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Implementing Combinational Functions with
Karnaugh Maps
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Outcomes

* | can use Karnaugh maps to synthesize combinational functions
with several outputs

* | can determine the appropriate size and contents of a memory
to implement any logic function (i.e. truth table)

| USC\[it?Fbi
Covering Combinations

F=WX'YZ F= WX'Z

* A minterm corresponds to =mil =m9+m1l
n n . . w X Y Z F W X Y Z F
("covers") 1 combination o o o 1o o1
of a logic function o 0 o 1o o 0 o 1 |o
0 0 1 0 0 0 0 1 0 0
e As we variables o o 1 1 |o o o 1 1 |o
0 1 0 0 0 0 1 0 0 0
from a product term, more | | | | |, SO
combinations are covered o 1 1 0|0 o 1 1 o o
0 1 1 1 0 0 1 1 1 0
— The product term will 1 0 0 o |0 1 0 0 o |0
evaluate to true 1.0 0 1|0 1.0 0 1 |1
fth 1 0 1 0 0 1 0 1 0 0
- o e 1 0 1 1 1 1 0 1 1 1
removed variables value 11 0 oo 1 1 0 oo
(i.e. the term is 11 0 1|0 1 1 0 1|0
. 1 1 1 0 0 1 1 1 0 0
independent of that I S I

variable)
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Covering Combinations

F=X'Z F=X'
. = ml+m3+m9+mll =m0+ml+m2+m3+m8+m9+m10+mll
* The more variables we can

W x v z]|F w x v z|F
remove the more o o o ol
a single o 0 0o 1 |1
product term covers g g : ‘1’ :
— Said differently, a small term will o 1 o0 o0 |o
cover (or expand to) more 0o 1 0 1|0
combinations o 1 1 0|0
0 1 1 1 0
* The smaller the term, the C o 0 ol
smaller the 1 0 0 1 |1
— We need fewer to i e 1 01
check for multiple combinations R ;

1 1 0 0
* For a given function, how can 11 0 1o
we find these smaller terms? N
1 1 1 1 0
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A new way to synthesize your logic functions

KARNAUGH MAPS

| USCV1terb1
Logic Function Synthesis

* Given a function description as a T.T. or sum of minterm
(product of maxterm) form, how can we arrive at a circuit
implementation or equation (i.e. perform logic synthesis)?

* Methods

Minterms / maxterms
* Use

to find minimal 2-level implementation

Karnaugh Maps [we will learn this one now]

* Graphical method amenable to human inspection and can
be used for functions of up to ___ variables (but becomes large and
unwieldy after just variables)

Quine-McCluskey Algorithm (amenable to computer implementations

Others: Espresso algorithm, Binary Decision Diagrams, etc.

| USCV1terb1.

Karnaugh Maps S

If used correctly, will always yield a minimal,
implementation

— There may be a more minimal 3-level, 4-level, 5-
level... implementation but K-maps produce the
minimal two-level (SOP or POS) implementation

* Represent the truth table graphically as a
series of adjacent that allows a
human to see where variables can be removed

| USCV1terb1

Gray Code o

» Different than normal binary ordering

¢ Reflective code

— When you add the (n+1)t" bit, reflect all the previous n-bit
combinations

* Consecutive code words differ by only 1-bit

00 000
iffe
Wit 0 1 \\ when you move to 0 0 1
only 1-bit | ditter b

1 1 M the next bit, reflect 0 1 1 iffer by
the previous only 1-bit

10 combinations 0 1 0«

2-bit Gray code

differ by
only 1-bit

3-bit Gray code
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Karnaugh Map Construction

| USCViterb'

