Unit 9

Implementing Combinational Functions with
Karnaugh Maps



Outcomes

| can use Karnaugh maps to synthesize combinational functions
with several outputs

| can determine the appropriate size and contents of a memory
to implement any logic function (i.e. truth table)



Covering Combinations

F=WX'YZ F= WX'Z

* A minterm corresponds to - = mg+mi1
" " . . W X Y Z |[|F W X Y Z |F
("covers") 1 combination o o o o —
of a logic function 0 0 0 1]o0 0 0 0 1o
0 0 1 0 0 0 0 1 0 0
* As we remove variables 0 0 1 1 o0 0o 0 1 1|0
f d 0 1 0 0 0 0 1 0 0 0
rom a pro uct term, more o 1 o 1 lo o 1 o 1 lo
combinations are covered 0 1 1 0 o 0 1 1 0 |o
0 1 1 1 0 0 1 1 1 0
— The product term will 1 0 0 o0 |0 1 0 0 0 |0
evaluate to true regardless 1 0 0 10 1 0 0 1 |1
. 1 0 1 0 0 1 0 1 0 0
of the removed variables DS DR
value (i.e. the termis 1 1 0 0 |0 1 1 0 o0 |0
independent of that 1 1 0 1|0 1 1 0 1|0
. bI ) 1 1 1 0 0 1 1 1 0 0
varia € 1 1 1 1 0 1 1 1 1 0
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Covering Combinations

F= X'Z F=X'

= ml+m3+m9+mil = mO0+ml+m2+m3+m8+m9+m10+mll

* The more variables we can

W X Y Z F W X Y Z F

remove the more P —— T o o o 1
combinations a single product [N EE o o o 1 |2
term covers 0 0 1 00 N

— Said differently, a small term will o 1 o0 o0 lo o 1 o0 o0 |o
cover (or expand to) more o 1 o 1 lo o 1 o0 1 |o
combinations o 1 1 o0 |o o 1 1 o0 |0

e The smaller the term, the S R
1 0 0 0 0 1 0 0 0 1

smaller the circuit 10 o0 1|1 1 0 o0 1 |1

— We need fewer gates to check 1 0 1 0 |0 i

for multiple combinations 10 111 oo 1 it

1 1 0 0 0 1 1 0 0 0

* For a given function, how can 1 1 0 1o 1 1 0 1o
we find these smaller terms? 1 1 1 00 1 1 1 00

1 1 1 1 0 1 1 1 1 0



A new way to synthesize your logic functions

KARNAUGH MAPS
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Logic Function Synthesis

e Given a function description as a T.T. or sum of minterm
(product of maxterm) form, how can we arrive at a circuit
implementation or equation (i.e. perform logic synthesis)?

e Methods

— Minterms / maxterms
e Use Boolean Algebra to find minimal 2-level implementation
— Karnaugh Maps [we will learn this one now]

e Graphical method amenable to human visual inspection and can be used for
functions of up to 6 variables (but becomes large and unwieldy after just 4
variables)

— Quine-McCluskey Algorithm (amenable to computer implementations
— Others: Espresso algorithm, Binary Decision Diagrams, etc.



Karnaugh Maps

 |f used correctly, will always yield a minimal,
2-level implementation

— There may be a more minimal 3-level, 4-level, 5-
level... implementation but K-maps produce the
minimal two-level (SOP or POS) implementation

* Represent the truth table graphically as a
series of adjacent squares that allows a
human to see where variables can be removed
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Gray Code

* Different than normal binary ordering

e Reflective code

— When you add the (n+1)t bit, reflect all the previous n-bit
combinations

* Consecutive code words differ by only 1-bit

O O O 0 O
differ b
] 4 0 1 \ when you move to O 0 1 _
only 1-bit ) _ differ b
1 1 " the next bit, reflect 0 1 1 ifrer by
the previous only 1-bit
1 0 combinations O 1 O
2-bit Gray code 110
1 1 1
differ by
1 0 1K oniy1-bit
1 0 O

3-bit Gray code



Karnaugh Map Construction

e Every square represents 1 input combination
 Must label axes in Gray code order
* Fill in squares with given function values

