each other, we
can write scripts to pull data about different countries and compare the
difference. Similar analysis can be done across different domains.
% You can find the list of top contributors from https://

~ en.wikipedia.org/wiki/Wikipedia:List of Wikipedians
by number_ of edits.
Identify if there is correlation between the users' contribution and the
time they registered with Wikipedia. Also, try to get some information
like the gender breakups and so on.

Using the Tumblir API

Tumblr is a microblogging and social networking platform. Tumblr, as of August
2015, hosts around 248 million blogs and about 117 billion posts, and over 75 million
posts are created on a daily basis. In this section, we will see how to access the data
from Tumblr and, in the process, understand how the steps involved are different
from the methodology discussed so far.
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There is a package in R that allows interaction with Tumblr. We need to install
the package tumb1R. The package has little dependency, so use the following
code for installation:

install.packages ("tumblR")
install.packages ("base64enc")
install.packages ("httpuv")
library (tumblR)

The preceding code installs the related packages, as well as loads the required
package on to the working environment.

We need to have an account in Tumblr and have the app for enabling authentication
in order to access the data. Once we create the app, we get the consumer key and the
secret key. We can use these to access the data, or we can authenticate and save the
details as a token and use just the token for data access. We can register for an app at
http://www.tumblr.com/ocauth/apps.

Applications

Sharan

About Tumbir OAuth

v 1 0a. sccepting paramaters vin tha Autho
ture mathod anly, Thea's prohably already an

i you've worked with Twitter's OAuth implementation. youll fesl right at heme with ours

Request-token URL:
SET hang T T

Authorize URL:

Access-token URL:

In order to authenticate, we need some more information such as the consumer key
and the secret key. Hence, we save those to a variable so that we can simply use these
variables instead of having to mention it in several places. The code is as follows:

consumer key<-'Paste your key here'

consumer_secret<- 'Paste your secret key here'

appname<- 'Paste your App name here'

tokenURL<- 'http://www.tumblr.com/ocauth/request_token'
accessTokenURL<- 'http://www.tumblr.com/ocauth/access_token'
authorizeURL<- 'http://www.tumblr.com/ocauth/authorize'
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Now we will see how to use the preceding details to complete the authentication
process. The first variable will hold the app details, the name, consumer key, and the
consumer secret code and the variable endpoint holds the details about end points
to hit. The code is as follows:

app<- oauth app (appname, consumer key, consumer secret)
endpoint<- ocauth endpoint (tokenURL, authorizeURL, accessTokenURL)
token<- oauthl.0_ token (endpoint, app)

The function cauthl.0_token uses the app details and the end point details

to initiate the authentication. Similar to the action performed in Facebook and
Instagram, the authentication function opens the browser on providing the user
name and password. Approving the following message in the popup completes
the authentication process:

Is it alright for this application to access some of your
data and make posts to your account? You are logged in
as rsharankumar@amail.com.

2 e o
rsharankumar com

= token <- cauthl.O_token(endpoint, app)
waiting for authentication in browser...
Press Esc/Ctr] + C to abort
Authentication complete.

We get a confirmation note in the R environment also. Now, the authentication
process is completed and we can go ahead and access the data that is available.
We can also get a few blogs present in Tumblr and start accessing the data. In this
section, we will explore some of the functions and some of the use cases that could
be implemented using the available data.
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We will consider the ifpaintingscouldtext.tumblr.com blogin Tumblr and
figure out the usage of a few functions belonging to the package tumb1r. First,
let's retrieve the avatar of the blog. The avatar is the visual representation or the
profile picture used in the blog's profile. We can get the blog's avatar using the
function avatar. The second parameter represents the size of the image. The
code is as follows:

avatar (base hostname = url, size =64)
We get the following output:
[1] "https://33.media.tumblr.com/avatar e4ac5327294d 64.png"

In the output, we get the URL of the avatar of the blog. We can visit the mentioned
URL to get the avatar of the mentioned blog. We can also get the details of a blog
using the function info.blog:

info.blog(base hostname = url, api key = consumer key)

Here's the output of the function. We get some basic information about the blog:

> info.blog(base_hostname = url, api_key = consumer_key)
fmeta

§meta$status

[1] 200

§metasmsg
[1] "ok"

$response

Sresponse$hlog
$response$blogftitie

[1] "1f Paintings Could Text"

$response$blog$name
[1] "ifpaintingscouldtext”

$response$blog$posts
[1] 171

$response$blog$ur
[1] "http://ifpaintingscouldtext. tumblr.com/"

$response$blog$updated
[1] 1438128071

$response$blog$description
[1] "A revival of classical art and epic texts.”