Karnaugh Maps

hool of Engineering

W X Y Z|F
* Every square represents 1 input combination 0 0 0 00
00 0 1|1
* Must label axes in Gray code order 0o 0 1 0|1
A . . . 00 1 1|1
* Fill in squares with given function values
9 g 0 1 0 0]0 w0 o1 1 10
G(W,x,y,z)=m1+m2+m3+m5+m6+m7+m9+ o 1 0 1 |1 0 4 12 8
X Y z|F m10+m11+m14+ml5 o 1 1 o |1 0| 0 0 0 0
0 0 0|0 oo o1 11 10 ; ; D
0 0 1 1 Z XY 00 01 1 10 v 0 4 12 8 0 ! ! ! 1 HDI:> 01 1 1 0 1
! 2 ° ¢ 00 0 0 0 0 1 0 O 0 o 3 7 15 11
0o 1 0|0 0 0 0 1 1 - - — - 1 0 0 1 |1 unl 1 1 1 1
0o 1 110
! N s oo| 1 | 1 101 1.0 1 0|1 . . P—
1 0 0 1 1 1 0 0 1 3 7 15 1 1 0 1 1 1 10 1 1 1 1
i 0 1 |1 um| 1 1 1 1
1 1 o |1 3 Variable Karnaugh Map 1 1 0 010
10 2 1 6 1 141 10 1 1 .1 0 1 0
1 110 11 1 0 |1
F(x,y,zZ)=m1 + m4 + mS5 + mé 4 Variable Karnaugh Map 11 1 1 |1
I USCViterbi USCViterbi
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Karnaugh Maps

* Squares with a '1' represent minterms that must be
included in the SOP solution

* Squares with a '0' represent maxterms that must be
included in the POS solution

Maxterm:
W+xX'+y+z
Maxterm:

WX
yZ2N_ 00 01 1) 10 T wax+y+z

0w O] 0010

o1 | 1 11011

Minterm:
3 7 15 11 i I W‘X"y'l
un| 1 1 1 1
2 6 14 10 4 Minterm:

w1 [ 1|11 7

wex’eyez’

Karnaugh Maps

School of Engineering

* Groups (of 2, 4, 8, etc.) of adjacent 1’s will always
simplify to smaller product term than just individual

minterms

F=m0+m2+m4+m5+mé6
XY
20 01 11 10

0 2 6 4

o | 1 1 1 1

1 3 7 5

1| 00|01

3 Variable Karnaugh Map
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Karnaugh Maps
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* Adjacent squares differ by 1-variable

— This will allow us to use T10 = AB + AB’= A or
T10’ = (A+B’)(A+B) = A

3 Variable Karnaugh Map 4 Variable Karnaugh Map

Difference in X: 010 & 110

XY x’yz’ + xyz’ WX
z 00 01 11 =yz YZ 00 01 11 10

0 2 6 4 0 4 12 8
0 [3 /‘ 00 D 1=0001
1 3 7 s 1 5 13 9 4=0100
) Ch— o]0 O 5= 0101
7=0111
i i ; ; : T s 13 =1101
Difference in Y: 010 & 000 Difference in Z: 010 & 011 1 D =1
x'yz’ +x’y’z’ 0= 000 xX’yz’ +x’yz djacent squares
=x’7’ =02 =x’y 2 ¢ 1 10 differ by 1-bit
2=010 Adjacent squares 10
3=011 differ by 1-bit
6=110

| USCViterb'
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Karnaugh Maps

2 adjacent 1’s (or 0’s) differ by only one variable
4 adjacent 1’s (or 0’s) differ by two variables
8, 16, ... adjacent 1’s (or 0’s) differ by 3, 4, ... variables

By grouping adjacent squares with 1's (or Q’s) in them, we can come up
with a simplified expression using T10 (or T10’ for 0’s)

wx

YZ 00 01 1 10
0 4 8 (WHX'+y+2)* (W +X’+y+2’) =
L w|lo[olol] o], (i)
WexX’ey’ez + Wiex’ eyez +
) ) i) 1 3 9
weeyzrweeyr o [0 1) ([o [ 1
=wez L 7 J 15 u | wexeyez + wex'eyez =
u |1 1 1 1 H =
w’z are constant while all weyez
combos of x and y are present 2 1 ¢ 1 14 1 10 1
(xX’y’, x’y, xy’°, xy) 10
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K-Map View of the Theorems

ering

» The 2 & 3 variable theorems used to simplify
expressions can be illustrated using K-Maps.

T9: Covering T10: Combining T11: Consensus
X + XY = X XY + XY’ = X XY + XZ+2ZY = XY + X'Z

o"oonﬂﬂ o"ozo“ﬂ“o
1o OMI‘ 1’T’!1sto

=

-

= =)l
=
-

XY X Xy X Xy Xz ZY XY

X “covers” XY so XY and XY’ can be Don’t need ZY if you
XY not needed combined to form X have X’Z and XY

| USCViterbi
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K-Map Grouping Rules

Cover the 1's [=on-set] or 0's [=off-set] with
groups as possible, but make those groups
as possible
— Make them as large as possible even if it means "covering"
a 1 (or 0) that's already a member of another group
Make groups of , ... and they must be
rectangular or square in shape.

