Unit 9

Implementing Combinational Functions with
Karnaugh Maps



Outcomes

| can use Karnaugh maps to synthesize combinational functions
with several outputs

| can determine the appropriate size and contents of a memory
to implement any logic function (i.e. truth table)



Covering Combinations

F=WX'YZ F= WX'Z

* A minterm corresponds to - = mg+mi1
" " . . W X Y Z |[|F W X Y Z |F
("covers") 1 combination o o o Ts -
of a logic function 0 0 0 1]o0 0 0 0 1o
0 0 1 0 0 0 0 1 0 0
e As we variables o 0o 1 1 |0 o o 1 1 |o
0 1 0 0 0 0 1 0 0 0
from a product term, more | | | | |, I
combinations are covered 0 1 1 0 |0 0 1 1 0 |0
0 1 1 1 0 0 1 1 1 0
— The product term will 1 0 0 o0 |0 1 0 0 0 |0
evaluate to true 1 0 0 1 |0 1 0 0 1 |1
Ofthe 1 0 1 0 0 1 0 1 0 0
1 0 1 1 1 1 0 1 1 1
removed variables value 1 1 0 0 |o 1 1 0 0 |0
(i.e. the term is 1 1 0 1 |0 1 1 0 1 |0
. 1 1 1 0 0 1 1 1 0 0
independent of that S I A

variable)
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Covering Combinations

F= XZ F=X

= ml+m3+m9+mil = mO0+ml+m2+m3+m8+m9+m10+mll

* The more variables we can

W X Y Z F W X Y Z F
remove the more PP e [
asingle  [ENOMGEENEN © o o 1|
product term covers H g g oot
1 1 1
— Said differently, a small term will o 1 o o lo o 1 o0 o lo
cover (or expand to) more o 1 o 1 |o o 1 0o 1 |o
combinations o 1 1 o0 |o o 1 1 o0 |o
0 1 1 1 0

e The smaller the term, the S
1 0 0 0 0 1 0 0 0 1
smaller the 1 0 0 1|1 1 0 0 1 |1
— We need fewer to 1 0 1 0 0 o 1 0l
check for multiple combinations _ e
1 1 0 0 0 1 1 0 0 0
* For a given function, how can 1 1 0 1o 1 1 0 1o
we find these smaller terms? 1 1 1 00 111 070
1 1 1 1 0 1 1 1 1 0



A new way to synthesize your logic functions

KARNAUGH MAPS
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Logic Function Synthesis

e Given a function description as a T.T. or sum of minterm
(product of maxterm) form, how can we arrive at a circuit
implementation or equation (i.e. perform logic synthesis)?

e Methods

— Minterms / maxterms

* Use to find minimal 2-level implementation

— Karnaugh Maps [we will learn this one now]

* Graphical method amenable to human inspection and can
be used for functions of up to ___ variables (but becomes large and
unwieldy after just variables)

— Quine-McCluskey Algorithm (amenable to computer implementations
— Others: Espresso algorithm, Binary Decision Diagrams, etc.



Karnaugh Maps

 |f used correctly, will always yield a minimal,
implementation

— There may be a more minimal 3-level, 4-level, 5-
level... implementation but K-maps produce the
minimal two-level (SOP or POS) implementation

* Represent the truth table graphically as a
series of adjacent that allows a
human to see where variables can be removed
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Gray Code

* Different than normal binary ordering

e Reflective code

— When you add the (n+1)t bit, reflect all the previous n-bit
combinations

* Consecutive code words differ by only 1-bit

0 0
1 \ when you move to 0
Y the next bit, reflect
1 / . \ 0
the previous

0 combinations

differ by
only 1-bit

R [O O
R = O O
© +r = O

2-bit Gray code

differ by
only 1-bit

differ by
only 1-bit

3-bit Gray code



Karnaugh Map Construction

e Every square represents 1 input combination
 Must label axes in Gray code order
* Fill in squares with given function values

