
8.1

Unit 8

Minterm and Canonical Sums

2- and 3-Variable Boolean Algebra Theorems

DeMorgan's Theorem

Simplification using Boolean Algebra

8.2

Duality

• As we progress in this unit, remember and
look for the idea of duality at work

• Duality says: A new, true statement could be
found from another by swapping:

– ____  ____

– ____  ____

X + 1 = 1

Original equation Dual

8.3

CHECKERS / DECODERS

8.4

Gates

• Gates can have more than 2 inputs but the operations stay
the same
– AND = output = 1 if ALL inputs are 1

• Outputs 1 for only 1 input combination

– OR = output = 1 if ANY input is 1
• Outputs 0 for only 1 input combination

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3-input AND 3-input OR

F
x

y

z

F
x

y

z

8.5

Checkers / Decoders

• An AND gate only outputs ‘1’ for 1 combination
– That combination can be changed by adding inverters to the inputs

– We can think of the AND gate as “checking” or “decoding” a specific
combination and outputting a ‘1’ when it matches.

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

F
x

y

z

X Y Z F

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

F
x

y

z

Add inverters to

create an AND gate

decoding

(checking for)

combination 101

Add inverters to

create an AND gate

decoding

(checking for)

combination 000

8.6

Checkers / Decoders

• Place inverters at the input of the AND gates such
that
– F produces ‘1’ only for input combination {x,y,z} = {_____}

– G produces ‘1’ only for input combination {x,y,z} = {_____}

X Y Z F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

F
x

y

z

X Y Z G

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

G
x

y

z

AND gate decoding

(checking for)

combination ____

AND gate decoding

(checking for)

combination ____

8.7

Checkers / Decoders

• An OR gate only outputs ‘0’ for 1 combination
– That combination can be changed by adding inverters to the inputs

– We can think of the OR gate as “checking” or “decoding” a specific
combination and outputting a ‘0’ when it matches.

Add inverters to

create an OR gate

decoding

(checking for)

combination 010

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

F
x

y

z

Add inverters to

create an OR gate

decoding

(checking for)

combination 110

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

F
x

y

z

8.8

Circuit Design and Analysis

• There are two basic tasks as a digital design engineer…
– Circuit Design/Synthesis: Take a set of requirements or functional

descriptions and arrive at a logic circuit

– Circuit Analysis: Given a logic circuit, find or verify the logic function it
implements

Problem

specification and

requirements

Truth Tables

Circuits and

Equationsx

y
z

z
y
x

z
y
x

F

A

B

C

Circuit Analysis

Circuit Design

Canonical Sums/Products

Boolean Algebra

Karnaugh Maps

CAD tools

8.9

SYNTHESIZING LOGIC FUNCTIONS

8.10

The Problem

• The goal of this unit is to teach you how you can take ANY
logic function expressed as a _____________ and design a
digital circuit to implement that logic function

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

P
ri

m
e
s
 b

e
tw

e
e
n

 0
-7

I3 I2 I1 C1 C0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1
’s

 C
o

u
n

t

(A
d

d
it

io
n

)
o

f
In

p
u

ts

x

z

x

y

P

? ?

This Photo by Unknown Author is licensed under CC BY-SA-NC

How can I find a circuit

that implements this

truth table?

http://etmooc.org/hub/tag/animated-gif/
https://creativecommons.org/licenses/by-nc-sa/3.0/

8.11

Two Approaches: Minterms & Maxterms

• Because of duality, there are at least two ways
to implement any circuit

• Using ______ gate checkers
(aka product- or "_____" terms)

– Then combining their results with a single OR gate

• Using ______ gate checkers
(aka sum- or "_____" terms)

– Then combining their results with a single AND gate

8.12

Using AND Gates (Minterms) to Implement
Functions

• Given an any logic function, it can be
implemented with the superposition of AND
gate decoders/checkers

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

8.13

Using AND Gates (Minterms) to Implement
Functions

• Generate an AND gate checker ("minterm")
for each combination where the output of the
logic function evaluates to 1 (i.e. F=1)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

x

y
z

m2

8.14

Using AND Gates (Minterms) to Implement
Functions

• Generate an AND gate checker ("minterm")
for each combination where the output of the
logic function evaluates to 1 (i.e. F=1)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2 m4

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 0 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 0 0

x

y
z

z
y
x

m2

m4

8.15

Using AND Gates (Minterms) to Implement
Functions

• Generate an AND gate checker ("minterm")
for each combination where the output of the
logic function evaluates to 1 (i.e. F=1)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2 m4 m7