Wrapping is legal
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Group These K-Maps

XY

X 00 o1 1 10
o 0jrjogo w0 01 1 10
i1l 1]0f0]oO wl ol o1 1
| 1| 1] 1]0

X 00 01 1 10 N
0 ’ 1 ? 1 ° O N O 11 1 1 1 0
1 ! 1 : O ’ O O 10 ' 0 ' 0 l 0 " 1

] USCYl’FeIrb
Karnaugh Maps

wXx
YZ

0| 0 1 1 1

00 01 1 10

on| 0| 1 1 1

un| 0 1 1 1

0| 0] 0| 111

* Cover the remaining ‘1’ with the largest
group possible even if it “reuses” already
covered 1’s

| USC\/itg;pj
Karnaugh Maps

* Groups can wrap around from:

— Right to left
— Top to bottom
— Corners
WX WX
v, 00 01 11 10 Y200 01 11 10
wl 0ol o0f[1]o0 ol 110 [0
af 1] 0|0 |1 wl 0ol olo0
11 3 1 7 0 15 0 l[ 1 11 3 0 7 0 15 0 11 O
10 2 O 6 O 14 1 10 0 10 2 1 6 0 14 0 10 1

F=X"Z + WXZ’

| USCVitqbf
Group This

WX
Y200 01 11 10
0 4 12 8
0wl 0| 0]0]O0
1 13 9

0115101

un| 1 1 1 1

10| 1
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K-Map Translation Rules

* When translating a group of 1’s, find the variable
values that are constant for each square in the
group and translate only those variables values to a
product term

 Grouping 1’s yields SOP

*  When translating a group of 0’s, again find the
variable values that are constant for each square in
the group and translate only those variable values
to a sum term

Grouping 0’s yields POS

I USCYl’FEI‘b
Karnaugh Maps (SOP)

w X Y z|F
0 0 0 0|0
00 0 1|1
0o 0 1 0|1
00 1 1|1
0o 1 0 00 w00 o1 1 10
o 1t 0 wl 0] 0l0]o0
o 1 1 0|1

N O
0 1 111 | 1| 1[o0]1
1 0 0 0|0 e e e
10 0 1|1 m|l 1 1 1 lw
10 1 0|1 5 B B
10 1 11 IOLI L)1 IJ
1 1 0 010
11 0 110 F=
11 1 0|1
11 1 1|1

| USCYrFelrb1
Karnaugh Maps (SOP)

ering

w X v z|F
0 0 0 0|0

00 0 1|1

0 0 1 0|1

00 1 1|1

01 0 00 w00 o1 1 10
ot 0 1 wl 0] 0l0]o0
o 1 1 0|1

o [T o [ 1
1 0 0 0|0 —H—Fr

10 0 1|1 11 1;_1/ 1 lw
10 1 0|1 Y PR PR

10 1 11 ol ] 1T]1 IJ
1 1 0 010

11 0 110 F=Y

11 1 0|1

11 1 1|1

| USC\[itgybj
Karnaugh Maps (SOP)

W X Y Z|F
0 0 0 010
0 0 o0 1|1
0o 0o 1 0|1
o 0 1 1|1 W

WX
01 0 010 Y2 00 01 11 10
o 1 0 1 |1 o 4 » 8

oo| O 0 0 0
o 1 1 0 |1

ENR 13

0 1 1 1 1 01 1 0
i1 0 0 010 7z = - -
i 0 0 1|1 1 1 1
1 0 1 0 |1 t P 1 wJ
10 1 1 |1 101 1 1 1
i1 0 010
1 1 0o 1 0 F=Y+W7Z+...
i1 1 0 |1
11 1 1|1
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Karnaugh Maps

* Groups can wrap around from:

— Right to left
— Top to bottom
— Corners
WX X "YY’X“(L\ WX/L /L\
v, 00 01 11 10 Y200 01 11 10
o 0 [0 "1 o 2w 1] 0 0]
{01 1) 0 o |1 awlolol o]0
VA
ull 1] 0| 0 |1 n| 00 0]O0
Z’i"lo 2 O 6 0 141 l(lO Z[IO 2 1 6 0 140 101
F=X'Z + WXZ’ F=XZ’

| USCViterbi
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Exercises
WX WX
vz 00 01 11 10 Yz 00 01 11 10
w| 1001 wl 10701
01 1 1 5 O 130 9 1 01 1 1 5 0 130 9 1
11 3 O 7 O 15 0 11 0 11 3 0 7 0 150 11 0
10 2 1 6 O 141 10 1 10 2 1 6 O 141 10 1
Fsop= Foos=