G(w,x,y,2)=m1l+m2+m3+m5+m6+m7+m9+

X Y Z |F m10+ml1l+ml14+ml5
WX
O 0 0O Sy Y7 00 01 11 10
o o0 111 Z 00 01 11 10 ; ., ” o
0 2 6 4 00 0 O O O
o 1 010 ol 0] 0| 1] 1
1 5 13 9
O 1 1|0 1 3 . 5 01 1 1 0 1
1 0 o0 |1 11700 ]| 1%
3 7 15 11
1 0 1|1 _ n| 1|1 |11
1 1 0 |1 3 Variable Karnaugh Map - - ” -
1 1 110 o 1] 1|11
F(x,y,z2)=m1 + m4 + m5 + m6 4 Variable Karnaugh Map
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Karnaugh Maps

F

11 10

01

WX 00

9
11

10

13
15

14

w X Y <Z




Karnaugh Maps

e Squares with a '1' represent minterms that must be

included in the SOP solution

e Squares with a '0' represent maxterms that must be

included in the POS solution

WX
00 01 11[ 10

00

01

11

10

Maxterm:
wW+x' +y+z

12

0

/

8

0

P

13

0

9

1

15

1

11

1

/W’+x+y+z

|

14

1

10

1

~

\>

Maxterm:

Minterm:
wex’eyez

Minterm:
Wox’oyoz’



Karnaugh Maps

e Groups (of 2, 4, 8, etc.) of adjacent 1’s will always
simplify to smaller product term than just individual

minterms

F=m0+m2+m4+m5+m6

XY 00 01 11 10

Z
0 2 6 4

o 1|1 1)1

1 3 7 5

11 01001

3 Variable Karnaugh Map
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Karnaugh Maps

* Adjacent squares differ by 1-variable

— This will allow us to use T10 = AB + AB’= A or
T10' = (A+B’)(A+B) = A

3 Variable Karnaugh Map 4 Variable Karnaugh Map
Difference in X: 010 & 110
x’yz’ + xyz’
XY 00 01 1 - W00 01 11 10
0 2 6 4 0 4 12 8
0 C]/ /‘ 00 D 1=0001
1 3 7 5 1 5 13 9 4 =0100
O « |00 | o
7=0111
: : : : ’ 7 S 13 = 1101
Difference in Y: 010 & 000 Difference in Z: 010 & 011 1 D -2
Xy +xy’z X’yz’ + x’yz djacent squares
=7’ 0 =000 =x’y 2 6 14 10 differ by 1-bit
2=010 Adjacent squares 10
3=011 differ by 1-bit

6= 110
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Karnaugh Maps

* 2 adjacent 1’s (or 0’s) differ by only one variable
* 4 adjacent 1’s (or 0’s) differ by two variables
8,16, ...adjacent 1’s (or 0’s) differ by 3, 4, ... variables

* By grouping adjacent squares with 1’s (or 0’s) in them, we can come up
with a simplified expression using T10 (or T10’ for Q’s)

W00 01 11 10
0 4 ] 8 (WX’ +y+z)o(w’+x’+y+z’) =
ol O] 0 (/0| O |~ (W)
W’ox’oy’oz —+ W’ox’oyoz —+
) ) ) 13 9
weeyztweaeyz -~ o 171 [To[ 1
= W’ez 7 1 11 wexeyez + wex’eyez =
ulll | (1] 1H— y y
w’z are constant while all — weyez
combos of x and y are present 2 6 14 10
(', X9, xp°, xp) o 111111
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K-Map View of the Theorems

 The 2 & 3 variable theorems used to simplify
expressions can be illustrated using K-Maps.

