
9.1

Unit 9

Implementing Combinational Functions with 
Karnaugh Maps
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Outcomes

• I can use Karnaugh maps to synthesize combinational functions 
with several outputs

• I can determine the appropriate size and contents of a memory 
to implement any logic function (i.e. truth table)



9.3

Covering Combinations

• A minterm corresponds to 
("covers") 1 combination 
of a logic function

• As we remove variables 
from a product term, more 
combinations are covered 

– The product term will 
evaluate to true regardless 
of the removed variables 
value (i.e. the term is 
independent of that 
variable)

W X Y Z F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F =  WX'Z
= m9+m11

W X Y Z F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F = WX'YZ
= m11
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Covering Combinations

• The more variables we can 
remove the more 
combinations a single product 
term covers
– Said differently, a small term will 

cover (or expand to) more 
combinations

• The smaller the term, the 
smaller the circuit
– We need fewer gates to check 

for multiple combinations

• For a given function, how can 
we find these smaller terms?

W X Y Z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F = X'
= m0+m1+m2+m3+m8+m9+m10+m11

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

F =  X'Z
= m1+m3+m9+m11



9.5

KARNAUGH MAPS

A new way to synthesize your logic functions



9.6

Logic Function Synthesis

• Given a function description as a T.T. or sum of minterm 
(product of maxterm) form, how can we arrive at a circuit 
implementation or equation (i.e. perform logic synthesis)?

• Methods
– Minterms / maxterms 

• Use Boolean Algebra to find minimal 2-level implementation

– Karnaugh Maps [we will learn this one now]

• Graphical method amenable to human visual inspection and can be used for 
functions of up to 6 variables (but becomes large and unwieldy after just 4 
variables)

– Quine-McCluskey Algorithm (amenable to computer implementations

– Others: Espresso algorithm, Binary Decision Diagrams, etc.
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Karnaugh Maps

• If used correctly, will always yield a minimal, 
2-level implementation

– There may be a more minimal 3-level, 4-level, 5-
level… implementation but K-maps produce the 
minimal two-level (SOP or POS) implementation

• Represent the truth table graphically as a 
series of adjacent squares that allows a 
human to see where variables can be removed
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Gray Code

• Different than normal binary ordering

• Reflective code
– When you add the (n+1)th bit, reflect all the previous n-bit 

combinations

• Consecutive code words differ by only 1-bit

0 0

0 1

1 1

1 0

when you move to 

the next bit, reflect 

the previous 

combinations

2-bit Gray code

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

3-bit Gray code

differ by 

only 1-bit

differ by 

only 1-bit

differ by 

only 1-bit
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Karnaugh Map Construction

• Every square represents 1 input combination

• Must label axes in Gray code order

• Fill in squares with given function values

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10
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9

11

10

0 0 1 1

1 0 0 1

XY
Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

3 Variable Karnaugh Map

4 Variable Karnaugh MapF(x,y,z)=m1 + m4 + m5 + m6

G(w,x,y,z)=m1+m2+m3+m5+m6+m7+m9+

m10+m11+m14+m15X Y Z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0
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Karnaugh Maps
W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3
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4
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6
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13

14

15
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9

11

10
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Karnaugh Maps

• Squares with a '1' represent minterms that must be 
included in the SOP solution

• Squares with a '0' represent maxterms that must be 
included in the POS solution

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

Maxterm:

w’ + x + y + z

Maxterm:

  w’ + x’ + y + z

Minterm:

w•x’•y•z

Minterm:

w•x’•y•z’
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Karnaugh Maps

• Groups (of 2, 4, 8, etc.) of adjacent 1’s will always 
simplify to smaller product term than just individual 
minterms

1 1 1 1

0 0 0 1

XY
Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

3 Variable Karnaugh Map

F=m0+m2+m4+m5+m6

= m0 + m2 + m6 + m4

= x’y’z’ + x’yz’ + xyz’ + xy’z’

= z’(x’y’ + x’y + xy + xy’)

= z’(x’(y’+y) + x(y+y’))

= z’(x’+x)

= z’

= m4 + m5 

= xy’z’ + xy’z = xy’(z’+z)

= xy’
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Karnaugh Maps

• Adjacent squares differ by 1-variable
– This will allow us to use T10 = AB + AB’= A  or 