$response$blogiis_nsfw
[1] FALSE

$response$blogfask
[1] TRUE

$response$blogfask_page_title
[1] "ask "
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We can get the post and the reposts that were liked in the blog. To get that,
we need to use the function 1ikes. This function retrieves the publicly exposed
likes from a blog:

likes (base hostname = url, limit = 20, offset = 0,
api key = consumer key)

Let's see the likes in the preceding blog.

Tmeta
ftmetadstatus
[1] 200

$metaimsg
[1] "okr"

$response

$response$liked_posts
$response$liked_posts[[1]]
$response$liked_posts[[1]]$blog_name
[1] "classic-art"”

$response$liked_posts[[1]]%4d
[1] 1.116328+11

$response$liked_posts[[1]]$post_ur]l
[1] "http://classic-art.tumblr.com/post/111632000975/the-mirror-leo-whelan-1912"

$response$liked_posts[[1]]%s5Tug
[1] "the-mirror-leo-whelan-1912"

$response$liked_posts[[1]]%type
[1] "photo”

fresponse$liked_posts[[1]]$date
[1] "2015-02-21 05:38:40 GMT"

$response$liked_posts[[1]]$timestamp
[1] 1424497120

$response$liked_posts[[1]]$state
[1] "published"

$response$liked_posts[[1]]$Format

While this package allows us to retrieve the data from the blog, it also has a
few functions that would allow us to update the blog of a particular user and
also to perform certain action such as following a blog, liking a blog plot,
and so on. In order to know more about the data that could be captured,
visit https://cran.r-project.org/web/packages/tumblR/tumblR.pdf.
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While the preceding package provides all of the specified functionalities, we can also
make use of the alternative package, which has a similar name to get some additional
data. Kindly note that the API from Tumblr, or for that matter any website, is subject
to changes from time to time. Hence, there could be some functions in the packages
that could be possibly deprecated. Try out the following code as well:

library (devtools)

install github ("klapaukh/tumblR")
setup tumblr apikey (consumer secret)
all = get posts("staff.tumblr.com")
posts = allS$Sposts

head (posts)

We get the following output:

$posts[[20]]
$posts[[20]]3blog_name
[1] "staff"

$posts[[20]]%1d
[1] 124694265970

fposts[[20]]%post_url
[1] "http://staff.tumblr.com/post/124694265970/derekeads-chill-by-derek-eads-this-air"”

Fposts[[20]]1%sTug
[1] "derekeads-chill-by-derek-eads-this-air”

fposts[[20]]%type
[1] "photo"

Sposts[[20]]%date
[1] "2015-07-21 22:01:14 GMT"

Sposts[[20]]$timestamp
[1] 1437516074

Sposts[[20]]%s5tate
[1] "published"”

Sposts[[20]]%Format
[1] "html"

fposts[[20]]%rebTlog_key
[1] "créTiDneE"

Fposts[[20]]%tags
fposts[[20]1%tags[[1]]
[11 "summer week"
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To know more about the second package, visit https://github.com/klapaukh/
tumblR.

Exercise:

Find out the most popular blogs on Tumblr, start collecting details
@@%‘\ about these blogs, and apply a clustering algorithm to figure out
! the blogs that are similar to each other. In the process, get the most
popular blogs based on the likes and other factors, if any.

Accessing data from Quora

Quora is a popular question and answer website where questions are asked,
answered, and managed by the community members and the entire operations is
gamified. The interesting answers can get some points and the users could also shell
out some points to get some of their questions answered by certain people.

There are ways to get the data from Quora, but there is an unofficial API which
returns the data in the JSON format. It is actually a set of URLs that will provide us
with the required information. These URLs will also work in browsers. Once we get
the data in the JSON format, we can convert it into the data frame format later.

Let's see some of the URLs and ways to use it in R. The API's base URL is
http://quora.christopher.su. To the base URL, we need to add the
following to get the relevant data:

® /users/<users>/activity/answers

®* /users/<users>/activity/user follows

®* /users/<users/activity/want answers

® /users/<users/activity/upvotes

®* /users/<users/activity/review requests

First, we will try to get the user's profile details. The following code will provide
us with the details of the specified user in the JSON format. It provides some basic
information like the followers, following, number of posts and the total number of
edits made, questions asked, and the answers made:

udata<- fromJSON ("http://quora.christopher.su/users/
Sharan-Kumar-R")
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We get the following output:

= udata

MULL

$followers

$following

fquestions

NULL

"sharan kumar r"

"sharan-Kumar-g"

Given that we know the questions in Quora, we can get to know about its
category, as well as the number of answers it received. This can be done with

the following code:

fromJSON ("http://quora.christopher.su/questions/
If-space-is-3-dimensional-can-time-also-be-3-dimensional™")
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We get the following output:

= fromlsoN("http://quora. christopher. su/questions/If-space-is-3-dimensional-can-time-als
o-be-3-dimensional™)
$answer_count

[1] 7

Sanswer_wiki

[1] "<=div class=""hidden"” id=""answer_wiki‘ "=<div id=""1d_ouhbnu_4206" "><div id=""_w2_
EdwfLIZ_wiki' =</ dive</divs</divs"

$question_details
[1] "=div class=""question_details_text inline_editor_content’ =</div="

$question_text
[1] "If space is 3-dimensional, can time also be 3-dimensional?"