G(w,x,y,2)=m1l+m2+m3+m5+m6+m7+m9+

X Y Z |F m10+ml1l+ml14+ml5
WX
O 0 0O Sy Y7 00 01 11 10
o o0 111 Z 00 01 11 10 ; ., ” o
0 2 6 4 00 0 O O O
o 1 010 ol 0] 0| 1] 1
1 5 13 9
O 1 1|0 1 3 . 5 01 1 1 0 1
1 0 o0 |1 11700 ]| 1%
3 7 15 11
1 0 1|1 _ n| 1|1 |11
1 1 0 |1 3 Variable Karnaugh Map - - ” -
1 1 110 o 1] 1|11
F(x,y,z2)=m1 + m4 + m5 + m6 4 Variable Karnaugh Map
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Karnaugh Maps

F

11 10

01

WX 00

9
11

10

13
15

14

w X Y <Z




Karnaugh Maps

e Squares with a '1' represent minterms that must be

included in the SOP solution

e Squares with a '0' represent maxterms that must be

included in the POS solution

WX
00 01 11[ 10

00

01

11

10

Maxterm:
wW+x' +y+z

12

0

/

8

0

P

13

0

9

1

15

1

11

1

/W’+x+y+z

|

14

1

10

1

~

\>

Maxterm:

Minterm:
wex’eyez

Minterm:
Wox’oyoz’
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Karnaugh Maps

e Groups (of 2, 4, 8, etc.) of adjacent 1’s will always
simplify to smaller product term than just individual
minterms

F=m0+m2+m4+m5+m6

=m0+ m2+m6+m4
- X,y,Z’ + X,yZ’ + XyZ, + Xy’Z’

XY 00 01 11 10

0 .r_l____ ___1____ ___i___T_TJ:P/ =z’ (xX’y’ + X’y + Xy + Xy°)
- - - Ts : =2 (xX’(y’+y) + X(y+y’))
1 0] 0] 0|1 =2(x’+x)

= Z,
3 Variable Karnaugh Ma \
9 P =m4 + mb5

=xy’z’ + xy’z=xy’(z2’+z)
= Xy’
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Karnaugh Maps

* Adjacent squares differ by 1-variable

— This will allow us to use T10 = AB + AB’= A or
T10' = (A+B’)(A+B) = A

3 Variable Karnaugh Map 4 Variable Karnaugh Map
Difference in X: 010 & 110
x’yz’ + xyz’
XY 00 01 1 - W00 01 11 10
0 2 6 4 0 4 12 8
0 C]/ /‘ 00 D 1=0001
1 3 7 5 1 5 13 9 4 =0100
O « |00 | o
7=0111
: : : : ’ 7 S 13 = 1101
Difference in Y: 010 & 000 Difference in Z: 010 & 011 1 D -2
Xy +xy’z X’yz’ + x’yz djacent squares
=7’ 0 =000 =x’y 2 6 14 10 differ by 1-bit
2=010 Adjacent squares 10
3=011 differ by 1-bit

6= 110
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Karnaugh Maps

* 2 adjacent 1’s (or 0’s) differ by only one variable
* 4 adjacent 1’s (or 0’s) differ by two variables
8,16, ...adjacent 1’s (or 0’s) differ by 3, 4, ... variables

* By grouping adjacent squares with 1’s (or 0’s) in them, we can come up
with a simplified expression using T10 (or T10’ for Q’s)

W00 01 11 10
0 4 ] 8 (WX’ +y+z)o(w’+x’+y+z’) =
ol O] 0 (/0| O |~ (W)
W’ox’oy’oz —+ W’ox’oyoz —+
) ) ) 13 9
weeyztweaeyz -~ o 171 [To[ 1
= W’ez 7 1 11 wexeyez + wex’eyez =
ulll | (1] 1H— y y
w’z are constant while all — weyez
combos of x and y are present 2 6 14 10
(', X9, xp°, xp) o 111111
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K-Map View of the Theorems

 The 2 & 3 variable theorems used to simplify
expressions can be illustrated using K-Maps.