P(x,y,z)=m2+m3+m5+m7

P=

| USC\/itg;bj
No Redundant Groups

WX
vz 00 01 11 10

This group does not
cover new squares that
| _— arenot already part of
another essential

grouping

00| 1

=)

o1 1(_”m’1
L'so "0

0
10| 1 0 1 1

=)

u|l 0

4
1 5
6
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Multiple Minimal Expressions

DSD4
] pzpi~. 00 01 11 10
* For some functions, . Wl o o ﬁj?
groupings —
on| O 0 h

exist which will lead to
alternate minimal
...Pick one

1
11 Bﬁq—lw ; 1 3 0
10 @J “o [0

/

Best way to cover this
“1»?
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Karnaugh Maps Beyond 4 Variables

* Recall, K-Maps require an adjacency for each
variable
— To see the necessary adjacencies, 5 and 6 variable K-
Maps can be thought of in three dimensions
* Can we have 7-variable K-Maps?

— No! We would need to see 7 adjacencies per square
and we humans cannot visualize 4 dimensions

5 Variable K-Maps

* Other computer-friendly minimization algorithms
— Quine-McCluskey

U,v=0,1
« Still exponential runtime Uv=1,1
* Minimization is NP-hard problem U’;/zt)‘j‘;":l'"
— Espresso-heuristic Minimizer

¢ Achieves "good" minimization in far less time (may not be
absolute minimal)

6 Variable K-Maps

| USCViterb'

DON'T CARE OUTPUTS

hool of Engineering

] USCVitqbi
Don’t-Cares

* Sometimes there are certain input combinations that
are illegal (due to physical or other external
constraints)

* The outputs for the illegal inputs are “don’t-cares”

— The output can either be 0 or 1 since the inputs can never
occur

— Don’t-cares can be included in groups of 1 or groups of 0
when grouping in K-Maps

— Use them to make as big of groups as possible

Use 'Don't care' outputs as wildcards (e.g. the blank tile in Scrabble™).
They can be either 0 or 1 whatever helps make bigger groups to cover
the ACTUAL 1's

Invalid Input Combinations

Given intermediate functions Fland
F2, how could you use AND, OR, NOT
to make G z

Notice certain F1,F2 combinations
never occur in G(x,y,z)...what should
we make their output in the TT.

X Y 4 F1 F2 |G

0 0 0 0 0 0

0 0 1 1 0 1 F1 F2 |G
0 1 0 1 0 1 0 0

0 1 1 1 0 1 > 0 1

1 0 0 1 0 1 1 0

1 0 1 1 0 1 1 1

1 1 0 1 0 1

1 1 1 1 1 0

USC Viterbi 2

School of Engineering
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Invalid Input Combinations

* An example of where Don't-Cares may come into
play is Binary Coded Decimal (BCD)

— Rather than convert a decimal number to unsigned binary
(i.e. summing increasing powers of 2) we can represent
each decimal digit as a separate group of 4-bits (with
weights 8,4,2,1 for each group of 4 bits)

— Combinations 1010-1111 cannot occur!
AR

BCD Representation: 0100 0011 1001

8421 8421 8421

This is not the binary

representation of 439, it

is the Binary Coded
Decimal (BCD)
representation

Important: BCD represent each decimal digit with a
separate group of bits

| USCYIFGIrb
Don’t Care Example

DSD4

D8 D4 D2 D1 |GTé pzpiN. 00 01 11 10
0 0 0 0 O 0 4 12 8
0 0 0 ) 0 o| 00| d 1
1 5 13 9 GT6S0P=
0 0 1 0 0 00| O 0 d 1
0 0 1 1 0
3 7 15 11

0 1 0 0 0 un| o0 1 d | d
0 1 0 1 0 2 6 14 10
0 1 1 0 0 10| 0 0 d d
0 1 1 1 1
1 0 0 0 1 DSD4
1 0 0 1 1 DN, 00 01 11 10