$topics
[1] "science, Engineering, and Technology” "science”
[3] "Physical sciences” "Physics"

[5] "Theoretical Physics”

Swant_answers
[1] 9

Due to recent changes in the Quora API, some of the preceding URLs might be
broken. Moreover, Quora is not very open with the unofficial APIs. Hence, please
refer to the API provided by Quora at http://www.quora. com/Edmond-Lau/
Edmond-Laus-Posts/Quora-Extension-API.

The preceding URL provides the API that would retrieve the data of
the currently logged in user. This official API provides data such as the
% name, the Quora URL, number of unread messages, and some of the
g notifications. With more social networks becoming open to the AP, I
believe that Quora might soon provide official API access.

Mapping solutions using Google Maps

Google Maps provides mapping solutions. By using the R package RgoogleMaps, we
can get the static images from Google Maps using the name of the place or using the
latitude and longitude of that place. We can also use the map as the background and
plot location-specific charts.

In this section, we will see how to access the Google Maps API from R. We need to
first install the package RgoogleMaps:

install.packages ("RgoogleMaps")
library (RgoogleMaps)
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We can use the function getGeoCode to get the exact latitude and longitude of a
specific place. We will get the latitude and the longitude of some of the most famous
places. The code is as follows:

getGeoCode ("Big Ben")
getGeoCode ("10 Downing Street")
getGeoCode ("London Eye")

We get the following output:

> getGeoCode("Big Ben™)
lat Ton

51.5007292 -0.1246254

= getGeoCode("10 Downing Strest’)
lat Ton

51.5033635 -0.1276248

> getceoCode("London Eye")
lat Ton

51.503324 -0.119543

We can get the static maps for the preceding places using the function GetMap.
Let's look at London's iconic timepiece on a map:

BigBenMap<- GetMap (center="Big Ben", zoom=13)
PlotOnStaticMap (BigBenMap)

We get the following output:
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We can also plot multiple locations on the map. Now, let's plot all of the preceding
locations with colored markers to identify their locations. We will store the latitude

and longitude in a numeric vector and make the mean of all three, the center of the
map. After setting the zoom level, we can plot the map using the same function
GetMap. We use the parameter markers to mark the points of the locations.

The code is as follows:

lat =
lon =

center = c(mean(lat),

c(51.5007292,51.5033635,51.503324) ;
c(-0.1246254,-0.1276248,-0.119543) ;

mean (lon)) ;
range (lon))) ;

zoom<- min (MaxZoom (range (lat),
zoom=zoom, markers

Map <- GetMap (center=center,

pasteol ("&markers=color:blue|label:B|",
"51.5007292,-0.1246254&markers=color:green|label:D|51.5033635,

-0.1276248&markers=",
"color:red|color:red|label:L|51.503324,-0.119543"),

destfile = "MyTilel.png") ;

PlotOnStaticMap (Map)

We get the following output:
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We will use the data that we created in Chapter 4, Finding Popular Photos on Instagram.
In that chapter, we extracted the data on the number of comments and likes from
various users with their geographical location whenever it was enabled. In order to
create the data, that is geodata, we considered the data that had a geo-location and
filtered out the top 150 records based on the number of comments. Let's use the data
to plot on the map. The code is as follows:

geodata<- read.csv("geodata.csv")
head (geodata)

We get the following output:

= head{geodata)

Tongitude Tatitude comments_count
1 -117.42232 33.22396 4982
2 -118.37042 34.09666 4976
3 -117.15942 32.70849 4800
4 -119.97915 39.08244 3318
5 -118.37493 34.09985 2938
6 15.33974 37.95571 2630

We compute the mean to mark the center of the map and then we use the function
GetMap to get the map along with the specified parametric settings. In order to create
the bubble chart on the map, we use the function bubbleMap and pass the map and
the dataset as the parameter. Thus, the bubble chart can be plotted:

center = c(mean(geodataslatitude), mean(geodataslongitude)) ;
map<- GetMap (center=center,

zZoom=3,

size=c(480,480),

destfile = file.path(tempdir (), "meuse.png"),
maptype="mobile",

SCALE = 1);

par (cex=1)

