
9.1

Unit 9

Implementing Combinational Functions with
Karnaugh Maps

9.2

Outcomes

• I can use Karnaugh maps to synthesize combinational functions
with several outputs

• I can determine the appropriate size and contents of a memory
to implement any logic function (i.e. truth table)

9.3

Covering Combinations

• A minterm corresponds to
("covers") 1 combination
of a logic function

• As we remove variables
from a product term, more
combinations are covered

– The product term will
evaluate to true regardless
of the removed variables
value (i.e. the term is
independent of that
variable)

W X Y Z F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F = WX'Z
= m9+m11

W X Y Z F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F = WX'YZ
= m11

9.4

Covering Combinations

• The more variables we can
remove the more
combinations a single product
term covers
– Said differently, a small term will

cover (or expand to) more
combinations

• The smaller the term, the
smaller the circuit
– We need fewer gates to check

for multiple combinations

• For a given function, how can
we find these smaller terms?

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F = X'
= m0+m1+m2+m3+m8+m9+m10+m11

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F = X'Z
= m1+m3+m9+m11

9.5

KARNAUGH MAPS

A new way to synthesize your logic functions

9.6

Logic Function Synthesis

• Given a function description as a T.T. or sum of minterm
(product of maxterm) form, how can we arrive at a circuit
implementation or equation (i.e. perform logic synthesis)?

• Methods
– Minterms / maxterms

• Use Boolean Algebra to find minimal 2-level implementation

– Karnaugh Maps [we will learn this one now]

• Graphical method amenable to human visual inspection and can be used for
functions of up to 6 variables (but becomes large and unwieldy after just 4
variables)

– Quine-McCluskey Algorithm (amenable to computer implementations

– Others: Espresso algorithm, Binary Decision Diagrams, etc.

9.7

Karnaugh Maps

• If used correctly, will always yield a minimal,
2-level implementation

– There may be a more minimal 3-level, 4-level, 5-
level… implementation but K-maps produce the
minimal two-level (SOP or POS) implementation

• Represent the truth table graphically as a
series of adjacent squares that allows a
human to see where variables can be removed

9.8

Gray Code

• Different than normal binary ordering

• Reflective code
– When you add the (n+1)th bit, reflect all the previous n-bit

combinations

• Consecutive code words differ by only 1-bit

0 0

0 1

1 1

1 0

when you move to

the next bit, reflect

the previous

combinations

2-bit Gray code

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

3-bit Gray code

differ by

only 1-bit

differ by

only 1-bit

differ by

only 1-bit

9.9

Karnaugh Map Construction

• Every square represents 1 input combination

• Must label axes in Gray code order

• Fill in squares with given function values

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 0 1 1

1 0 0 1

XY
Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

3 Variable Karnaugh Map

4 Variable Karnaugh MapF(x,y,z)=m1 + m4 + m5 + m6

G(w,x,y,z)=m1+m2+m3+m5+m6+m7+m9+

m10+m11+m14+m15X Y Z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

9.10

Karnaugh Maps
W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

9.11

Karnaugh Maps

• Squares with a '1' represent minterms that must be
included in the SOP solution

• Squares with a '0' represent maxterms that must be
included in the POS solution

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

Maxterm:

w’ + x + y + z

Maxterm:

 w’ + x’ + y + z

Minterm:

w•x’•y•z

Minterm:

w•x’•y•z’

9.12

Karnaugh Maps

• Groups (of 2, 4, 8, etc.) of adjacent 1’s will always
simplify to smaller product term than just individual
minterms

1 1 1 1

0 0 0 1

XY
Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

3 Variable Karnaugh Map

F=m0+m2+m4+m5+m6

= m0 + m2 + m6 + m4

= x’y’z’ + x’yz’ + xyz’ + xy’z’

= z’(x’y’ + x’y + xy + xy’)

= z’(x’(y’+y) + x(y+y’))

= z’(x’+x)