T9: Covering T10: Combining T11: Consensus
X + XY = X XY + XY’ = X XY + X'Z +ZY = XY + X'Z
XY XY XY
7 00 01 11 10 7 00 01 11 10 7 00 01 11 10

oOOZOleflw o olo] 0

B
100 M%J 11‘(#3/%50
[ T \

XY X XY X'7 7Y Y

,_\
OH
ow
=
o4 /Liﬁ

X “covers” XY so XY and XY’ can be Don’t need ZY if you
XY not needed combined to form X have X’'Z and XY



K-Map Grouping Rules

Cover the 1's [=on-set] or O's [=off-set] with as few

groups as possible, but make those groups as large as
possible

Make them as large as possible even if it means "covering"
a 1 (or 0) that's already a member of another group

Make groups of 1, 2, 4, 8, ... and they must be
rectangular or square in shape.

Wrapping is legal



XY

XY 00 01 11 10
oo 1]0]0
17000
XY 00 01 11 10
ol 1 ]1 |00
1000

%00 01 11 10
00 0 010 . 1 8 1
m| 112110
11 3 111 ; 1 ' 0
wlo0lolo]|1




Karnaugh Maps

WX
00 01 11 10

00 0 O 4/1 7 1\ g 1\
al o1 1)1
1171 0 \1 1 y 1

2 6 14 10

1000;_/

* Cover the remaining ‘1’ with the largest
group possible even if it “reuses” already

covered 1’s



Karnaugh Maps

Groups can wrap around from:

— Right to left
— Top to bottom
— Corners
WX
v 00 01 11 10
00 O 0 4 0 121 8 0
afl 2110 [0 [[1
11 3 1 7 0 15O 1 1
10 2 O 6 O 141 10 O

F=X"Z+WXZ’

WX
YZ

00

01

11

10

00 01 11 10

11001
N

ololo] o0

O O 15 0 11 0
14 qO

1ol 01

F=X72’



W00 01 11 10
ooOO 0 12O 8O
w| 111]0/1
nl 1111
ol 1111




K-Map Translation Rules

* When translating a group of 1’s, find the variable
values that are constant for each square in the
group and translate only those variables values to a
product term

e Grouping 1’s yields SOP

e When translating a group of 0’s, again find the
variable values that are constant for each square in
the group and translate only those variable values
to a sum term

* Grouping O’s yields POS
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Karnaugh Maps (SOP)
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Karnaugh Maps (SOP)

F

11 10

01

WX 00

w X Y <Z
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Karnaugh Maps (SOP)

F

W’

11 10

01

WX 00

F=Y+W7Z+...

w X Y <Z
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Karnaugh Maps (SOP)

L O O O O

=

N

o O B R R B

N

- o + +» O O

 + O O

o o —»r O +» O

R O +—» O

= ©O B kB L O

L = O O

X’ X’

—
S0 o1 1 " 10

0

| O

12 8

00

0
01 5 1\ 130

11 71 151
1

o |l1 11

F=Y+WZ+XZ
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Karnaugh Maps (POS)

F

11 10

01

WX 00

11

10

15

14

w X Y <Z
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Karnaugh Maps (POS)

/)
m_ o — — —i
bo o b S
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Karnaugh Maps (POS)

Sl{o]| || —d |
)
bo o 4 = Y
+
r o
WT__O Owll o
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N — O d O d — O —
> 1 O O «H O <« o
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Karnaugh Maps

* Groups can wrap around from:

— Right to left
— Top to bottom
— Corners
wx, XWX X
y2 . 00 01 11 10
Z ol 0] 0(1]O0
ortfl 1| O | O || 1
% & 7 15 1]
ulf 1/ 0| 0 || 1
z O] 0|10

110

F=X"Z+WXZ’

y2 00 01 11 10
Z’[oo 0 1 0 12O 8 1
) N
o1| O 0 0 0
11 3 0 0 150 ’ 0
2 h 14 qO
Z’[IO 1 0 0 1
F=X'Z’
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Exercises
WX WX
vz 00 01 11 10 vz 00 01 11 10
ol 1001 wl 11001
al 1001 al 110011
alolololo alolololo
10 2 1 6 O 141 10 1 10 2 1 O 141 10 1
Fsop= Fpos=