T10’ = (A+B’)(A+B) = A

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

XY
Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

3 Variable Karnaugh Map 4 Variable Karnaugh Map

Difference in X: 010 & 110

Difference in Z: 010 & 011Difference in Y: 010 & 000

1 = 0001

4 = 0100

5 = 0101

7 = 0111

13 = 1101

Adjacent squares 

differ by 1-bit
0 = 000

2 = 010

3 = 011

6 = 110

Adjacent squares 

differ by 1-bit

x’yz’ + xyz’

= yz’

x’yz’ + x’yz

= x’y

x’yz’ + x’y’z’

= x’z’
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Karnaugh Maps

• 2 adjacent 1’s (or 0’s) differ by only one variable

• 4 adjacent 1’s (or 0’s) differ by two variables

• 8, 16, … adjacent 1’s (or 0’s) differ by 3, 4, … variables

• By grouping adjacent squares with 1’s (or 0’s) in them, we can come up 
with a simplified expression using T10 (or T10’ for 0’s)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

w•x•y•z + w•x’•y•z = 

w•y•z 

w’•x’•y’•z + w’•x’•y•z + 

w’•x•y’•z + w’•x•y•z 

= w’•z 

w’z are constant while all 

combos of x and y are present

(x’y’, x’y, xy’, xy)

(w’+x’+y+z)•(w’+x’+y+z’) = 

(w’+x’+y)
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K-Map View of the Theorems

0 0 1 1

0 0 1 1

XY

Z 00 01 11 10

0

1

0

1

2

3

6

7

4

5

T9: Covering

X + XY = X

0 0 1 0

1 1 1 0

00 01 11 10

0

1

0

1

2

3

6

7

4

5

0 0 1 1

0 0 1 1

00 01 11 10

0

1

0

1

2

3

6

7

4

5

XY

Z

XY

Z

• The 2 & 3 variable theorems used to simplify 

expressions can be illustrated using K-Maps.

T10: Combining

XY + XY’ = X
T11: Consensus

XY + X’Z + ZY = XY + X’Z

XY X XY XY’X XYX’Z ZY

X “covers” XY so

XY not needed

XY and XY’ can be 

combined to form X
Don’t need ZY if you

have X’Z and XY
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K-Map Grouping Rules

• Cover the 1's [=on-set] or 0's [=off-set] with as few 
groups as possible, but make those groups as large as 
possible

– Make them as large as possible even if it means "covering" 
a 1 (or 0) that's already a member of another group

• Make groups of 1, 2, 4, 8, ... and they must be 
rectangular or square in shape.

• Wrapping is legal 
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Group These K-Maps

0 1 0 0

1 0 0 0

XY
Z 00 01 11 10

0

1
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4

5

0 0 1 1

1 1 1 0

1 1 1 0

0 0 0 1

WX
YZ 00 01 11 10
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1 1 0 0

1 0 0 0

XY
Z 00 01 11 10

0

1

0
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7

4

5
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Karnaugh Maps

• Cover the remaining ‘1’ with the largest 
group possible even if it “reuses” already 
covered 1’s

0 1 1 1

0 1 1 1

0 1 1 1

0 0 1 1

WX
YZ 00 01 11 10

00
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11

10
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15
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10
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Karnaugh Maps

• Groups can wrap around from:
– Right to left

– Top to bottom

– Corners

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

WX

YZ 00 01 11 10

00
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10
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0 0 1 0

1 0 0 1

1 0 0 1

0 0 1 0

WX

YZ 00 01 11 10

00
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11
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0
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14

15

8

9

11

10

F = X’Z’F = X’Z + WXZ’
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Group This

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10
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10
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K-Map Translation Rules

• When translating a group of 1’s, find the variable 
values that are constant for each square in the 
group and translate only those variables values to a 
product term

• Grouping 1’s yields SOP 

• When translating a group of 0’s, again find the 
variable values that are constant for each square in 
the group and translate only those variable values 
to a sum term

• Grouping 0’s yields POS
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Karnaugh Maps (SOP)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3
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4
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6
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13

14

15
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11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

F =
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Karnaugh Maps (SOP)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3
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4

5

7

6

12

13

14

15
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11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

F = Y

Y
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Karnaugh Maps (SOP)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00
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W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

F = Y + W’Z + …

Z

W’
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Karnaugh Maps (SOP)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00
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W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Z

