

Outcomes

- I can use Karnaugh maps to synthesize combinational functions with several outputs
- I can determine the appropriate size and contents of a memory to implement any logic function (i.e. truth table)

Unit 9

Implementing Combinational Functions with Karnaugh Maps

Covering Combinations

- A minterm corresponds to ("covers") 1 combination of a logic function
- As we _____ variables from a product term, more combinations are covered
 - The product term will evaluate to true
 _____ of the removed variables value
 (i.e. the term is independent of that variable)

	X'Z n11	W n9+1				$\mathbf{F} = \mathbf{WX'YZ}$ $= m11$			
F	z	Υ	х	w	F	z	Υ	Х	w
(0	0	0	0	0	0	0	0	0
6	1	0	0	0	0	1	0	0	0
(0	1	0	0	0	0	1	0	0
6	1	1	0	0	0	1	1	0	0
6	0	0	1	0	0	0	0	1	0
6	1	0	1	0	0	1	0	1	0
6	0	1	1	0	0	0	1	1	0
6	1	1	1	0	0	1	1	1	0
6	0	0	0	1	0	0	0	0	1
1	1	0	0	1	0	1	0	0	1
C	0	1	0	1	0	0	1	0	1
1	1	1	0	1	1	1	1	0	1
C	0	0	1	1	0	0	0	1	1
6	1	0	1	1	0	1	0	1	1
۱	0	1	1	1	0	0	1	1	1
6	1	1	1	1	0	1	1	1	1

Covering Combinations

• The more variables we can remove the more

_____ a single product term covers

- Said differently, a small term will cover (or expand to) more combinations
- The smaller the term, the smaller the
 - We need fewer _____ to check for multiple combinations
- For a given function, how can we find these smaller terms?

F = X'Z = m1+m3+m9+m11					=	= m0+n	_	T = Z -m3+m8	_	110+m11
w	х	Υ	z	F	•	w	X	Υ	z	F
0	0	0	0	0	•	0	0	0	0	1
0	0	0	1	1		0	0	0	1	1
0	0	1	0	0		0	0	1	0	1
0	0	1	1	1		0	0	1	1	1
0	1	0	0	0		0	1	0	0	0
0	1	0	1	0		0	1	0	1	0
0	1	1	0	0		0	1	1	0	0
0	1	1	1	0		0	1	1	1	0
1	0	0	0	0		1	0	0	0	1
1	0	0	1	1		1	0	0	1	1
1	0	1	0	0		1	0	1	0	1
1	0	1	1	1		1	0	1	1	1
1	1	0	0	0		1	1	0	0	0
1	1	0	1	0		1	1	0	1	0
4	4	4	0			1	1	1	Λ	_

1 1 1 1 0

Logic Function Synthesis

- Given a function description as a T.T. or sum of minterm (product of maxterm) form, how can we arrive at a circuit implementation or equation (i.e. perform logic synthesis)?
- Methods
 - Minterms / maxterms
 - to find minimal 2-level implementation
 - Karnaugh Maps [we will learn this one now]
 - Graphical method amenable to human inspection and can be used for functions of up to variables (but becomes large and unwieldy after just _____ variables)
 - Quine-McCluskey Algorithm (amenable to computer implementations)
 - Others: Espresso algorithm, Binary Decision Diagrams, etc.

Karnaugh Maps

• If used correctly, will always yield a minimal, implementation

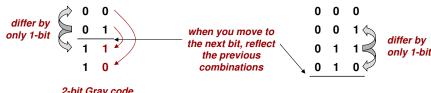
A new way to synthesize your logic functions

KARNAUGH MAPS

- There may be a more minimal 3-level, 4-level, 5level... implementation but K-maps produce the minimal two-level (SOP or POS) implementation
- Represent the truth table graphically as a series of adjacent that allows a human to see where variables can be removed

Gray Code

- Different than normal binary ordering
- Reflective code
 - When you add the (n+1)th bit, reflect all the previous n-bit combinations
- Consecutive code words differ by only 1-bit



2-bit Gray code

3-bit Gray code

Karnaugh Map Construction

- Every square represents 1 input combination
- Must label axes in Gray code order
- Fill in squares with given function values

X	Υ	Z	F					
0	0	0	0	XX	7			
0	0	1	1	z	<u> </u>	01	11	10
0	1	0	0	0	0	0	⁶ 1	4
0	1	1	0		1	3	7	5
1	0	0	1	1	1	0	0	1
1	0	1	1					1
1	1	0	1		3 Vari	able Ka	rnaugh	Ma
1	1	1	n					