We can change the zoom level by tuning the zoom parameter, and the size of

the bubble can be changed using the cex parameter. Note that the output covers
only a fraction of the complete plotting; by adjusting the zoom level, the complete
geography can be covered. The code is as follows:

bubbleMap (geodata

coords = c("longitude", "latitude"),
map=map,

zcol="'comments_count',

key.entries = 100+ 100 * 27(0:4));
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We get the following output:
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The package RgoogleMaps allows multiple functions to make the map look different;
print text at various geographic locations on the map, plot charts keeping a specific
location's map as the background image, and much more. Have a look at the various
functions offered through this package in R at https://cran.r-project.org/web/
packages/RgoogleMaps/RgoogleMaps . pdf.

We can also visualize the spatial data and models on top of Google Maps using
the other popular packages in R. Refer to the documentation of the package at
https://cran.r-project.org/web/packages/ggmap/ggmap . pdf.
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The Google Maps API has a limit of 2,500 requests per day.

Exercise

Now, let's see the use cases that could be solved using this
functionality in R. We can plot any geo-location-specific data such
as the number of startups in different cities across the world. In the
previous chapters, we had the opportunity to extract the geolocation
of the users, like in Twitter, GitHub, and Instagram. Now, we can
+ use that location information to plot on the map. For example, we

%‘ can check out the number of tweets from a specific location. We had
seen how to evaluate the popularity of the brands, people, and places
through social network data. Now, we can plot the popularity based
on the location. This study will be extremely useful to understand
their strength and weaknesses based on the location, as it usually has a
higher influence on the sentiments of the people.

The exercise would be to pull the location data for the top users in
Instagram and then plot the number of users across the world.

Professional network data from LinkedIn

LinkedIn is a social networking website for people in professional jobs. It has
over 364 million users across the world. Many companies have started using
LinkedIn to publish their job requirements and as a medium to showcase their
skillset to the world.

In order to access the LinkedIn data, we need to use the package R1inkedin.
Get the latest package from the GitHub repository using the following code:

install github ("mpiccirilli/Rlinkedin")
library (Rlinkedin)

For authentication, we need to have a LinkedIn app. It can be registered at
https://www.linkedin.com/developer/apps. Similar to the way we had
created an app in Facebook, Instagram, and GitHub, we need to create an app at
LinkedIn as well. Once the app is created, it will appear in your developers login.
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Please refer to the following screenshot to know what it looks like:

My Applications

Applications allow you manage desktop and mobile software that leverage Linkedin APIs

Sharan Inc

sharantest sample

The details of the app, such as the client ID and client secret can be found by clicking
and opening the app. After creating the app and specifying the redirect URL, we can
go ahead with the authentication using the following code:

app_name<- "Enter your App name here"
consumer key<- " Enter your client ID here "
consumer_secret<- " Enter your client secret here "

in.auth<- inOAuth(app name, consumer key, consumer secret)
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The preceding code will initiate the authentication; it will open a new window in the
browser and request the following permissions:

sharantest

sharantest would like to access some of your
LinkedIn info:

YQUR PROFILE OVERVIEW
Name, photo, headline, and current positions

YOUR EMAIL ADDRESS
The primary email address you use for your Linkedin
account

SHARE, COMMENT & LIKE
Post updates, make comments and like posts as you

COMPANY PAGES
Manage your company page and post updates

B )e

L8
-

Sign in to LinkedIn and allow access:

Join Linkedin Forgot your password?

Allow access Cancel Linked in

Once the permissions are granted, the authentication will be completed.

The LinkedIn API is used to provide all the information about our network

such as the connections, profile information about the user, their first degree
connections, search for companies based on the keywords or location, and much
more. But with the latest changes in the way the API operated, only some of the
basic details are available to all the users whereas most of the vital information is
available only to the partners.
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The only detail that can be now downloaded is your own basic profile, and you can
search about a company or get their basic details. This can be implemented using the
function searchCompanies. The following code retrieves the details of six different
companies, including the LinkedIn Corporation:

search.comp<- searchCompanies (in.auth, keywords = "LinkedIn")
head (search.comp)

We get the following output:

> head{(search. comp)
[[11]
[[1]]%company_id
[1] "1337"

[[1]]%company_name
[1] "LinkedIn”

[[1]]%universal_name
[1] "Tinkedin"

[[1]]%website
[1] "http://wew. 1inkedin. com”

[[1]]%twitter_handle
[1] "Tinkedin"

[[1]]%employee_count
[1] "5001-10000"

[[1]]%company_status
[1] "operating"”

[[1]1]%founded
[1] "2003"

[[11]1%num_followers
[1] "1355985"

[[1]]%description

[1] "Founded in 2003, LinkedIn connects the world's professionals to make them more prod
uctive and successful. with more than 380 million members worldwide, including executive
s from every Fortune 500 company, LinkedIn is the world’s largest professional network o
n the Internet. The company has a diversified business model with revenue coming from Ta
lent solutions, Marketing Solutions and Premium Subscriptions products. Headquartered in
5ilicon valley, LinkedIn has offices across the globe.”