= z’

= m4 + m5

= xy’z’ + xy’z = xy’(z’+z)

= xy’

9.13

Karnaugh Maps

• Adjacent squares differ by 1-variable
– This will allow us to use T10 = AB + AB’= A or

T10’ = (A+B’)(A+B) = A

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

XY
Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

3 Variable Karnaugh Map 4 Variable Karnaugh Map

Difference in X: 010 & 110

Difference in Z: 010 & 011Difference in Y: 010 & 000

1 = 0001

4 = 0100

5 = 0101

7 = 0111

13 = 1101

Adjacent squares

differ by 1-bit
0 = 000

2 = 010

3 = 011

6 = 110

Adjacent squares

differ by 1-bit

x’yz’ + xyz’

= yz’

x’yz’ + x’yz

= x’y

x’yz’ + x’y’z’

= x’z’

9.14

Karnaugh Maps

• 2 adjacent 1’s (or 0’s) differ by only one variable

• 4 adjacent 1’s (or 0’s) differ by two variables

• 8, 16, … adjacent 1’s (or 0’s) differ by 3, 4, … variables

• By grouping adjacent squares with 1’s (or 0’s) in them, we can come up
with a simplified expression using T10 (or T10’ for 0’s)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

w•x•y•z + w•x’•y•z =

w•y•z

w’•x’•y’•z + w’•x’•y•z +

w’•x•y’•z + w’•x•y•z

= w’•z

w’z are constant while all

combos of x and y are present

(x’y’, x’y, xy’, xy)

(w’+x’+y+z)•(w’+x’+y+z’) =

(w’+x’+y)

9.15

K-Map View of the Theorems

0 0 1 1

0 0 1 1

XY

Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

T9: Covering

X + XY = X

0 0 1 0

1 1 1 0

00 01 11 10

0

1

0

1

2

3

6

7

4

5

0 0 1 1

0 0 1 1

00 01 11 10

0

1

0

1

2

3

6

7

4

5

XY

Z

XY

Z

• The 2 & 3 variable theorems used to simplify

expressions can be illustrated using K-Maps.

T10: Combining

XY + XY’ = X
T11: Consensus

XY + X’Z + ZY = XY + X’Z

XY X XY XY’X XYX’Z ZY

X “covers” XY so

XY not needed

XY and XY’ can be

combined to form X
Don’t need ZY if you

have X’Z and XY

9.16

K-Map Grouping Rules

• Cover the 1's [=on-set] or 0's [=off-set] with as few
groups as possible, but make those groups as large as
possible

– Make them as large as possible even if it means "covering"
a 1 (or 0) that's already a member of another group

• Make groups of 1, 2, 4, 8, ... and they must be
rectangular or square in shape.

• Wrapping is legal

9.17

Group These K-Maps

0 1 0 0

1 0 0 0

XY
Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

0 0 1 1

1 1 1 0

1 1 1 0

0 0 0 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

1 1 0 0

1 0 0 0

XY
Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

9.18

Karnaugh Maps

• Cover the remaining ‘1’ with the largest
group possible even if it “reuses” already
covered 1’s

0 1 1 1

0 1 1 1

0 1 1 1

0 0 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

9.19

Karnaugh Maps

• Groups can wrap around from:
– Right to left

– Top to bottom

– Corners

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

WX

YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 0 1 0

1 0 0 1

1 0 0 1

0 0 1 0

WX

YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

F = X’Z’F = X’Z + WXZ’

9.20

Group This

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

9.21

K-Map Translation Rules

• When translating a group of 1’s, find the variable
values that are constant for each square in the
group and translate only those variables values to a
product term

• Grouping 1’s yields SOP

• When translating a group of 0’s, again find the
variable values that are constant for each square in
the group and translate only those variable values
to a sum term

• Grouping 0’s yields POS

9.22

Karnaugh Maps (SOP)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

F =

9.23

Karnaugh Maps (SOP)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

F = Y

Y

9.24

Karnaugh Maps (SOP)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

F = Y + W’Z + …

Z

W’