F(x,y,z)=m1 + m4 + m5 + m6

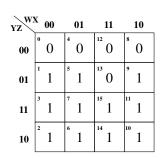
G(w,x,y,z)=m1+m2+m3+m5+m6+m7+m9+ m10+m11+m14+m15

	111171111111111111111111111111111111111								
YZ W	X 00	01	11	10					
00	0	4 0	0	8 0					
01	1	1	13 0	, 1					
11	³ 1	1	15	1 1					
10	1	1	14	10 1					

4 Variable Karnaugh Map

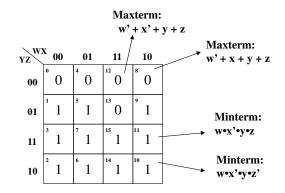
Karnaugh Maps

W	X	Υ	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1



Karnaugh Maps

- Squares with a '1' represent minterms that must be included in the SOP solution
- Squares with a '0' represent maxterms that must be included in the POS solution



Karnaugh Maps

 Groups (of 2, 4, 8, etc.) of adjacent 1's will always simplify to smaller product term than just individual minterms

F=m0+m2+m4+m5+m6

ZXY	00	01	11	10
0	1	1	1	1
1	0	3 0	0	⁵ 1

3 Variable Karnaugh Map

Karnaugh Maps

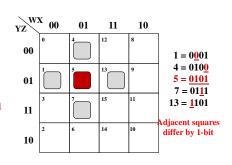
- Adjacent squares differ by 1-variable
 - This will allow us to use T10 = AB + AB'= A or T10' = (A+B')(A+B) = A

differ by 1-bit

3 Variable Karnaugh Map Difference in X: 010 & 110 x'yz' + xyz' yz' + xyz' yz' yz' + x'yz' = x'z' 0 = 000 2 = 010 Adjacent squares

 $3 = 01\underline{1}$ 6 = 110

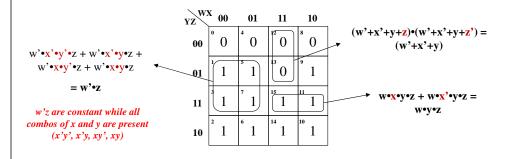
4 Variable Karnaugh Map



USC Viterbi 9.14

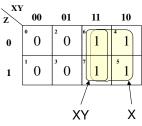
Karnaugh Maps

- 2 adjacent 1's (or 0's) differ by only one variable
- 4 adjacent 1's (or 0's) differ by two variables
- 8, 16, ... adjacent 1's (or 0's) differ by 3, 4, ... variables
- By grouping adjacent squares with 1's (or 0's) in them, we can come up with a simplified expression using T10 (or T10' for 0's)

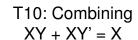


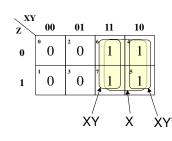
K-Map View of the Theorems

 The 2 & 3 variable theorems used to simplify expressions can be illustrated using K-Maps.



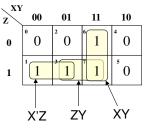
X "covers" XY so XY not needed





XY and XY' can be combined to form X

T11: Consensus XY + X'Z + ZY = XY + X'Z

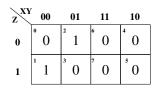


Don't need ZY if you have X'Z and XY

K-Map Grouping Rules

- Cover the 1's [=on-set] or 0's [=off-set] with ______
 groups as possible, but make those groups _____
 as possible
 - Make them as large as possible even if it means "covering"
 a 1 (or 0) that's already a member of another group
- Make groups of _______, ... and they must be rectangular or square in shape.
- Wrapping is legal

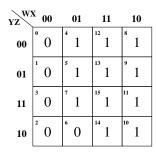
Group These K-Maps



ZXY	00	01	11	10
0	1	1	6 0	4 0
1	1	3 0	⁷ O	5 0

YZ WZ	X 00	01	11	10
00	0	4 0	1	1
01	1	⁵ 1	13	0
11	³ 1	⁷ 1	15	0
10	0	6 0	0	10 1

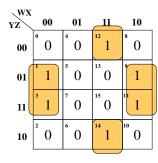
Karnaugh Maps

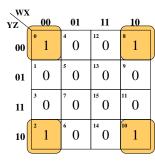


 Cover the remaining '1' with the largest group possible even if it "reuses" already covered 1's