0 4 12 8
1 0 1 0 d 0| O 0 d 1
1 0 1 1 d 1 3 = B GT6pos=
1 1 0 0 d 00| O | 0| d 1
1 1 0 1 d 3 7 15 11
] ] . 0 d nl 0 1 d | d

2 6 14 10
L wl0]0]|d]|d

USC Viterbi 22
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Don’t Cares

W X Y Z|F
0O 0 O o0 |0 Reuse “d’s” to
0 0 0 1 |1 make as large a
o o 1 0|1 group as possible
tocover1,5, &9
0o 0 1 1|1 E
o 1 0 070 w00 o1 1 10
0 1 0 1 1 0 4 12 8
0o 1 1 0|1 0|l 0| 0]|d]|O
0o 1 1 1|1 1 [P PPN PR P
Il o |(1]1]d Jﬂ
1 0 0 010
3 / T T 1T
oo al(lt | 1]4d]d
1 0 1 0 d 2 6 14 e R .
1 0 1 1 |d 10 \1 1 d d "
t 1 0 0d F=Z+Y :
1 1 0 1 |d Use these 4 “d’s”
1 1 1 0 |d to make a group
1 1 1 1 |d of 8

I (/S Viterbi <
Don’t Cares

W X Y Z|F
0 0 0 O |0 You can use “d’s”
0 0 o0 1 |1 when grouping 0’s
and converting to
o o0 1 0|1
POS
o o0 1 1|1 :
0 1 0 070 o0 0 um 10 .
0 1 0 1 1 0 4 12 8 | e 3
0o 1 1 1|1 LD R N
I o1 | 1 1 d 1
i 0 0 0|0
3 7 15 11
1T.0 0 11 un| 1|1 |d]|d
1 0 1 0 d 2 6 14 10
10 1 1 |d 10| 1 1 [ d|d
11 0 0 |d F=Y+Z
i1 0 1 |d
i1 1 0 |d
11 1 1 |d
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* Combinational Design Process

X[2:0] Z[2:0]

Understand the problem

— How many input bits and their 3| Decrementer |
representation system

— How many output bits need be generated
and what are their representation

— Draw a block diagram
* Write a truth table
* Use a K-map to derive an equation for

A GENERAL, COMBINATIONAL EACH output i i
CI RCU IT DESIG N PROCESS * Usethe equatign to c.iraw a circ'uit for Di =

EACH output bit, letting each circuit
run in parallel to produce their

respective output bit ﬁDH

4 24 2 2 0o o ofx
-~ 200 =20 o0fx
-~ o =20 -0 = o|x

B
BB
=
B

I (USC V1terb1. UusC Viterbi

School of Engineering School of Engineering

Designing Circuits w/ K-Maps 3-bit Number Decrementer
X2, X X |Z, Zi % X0+ -+—20
* Given a description... o 0o 0 |1 1 1
— Block Diagram 0 0 1 0o o0 o X14—
— Truth Table o 1 o |0 o 1 T
— K-Map for each output bit (each output bit is a separate function of o 1 1 |0 1 o0
the inputs) 1 o o lo 1 1
* 3-bit unsigned decrementer (Z = X-1) 1 0 1 |1 o o T
— If X[2:0] = 000 then Z[2:0] = 111, etc. 1 1 0 |1 0 1
1 11 (1 1 0 e
X,X, X,X, X,X,
)([2-0] 2[2.0] X, 00 01 1 10 X, 00 01 11 10 X, 00 01 11 10
' ) 3bitUnsigned |~ O’QTT“O o D)oo [T]) ol [T ][]0
3 DeCrementer 3 1 3 7| 5 1 3 7 5 1 3 7 5
oo [l ol ol i ofofol0
Z, = XX, + X,X, + X,°X, "X, Z, =XX, + X, X, Zy=Xy
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Squaring Circuit

* Design a combinational circuit that accepts a 3-bit
number and generates an output binary number
equal to the square of the input number. (B = A?)

» Using 3 bits we can represent the numbers from
to

* The possible squared values range from to

* Thus to represent the possible outputs we need how
many bits?

- USCerelrb
3-bit Squaring Circuit

Outputs
B; [ B, | B,

A2A1
B=A2 AN 00 01 11 10

0 2 6 4

B, | B, B,

1 3 7 5

| USC\/it;;pj
3-bit Squaring Circuit

A2 Al AO

l l l
! ! !

| USCViterbi
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If time permits...