P(x,y,2)=m2+m3+m5+m7
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No Redundant Groups

WX
YZ 00 01 11 10

00 0 1 A'o - 0] i 1 This group does not
- : ” . cover new squares that
or| 1 |[O] O 1 1 | __— arenotalready part of
3 1 PR another essential
1 (0 ko OJ 0 grouping

0|/ 1 /0l 1 |1




WX

YZ

 For some functions,
multiple minimal
expressions (multiple
minimal groups) exist...Pick
one

00

01

11

10

00 01 11 10

‘0] 0 ﬁ

5 O :
(1 [(T]HT
0

anj

/

Pick either one




Karnaugh Maps Beyond 4 Variables

* Recall, K-Maps require an adjacency for each
variable
— To see the necessary adjacencies, 5 and 6 variable K-
Maps can be thought of in three dimensions
* Can we have 7-variable K-Maps?
— No! We would need to see 7 adjacencies per square
and we humans cannot visualize 4 dimensions

e Other computer-friendly minimization algorithms
— Quine-McCluskey

 Still exponential runtime
* Minimization is NP-hard problem
— Espresso-heuristic Minimizer

* Achieves "good" minimization in far less time (may not be
absolute minimal)

V=1

5 Variable K-Maps

6 Variable K-Maps



DON'T CARE OUTPUTS



Don’t-Cares

 Sometimes there are certain input combinations that
are illegal (due to physical or other external
constraints)

* The outputs for the illegal inputs are “don’t-cares”

— The output can either be 0 or 1 since the inputs can never
occur

— Don’t-cares can be included in groups of 1 or groups of O
when grouping in K-Maps

— Use them to make as big of groups as possible

Use 'Don't care' outputs as wildcards (e.g. the blank tile in Scrabble™).
They can be either 0 or 1 whatever helps make bigger groups to cover
the ACTUAL 1's
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Combining Functions

e Given intermediate functions F1 and

X
F2, how could you use AND, OR, NOT i@j
to make G Z 5

F2
* Notice certain F1,F2 combinations

never occur in G(x,y,z)...what should

we make their output in the T.T.

T
[N
T
N

—

Rl ]|O|O
RO |k, |O

Rlr|[rr|r|lolo|lo|o]x
Rlr|lololr|r|lolo]lx
Rrlo|lr|lolr|lolr|lo]lN

RlRr|lRr|Rr|[Rr]Rr|~,]|oO
PR|lO|j]O|J]O|]O|]O|O|O
olr|r|r|r|r|r|lo]lp

USC Vlterbl



Invalid Input Combinations

* An example of where Don't-Cares may come into
play is Binary Coded Decimal (BCD)

— Rather than convert a decimal number to unsigned binary
(i.e. summing increasing powers of 2) we can represent
each decimal digit as a separate group of 4-bits (with
weights 8,4,2,1 for each group of 4 bits)

— Combinations 1010-1111 cannot occur!
(439)40
N

BCD Representation: 90100 0011 f
8421

8421

This is not the binary

representation of 439, it

is the Binary Coded
Decimal (BCD)
representation

N

1001

Important: BCD represent each decimal digit with a
separate group of bits




i

I, TIS(Viterb

School of Engineering

Don’t Care Example
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Reuse “d’s” to
make as large a
group as possible
to cover 1,5, & 9

WX
00 01 11 10

ol O] 0| d|O

11 3“_ I 1 15d 11 d

F=Z+Y :
Use these 4 “d’s”
to make a group
of 8

P B B R P P PP O OO OO OO oS
P P P P O O O O F PP P P O O O O|X
P P O O R P O OFP P O OTUFPR P O O]
P O 0P O FRPr O P O FP OFP OFR O Fr O|N

O 0o o o o 9 Fr O Fr P P O PFP P PP O|m
—
o
|
-
-

o
o

(o]
-
»
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You can use “d’s”
when grouping 0’s
and converting to

POS

WX
00 01 11 10

0 4 12

0| [0 | O dao]‘ ........