Karnaugh Maps

- Groups can wrap around from:
 - Right to left
 - Top to bottom
 - Corners





F = X'Z + WXZ'

F = X'Z'

Group This

YZ WZ	× 00	01	11	10
00	0	4 0	0	8 0
01	1	1	13 0	, 1
11	1	1	15	1 1
10	1	1	14	10

K-Map Translation Rules

- When translating a group of 1's, find the variable values that are constant for each square in the group and translate only those variables values to a product term
- Grouping 1's yields SOP
- When translating a group of 0's, again find the variable values that are constant for each square in the group and translate only those variable values to a sum term
- Grouping 0's yields POS

Karnaugh Maps (SOP)

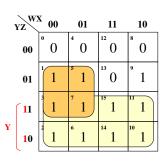
W	X	Υ	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

YZ WZ	X 00	01	11	10
00	0	4 0	0	⁸ 0
01	1	1	13 0	1
11	1	1	15	1
10	1	1	14	1

F =

Karnaugh Maps (SOP)

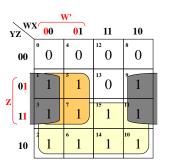
W	X	Y	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1



 $\mathbf{F} = \mathbf{Y}$

Karnaugh Maps (SOP)

W	X	Y	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1



F = Y + W'Z + ...

Karnaugh Maps (SOP)

W	X	Υ	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

		x,			х,
Y	zW	00	01	11	10
	00	0	4 0	0	8 0
	01	1	1	13 0	1
Z	11	1	1	15	1
	10	1	1	14	1

F = Y + W'Z + X'Z

Karnaugh Maps (POS)

W	X	Υ	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

YZ WZ	X 00	01	11	10
00	0	4 0	0	8 0
01	1	⁵ 1	13 0	1
11	1	1	15	1
10	1	1	14	10 1

F =

USC Viterbi School of Engineering 9.27

Karnaugh Maps (POS)

F	Z	Y	X	W
0	0	0	0	0
1	1	0	0	0
1	0	1	0	0
1	1	1	0	0
0	0	0	1	0
1	1	0	1	0
1	0	1	1	0
1	1	1	1	0
0	0	0	0	1
1	1	0	0	1
1	0	1	0	1
1	1	1	0	1
0	0	0	1	1
0	1	0	1	1
1	0	1	1	1
1	1	1	1	1

YZ	X 00	01	11	10
Y,Z 00	0	4 0	0	8 0
01	1	1	0	1
11	1	1	15 1	1
10	1	1	14	10 1

$$\mathbf{F} = (\mathbf{Y} + \mathbf{Z})$$

Karnaugh Maps (POS)

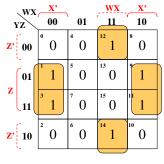
W	X	Y	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

,	wz wz	× 00	01	wx 11	10
	00	0	4 0	0	8 0
7	01	1	1	0	9 1
	11	1	1	15	1
	10	1	6 1	14	10 1

 $\mathbf{F} = (\mathbf{Y} + \mathbf{Z})(\mathbf{W'} + \mathbf{X'} + \mathbf{Y})$

Karnaugh Maps

- Groups can wrap around from:
 - Right to left
 - Top to bottom
 - Corners

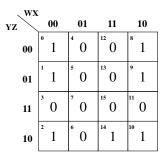


WX YZ	X' 00	01	11	X' 10
Z' 00	1	4 0	0	⁸ 1
01	0	5 0	13 0	9 0
11	3 0	⁷ 0	15 0	0
z ' 10	1	6 0	0	1
- (,		

F = X'Z + WXZ'

F = X'Z'

Exercises

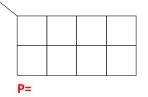


YZ WX	00	01	11	10
00	1	4 0	0	⁸ 1
01	1	5 0	13 0	1
11	3 0	⁷ 0	15 ()	0
10	1	6 0	14	1

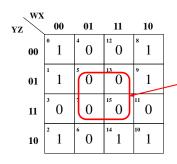
F_{SOP}=

F_{POS}=

P(x,y,z)=m2+m3+m5+m7



No Redundant Groups

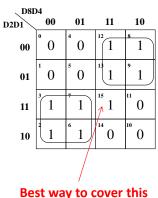


This group does not cover new squares that are not already part of another essential grouping

Multiple Minimal Expressions

For some functions,
 _____ groupings
 exist which will lead to
 alternate minimal

ernate minimal
______...Pick one

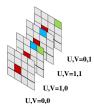


Best way to cover this '1'??