T9: Covering T10: Combining T11: Consensus
X + XY = X XY + XY’ = X XY + X'Z +ZY = XY + X'Z
XY XY XY
7 00 01 11 10 7 00 01 11 10 7 00 01 11 10

oOOZOleflw o olo] 0

B
100 M%J 11‘(#3/%50
[ T \

XY X XY X'7 7Y Y

,_\
OH
ow
=
o4 /Liﬁ

X “covers” XY so XY and XY’ can be Don’t need ZY if you
XY not needed combined to form X have X’'Z and XY



K-Map Grouping Rules

Cover the 1's [=on-set] or 0's [=off-set] with
groups as possible, but make those groups
as possible

Make them as large as possible even if it means "covering"
a 1 (or 0) that's already a member of another group

Make groups of , ... and they must be
rectangular or square in shape.

Wrapping is legal



XY

XY 00 01 11 10
oo 1]0]0
17000
XY 00 01 11 10
ol 1 ]1 |00
1000

%00 01 11 10
00 0 010 . 1 8 1
m| 112110
11 3 111 ; 1 ' 0
wlo0lolo]|1




WX
00 01 11 10

0 4 12 8

ol 0] 1 ]1]1

1 5 13 9

ool O | 1|11

3 7 15 11

nl! 0111

0] 0] 011

* Cover the remaining ‘1’ with the largest
group possible even if it “reuses” already
covered 1’s



Karnaugh Maps

Groups can wrap around from:

— Right to left
— Top to bottom
— Corners
WX
v 00 01 11 10
00 O 0 4 0 121 8 0
afl 2110 [0 [[1
11 3 1 7 0 15O 1 1
10 2 O 6 O 141 10 O

F=X"Z+WXZ’

WX
YZ

00

01

11

10

00 01 11 10

11001
N

ololo] o0

O O 15 0 11 0
14 qO

1ol 01

F=X72’



W00 01 11 10
ooOO 0 12O 8O
w| 111]0/1
nl 1111
ol 1111




K-Map Translation Rules

* When translating a group of 1’s, find the variable
values that are constant for each square in the
group and translate only those variables values to a
product term

e Grouping 1’s yields SOP

e When translating a group of 0’s, again find the
variable values that are constant for each square in
the group and translate only those variable values
to a sum term

* Grouping O’s yields POS
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Karnaugh Maps (SOP)

SR

S| o — — —

d] O o — —

g © — — —

<t [Te) M~ [{e}

S| © — — —
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Karnaugh Maps (SOP)

F

11 10

01

WX 00

w X Y <Z
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Karnaugh Maps (SOP)

F

W’

11 10

01

WX 00

F=Y+W7Z+...

w X Y <Z
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Karnaugh Maps (SOP)

L O O O O

=

N

o O B R R B

N

- o + +» O O

 + O O

o o —»r O +» O

R O +—» O

= ©O B kB L O

L = O O

X’ X’

—
S0 o1 1 " 10

0

| O

12 8

00

0
01 5 1\ 130

11 71 151
1

o |l1 11

F=Y+WZ+XZ
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Karnaugh Maps (POS)

F

11 10

01

WX 00

11

10

15

14

w X Y <Z
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Karnaugh Maps (POS)

/)
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Karnaugh Maps (POS)

Sl{o]| || —d |
)
bo o 4 = Y
+
r o
WT__O Owll o
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=
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7_0 o — —i

V|/|\
V|

LL A O +dH dH — «d o
N — O d O d — O —
> 1 O O «H O <« o
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Karnaugh Maps

* Groups can wrap around from:

— Right to left
— Top to bottom
— Corners
wx, XWX X
y2 . 00 01 11 10
Z ol 0] 0(1]O0
ortfl 1| O | O || 1
% & 7 15 1]
ulf 1/ 0| 0 || 1
z O] 0|10

110

F=X"Z+WXZ’

y2 00 01 11 10
Z’[oo 0 1 0 12O 8 1
) N
o1| O 0 0 0
11 3 0 0 150 ’ 0
2 h 14 qO
Z’[IO 1 0 0 1
F=X'Z’
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Exercises
WX WX
vz 00 01 11 10 vz 00 01 11 10
ol 1001 wl 11001
al 1001 al 110011
alolololo alolololo
10 2 1 6 O 141 10 1 10 2 1 O 141 10 1
Fsop= Fpos=