FORMAL TERMINOLOGY FOR
KMAPS
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Terminology

* Implicant: A product term (grouping of 1’s) that
covers a subset of cases where F=1
— the product term is said to “imply” F because if the
product term evaluates to ‘1’ then F="1’
* Prime Implicant: The largest grouping of 1’s (smallest
product term) that can be made

* Essential Prime Implicant: A prime implicant
(product term) that is needed to cover all the 1’s of F

| USCVit?Fb
Implicant Examples

W X Y Z|F

0o 0 0O o0

o 0 0 1 |1

0 0 1 0 {0

0o 0 1 1 |1

01 0 010 w00 o1 1 10

R w0 0]0[0/o0

o 1t 1 ool 1 |1 [0|O Not PRIME
1 0 0 0O ] . " - because not as
1 0 0 1o 1 1 1 1 large as possible
1 0 1 0|1 2 6 14 10

T 0 1 1 1 w| 001 1

i 1 0 00

1 1 0 1|0

1 1 1 0 |1

1 1 1 1 |1

| USC\/it;;})j
Implicant Examples

W X Y Z|F

0 0 0 O {|oO

0o 0 o0 1 (1

0 0 1 0|0

o o 1 1 (1

01 0 010 w00 o1 1 10

R w| 00|00

0o 1 1 0|0 - - — - 4 An implicant

o 1 1t 1 om| 1| 1[0]0 Not PRIME

1 0 0 0|0 ] . " - because not as
1 0 0o 1o 1 1 1 1 large as possible
1 0 1 0 |1 2 6 14 1 An implicant
T 0 1 1 1 w| 001 u

1 1 0 010

i 1 0 110

i 1 1 0|1

i1 1 1 |1

| USCV“??H
Implicant Examples

W X Y Z|F
0O 0 O O |0
o 0o o 1 (1
0O 0 1 0|0
o o0 1t 1 (1
01 0 010 w00 o1 1 10
o 1 0 1 (1 0 4 2 8
0w 0| 0]|]0]|O0
o 1 1 0|0 4 An implicant
1 5 13 9
0 1 1 141 oo 1|1 [0]O Not PRIME
1 0 0 0|0 ] . : - because not as
1 0 o 1le 1 1 1 r 1 1 large as possible
1 0 1 0 |1 2 6 4 Iy An implicant
| 0| 0 |1

1o 1 1 — \ An essential
+—+—6—6—16 prime
1 10 110 implicant
1 1 1 o0 |1 An essential prime implicant

(largest grouping possible, that
1 1 1 1 1 must be included to cover all 1’s)
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Implicant Examples

An essential prime implicant
(largest grouping possible, that
must be included to cover all 1’s)

W X Y Z|F
0 0 O O |0
[ 0 0o o 1][1]
0 0 1 0 {0
[ 0 o 1 1]1]
0o 1 0 0]0 w00 o1 1 10
IR N w| 00|00
0o 1 1 0|0 An essential prime 4 An implicant
Lo 1 1 1]1] implicant }1/1_ 10 [0 Not PRIME
1 0O 0 0|0 ] . : = because not'as
1 0 0 1la 1 L 1 r 1 1 large as possible
1 0 1 0|1 2 6 4 My An implicant
10 1 1|1 0] 010 &_4 NG
+—F—o0—6106 \ prime
11 0 1o implicant
1 1 1 0 |1
11 1 1 |1

| USCVit?Fb
Implicant Examples

1’s in the function

An essential prime implicant
(largest grouping possible, that
must be included to cover all 1’s)

W X Y Z|F
0 0 O O |0

[ 0o 0 o 1][1]
0 0 1 0 {0

[ 0o o 1 1]1]
0 1 0 0]0 w00 o1 1 10
o 1 0 1 (1 0 4 2 8

| | 0w 0| 0|00
0o 1 1 0|0 An essential prime \ 4 An implicant

implicant e B °

L o1 1 1]1] ooyl | 1] 0[O Not PRIME
1 0 0 0|0 F=F= . because not as
1 0 0 1la 1 1 1 fl 1 large as possible

A prime implicant, — =

1 0 1 0|1 but not an 2 6 Ts My An implicant
0 1 1 ESSENTIAL 10 0 0 ! — An essential
—— implicant because it is \ —
R A not needed to cover all b
1 10 110 implicant
i 1 1 0 |1
1 1 1 1 |1
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Implicant Examples

v

An essential prime implicant
(largest grouping possible, that
must be included to cover all 1’s)