Karnaugh Maps Beyond 4 Variables

- Recall, K-Maps require an adjacency for each variable
 - To see the necessary adjacencies, 5 and 6 variable K-Maps can be thought of in three dimensions
- Can we have 7-variable K-Maps?
 - No! We would need to see 7 adjacencies per square and we humans cannot visualize 4 dimensions
- · Other computer-friendly minimization algorithms
 - Quine-McCluskey
 - · Still exponential runtime
 - · Minimization is NP-hard problem
 - Espresso-heuristic Minimizer
 - Achieves "good" minimization in far less time (may not be absolute minimal)

5 Variable K-Maps



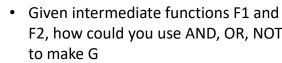
6 Variable K-Maps

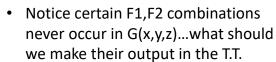
DON'T CARE OUTPUTS

Don't-Cares

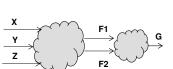
- Sometimes there are certain input combinations that are illegal (due to physical or other external constraints)
- The outputs for the illegal inputs are "don't-cares"
 - The output can either be 0 or 1 since the inputs can never occur
 - Don't-cares can be included in groups of 1 or groups of 0 when grouping in K-Maps
 - Use them to make as big of groups as possible

Use 'Don't care' outputs as wildcards (e.g. the blank tile in Scrabble™). They can be either 0 or 1 whatever helps make bigger groups to cover the ACTUAL 1's



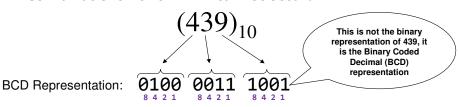


Х	Υ	Z	F1	F2	G
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	1	0	1
1	1	1	1	1	0



Invalid Input Combinations

- An example of where Don't-Cares may come into play is Binary Coded Decimal (BCD)
 - Rather than convert a decimal number to unsigned binary (i.e. summing increasing powers of 2) we can represent each decimal digit as a separate group of 4-bits (with weights 8,4,2,1 for each group of 4 bits)
 - Combinations 1010-1111 cannot occur!



Important: BCD represent each decimal digit with a separate group of bits

Don't Care Example

D8	D4	D2	D1	GT6
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	d
1	0	1	1	d
1	1	0	0	d
1	1	0	1	d
1	1	1	0	d
1	1	1	1	d

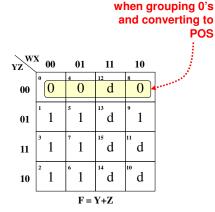
, D8E	04				•
D2D1	00	01	11	10	
00	0	4 0	¹² d	⁸ 1	GT6 _{SOP} =
01	0	5 0	¹³ d	1	GIU _{SOP} -
11	3 0	⁷ 1	15 d	" d	
10	0	6 0	¹⁴ d	o d	

D8I D2D1	00	01	11	10	
00	0	4 0	¹² d	⁸ 1	СТ6 -
01	0	5 0	13 d	1	GT6 _{POS} =
11	3 0	1	15 d	" d	
10	0	6 0	¹⁴ d	d d	

USC Viterbi 9.39

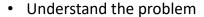
Don't Cares

			_	1_					
W	X	Y	Z	F					
0	0	0	0	0					Reuse "d's" to
0	0	0	1	1					make as large a
0	0	1	0	1				9	group as possible
0	0	1	1	1					to cover 1,5, & 9
0	1	0	0	0		YZ WX 00	01	11	10
0	1	0	1	1		0	4 _	12	8 _
0	1	1	0	1		00	0	d	
0	1	1	1	1		1	5 1	13	9 1 4
1	0	0	0	0		01 1	1	d	1)
1	0	0	1	1	,	11 3 1	7 1	15 d	"d
1	0	1	0	d		11	1		••••
1	0	1	1	d		10 2 1	1	¹⁴ d	10 d
1	1	0	0	d				7 1	
1		-	-				F =	Z + Y	:
	1	0	1	d					Use these 4 "d's'
1	1	1	0	d					to make a group
1	1	1	1	d					of 8