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 1 0 0

0 1 1 0 0 0

1 0 0 0 1 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 1

x

y
z

z
y
x

z
y
x

m2

m4

m7

8.16

Using AND Gates (Minterms) to Implement
Functions

• Then, OR together all outputs of the AND gate
checkers to form the overall function output

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2 m4 m7 F

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 1 0 0 1

0 1 1 0 0 0 0

1 0 0 0 1 0 1

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 1 1

x

y
z

z
y
x

z
y
x

F

m2

m4

m7

8.17

Using AND Gates (Minterms) to Implement
Functions

• Test it by plugging in combinations that should cause
F=1

– As long as one AND gate outputs 1, the output will be 1

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2 m4 m7 F

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 1 0 0 1

0 1 1 0 0 0 0

1 0 0 0 1 0 1

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 1 1

x

y
z

z
y
x

z
y
x

F

m2

m4

m7

F(1,0,0) = 1

1

0
0

0
0
1

0
0
1

1

0

1

0

8.18

Using AND Gates (Minterms) to Implement
Functions

• Test it by plugging in combinations that should cause
F=1

– As long as one AND gate outputs 1, the output will be 1

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2 m4 m7 F

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 1 0 0 1

0 1 1 0 0 0 0

1 0 0 0 1 0 1

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 1 1

x

y
z

z
y
x

z
y
x

F

m2

m4

m7

F(0,1,0) = 1

0

1
0

0
1
0

0
1
0

1

1

0

0

8.19

Using AND Gates (Minterms) to Implement
Functions

• Test it by plugging in combinations that should cause
F=0

– All AND gates output 0, thus the OR gate will output 0

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2 m4 m7 F

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 1 0 0 1

0 1 1 0 0 0 0

1 0 0 0 1 0 1

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 1 1

x

y
z

z
y
x

z
y
x

F

m2

m4

m7

F(0,1,1) = 0

0

1
1

1
1
0

1
1
0

0

0

0

0

8.20

Minterms

• An n-input combinational function can be described with
2n row truth table

• Each row in the truth table (input combination) has a
unique logic expression (i.e. an AND gate) that only
evaluates to '1' for that combination
– This logic expression is known as a minterm

n

inputs Circuit

2n row

truth table

ഥ𝒙 ∙ 𝒚 ∙ ത𝒛

𝒙 ∙ 𝒚 ∙ 𝒛

8.21

Applying Minterms to Synthesize a Function

• Each numbered minterm checks whether the inputs are equal
to the corresponding combination. When the inputs are
equal, the minterm will evaluate to 1 and thus the whole
function will evaluate to 1.

x y z P
0 0 0 0
0 0 1 0 use…
0 1 0 1 m2

0 1 1 1 m3

1 0 0 0
1 0 1 1 m5

1 1 0 0
1 1 1 1 m7

P = m2 + m3 + m5 + m7

 = x’yz’ + x’yz + xy’z + xyz

when x,y,z = {0,1,0} = 2 then

 P = 0’•1•0’ + 0’•1•0 + 0•1’•0 + 0•1•0

 = 1 + 0 + 0 + 0 = 1

when x,y,z = {1,0,1} = 5 then

 P = 1’•0•1’ + 1’•0•1 + 1•0’•1 + 1•0•1

 = 0 + 0 + 1 + 0 = 1

when x,y,z = {0,0,1} = 1 then

 P = 0’•0•1’ + 0’•0•1 + 0•0’•1 + 0•0•1

 = 0 + 0 + 0 + 0 = 0

x
y
z

x
y
z

x
y
z

x
y
z

P

8.22

AN ALTERNATIVE

Using OR-gate checkers

8.23

OR-Gate Checkers / Decoders

• An OR gate only outputs ‘0’ for a single combination
– That combination can be changed by adding inverters to the inputs

– We can think of the OR gate as “checking” or “decoding” a specific
combination and outputting a ‘0’ when it matches.

OR gate decoding

(checking for)

combination 010

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

F
x

y

z

OR gate decoding

(checking for)

combination 110

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

F
x

y

z

8.24

Using OR Checkers to Implement Functions

• Given an any logic function, it can be
implemented with the superposition of OR-gate
checkers/decoders (aka "sum or maxterms")

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

8.25

Using OR Checkers to Implement Functions

• Generate an OR gate checker ("maxterm") for
each combination where the output of the
logic function evaluates to 0 (i.e. G=0)

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

M1x
y
z

8.26

Using OR Checkers to Implement Functions

• Generate an OR gate checker ("maxterm") for
each combination where the output of the
logic function evaluates to 0 (i.e. G=0)