HU:> ou| 1] 1]d|1

3 7 15 11

n| 1| 1]d]|d

2 6 14 10

ol 1| 1]d]|d

F=Y+Z

P B B R P P PP O OO OO OO oS
P P P P O O O O PFP PP PP PP O O O Of|Xx
P P O O FP P OO FP P O O FRP PP O O]
P O P O P O PFP O FP O FP OFFP O FrP Of|N
0O 0 0 0o o0 9 PFr O Fr P P O PR P R O|T




A GENERAL, COMBINATIONAL
CIRCUIT DESIGN PROCESS
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A_ Combinational Design Process _A

X[2:0] Z[2:0]

* Understand the problem -

— How many input bits and their 5| Decrementer [ 73
representation system

— How many output bits need be generated X X X |z Z 1z
and what are their representation O I
— Draw a block diagram O O
1 0 0 0 1 1
* Write a truth table 1o 1|10 o
1 1 0 1 0 1
* Use a K-map to derive an equation for o ne
EACH output bit BRI BT e
. . . o Po flafi o [T )0 vfofolol
* Use the equation to draw a circuit for e e -~
EACH output bit, letting each circuit ° D> g

run in parallel to produce their i ?B}D

respective output bit %D
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Designing Circuits w/ K-Maps

Given a description...

— Block Diagram
— Truth Table

— K-Map for each output bit (each output bit is a separate function of

the inputs)

3-bit unsigned decrementer (Z = X-1)

— If X[2:0] = 000 then Z[2:0] = 111, etc.

X[2:0]

N

.| 3-bit Unsigned

Decrementer

Z[2:0]

N



Pa

o

o o o0 |1 1 1
o 0o 1 |o 0 o | —o_>_|
X1= 'e |
o 1 o0 |o o0 1 1 — 7
o 1 1 |o 1 o
1 0 o0 |0 1 1 —Q:)_\_V\
e |
1 0 1 |1 o0 o0 N 72
Y ey
1 1 0 |1 o0 1 ) |
1 1 1 |1 1 o0
X2
X2X1 XZXI X2X1
00 01 11 10 x\_ 00 01 11 10 wN\_ 00 01 11 10
Q 2 6 4 2 6 4 0 2 6 4
(1) o |[1] 0 of [ )00 |@]) o|[T[T]1]TQ
1 3 7 5 1 3 7 5 1 3 7 5
O] 0 (|1 1 11 01(/12 ] 1|l O 1|1 0] 0] 0] O




Squaring Circuit

* Design a combinational circuit that accepts a 3-bit
number and generates an output binary number
equal to the square of the input number. (B = A?)

e Using 3 bits we can represent the numbers from
to

 The possible squared values range from to

* Thus to represent the possible outputs we need how
many bits?
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3-bit Squaring Circuit

Inputs Outputs
AlA |A |A|B|B,|B;|B,|B;| B, B=A?
0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 1 1
2 0 1 0 0 0 0 1 0 0 4
3 0 1 1 0 0 1 0 0 1 9
4 1 0 0 0 1 0 0 0 0 16
5 1 0 1 0 1 1 0 0 1 25
6 1 1 0 1 0 0 1 0 0 36
7 1 1 1 1 1 0 0 0 1 49

A2A1
AQ 00 01 11 10
0 2 6 4
ol Ol 0 |l1ll O
1 3 7 5
1101011l 0
B5 = A2A1l
A2A1
AN, 00 01 11 10
0 2 6 )
ol 0Ol 0|01
1 3 7 E
1|00 [1]1]
B4 =A2A0 + A2A1°
A2A1
AN, 00 01 11 10
0 2 6 4
ol 0Ol 0| 0] O
1 3 7 85
1 [1 1 | 1 1]




3-bit Squaring Circuit

A2 Al A0
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If time permits...