X’

F = Y + W’Z + X’Z

X’
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Karnaugh Maps (POS)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

F =
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Karnaugh Maps (POS)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1
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W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Y,Z

F = (Y+Z)
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Karnaugh Maps (POS)

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1
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W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Y

F = (Y+Z)(W’+X’+Y)

WX
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Karnaugh Maps

• Groups can wrap around from:
– Right to left

– Top to bottom

– Corners
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0 0 0 0

0 0 0 0
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X’X’

Z’

Z’

F = X’Z’

X’X’

Z

WX

Z’

Z’

F = X’Z + WXZ’
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Exercises

1 0 0 1
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0 0 0 0
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0 0 0 0
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FSOP= FPOS=

P=

P(x,y,z)=m2+m3+m5+m7
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No Redundant Groups

1 0 0 1

1 0 0 1

0 0 0 0

1 0 1 1
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This group does not 
cover new squares that 
are not already part of 

another essential 
grouping
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Multiple Minimal Expressions

• For some functions, 
multiple minimal 
expressions (multiple 
minimal groups) exist…Pick 
one

0 0 1 1

0 0 1 1

1 1 1 0

1 1 0 0
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YZ 00 01 11 10
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Pick either one
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Karnaugh Maps Beyond 4 Variables

• Recall, K-Maps require an adjacency for each 
variable
– To see the necessary adjacencies, 5 and 6 variable K-

Maps can be thought of in three dimensions

• Can we have 7-variable K-Maps?
– No!  We would need to see 7 adjacencies per square 

and we humans cannot visualize 4 dimensions

• Other computer-friendly minimization algorithms
– Quine-McCluskey

• Still exponential runtime 

• Minimization is NP-hard problem

– Espresso-heuristic Minimizer

• Achieves "good" minimization in far less time (may not be 
absolute minimal)

U,V=0,0

U,V=1,0

U,V=1,1

U,V=0,1

V=1

V=0

6 Variable K-Maps

5 Variable K-Maps
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DON'T CARE OUTPUTS
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Don’t-Cares

• Sometimes there are certain input combinations that 
are illegal (due to physical or other external 
constraints)

• The outputs for the illegal inputs are “don’t-cares”

– The output can either be 0 or 1 since the inputs can never 
occur

– Don’t-cares can be included in groups of 1 or groups of 0 
when grouping in K-Maps

– Use them to make as big of groups as possible

Use 'Don't care' outputs as wildcards (e.g. the blank tile in ScrabbleTM). 

They can be either 0 or 1 whatever helps make bigger groups to cover 

the ACTUAL 1's
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Combining Functions

• Given intermediate functions F1 and 
F2, how could you use AND, OR, NOT 
to make G

• Notice certain F1,F2 combinations 
never occur in G(x,y,z)…what should 
we make their output in the T.T.

X Y Z F1 F2 G

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 1 0 1

0 1 1 1 0 1

1 0 0 1 0 1

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 1 1 0

F1

F2

X

Y

Z

G

F1 F2 G

0 0

0 1

1 0

1 1
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Invalid Input Combinations

• An example of where Don't-Cares may come into 
play is Binary Coded Decimal (BCD)
– Rather than convert a decimal number to unsigned binary 

(i.e. summing increasing powers of 2) we can represent 
each decimal digit as a separate group of 4-bits (with 
weights 8,4,2,1 for each group of 4 bits)

– Combinations 1010-1111 cannot occur!

(439)10

0100 0011 1001BCD Representation:

This is not the binary 

representation of 439, it 

is the Binary Coded 

Decimal (BCD) 

representation

Important:  BCD represent each decimal digit with a 

separate group of bits

8 4 2 18 4 2 18 4 2 1
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Don’t Care Example

0 0 d 1

0 0 d 1

0 1 d d

0 0 d d

D8D4

D2D1 00 01 11 10
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D8 D4 D2 D1 GT6

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 d

1 0 1 1 d

1 1 0 0 d

1 1 0 1 d

1 1 1 0 d

1 1 1 1 d

GT6SOP=

0 0 d 1

0 0 d 1

0 1 d d

0 0 d d

D8D4

D2D1 00 01 11 10
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GT6POS=



9.39

Don’t Cares
W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 d

1 0 1 1 d

1 1 0 0 d

1 1 0 1 d

1 1 1 0 d

1 1 1 1 d

0 0 d 0

1 1 d 1

1 1 d d

1 1 d d

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

Reuse “d’s” to 

make as large a 

group as possible 

to cover 1,5, & 9

Use these 4 “d’s” 

to make a group 

of 8

F = Z + Y
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Don’t Cares
W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 d