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4

0 0 0 1 1

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

M1x
y
z

x
y
z

M4

8.27

Using OR Checkers to Implement Functions

• Generate an OR gate checker ("maxterm") for
each combination where the output of the
logic function evaluates to 0 (i.e. G=0)

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6

0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 1 1 1

0 1 1 1 1 1

1 0 0 1 0 1

1 0 1 1 1 1

1 1 0 1 1 0

1 1 1 1 1 1

M1x
y
z

x
y
z

M6x
y
z

M4

8.28

Using OR Checkers to Implement Functions

• Then, AND together all outputs of the OR gate
checkers to form the overall function output

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6 G

0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 1 1

G

Ax
y
z

x
y
z

Cx
y
z

B

M1

M6

M4

8.29

Using OR Checkers to Implement Functions

• Test it by plugging in combinations that should cause
G=0

– As long as one OR gate outputs 0, the output will be 0

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6 G

0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 1 1

G

Ax
y
z

x
y
z

Cx
y
z

B

F(0,0,1) = 0

0

0
1

1
0
0

1
0
0

0

1

1

0

M1

M6

M4

8.30

Using OR Checkers to Implement Functions

• Test it by plugging in combinations that should cause
G=0

– As long as one OR gate outputs 0, the output will be 0

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6 G

0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 1 1

G

Ax
y
z

x
y
z

Cx
y
z

B

F(1,1,0) = 0

1

1
0

0
1
1

0
1
1

1

0

1

0

M1

M6

M4

8.31

Using OR Checkers to Implement Functions

• Test it by plugging in combinations that should cause
G=1

– All OR gates output 1, thus the AND gate will output 1

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6 G

0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 1 1

G

Ax
y
z

x
y
z

Cx
y
z

B

F(1,0,1) = 1

1

0
1

1
0
1

1
0
1

1

1

1

1

M1

M6

M4

8.32

Applying Maxterms to Synthesize a Function

• Each output that should produce a '0' can be checked-for with an
OR gate
– We refer to that OR-gate checker as a Maxterm of the function (Mi) where i

represents the decimal value of the binary combination being checked

• We then AND together the maxterms

x y z P use…
0 0 0 0 M0

0 0 1 0 M1

0 1 0 1
0 1 1 1
1 0 0 0 M4

1 0 1 1
1 1 0 0 M6

1 1 1 1

P = M0 • M1 • M4 • M6

 = (x+y+z) • (x+y+z’) • (x’+y+z) • (x’+y’+z)

when x,y,z = {0,0,1} = 1 then

 P = (0+0+1) • (0+0+1’) • (0’+0+1) • (0’+0’+1)

 = 1 • 0 • 1 • 1 = 0

when x,y,z = {1,1,0} = 6 then

 P = (1+1+0) • (1+1+0’) • (1’+1+0) • (1’+1’+0)

 = 1 • 1 • 1 • 0 = 0

when x,y,z = {1,1,1} = 7 then

 P = (1+1+1) • (1+1+1’) • (1’+1+1) • (1’+1’+1)

 = 1 • 1 • 1 • 1 = 1

x
y
z

x
y
z

x
y
z

x
y
z

P

8.33

Defining Min-/Max-terms

• Below are the min-/max-terms for a function of 3-inputs: x,y,z

• Given a desired output, the designer could choose to include
the appropriate set of min-/max-terms

Inputs Min-/Max-term Outputs

Row # Abbrev Min-/Max-term Expression x y z m0/
M0

m1/
M1

m2/
M2

m3/
M3

m4/
M4

m5/
M5

m6/
M6

m7/
M7

0 m0/M0 x'•y'•z' / x+y+z 0 0 0 1/0 0/1 0/1 0/1 0/1 0/1 0/1 0/1

1 m1/M1 x'•y'•z / x+y+z' 0 0 1 0/1 1/0 0/1 0/1 0/1 0/1 0/1 0/1

2 m2/M2 x'•y•z' / x+y'+z 0 1 0 0/1 0/1 1/0 0/1 0/1 0/1 0/1 0/1

3 m3/M3 x'•y•z / x+y'+z' 0 1 1 0/1 0/1 0/1 1/0 0/1 0/1 0/1 0/1

4 m4/M4 x•y'•z' / x'+y+z 1 0 0 0/1 0/1 0/1 0/1 1/0 0/1 0/1 0/1

5 m5/M5 x•y'•z / x'+y+z' 1 0 1 0/1 0/1 0/1 0/1 0/1 1/0 0/1 0/1

6 m6/M6 x•y•z' / x'+y'+z 1 1 0 0/1 0/1 0/1 0/1 0/1 0/1 1/0 0/1

7 m7/M7 x•y•z / x'+y'+z' 1 1 1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/0