FORMAL TERMINOLOGY FOR
KMAPS



Terminology

* Implicant: A product term (grouping of 1’s) that
covers a subset of cases where F=1

— the product term is said to “imply” F because if the
product term evaluates to ‘1’ then F=1’

* Prime Implicant: The largest grouping of 1’s (smallest
product term) that can be made

e Essential Prime Implicant: A prime implicant
(product term) that is needed to cover all the 1’s of F
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Implicant Examples

WX
200 01 11 10
0 4 12 8
ol O] 0] 0|0 —
4 An implicant
1 5 13 9
o1 | 1 1 0 0 Not PRIME

because not as
3 7 15 1 )
11 1 1 1 large as possible

0] 0] 011

HHHHI—‘HI—‘I—‘OOOOOOOOE

P P P RP|lO]JlO O O R P B P OO O O|X
R~ »r o olkr|lr 0O O P OO PFrPr r o ol
r © r OlkRr|lO P O, O Fr O PFr O r OfN
r » o olr|lr 0 O O Fr O Fr O r ofmn
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Implicant Examples

W X Y Z |F

O 0 O 00

O 0 0 1 |1

O 0 1 00

O 0 1 1 |1

0 1 0 0|0 W% 00 01 11 10

oot 0t 00 O 0 4 0 12O 8 0

O 1 1 0|0 : 5 - 9 4 An implicant

o 1 1 11 on| 1|1 0]|0 Not PRIME

1 0 0 0 |oO ; - " . because not as
1 0 0o 1 lo 1 1 1 1 large as possible
1 0 1 0 |1 2 6 14 1 > An implicant
1 o0 1 111 0] 0] 0|1 m

1 1 0 0 |0

1 1 0 1 |0

1 1 1 0 |1

1 1 1 1 |1



- 00000000 USCViterbi
Implicant Examples

w X Y Z |F
O 0 O 0|0
O 0 0 1 (1
O 0 1 0|0
O 0 1 1 (1
O 1 0 0|0
O 1 0 1 (1
O 1 1 0|0
o 1 1 1 (1
1 0 O 0 |0
l 0 0 1 10
1 0 1 0 |1
1 0 1 1 |1
1 1 0 1 |0
1 1 1 0 |1
1 1 1 1 |1

School of Engineering

WX
YZ 00 01 11 10
0 12 3
ol O] 0] 010 —
4 An implicant
1 13 9
oo 1 1 )0]O0 Not PRIME
because not as
3 1 ¥ )
11 1 1 ’ 1 1 r large as possible
N\
2 « N —>{ An implicant
0] 010 1 _
\. An essential
prime
implicant

An essential prime implicant
(largest grouping possible, that
must be included to cover all 1’s)




- _________0_000__] USCXiﬁrbl
Implicant Examples

W X Y Z |F
O 0 O o0 |{Oo
O 0 0 1 |1
O 0 1 0 |{o0
O 0 1 1 |1
0 1 0 0|0 W% 00 01 11 10
O 1 0 1 |1 0 N 1 8
— ol O] 0] 0|0 —
O 1 1 0|0 An essential prime \ 4 An implicant
implicant ! 13 o
0 1 1 1|1 ooyl | 1] O | O Not PRIME
1 0 0 0|0 ; - - - because not as
1 0 0 1 lo 1 1 1| [ 1 1 r large as possible
N\
1 0 1 0|1 2 0 6 0 4N | Animplicant
10 l 1N
R \. An essential
+—+—6—06—716 prime
1 1 0 1 lo implicant
1 1 1 o0 |1 An essential prime implicant
(largest grouping possible, that
11 1 1)1 must be included to cover all 1’s)
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W X Y Z |F
O 0 O o0 |{Oo
O 0 0 1 |1
O 0 1 0 |{o0
O 0 1 1 |1
0 1 0 0|0 W% 00 01 11 10
O 1 0 1 |1 N 1 8
— ol O] 0] 0|0 —
O 1 1 0|0 An essential prime 4 An implicant
o 1 1 1 11 implicant \ 13 o
oo™l | 1] O | O Not PRIME
1 0 O 0|0 — = - because not as
1 0 0 1 lo 1 1 1 1 1 r large as possible
A prime implicant, = =<y —

1 0 1 0 |1 but not an 6 4 D > An implicant
1 o 1 1 I1 ESSENTIAL 10| 0 0 1 :

N . An essential
E—— implicant because it is \, rime
A not needed to cover all irr? licant
1 1 0 1|60 1’s in the function P
1 1 1 o0 |1 An essential prime implicant