An essential prime
implicant

W X Y Z |F
0O 0 O o0 |O
0o 0 0 1 1
o 0 1 0 |1
0o 0 1 1 1
0 1 0 00 w00 o1 1 10
o1 0 1|1 N N EN €

0| 0[O0 0]O0
0 1 1 0 (1 An implicant, but not — - o —
o 1 1 1|1 a PRIME implicant 37991 | 111 0 |1

because it is not as S —
1 0 0 0O N —
large as possible 3 7 TS T

1 0 0 1 |1 (should expand to 1 J } 1’ 1 1 L
1 0 1 0 |1 combo’s 3 and 7) H— 6"_ " = ’ B
10 1 1|1 UG
1 1 0 0|0
1 1 o 1|0
1 1 1 0 |1
1 1 1 1 1
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K-Map Grouping Rules

* Make groups (implicants) of 1, 2, 4, 8, ... and they
must be rectangular or square in shape.
* Include the minimum number of essential prime
implicants
— Use only essential prime implicants (i.e. as few groups as
possible to cover all 1’s)

—  Ensure that you are using prime implicants (i.e. Always
make groups as large as possible reusing squares if
necessary)
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School of Engineering

Informational: You won't be asked to perform 5- or 6-variable K-Maps

5- & 6-VARIABLE KMAPS

| USC\/it?Fb'
5-Variable K-Map

* If we have a 5-variable function we need a 32-square KMap.
*  Will an 8x4 matrix work?

— Recall K-maps work because adjacent squares differ by 1-bit
* How many adjacencies should we have for a given square?

. Il But drawn in 2 dimensions we can’t have
adjacencies.

VWX
YZ 000 001 o011 010 110 m 101 100
00 )
01 O[O [
1 D
10

| USC\/it;;pj
5-Variable Karnaugh Maps

* To represent the 5 adjacencies of a 5-variable function [e.g.
f(v,w,x,y,2)], imagine two 4x4 K-Maps stacked on top of each
other

— Adjacency across the two maps

o0 o1 1 10 o0 00 om0
0 4 12 8 0 12 8
00 0 1 1 W 0 00 0 1 0 0 Traditional adjacencies still
apply
1 0 1 13 1 9 0 ol 1 0 1 13 0 9 0 (Note: vis co(;lshanthflo; that
01 roup and shou e
— ¢ pincluded)
3 7 Nus 11 3 /,4' 15 11 = v'xy’
n| 00|00 | Thseae 1 (-0 0] 0O
2 6 14 TR - ‘}]ic'e _ﬂ_l ————— 2 6 14 10 Adj ies across the two
maps appl
10 0 0 0 0 10 0 0 0 0 (Now v isp notpcl:)l};stant)
=> w’xy’

V=0 V=1

F = v’xy’ + w’xy’
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6-Variable Karnaugh Maps

WX WX

X0 o0 1 10 X0 o1 1 10
* 6 adjacencies (P LR L P LR L
for 6-variables 0 010 / 1o 00| 0 f) BUS
1 5 3 9 1 - Ls~ 13 9
(Stack of four o] 0] 0 f 00 oLl-071 0 [ 0|0
4X4 maps) 3 7(11.(“ 1% 11 N t ,/” 3 e 15 11
0! //
u| 0 /1 0 0 it u| 0 1\ 0 0
w0 ok oo X wlolo}olo
U,V0,0 /’ U,v=0,1
4
o o\ 10/ w00 01 jm 10
U,v=0,1 o 4 ,\ s/ 0 4 1 8
U,v=1,1 00 0 \ 0 1 1 00 0 0 7 0 0
U,v=1,0 1 5 13 9 1 5 /3 9
UV=00 ool 0O NO| O] O on| 0| O0/fO0]| O
al 0 M "0 [0 al o [ 1770 [0
2 6 14 Group of 4 L— |6 14 10
wl ol o007 wlolololo
U,v=1,0 U,v=1,1
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7-Variable K-maps and Other Techniques

e Can we have 7-variable K-Maps?

* No! We would need to see 7
adjacencies per square and we humans
cannot visualize 4 dimensions

* Other computer-friendly minimization
algorithms

— Quine-McCluskey

* Still exponential runtime

* Minimization is NP-hard problem
— Espresso-heuristic Minimizer

* Achieves "good" minimization in far less time
(may not be absolute minimal)