In order to get your basic profile, you can use the function getProfile.

This function will return details such as the name, location, designation,
industry, number of connections, a brief description about the current position,
and start date of the current position. When you set the parameter connections
to TRUE, the access request will be rejected as the API doesn't allow public access
to the connection details.
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The code is as follows:

getProfile(token = in.auth, connections = FALSE, id = NULL)

We get the following output:

= getProfile(token = in.auth, connections = FALSE, id = NULL)

[[1]]
[[1]]%connection_id
[1] "wtLot8zNmc"

[[1]]1%Fname
[1] "sharan kumar"

[[1]1]1%Tname
[1] "r"

[[1]]%Formatted_name
[1] "sharan kumar R"

[[1]1]1%71ocation
[1] "Bengaluru Area, India"

[[1]]%head]line
[1] "Lead Business analyst (Analytics) at FreeCharge - 1India's Teading website for onli
ne recharge”

[[1]]1%industry
[1] "Information Technology and Services”

[[1]]%num_connections
[1] "s00"

[[1]1]1%profile_url
[1] "https://www. linkedin.com/in/rsharankumar”

[[1]]%num_positions
[1] 1

[[1]]1%positionl_id
[1] "656569490"

Even though LinkedIn has blocked most of its API to the public, you can still get
access by getting into the partnership program. You can sign in for a partnership
progranlkﬁfgohﬁgto]nttps://developer.linkedin.com/partner—programs.

By signing into the partnership program, you get access to additional API
functionalities as well as increased call limits with support. There are multiple
programs based on the relevance and the requirements, you can request for a
suitable program.
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Getting Blogger data

Blogger is a blog publishing service that was bought by Google in the year 2003 and
it has more than 500,000 blogs. Blogger provides numerous APIs to access the data,
provided you have the API key and know some required data such as the blog ID,
user ID, and post ID based on the data that you are trying to access.

In order to get the API key, one has to create a project in the Google developer's
console. Here's the screenshot of the Google developer's console:

Loogle Select a project ~
Create Project Columns ~ Q Edit label
Project Name Project 1D Reguests Errors Charges
API Project nject [ ra ]

On opening the console, create a new project, open it and click on the link APIs
&auth, select the credential, look to see if any client IDs and client keys are available,
and if not then create one. On creation, you will be provided with a client ID and an
API key that can be used to access the data.

Google sample
Owerview 0Auth No client IDs found.
Permissions
APls & auth
APls

Credentials Learn more

Consent screen
Create new Client ID
Push

Monitoring

Source Code Public APl access

Deploy & Manage

No keys found.

Compute
MNetworking
Storage

Big Data
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To know about the various data that can be accessed, visit https://developers.

google.com/apis-explorer/#p/blogger/v3/. This link has a list of services.
Let's check out a few to understand how it would work.

First, let's try to get the number of blog posts. Click on the service blogger.blogs.get
and provide the relevant details, as shown in the following screenshot:

Google
APls Explorer
B Services

B Al Vorsions

) Request History

-

Leam more abeut using the Blogger AP by reading the decumantation

Services » Blogger AP| v3 > IETRETTTT Autherize requests using Gauth 2.0 (ETH 10

bloghd 2636624864075 12058 The 1D of the blog 10 get. (string)

maxPosts

Masirmnum numbet of posts to pull back wilh lhe blog. (integes)
view Access lavel with which to view the blog. Note that some fiekds require elevated access. (string)
folds which fiedds 1o include in & partial respanse

blogger.blogs.get execuled 2 Minules 600 s o s 24 m

Request

GET htlps: v googhoapss com/bloggey Mblogs/ 2636624854075 12058 M ey= [YOUR_API_KEY)

The preceding window shows the actual request URL and the response in the
JSON format. We can now take the request URL and make the request from the R
environment using the function fromJson:

fromJSON ("https://www.googleapis.com/blogger/v3/blogs/
263662486407512058?key=<Paste your API key here>")
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We get the following output:

= fromlson("https:/

.googleapis.com/blogger/v3/blogs/263062486407512058%key=

$kind
[1] "blogger#hlog"