1 0 1 1 d

1 1 0 0 d

1 1 0 1 d

1 1 1 0 d

1 1 1 1 d

0 0 d 0

1 1 d 1

1 1 d d

1 1 d d

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

You can use “d’s” 

when grouping 0’s 

and converting to 

POS

F = Y+Z
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A GENERAL, COMBINATIONAL 
CIRCUIT DESIGN PROCESS
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Combinational Design Process

• Understand the problem
– How many input bits and their 

representation system

– How many output bits need be generated 
and what are their representation

– Draw a block diagram

• Write a truth table

• Use a K-map to derive an equation for 
EACH output bit 

• Use the equation to draw a circuit for 
EACH output bit, letting each circuit 
run in parallel to produce their 
respective output bit

X2

X1

X0

Z2

Z1

Z0
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Designing Circuits w/ K-Maps

• Given a description…
– Block Diagram
– Truth Table
– K-Map for each output bit (each output bit is a separate function of 

the inputs)

• 3-bit unsigned decrementer (Z = X-1)
– If X[2:0] = 000 then Z[2:0] = 111, etc.

3-bit Unsigned

Decrementer3

X[2:0] Z[2:0]

3
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3-bit Number Decrementer
X2 X1 X0 Z2 Z1 Z0

0 0 0 1 1 1

0 0 1 0 0 0

0 1 0 0 0 1

0 1 1 0 1 0

1 0 0 0 1 1

1 0 1 1 0 0

1 1 0 1 0 1

1 1 1 1 1 0

1 0 1 0

0 0 1 1

X2X1

X0
00 01 11 10

0

1

0

1

2

3

6

7

4

5

Z2 = X2X0 + X2X1 + X2’X1’X0’ 

1 1 1 1

0 0 0 0

00 01 11 10

0

1

0

1

2

3

6

7

4

5

Z0 = X0’

1 0 0 1

0 1 1 0

00 01 11 10

0

1

0

1

2

3

6

7

4

5

Z1 = X1’X0’ + X1X0

X2X1

X0

X2X1

X0

X2

X1

X0

Z2

Z1

Z0
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Squaring Circuit

• Design a combinational circuit that accepts a 3-bit 
number and generates an output binary number 
equal to the square of the input number. (B = A2)

• Using 3 bits we can represent the numbers from 
______ to _____ .

• The possible squared values range from ______ to 
______ .

• Thus to represent the possible outputs we need how 
many bits? _______
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3-bit Squaring Circuit

Inputs Outputs

A A2 A1 A0 B5 B4 B3 B2 B1 B0 B=A2

0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 1 1

2 0 1 0 0 0 0 1 0 0 4

3 0 1 1 0 0 1 0 0 1 9

4 1 0 0 0 1 0 0 0 0 16

5 1 0 1 0 1 1 0 0 1 25

6 1 1 0 1 0 0 1 0 0 36

7 1 1 1 1 1 0 0 0 1 49

0 0 1 0

0 0 1 0

A2A1

A0 00 01 11 10

0

1

0

1

2

3

6

7

4

5

B5 = A2A1

0 0 0 1

0 0

A2A1

A0 00 01 11 10

0

1

0

1

2

3

6

7

4

5

B4 = A2A0 + A2A1’

0 0 0 0

1 1 1 1

A2A1

A0 00 01 11 10

0

1

0

1

2

3

6

7

4

5

B0 = A0

1 1
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3-bit Squaring Circuit
A2 A1 A0

B2 B1 B0B3B4B5
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FORMAL TERMINOLOGY FOR 
KMAPS

If time permits…



9.49

Terminology

• Implicant: A product term (grouping of 1’s) that 
covers a subset of cases where F=1

– the product term is said to “imply” F because if the 
product term evaluates to ‘1’ then F=‘1’

• Prime Implicant:  The largest grouping of 1’s (smallest 
product term) that can be made

• Essential Prime Implicant:  A prime implicant 
(product term) that is needed to cover all the 1’s of F
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Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