9.25

Karnaugh Maps (SOP)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Z

X’

F = Y + W’Z + X’Z

X’

9.26

Karnaugh Maps (POS)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

F =

9.27

Karnaugh Maps (POS)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Y,Z

F = (Y+Z)

9.28

Karnaugh Maps (POS)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Y

F = (Y+Z)(W’+X’+Y)

WX

9.29

Karnaugh Maps

• Groups can wrap around from:
– Right to left

– Top to bottom

– Corners

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

WX

YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 0 1 0

1 0 0 1

1 0 0 1

0 0 1 0

WX

YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

X’X’

Z’

Z’

F = X’Z’

X’X’

Z

WX

Z’

Z’

F = X’Z + WXZ’

9.30

Exercises

1 0 0 1

1 0 0 1

0 0 0 0

1 0 1 1

WX

YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

1 0 0 1

1 0 0 1

0 0 0 0

1 0 1 1

WX

YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

FSOP= FPOS=

P=

P(x,y,z)=m2+m3+m5+m7

9.31

No Redundant Groups

1 0 0 1

1 0 0 1

0 0 0 0

1 0 1 1

WX

YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

This group does not
cover new squares that
are not already part of

another essential
grouping

9.32

Multiple Minimal Expressions

• For some functions,
multiple minimal
expressions (multiple
minimal groups) exist…Pick
one

0 0 1 1

0 0 1 1

1 1 1 0

1 1 0 0

WX

YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

Pick either one

9.33

Karnaugh Maps Beyond 4 Variables

• Recall, K-Maps require an adjacency for each
variable
– To see the necessary adjacencies, 5 and 6 variable K-

Maps can be thought of in three dimensions

• Can we have 7-variable K-Maps?
– No! We would need to see 7 adjacencies per square

and we humans cannot visualize 4 dimensions

• Other computer-friendly minimization algorithms
– Quine-McCluskey

• Still exponential runtime

• Minimization is NP-hard problem

– Espresso-heuristic Minimizer

• Achieves "good" minimization in far less time (may not be
absolute minimal)

U,V=0,0

U,V=1,0

U,V=1,1

U,V=0,1

V=1

V=0

6 Variable K-Maps

5 Variable K-Maps

9.34

DON'T CARE OUTPUTS

9.35

Don’t-Cares

• Sometimes there are certain input combinations that
are illegal (due to physical or other external
constraints)

• The outputs for the illegal inputs are “don’t-cares”

– The output can either be 0 or 1 since the inputs can never
occur

– Don’t-cares can be included in groups of 1 or groups of 0
when grouping in K-Maps

– Use them to make as big of groups as possible

Use 'Don't care' outputs as wildcards (e.g. the blank tile in ScrabbleTM).

They can be either 0 or 1 whatever helps make bigger groups to cover

the ACTUAL 1's

9.36

Combining Functions

• Given intermediate functions F1 and
F2, how could you use AND, OR, NOT
to make G

• Notice certain F1,F2 combinations
never occur in G(x,y,z)…what should
we make their output in the T.T.

X Y Z F1 F2 G

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 1 0 1

0 1 1 1 0 1

1 0 0 1 0 1

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 1 1 0

F1

F2

X

Y

Z

G

F1 F2 G

0 0

0 1

1 0

1 1

9.37

Invalid Input Combinations

• An example of where Don't-Cares may come into
play is Binary Coded Decimal (BCD)
– Rather than convert a decimal number to unsigned binary

(i.e. summing increasing powers of 2) we can represent
each decimal digit as a separate group of 4-bits (with
weights 8,4,2,1 for each group of 4 bits)

– Combinations 1010-1111 cannot occur!