3id
[1] "263662486407512058"

$name
[1] "pemystifying Data"

$description

[1] "

$pubTished
[1] "2014-05-29T01:29:06+05:30"

$updated
[1] "2015-04-29723:46:03+05:30"

Surl
[1] "http://blog.rsharankumar.com/"

$selfLink
[1] "https://www.googleapis.com/blogger /v3/blogs,/263662486407512058"

fposts
$posts$totalItems
[1] 8

fpostsfselfLink
[1] "https://www.googleapis. com/blogger /v3,/blogs/263662486407512058/posts”

$pages
ipagesftotalitems
[11 ©

The user doesn't need to be authenticated in order to retrieve the public blog
post, but they will be required to provide the API key. However, in order to
retrieve the private content, it is necessary to include the authorization HTTP
header in the request. We can also monitor the number of requests made at the
developer's console.
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Google API Project = puptestets @O @ ¢‘

Femizaices
App Engine APls

APls & auth

At Susnmary I

Coederials t [ t

Cansent screen

Pasn - B | |

Manitoring

Sourer Code

Diepliry & Manage

Carmgute

Herwauing acy . T TSI . ey e TV T

Storage

Big Data

This API provides functionality to, not only retrieve the data from the blog, but also
update a blog, publish a blog post that is on the draft, delete a blog post, search for
keywords across the blogs, get a user profile, approve a comment, and numerous
other things. To learn about the Blogger API usage, visit https://developers.
google.com/blogger/docs/3.0/using.

Retrieving venue data from Foursquare

Foursquare is a local search services company that offers its service on the mobile
platform as well as a website. Log in to Foursquare as a developer in order to get the
idea of the API request and response patterns. On registering, a unique OAuth token
is generated.
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In the developer's login, open the explorer from the list of links on the left-hand side
panel. Here's a screenshot of the developer's landing page:

FOURSQUARE FOR DEVELOPERS My Apps Overview Endpoints Forum  Twitter

[7 Mew Foursquare &
the API

Getting Started

Detailed Docs

QOverview

Connecting

Responses & Errors

Versioning &
Internationalization

Attribution & Linking
Rate Limits

Policies

Venues Service

Merchant Platiorm

Documentation

AP Endpoints

Explorer

Foursquare API August 2014 Update

We hope you're as excited about our recent release of Foursquare 8.0 as we are. If you don't already have it. download it for
i0S or Android right now and start playing around with a brand-new personalized search and discovery experience

But what does this launch mean for you as a Foursquare developer? The AP| documented on this site continues to be the
exact same AP that both Foursquare 8.0 and Swarm use. Over the next few months we'll be making some announcements
about changes and new features to the API that you should prepare for

Show tldr

Deprecating Legacy Features

Although some features exposed in our AP| are already no longer part of the Foursquare and Swarm experiences, our goal
with any API transition is to give developers enough time to react and adapt their integrations. However, we're officially
announcing that developers should no longer be relying on product features that were part of Foursquare 7.0 and earlier,
including badges, the leaderboard, and certain special types. Since these wen't be part of the Foursquare experience
moving forward, you should migrate away from using them in your own experiences you build en top of Foursquare.

We are giving developers until the end of 2014 to migrate away from these features and endpoints. Our AP| Endpoint
overview page will be up-to-date by the end of the week to reflect endpoints that will be deprecated by the end of the year.
In 2015, these endpoints will no longer be supported and may stop functioning without any notice

Changes to Versioning

Over the past year, we have began enforcing our API versioning rules more, and maeving forward versioning is only geing to
become more important. Moving forward, there will be a new required parameter for AP| versions « >= 2

As we begin to evolve two new user experiences in Foursquare and Swarm, it sometimes makes sense for the same API
endpoint to return different pieces of information depending on if you want the “Foursquare perspective” (e.g., see tips in the

Blog
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In the explorer panel, we can see how the request is being sent, which can again be
replicated in R using either the function fromJsoN or GET. The data will be retrieved
in the JSON format. Here's the screenshot of the explorer panel:

FOURSQUARE FOR DEVELOPERS My Apps Overview Endpoints Forum Twitter Blog

E Mew Foursquare & API Explorer

the API

Getting Started https://api foursquare com/v2/ | users/self | View |

Detailed Docs
QOverview

Connecling The OAuth token above is automatically generated for your convenience. Please DO NOT use this token for
Responses & Ermors live applications in production.