(largest grouping possible, that

11 1 1)1 must be included to cover all 1’s)
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HHHHHHHI—‘OOOOOOOOE

Hr » B B O O O O F kP kP B O O O OfX

r P O O P P O O FP P O O PFP P O O

P O B O P O P O FP O FRP O FP O rFr O|N

P B O O P kP P O F P P O FP P PP O|m

00 01 11 10

0 4 12 8

ol O] 0] 0] O0

An implicant, but not . -
a PRIME implicant ST 1 1 1
. 01
because it is not as L 1
large as possible 3 A T
(should expand to npl |11 11

- ——— g ——

combo’s 3 and 7) | 5 m 10
10 11 1011 J

/

An essential prime implicant
(largest grouping possible, that
must be included to cover all 1°s)

13 9— [

An essential prime
implicant



K-Map Grouping Rules

« Make groups (implicants) of 1, 2, 4, 8, ... and they
must be rectangular or square in shape.

* Include the minimum number of essential prime
implicants

—  Use only essential prime implicants (i.e. as few groups as
possible to cover all 1's)

—  Ensure that you are using prime implicants (i.e. Always
make groups as large as possible reusing squares if
necessary)



Informational: You won't be asked to perform 5- or 6-variable K-Maps

5- & 6-VARIABLE KMAPS



5-Variable K-Map

* If we have a 5-variable function we need a 32-square KMap.
* Will an 8x4 matrix work?

— Recall K-maps work because adjacent squares differ by 1-bit

* How many adjacencies should we have for a given square?
e 5!l Butdrawn in 2 dimensions we can’t have 5 adjacencies.

VWX
YZ 000 001

00

01 [ ]

11

010 110 111 101 100

o
=
=

L@
]
]

10




i 15\t >
5-Variable Karnaugh Maps

* To represent the 5 adjacencies of a 5-variable function [e.g.
f(v,w,x,y,z)], imagine two 4x4 K-Maps stacked on top of each

other
— Adjacency across the two maps

WX 00 0 10 oW 00 01 11 10

YZ 1
0 1 8 0 12 8
00 0 1 0 00 0 0 0 Traditional adjacencies still
apply

11
4 12
1 1
1 O i 13 1 9 O 1 0 1 13 0 9 O (Note: v is constant for that
01 \ J 01 l J group and should be
Lre

e

included)

3 7 ~1§\ 11 3 - 15 11 => V,Xy,
1| 0] 0| 0. 0| Theeare 11l-0| 0| 0] O
........ adjacent ___--~ Adjacencies across the two
2 6 14 10 === 2 6 14 10 maps apply
10 O O O O 10 O O O O (Now v is not constant)
= W,Xy,

V=0 V=1 F= V’XY’ + W’Xy,



6-Variable Karnaugh Maps
W00 01 11 10 SWX 00 01 1 10
* 6 adjacencies 0 4 2 | 0 4 2 s
for 6-variables o) 010 /1 0 00| 0 /,..——0”" -
1 5 3 9 1 ’-—5' 13 9
(Stack of four onl 0| 0 L/ ol o 017010l 0
0L
4x4 maps) 3 7Gro !3{01‘(2411/ // s
0| O Not -~ 171 0] 2,] 0|0
adjaagént \
0 /’x 10l 0] O \ 0O
,', u,v=0,1
V4
10 / W% 00 01 |11 10
8 I' 0 4 1 8
1 oo| O] O 70 0
"0 01 0|0 ) 0|0
11 0 11 3 O 7 l/ 15 0 11 0
2 6 \14 Group of 4 L— |6 14 10
| oroupord
ol ool o]0 0|l 010|010
u,v=1,0 uv=11




7-Variable K-maps and Other Techniques

* Can we have 7-variable K-Maps?

* No! We would need to see 7
adjacencies per square and we humans
cannot visualize 4 dimensions

* Other computer-friendly minimization

algorithms
— Quine-McCluskey

 Still exponential runtime

* Minimization is NP-hard problem

— Espresso-heuristic Minimizer

* Achieves "good" minimization in far less time
(may not be absolute minimal)
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