P(x,y,2)=m2+m3+m5+m7




No Redundant Groups

YZ

WX

00

01

11

10

00

01

11

4

This group does not
cover new squares that

o

o

5
6

L

o

| ___— are not already part of
another essential

grouping

0
0
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Multiple Minimal Expressions

D8D4
oo\, 00 01 11 10

* For some functions, S

_ | 0|0 ﬁjﬂ
groupings i e
1

exist which will lead to : —
. . 1 1 1 0
alternate minimal H 7

...Pick one 10 @J/ 0|0

Best way to cover this
1??




Karnaugh Maps Beyond 4 Variables

* Recall, K-Maps require an adjacency for each
variable
— To see the necessary adjacencies, 5 and 6 variable K-
Maps can be thought of in three dimensions
* Can we have 7-variable K-Maps?
— No! We would need to see 7 adjacencies per square
and we humans cannot visualize 4 dimensions

e Other computer-friendly minimization algorithms
— Quine-McCluskey

 Still exponential runtime
* Minimization is NP-hard problem
— Espresso-heuristic Minimizer

* Achieves "good" minimization in far less time (may not be
absolute minimal)

V=1

5 Variable K-Maps

6 Variable K-Maps



DON'T CARE OUTPUTS



Don’t-Cares

 Sometimes there are certain input combinations that
are illegal (due to physical or other external
constraints)

* The outputs for the illegal inputs are “don’t-cares”

— The output can either be 0 or 1 since the inputs can never
occur

— Don’t-cares can be included in groups of 1 or groups of O
when grouping in K-Maps

— Use them to make as big of groups as possible

Use 'Don't care' outputs as wildcards (e.g. the blank tile in Scrabble™).
They can be either 0 or 1 whatever helps make bigger groups to cover
the ACTUAL 1's
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Invalid Input Combinations

e Given intermediate functions F1 and

X
F2, how could you use AND, OR, NOT i@j
to make G Z 5

F2
* Notice certain F1,F2 combinations

never occur in G(x,y,z)...what should

we make their output in the T.T.

T
[N
T
N

—

Rl ]|O|O
RO |k, |O

Rlr|[rr|r|lolo|lo|o]x
Rlr|lololr|r|lolo]lx
Rrlo|lr|lolr|lolr|lo]lN

RlRr|lRr|Rr|[Rr]Rr|~,]|oO
PR|lO|j]O|J]O|]O|]O|O|O
olr|r|r|r|r|r|lo]lp

USC Vlterbl



Invalid Input Combinations

* An example of where Don't-Cares may come into
play is Binary Coded Decimal (BCD)

— Rather than convert a decimal number to unsigned binary
(i.e. summing increasing powers of 2) we can represent
each decimal digit as a separate group of 4-bits (with
weights 8,4,2,1 for each group of 4 bits)

— Combinations 1010-1111 cannot occur!
(439)40
N

BCD Representation: 90100 0011 f
8421

8421

This is not the binary

representation of 439, it

is the Binary Coded
Decimal (BCD)
representation

N

1001

Important: BCD represent each decimal digit with a
separate group of bits
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Don’t Cares

Reuse “d’s” to
make as large a
group as possible
to cover 1,5, & 9

WX
00 01 11 10

ol O] 0| d|O

11 3“_ I 1 15d 11 d

F=Z+Y :
Use these 4 “d’s”
to make a group
of 8

P B B R P P PP O OO OO OO oS
P P P P O O O O F PP P P O O O O|X
P P O O R P O OFP P O OTUFPR P O O]
P O 0P O FRPr O P O FP OFP OFR O Fr O|N

O 0o o o o 9 Fr O Fr P P O PFP P PP O|m
—
o
|
-
-

o
o

(o]
-
»
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Don’t Cares

You can use “d’s”
when grouping 0’s
and converting to

POS

WX
00 01 11 10

0 4 12

0| [0 | O dao]‘ ........