Versioning &
Internationalization

Aftribution & Linking meta: {

code: 200
Rate Limits
. notifications: [
Falicies i
type: "notificationTray”™,
Venues Service 1tem: |

unreadCount: 0
Merchant Platform

Documentation response: |

user: {

id: "136421391",

API Endpoints
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We can now execute the API request from R using the function fromJSon.
First, let's get the user details:

fromJSON ("https://api.foursquare.com/v2/users/
self?oauth token=<Paste your OAuth token heres>")

We get the following output:

fmeta
code
200

fnotifications
tnotifications[[1]1]
$notifications[[1]]%type
[1] "notificationTray"

$notifications[[1]]%item
unreadCount
0

$response
Sresponse$user
$responsefuser$id
[1] "136421991"

fresponsefuser$firstName
[1] "sharan Kumar"

fresponsefuser$lastName
[1] "R

$responsefuser$gender
[1] "male”

$responsejuseri$relationship
[1] "self™

§response$user$photo

prefix suffix
"https://irs0.4s5qi. net/img/user,/" " /136421991 -4NZDODMVMKD1PHDA. fpg”

The preceding API request provides many details about the user such as name,
location, check-ins, groups, badges, follower counts, and much more.
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Next, we will use the functionality to extract details about a location. The following
API requests complete details about the specified venue such as the name, address,
contact number, latitude and longitude, ratings, venue's category, user count, tip
count, visit count, price tier, currency accepted, likes, about our friends' visits and
their tips, restaurant timings, and facilities provided. The code is as follows:

fromJSON ("https://api.foursquare.com/v2/venues/
40a55d80£f964a52020f31ee3?0cauth token=<Paste your OAuth token here>")

We get the following output:

$responsefvenue$name
[1] "clinton st. Baking Co. & Restaurant]

$response$venuefcontact
$responsefvenue$contact$phone
[1] "+16466026263"

$responsefvenue$contact$formattedrPhone
[1] "+1 846-602-6263"

$response$venue$location
fresponsefvenue$locationfaddress
[1] "4 cTlinton st"

$responsefvenuellocation$crossstreet
[1] "at E Houston st”

fresponsefvenue$location$lat
[1] 40.72108

$response$venue$location$ing
[1] -73.98394

$responsefvenuedlocation$postalCode
[1] "1oo02™

$response$venue$location$cc
[1] "us"

fresponse$venue$locationscity
[1] "Mew work"

$responsefvenue$locationistate
[1] "Ny"

$responsefvenue$location$country
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Other details that could be obtained here are the venues, various tips data,

or basic details about the users who gave those tips, how many of those

tips were liked, and so on. In the URL https://api.foursquare.com/v2/

venues/514d613de4b0ab03fe0601fb/tips?oauth token=<Paste your OAuth
token heres, the following code identifies the venue 514d613de4b0ab03£e0601£b.
Here's the API request that would provide the required details:

fromJSON ("https://api.foursquare.com/v2/venues/
514d613de4b0ab03fe0601fb/tips?oauth token=<Paste your OAuth

token here>")

We get the following

output:

id createdAt

1 516d71a0498eb95100ce5d54 1366127008
2 555cheaf498e363albflel2e 1432141487
3 53d39d3b498e81b830540285 1406377275
4 5262553411d23ef7ee99a978 1382176164

5 51lcafb50498e4603fd7

[, B VTR Ny S

1 https://foursguare.
2 https://foursquare.
3 https://foursquare.
4 https://foursquare.
5 https://foursquare.

T1ikes. group
1 others, 1, 23258628
B-LNEWZLUYS0AYNOZ4. jp
2

NUL

3
NUL

4
NUL

5
NUL

Tikes. summary 1ike
1 Tike FALSE

<NA> FALSE

<MNA> FALSE

<NA> FALSE

<NA> FALSE

user.

[%, RS VI N S

ceedc 1372257104

text type

Aamazing Coffee !!! user

The chocolates éclair is brilliant. probably the best in town. user
The place is so elegant <U+2764><U+FEOF> Rainbow Pastry is a must. user

Nutella crepes and red velvet is awesome user
The Red velvet cupcake 1is a must-try! user
canonicalurl Tlang likes. count

com/item,/516d71a0498ch95100ce5d54
com/item/555cheaf498e363albf1e02e
com/item/53d39d3b498e81b830540285
com/item/526255a411d23ef72e99a978
com/item/51cafb50498e4603Fd7 ceedc

3

, Pankaj 5, Sharma, male, https:/
*

L
L
L

L

en
en
en
an
en

Jirs2

logview count user.id user.firstnName

[ e B e Y )