An implicant

1

1
14

15 11

10

1

1

Not PRIME 

because not as 

large as possible

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1
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Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

An implicant

1

1
14

15 11

10

1

1

Not PRIME 

because not as 

large as possible

An implicant

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1
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Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

An essential prime implicant 

(largest grouping possible, that 

must be included to cover all 1’s)

An implicant

1

1
14

15 11

10

1

1

Not PRIME 

because not as 

large as possible

An implicant

An essential 

prime 

implicant

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1
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Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

An essential prime implicant 

(largest grouping possible, that 

must be included to cover all 1’s)

An implicant

1

1
14

15 11

10

1

1

Not PRIME 

because not as 

large as possible

An implicant

An essential 

prime 

implicant

An essential prime 

implicant

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1
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Implicant Examples

0 0 0 0

1 1 0 0

1 1

0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

8

9

A prime implicant, 

but not an 

ESSENTIAL 

implicant because it is 

not needed to cover all 

1’s in the function

An essential prime implicant 

(largest grouping possible, that 

must be included to cover all 1’s)

An implicant

1

1
14

15 11

10

1

1

Not PRIME 

because not as 

large as possible

An implicant

An essential 

prime 

implicant

An essential prime 

implicant

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1
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Implicant Examples

0 0 0 0

1 1 0 1

1 1 1 1

1 1 1 1

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

An implicant, but not 

a PRIME implicant 

because it is not as 

large as possible 

(should expand to 

combo’s 3 and 7)

W X Y Z F

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

An essential prime implicant 

(largest grouping possible, that 

must be included to cover all 1’s)

An essential prime 

implicant
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K-Map Grouping Rules

• Make groups (implicants) of 1, 2, 4, 8, ... and they 
must be rectangular or square in shape.

• Include the minimum number of essential prime 
implicants 

– Use only essential prime implicants (i.e. as few groups as 
possible to cover all 1’s)

– Ensure that you are using prime implicants (i.e. Always 
make groups as large as possible reusing squares if 
necessary)
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5- & 6-VARIABLE KMAPS

Informational: You won't be asked to perform 5- or 6-variable K-Maps
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5-Variable K-Map

• If we have a 5-variable function we need a 32-square KMap.

• Will an 8x4 matrix work?
– Recall K-maps work because adjacent squares differ by 1-bit

• How many adjacencies should we have for a given square?

• 5!!  But drawn in 2 dimensions we can’t have 5 adjacencies.

VWX
YZ 000 001 011 010 110 111 101 100

00

01

11

10
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5-Variable Karnaugh Maps

• To represent the 5 adjacencies of a 5-variable function [e.g. 
f(v,w,x,y,z)], imagine two 4x4 K-Maps stacked on top of each 
other
– Adjacency across the two maps

0 1 0

0 1 1 0

0 0 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 1 0 0

0 1 0 0

0 0 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

V=0 V=1

1

These are 

adjacent

Traditional adjacencies still 

apply 

(Note: v is constant for that 

group and should be 

included) 

=> v’xy’

Adjacencies across the two 

maps apply 

(Now v is not constant)

=> w’xy’

F = v’xy’ + w’xy’



9.60

6-Variable Karnaugh Maps

• 6 adjacencies 
for 6-variables 
(Stack of four 
4x4 maps)

0 1 1

0 0 0 0

0 1 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

U,V=1,0 U,V=1,1

0

0 1 0

0 0 0 0

0 1 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

0 0 0 1

0 0 0 0

0 1 0 0

0 0 0 0

WX
YZ 00 01 11 10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

14

15

8

9

11

10

U,V=0,0 U,V=0,1

0

Not 

adjacent

Group of 4

Group of 2

U,V=0,0

U,V=1,0

U,V=1,1

U,V=0,1
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7-Variable K-maps and Other Techniques

• Can we have 7-variable K-Maps?

• No!  We would need to see 7 
adjacencies per square and we humans 
cannot visualize 4 dimensions

• Other computer-friendly minimization 
algorithms

– Quine-McCluskey
• Still exponential runtime 

• Minimization is NP-hard problem

– Espresso-heuristic Minimizer
• Achieves "good" minimization in far less time 

(may not be absolute minimal)

U,V=0,0

U,V=1,0

U,V=1,1

U,V=0,1
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