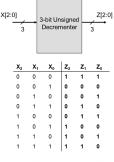


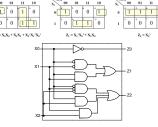
You can use "d's"

, Combinational Design Process



- How many input bits and their representation system
- How many output bits need be generated and what are their representation
- Draw a block diagram
- Write a truth table
- Use a K-map to derive an equation for EACH output bit
- Use the equation to draw a circuit for EACH output bit, letting each circuit run in parallel to produce their respective output bit





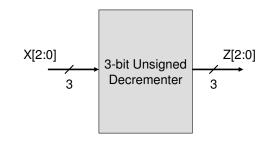
USC Viterbi 9.43 School of Engineering

Designing Circuits w/ K-Maps

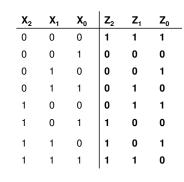
A GENERAL, COMBINATIONAL

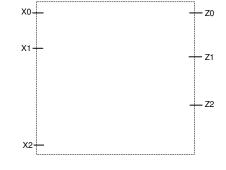
CIRCUIT DESIGN PROCESS

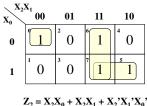
- Given a description...
 - Block Diagram
 - Truth Table
 - K-Map for each output bit (each output bit is a separate function of the inputs)
- 3-bit unsigned decrementer (Z = X-1)
 - If X[2:0] = 000 then Z[2:0] = 111, etc.



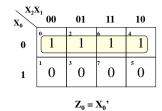
3-bit Number Decrementer







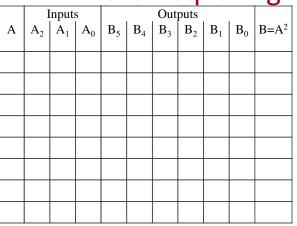
X_0	X ₁ 00	01	11	10	
0	1	0	6 0	1	
1	0	1	1	5 0	
	7	- x ' x	, _ x x	7.	

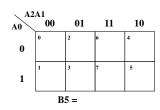


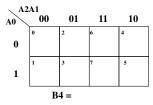
Squaring Circuit

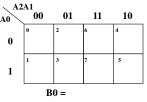
- Design a combinational circuit that accepts a 3-bit number and generates an output binary number equal to the square of the input number. (B = A²)
- Using 3 bits we can represent the numbers from to .
- The possible squared values range from _____ to
- Thus to represent the possible outputs we need how many bits?

3-bit Squaring Circuit

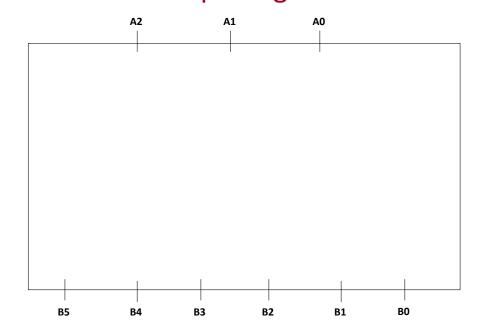








3-bit Squaring Circuit



If time permits...

FORMAL TERMINOLOGY FOR KMAPS

Terminology

- Implicant: A product term (grouping of 1's) that covers a subset of cases where F=1
 - the product term is said to "imply" F because if the product term evaluates to '1' then F='1'
- Prime Implicant: The largest grouping of 1's (smallest product term) that can be made
- Essential Prime Implicant: A prime implicant (product term) that is needed to cover all the 1's of F

Implicant Examples

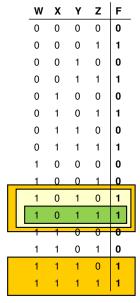
YZ WZ	x 00	01	11	10	
00	0	4 0	0	⁸ O	An implicant
01	1	1	13 0	0	Not PRIME because not as
11	1	⁷ 1	15	1 1	large as possible
10	0	6 0	14	10 1	

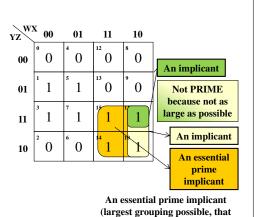
Implicant Examples

w	X	Υ	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

YZ WZ	X 00	01	11	10	
00	0	4 0	0	8 0	An implicant
01	1	1	13 0	0	Not PRIME because not as
11	1	⁷ 1	15	1	large as possible
10	0	6 0	14	10 1	An implicant