(439)10

0100 0011 1001BCD Representation:

This is not the binary

representation of 439, it

is the Binary Coded

Decimal (BCD)

representation

Important: BCD represent each decimal digit with a

separate group of bits

8 4 2 18 4 2 18 4 2 1

9.38

Don’t Care Example

0 0 d 1

0 0 d 1

0 1 d d

0 0 d d

D8D4

D2D1 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

D8 D4 D2 D1 GT6

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 d

1 0 1 1 d

1 1 0 0 d

1 1 0 1 d

1 1 1 0 d

1 1 1 1 d

GT6SOP=

0 0 d 1

0 0 d 1

0 1 d d

0 0 d d

D8D4

D2D1 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

GT6POS=

9.39

Don’t Cares
W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 d

1 0 1 1 d

1 1 0 0 d

1 1 0 1 d

1 1 1 0 d

1 1 1 1 d

0 0 d 0

1 1 d 1

1 1 d d

1 1 d d

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

Reuse “d’s” to

make as large a

group as possible

to cover 1,5, & 9

Use these 4 “d’s”

to make a group

of 8

F = Z + Y

9.40

Don’t Cares
W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 d

1 0 1 1 d

1 1 0 0 d

1 1 0 1 d

1 1 1 0 d

1 1 1 1 d

0 0 d 0

1 1 d 1

1 1 d d

1 1 d d

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

You can use “d’s”

when grouping 0’s

and converting to

POS

F = Y+Z

9.41

A GENERAL, COMBINATIONAL
CIRCUIT DESIGN PROCESS

9.42

Combinational Design Process

• Understand the problem
– How many input bits and their

representation system

– How many output bits need be generated
and what are their representation

– Draw a block diagram

• Write a truth table

• Use a K-map to derive an equation for
EACH output bit

• Use the equation to draw a circuit for
EACH output bit, letting each circuit
run in parallel to produce their
respective output bit

X2

X1

X0

Z2

Z1

Z0

9.43

Designing Circuits w/ K-Maps

• Given a description…
– Block Diagram
– Truth Table
– K-Map for each output bit (each output bit is a separate function of

the inputs)

• 3-bit unsigned decrementer (Z = X-1)
– If X[2:0] = 000 then Z[2:0] = 111, etc.

3-bit Unsigned

Decrementer3

X[2:0] Z[2:0]

3

9.44

3-bit Number Decrementer
X2 X1 X0 Z2 Z1 Z0

0 0 0 1 1 1

0 0 1 0 0 0

0 1 0 0 0 1

0 1 1 0 1 0

1 0 0 0 1 1

1 0 1 1 0 0

1 1 0 1 0 1

1 1 1 1 1 0

1 0 1 0

0 0 1 1

X2X1

X0
00 01 11 10

0

1

0

1

2

3

6

7

4

5

Z2 = X2X0 + X2X1 + X2’X1’X0’

1 1 1 1

0 0 0 0

00 01 11 10

0

1

0

1

2

3

6

7

4

5

Z0 = X0’

1 0 0 1

0 1 1 0

00 01 11 10

0

1

0

1

2

3

6

7

4

5

Z1 = X1’X0’ + X1X0

X2X1

X0

X2X1

X0

X2

X1

X0

Z2

Z1

Z0

9.45

Squaring Circuit

• Design a combinational circuit that accepts a 3-bit
number and generates an output binary number
equal to the square of the input number. (B = A2)

• Using 3 bits we can represent the numbers from
______ to _____ .

• The possible squared values range from ______ to
______ .