HU:> ou| 1] 1]d|1

3 7 15 11

n| 1| 1]d]|d

2 6 14 10

ol 1| 1]d]|d

F=Y+Z

P B B R P P PP O OO OO OO oS
P P P P O O O O PFP PP PP PP O O O Of|Xx
P P O O FP P OO FP P O O FRP PP O O]
P O P O P O PFP O FP O FP OFFP O FrP Of|N
0O 0 0 0o o0 9 PFr O Fr P P O PR P R O|T




A GENERAL, COMBINATIONAL
CIRCUIT DESIGN PROCESS
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A_ Combinational Design Process _A

X[2:0] Z[2:0]

* Understand the problem -

— How many input bits and their 5| Decrementer [ 73
representation system

— How many output bits need be generated X X X |z Z 1z
and what are their representation O I
— Draw a block diagram O O
1 0 0 0 1 1
* Write a truth table 1o 1|10 o
1 1 0 1 0 1
* Use a K-map to derive an equation for o ne
EACH output bit BRI BT e
. . . o Po flafi o [T )0 vfofolol
* Use the equation to draw a circuit for e e -~
EACH output bit, letting each circuit ° D> g

run in parallel to produce their i ?B}D

respective output bit %D
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Designing Circuits w/ K-Maps

Given a description...

— Block Diagram
— Truth Table

— K-Map for each output bit (each output bit is a separate function of

the inputs)

3-bit unsigned decrementer (Z = X-1)

— If X[2:0] = 000 then Z[2:0] = 111, etc.

X[2:0]

N

.| 3-bit Unsigned

Decrementer

Z[2:0]

N
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3-bit Number Decrementer
X, X, X, |z, z, Zg xo— . __
o o0 o0 |1 1 1 3
o o0 1 |0 0 o0 XA |
o 1 o0 |o o 1 —2a
o 1 1 |o 1 o
1 0o o0 |o 1 1 ;
3 — 272
1 o 1 |1 o o ‘
1 1 o0 |1 o 1
1 1 1 |1 1 o0 S
X,X, X,X, X,X,
00 01 11 10 WN_ 00 01 11 10 WN_ 00 01 11 10

40 E20604E] 00[1216141]

o
]

B
1 3 7@5 10 3@7E 50 . 10 30 70 50

-

Zy = XX + XX, + XX’ Xy’ Z; = XXy + X4 X Zy =Xy’



Squaring Circuit

* Design a combinational circuit that accepts a 3-bit
number and generates an output binary number
equal to the square of the input number. (B = A?)

e Using 3 bits we can represent the numbers from
to

 The possible squared values range from to

* Thus to represent the possible outputs we need how
many bits?
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3-bit Squaring Circuit

Bs

B,

Out
B3

puts
BZ

B,

By

B=A2

A2A1

AN 00 01 11 10
0 2 6 4
0
1 3 7 5
1
B5 =
A2A1
AN 00 01 11 10
0 2 6 4
0
1 3 7 5
1
B4 =
A2Al
AN 00 01 11 10
0 2 6 4
0
1 3 7 5
1




3-bit Squaring Circuit

A2 Al A0
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If time permits...

FORMAL TERMINOLOGY FOR
KMAPS



Terminology

* Implicant: A product term (grouping of 1’s) that
covers a subset of cases where F=1

— the product term is said to “imply” F because if the
product term evaluates to ‘1’ then F=1’

* Prime Implicant: The largest grouping of 1’s (smallest
product term) that can be made

e Essential Prime Implicant: A prime implicant
(product term) that is needed to cover all the 1’s of F
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Implicant Examples