.4sqgi.net/img/user/, /2325

user. lastName user.gender

TRUE 0 23258628 Pankaj s sharma

TRUE 0 6266673 Yash sinha

TRUE 0 46943220 Aayushi Shaw

TRUE 0 57823908 Faraz Sarwar

TRUE 0 24713636 vatsala Jalan
photo. prefix user. photo. suffix

1 https://irs2.4sqi.net/img/user/ /23258628-LNEVZLUYS0AYNOZ4. jpg

male
male
female
male
female
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We can drill down one more level to know more about an individual tip. Each tip
will have a unique ID and we can use this ID to get the details of a tip. The request
would provide us with the details about the tip. In the following URL, the following
code identifies the tip 49£083e770c603bbe81£8eb4:

fromJSON ("https://api.foursquare.com/v2/tips/
49f083e770c603bbe81f8eb4?0auth token=<Paste your OAuth token
here>")

We get the following output:

$respanse

Sresponse$tip

fresponse$tip$id

[1] "49f083e770c603bbeB1f8ebd”

$response$tipicreatedat
[1] 1240499175

Sresponseftipitext
[1] "for DINNER, not brunch, and get the fried chicken and blueberry pancakes. No wait,
and you get both meals in one.”

$response$tipitype
[1] "user"

fresponse$tipfcanonicalur]
[1] "https://foursquare.com/item/49F083e770c603bbe81fEeha"

fresponseftipflang
[1] "en"

$responses$tip$likes
$response$tip$likes$count
[1] 5

$response$tip$likes$groups
Type count
1 others 5

items
1 6111433, 535596, Tania, Jeff, Garcia, Thibodeau, female, male, https://irs3.4sqi.net/i
mg/user,/, https://irs2.4sqi.net/img/user/, /2NS013ERBO22ZGOTF.jpg, /5335396-5QDYQCIC415%Q5

CE. jpg

These are the various levels of details that could be obtained using the API of
Foursquare. In order to know more about the API provided by Foursquare, visit
https://developer. foursquare.com/docs/.
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Use cases

This enormous amount of data could be very powerful. Some of the use cases
possible include details such as the items that are most liked by the user based on
mining the user's tips, performing correlations between different venues and getting
to know more about the most similar venues, and, based on the likes data, we can
also provide recommendations using collaborative filtering. Based on the venue data,
we can also compute the clusters.

There are few more use cases that would help the venues, such as finding out the
performance of a venue in terms of likes and positive tips from user, and comparing
it with other nearby venues in the same category. Mining the text data would help
the venues in knowing the areas of improvement. With exploration of the data, we
can also get to know about the services that are most valued by the customers. This
would help the venues in improving their rating.

Yelp and other networks

Yelp is a crowdsourced local business review and social networking site. Over 31
million people access Yelp's website each month. Getting the data from Yelp is quite
similar to how we get it from the other social networks. The steps are as follows:

1. First, log in as a developer.

2. Then, register and get the authentication credentials.
3. Get the standard API request URL.
4

Pass the URL along with the authentication credentials to either the function
fromJSON Or GET.

5. Data will be retrieved in the JSON format.
6. Read the required data and convert it to data frame for further analysis.

To know about the various API services offered by Yelp, visit https://www.yelp.
com/developers/documentation/v2/overview.

Websites such as Glassdoor and Indeed provide API access on request. The process
involved in working with those APIs would be similar to those we have covered
so far.
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Limitations

The only limitation in performing social media mining is that the APIs consistently
undergo changes with respect to the accessibility of the data and also in the way in
which they work. Using the LinkedIn API, users were able to download the complete
information about their network, but later it was made on request. Similarly, the
Facebook API went through lot of changes too. When the data is accessed through
the R package, the user needs to update. Alternatively, when accessed using the URL
in the function £romJsoN, then the API needs to be updated.

The other limitation is on the quality of the data. Since all this data is created by
people online, there is always a possibility for skewness in the data. Therefore,
measures should be taken to keep a check on the quality.

Summary

In this chapter, we saw how to access many of the social media websites and also
discussed the various use cases that could be implemented. The methodology
involved in accessing data through the APIs are similar to one another; while most
APIs require authentication, some APIs can be accessed without authentication even
in a browser. Most APIs provide the data in the JSON format, but for some popular
sites there are packages built in R that can convert the data to a data frame while
retrieving. This helps in speeding up the analysis. These APIs provide us the data in
a variety of formats: structured in some cases, but unstructured in most cases. With
a higher limit on the API requests that can be called, the volume at which we can
generate data is also quite high.

In this book, we covered the methodologies to access the data from R using the

APIs of various social media sites such as Twitter, Facebook, Instagram, GitHub,
Foursquare, LinkedIn, Blogger, and a few more networks. This book also provided
details on the implementation of various use cases using R programming. Now, you
should be completely equipped to embark on your journey as a social media analyst.
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