• Thus to represent the possible outputs we need how
many bits? _______

9.46

3-bit Squaring Circuit

Inputs Outputs

A A2 A1 A0 B5 B4 B3 B2 B1 B0 B=A2

0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 1 1

2 0 1 0 0 0 0 1 0 0 4

3 0 1 1 0 0 1 0 0 1 9

4 1 0 0 0 1 0 0 0 0 16

5 1 0 1 0 1 1 0 0 1 25

6 1 1 0 1 0 0 1 0 0 36

7 1 1 1 1 1 0 0 0 1 49

0 0 1 0

0 0 1 0

A2A1

A0 00 01 11 10

0

1

0

1

2

3

6

7

4

5

B5 = A2A1

0 0 0 1

0 0

A2A1

A0 00 01 11 10

0

1

0

1

2

3

6

7

4

5

B4 = A2A0 + A2A1’

0 0 0 0

1 1 1 1

A2A1

A0 00 01 11 10

0

1

0

1

2

3

6

7

4

5

B0 = A0

1 1

9.47

3-bit Squaring Circuit
A2 A1 A0

B2 B1 B0B3B4B5

9.48

FORMAL TERMINOLOGY FOR
KMAPS

If time permits…

9.49

Terminology

• Implicant: A product term (grouping of 1’s) that
covers a subset of cases where F=1

– the product term is said to “imply” F because if the
product term evaluates to ‘1’ then F=‘1’

• Prime Implicant: The largest grouping of 1’s (smallest
product term) that can be made

• Essential Prime Implicant: A prime implicant
(product term) that is needed to cover all the 1’s of F

9.50

Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

An implicant

1

1
14

15 11

10

1

1

Not PRIME

because not as

large as possible

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

9.51

Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

An implicant

1

1
14

15 11

10

1

1

Not PRIME

because not as

large as possible

An implicant

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

9.52

Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

An essential prime implicant

(largest grouping possible, that

must be included to cover all 1’s)

An implicant

1

1
14

15 11

10

1

1

Not PRIME

because not as

large as possible

An implicant

An essential

prime

implicant

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

9.53

Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

An essential prime implicant

(largest grouping possible, that

must be included to cover all 1’s)

An implicant

1

1
14

15 11

10

1

1

Not PRIME

because not as

large as possible

An implicant

An essential

prime

implicant

An essential prime

implicant

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

9.54

Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

A prime implicant,

but not an

ESSENTIAL

implicant because it is

not needed to cover all

1’s in the function

An essential prime implicant

(largest grouping possible, that

must be included to cover all 1’s)

An implicant

1

1
14

15 11

10

1

1

Not PRIME

because not as

large as possible

An implicant

An essential

prime

implicant

An essential prime

implicant

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

9.55

Implicant Examples

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

An implicant, but not

a PRIME implicant

because it is not as

large as possible

(should expand to

combo’s 3 and 7)

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

An essential prime implicant

(largest grouping possible, that

must be included to cover all 1’s)

An essential prime

implicant

9.56

K-Map Grouping Rules

• Make groups (implicants) of 1, 2, 4, 8, ... and they
must be rectangular or square in shape.

• Include the minimum number of essential prime
implicants

– Use only essential prime implicants (i.e. as few groups as
possible to cover all 1’s)

– Ensure that you are using prime implicants (i.e. Always
make groups as large as possible reusing squares if
necessary)

9.57

5- & 6-VARIABLE KMAPS

Informational: You won't be asked to perform 5- or 6-variable K-Maps

9.58

5-Variable K-Map

• If we have a 5-variable function we need a 32-square KMap.

• Will an 8x4 matrix work?
– Recall K-maps work because adjacent squares differ by 1-bit

• How many adjacencies should we have for a given square?

• 5!! But drawn in 2 dimensions we can’t have 5 adjacencies.