WX
200 01 11 10
0 4 12 8
ol O] 0] 0|0 —
4 An implicant
1 5 13 9
o1 | 1 1 0 0 Not PRIME

because not as
3 7 15 1 )
11 1 1 1 large as possible

0] 0] 011

HHHHI—‘HI—‘I—‘OOOOOOOOE

P P P RP|lO]JlO O O R P B P OO O O|X
R~ »r o olkr|lr 0O O P OO PFrPr r o ol
r © r OlkRr|lO P O, O Fr O PFr O r OfN
r » o olr|lr 0 O O Fr O Fr O r ofmn
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Implicant Examples

W X Y Z |F

O 0 O 00

O 0 0 1 |1

O 0 1 00

O 0 1 1 |1

0 1 0 0|0 W% 00 01 11 10

oot 0t 00 O 0 4 0 12O 8 0

O 1 1 0|0 : 5 - 9 4 An implicant

o 1 1 11 on| 1|1 0]|0 Not PRIME

1 0 0 0 |oO ; - " . because not as
1 0 0o 1 lo 1 1 1 1 large as possible
1 0 1 0 |1 2 6 14 1 > An implicant
1 o0 1 111 0] 0] 0|1 m

1 1 0 0 |0

1 1 0 1 |0

1 1 1 0 |1

1 1 1 1 |1
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Implicant Examples

w X Y Z |F
O 0 O 0|0
O 0 0 1 (1
O 0 1 0|0
O 0 1 1 (1
O 1 0 0|0
O 1 0 1 (1
O 1 1 0|0
o 1 1 1 (1
1 0 O 0 |0
l 0 0 1 10
1 0 1 0 |1
1 0 1 1 |1
1 1 0 1 |0
1 1 1 0 |1
1 1 1 1 |1

School of Engineering

WX
YZ 00 01 11 10
0 12 3
ol O] 0] 010 —
4 An implicant
1 13 9
oo 1 1 )0]O0 Not PRIME
because not as
3 1 ¥ )
11 1 1 ’ 1 1 r large as possible
N\
2 « N —>{ An implicant
0] 010 1 _
\. An essential
prime
implicant

An essential prime implicant
(largest grouping possible, that
must be included to cover all 1’s)
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Implicant Examples

W X Y Z |F
O 0 O o0 |{Oo
O 0 0 1 |1
O 0 1 0 |{o0
O 0 1 1 |1
0 1 0 0|0 W% 00 01 11 10
O 1 0 1 |1 0 N 1 8
— ol O] 0] 0|0 —
O 1 1 0|0 An essential prime \ 4 An implicant
implicant ! 13 o
0 1 1 1|1 ooyl | 1] O | O Not PRIME
1 0 0 0|0 ; - - - because not as
1 0 0 1 lo 1 1 1| [ 1 1 r large as possible
N\
1 0 1 0|1 2 0 6 0 4N | Animplicant
10 l 1N
R \. An essential
+—+—6—06—716 prime
1 1 0 1 lo implicant
1 1 1 o0 |1 An essential prime implicant
(largest grouping possible, that
11 1 1)1 must be included to cover all 1’s)
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W X Y Z |F
O 0 O o0 |{Oo
O 0 0 1 |1
O 0 1 0 |{o0
O 0 1 1 |1
0 1 0 0|0 W% 00 01 11 10
O 1 0 1 |1 N 1 8
— ol O] 0] 0|0 —
O 1 1 0|0 An essential prime 4 An implicant
o 1 1 1 11 implicant \ 13 o
oo™l | 1] O | O Not PRIME
1 0 O 0|0 — = - because not as
1 0 0 1 lo 1 1 1 1 1 r large as possible
A prime implicant, = =<y —

1 0 1 0 |1 but not an 6 4 D > An implicant
1 o 1 1 I1 ESSENTIAL 10| 0 0 1 :

N . An essential
E—— implicant because it is \, rime
A not needed to cover all irr? licant
1 1 0 1|60 1’s in the function P
1 1 1 o0 |1 An essential prime implicant