Implicant Examples

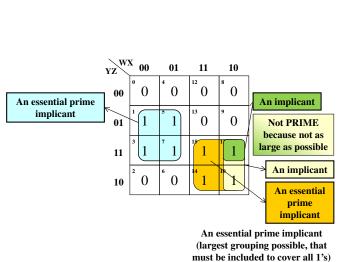




must be included to cover all 1's)

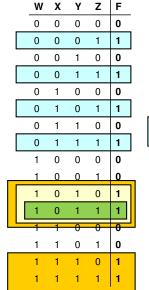
Implicant Examples

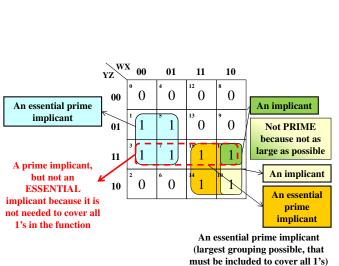
	W	Х	Υ	Z	F
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	1
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	1
	1	1	0	0	
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	1



USC Viterbi School of Engineering 9.54

Implicant Examples



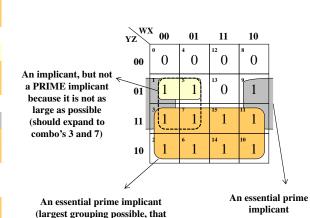


IISCVitarbi 9.56

Implicant Examples

must be included to cover all 1's)

F	Z	Y	X	W
0	0	0	0	0
1	1	0	0	0
1	0	1	0	0
1	1	1	0	0
0	0	0	1	0
1	1	0	1	0
1	0	1	1	0
1	1	1	1	0
0	0	0	0	1
1	1	0	0	1
1	0	1	0	1
1	1	1	0	1
0	0	0	1	1
0	1	0	1	1
1	0	1	1	1
1	1	1	1	1



K-Map Grouping Rules

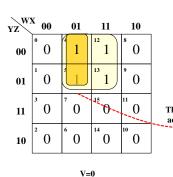
- Make groups (implicants) of 1, 2, 4, 8, ... and they must be rectangular or square in shape.
- Include the minimum number of essential prime implicants
 - Use only essential prime implicants (i.e. as few groups as possible to cover all 1's)
 - Ensure that you are using *prime* implicants (i.e. Always make groups as large as possible reusing squares if necessary)

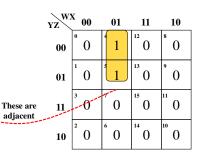
Informational: You won't be asked to perform 5- or 6-variable K-Maps

5- & 6-VARIABLE KMAPS

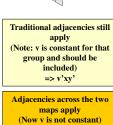
5-Variable Karnaugh Maps

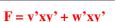
- To represent the 5 adjacencies of a 5-variable function [e.g. f(v,w,x,y,z)], imagine two 4x4 K-Maps stacked on top of each other
 - Adjacency across the two maps





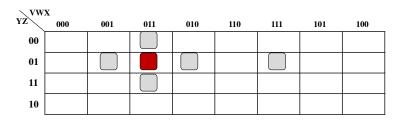
V=1





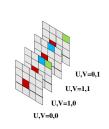
5-Variable K-Map

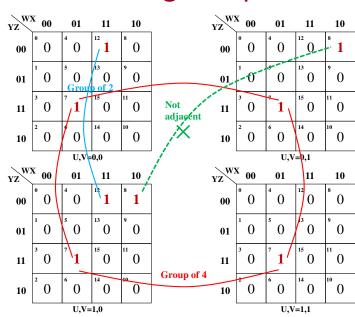
- If we have a 5-variable function we need a 32-square KMap.
- Will an 8x4 matrix work?
 - Recall K-maps work because adjacent squares differ by 1-bit
- How many adjacencies should we have for a given square?
- !! But drawn in 2 dimensions we can't have adjacencies.



6-Variable Karnaugh Maps

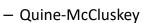
6 adjacencies for 6-variables (Stack of four 4x4 maps)





7-Variable K-maps and Other Techniques

- Can we have 7-variable K-Maps?
- No! We would need to see 7
 adjacencies per square and we humans
 cannot visualize 4 dimensions
- Other computer-friendly minimization algorithms



- Still exponential runtime
- Minimization is NP-hard problem
- Espresso-heuristic Minimizer
 - Achieves "good" minimization in far less time (may not be absolute minimal)