VWX
YZ 000 001 011 010 110 111 101 100

00

01

11

10

9.59

5-Variable Karnaugh Maps

• To represent the 5 adjacencies of a 5-variable function [e.g.
f(v,w,x,y,z)], imagine two 4x4 K-Maps stacked on top of each
other
– Adjacency across the two maps

0 1 0

0 1 1 0

0 0 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 1 0 0

0 1 0 0

0 0 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

V=0 V=1

1

These are

adjacent

Traditional adjacencies still

apply

(Note: v is constant for that

group and should be

included)

=> v’xy’

Adjacencies across the two

maps apply

(Now v is not constant)

=> w’xy’

F = v’xy’ + w’xy’

9.60

6-Variable Karnaugh Maps

• 6 adjacencies
for 6-variables
(Stack of four
4x4 maps)

0 1 1

0 0 0 0

0 1 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

U,V=1,0 U,V=1,1

0

0 1 0

0 0 0 0

0 1 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 0 0 1

0 0 0 0

0 1 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

U,V=0,0 U,V=0,1

0

Not

adjacent

Group of 4

Group of 2

U,V=0,0

U,V=1,0

U,V=1,1

U,V=0,1

9.61

7-Variable K-maps and Other Techniques

• Can we have 7-variable K-Maps?

• No! We would need to see 7
adjacencies per square and we humans
cannot visualize 4 dimensions

• Other computer-friendly minimization
algorithms

– Quine-McCluskey
• Still exponential runtime

• Minimization is NP-hard problem

– Espresso-heuristic Minimizer
• Achieves "good" minimization in far less time

(may not be absolute minimal)

U,V=0,0

U,V=1,0

U,V=1,1

U,V=0,1

	Slide 1: Unit 9
	Slide 2: Outcomes
	Slide 3: Covering Combinations
	Slide 4: Covering Combinations
	Slide 5: Karnaugh Maps
	Slide 6: Logic Function Synthesis
	Slide 7: Karnaugh Maps
	Slide 8: Gray Code
	Slide 9: Karnaugh Map Construction
	Slide 10: Karnaugh Maps
	Slide 11: Karnaugh Maps
	Slide 12: Karnaugh Maps
	Slide 13: Karnaugh Maps
	Slide 14: Karnaugh Maps
	Slide 15: K-Map View of the Theorems
	Slide 16: K-Map Grouping Rules
	Slide 17: Group These K-Maps
	Slide 18: Karnaugh Maps
	Slide 19: Karnaugh Maps
	Slide 20: Group This
	Slide 21: K-Map Translation Rules
	Slide 22: Karnaugh Maps (SOP)
	Slide 23: Karnaugh Maps (SOP)
	Slide 24: Karnaugh Maps (SOP)
	Slide 25: Karnaugh Maps (SOP)
	Slide 26: Karnaugh Maps (POS)
	Slide 27: Karnaugh Maps (POS)
	Slide 28: Karnaugh Maps (POS)
	Slide 29: Karnaugh Maps
	Slide 30: Exercises
	Slide 31: No Redundant Groups
	Slide 32: Multiple Minimal Expressions
	Slide 33: Karnaugh Maps Beyond 4 Variables
	Slide 34: Don't Care Outputs
	Slide 35: Don’t-Cares
	Slide 36: Combining Functions
	Slide 37: Invalid Input Combinations
	Slide 38: Don’t Care Example
	Slide 39: Don’t Cares
	Slide 40: Don’t Cares
	Slide 41: A General, Combinational Circuit Design PRocess
	Slide 42: Combinational Design Process
	Slide 43: Designing Circuits w/ K-Maps
	Slide 44: 3-bit Number Decrementer
	Slide 45: Squaring Circuit
	Slide 46: 3-bit Squaring Circuit
	Slide 47: 3-bit Squaring Circuit
	Slide 48: Formal Terminology for KMaps
	Slide 49: Terminology
	Slide 50: Implicant Examples
	Slide 51: Implicant Examples
	Slide 52: Implicant Examples
	Slide 53: Implicant Examples
	Slide 54: Implicant Examples
	Slide 55: Implicant Examples
	Slide 56: K-Map Grouping Rules
	Slide 57: 5- & 6-Variable Kmaps
	Slide 58: 5-Variable K-Map
	Slide 59: 5-Variable Karnaugh Maps
	Slide 60: 6-Variable Karnaugh Maps
	Slide 61: 7-Variable K-maps and Other Techniques