(largest grouping possible, that

11 1 1)1 must be included to cover all 1’s)
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Implicant Examples

HHHHHHHI—‘OOOOOOOOE

Hr » B B O O O O F kP kP B O O O OfX

r P O O P P O O FP P O O PFP P O O

P O B O P O P O FP O FRP O FP O rFr O|N

P B O O P kP P O F P P O FP P PP O|m

00 01 11 10

0 4 12 8

ol O] 0] 0] O0

An implicant, but not . -
a PRIME implicant ST 1 1 1
. 01
because it is not as L 1
large as possible 3 A T
(should expand to npl |11 11

- ——— g ——

combo’s 3 and 7) | 5 m 10
10 11 1011 J

/

An essential prime implicant
(largest grouping possible, that
must be included to cover all 1°s)
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K-Map Grouping Rules

« Make groups (implicants) of 1, 2, 4, 8, ... and they
must be rectangular or square in shape.

* Include the minimum number of essential prime
implicants

—  Use only essential prime implicants (i.e. as few groups as
possible to cover all 1's)

—  Ensure that you are using prime implicants (i.e. Always
make groups as large as possible reusing squares if
necessary)



Informational: You won't be asked to perform 5- or 6-variable K-Maps

5- & 6-VARIABLE KMAPS



e Will an 8x4 matrix work?

— Recall K-maps work because adjacent squares differ by 1-bit

5-Variable K-Map

* |If we have a 5-variable function we need a 32-square KMap.

* How many adjacencies should we have for a given square?

. Il But drawn in 2 dimensions we can’t have
adjacencies.
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5-Variable Karnaugh Maps

* To represent the 5 adjacencies of a 5-variable function [e.g.
f(v,w,x,y,z)], imagine two 4x4 K-Maps stacked on top of each

other
— Adjacency across the two maps

WX 00 0 10 oW 00 01 11 10

YZ 1
0 1 8 0 12 8
00 0 1 0 00 0 0 0 Traditional adjacencies still
apply

11
4 12
1 1
1 O i 13 1 9 O 1 0 1 13 0 9 O (Note: v is constant for that
01 \ J 01 l J group and should be
Lre

e

included)

3 7 ~1§\ 11 3 - 15 11 => V,Xy,
1| 0] 0| 0. 0| Theeare 11l-0| 0| 0] O
........ adjacent ___--~ Adjacencies across the two
2 6 14 10 === 2 6 14 10 maps apply
10 O O O O 10 O O O O (Now v is not constant)
= W,Xy,

V=0 V=1 F= V’XY’ + W’Xy,



6-Variable Karnaugh Maps
W00 01 11 10 SWX 00 01 1 10
* 6 adjacencies 0 4 2 | 0 4 2 s
for 6-variables o) 010 /1 0 00| 0 /,..——0”" -
1 5 3 9 1 ’-—5' 13 9
(Stack of four onl 0| 0 L/ ol o 017010l 0
0L
4x4 maps) 3 7Gro !3{01‘(2411/ // s
0| O Not -~ 171 0] 2,] 0|0
adjaagént \
0 /’x 10l 0] O \ 0O
,', u,v=0,1
V4
10 / W% 00 01 |11 10
8 I' 0 4 1 8
1 oo| O] O 70 0
"0 01 0|0 ) 0|0
11 0 11 3 O 7 l/ 15 0 11 0
2 6 \14 Group of 4 L— |6 14 10
| oroupord
ol ool o]0 0|l 010|010
u,v=1,0 uv=11




7-Variable K-maps and Other Techniques

* Can we have 7-variable K-Maps?

* No! We would need to see 7
adjacencies per square and we humans
cannot visualize 4 dimensions

* Other computer-friendly minimization

algorithms
— Quine-McCluskey

 Still exponential runtime

* Minimization is NP-hard problem

— Espresso-heuristic Minimizer

* Achieves "good" minimization in far less time
(may not be absolute minimal)
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