8.34

2- AND 3-VARIABLE THEOREMS

Finding simplified equations and circuits

8.35

Why Boolean Algebra

• We can now convert any truth table into an
equation and circuit by using minterms or
maxterms

• But minterms/maxterms yield the _________
equation/circuit

• By starting with sum of minterm (product of
maxterm) form and then using
_________________ to simplify, we can arrive
and smaller (even minimal) circuits

8.36

2 & 3 Variable Theorems

T6 X+Y = Y+X T6' X•Y = Y•X Commutativity

T7 (X+Y)+Z = X+(Y+Z) T7' (X•Y)•Z = X•(Y•Z) Associativity

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ Distribution &

Factoring

T9 X + XY = X T9’ X(X+Y) = X Covering

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X Combining

T11 XY + X’Z + YZ =

 XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) =

 (X+Y)(X’+Z)

Consensus

DM (X+Y)' = X'•Y' DM' (X•Y)'=X'+Y' DeMorgan's

8.37

Proofs Through Other Theorems

• Prove T9: X + XY = X

• Prove T10: XY + XY' = X

• Prove T10': (X+Y)(X+Y')=X

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ =

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) =

(X+Y)(X’+Z)

OR

8.38

Logic Synthesis

• Describe the function
– Usually with a truth table

• Find the sum of minterm (or product of
maxterm) expression

• Use Boolean Algebra (T8-T11) to find a
simplified expression

8.39

Synthesize/Simplify Exercise 1

• Synthesize this function
– First generate the canonical sum

– Then use theorems to simplify

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

P
ri

m
e

s
 b

e
tw

e
e

n
 0

-7

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ =

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) =

(X+Y)(X’+Z)

• P =

8.40

Synthesize/Simplify Exercise 2a

• Synthesize each output
separately
– First generate the canonical prod.

– Then use theorems to simplify

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ =

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) =

(X+Y)(X’+Z)

A B C G1 G0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Encode the highest input ID

(ie. 3, 2, or 1) that is ON (=1)

• G1 =

• G0 =

8.41

Synthesize/Simplify Exercise 2b

• Synthesize each output
separately
– First generate the canonical sum

– Then use theorems to simplify

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ =

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) =

(X+Y)(X’+Z)

A B C G1 G0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Encode the highest input ID

(ie. 3, 2, or 1) that is ON (=1)

• G1 = m2 + m3 + m4 + m5 + m6 + m7

– A'BC' + A'BC + AB'C' + AB'C + ABC' + ABC

– [T3 (A = A + A) allows us to replicate m6 and m7 (ABC' + ABC)]

– A'BC' + A'BC + ABC' + ABC + AB'C' + AB'C + ABC' + ABC

– B(A'C' +A'C + AC' + AC) + A(B'C' + B'C + BC' + BC) [T8]

– B(A'(C'+C) + A(C'+C)) + A(B'(C+C') + B(C' + C)) [T8/T5 or T10]

– B(A'+ A) + A(B' + B) [T8/T5] = B + A [Final Answer]

• G0 = m1 + m4 + m5 + m6 + m7

– A'B'C + AB'C' + AB'C + ABC' + ABC

– A'B'C + AB'C + AB'C' + AB'C + ABC' + ABC [Use T3 to replicate m5]

– B'C(A' + A) + A(B'C' + B'C + BC' + BC) [T8]

– B'C + A [T8/T5 or T10] = B'C + A [Final Answer]

8.42

Synthesize/Simplify Exercise 3 (Optional)

• Synthesize each output
separately
– First generate the canonical sum

– Then use theorems to simplify

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ =

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) =

(X+Y)(X’+Z)

A B C C1 C0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1
’s

 C
o

u
n

t
o

f
In

p
u

ts

• C1 =

• C0 = m1 + m2 + m4 + m7

– A'B'C + A'BC' + AB'C' + ABC [Not much to factor that will cause simplification]

– A'(B'C + BC') + A(B'C' + BC) [But write the truth tables of B'C+BC' and B'C'+BC]

– A'(BꚚC) + A(BꚚC)' [But if we let W=BꚚC then we have A'W + AW'…write its TT]

– A Ꚛ B Ꚛ C [Final Answer]

8.43

DEFINITIONS, EXPRESSION FORMS,
SPEED, AND DEMORGAN'S

How to make faster circuits…

8.44

Definitions
• Literal: A single bit _________ or its __________

– Good: x, y', SLEEPING'

– Bad: (x+y)

• Product Term: A single literal by itself or an ______'ing (not _______'ing)
of literals

– Good: z, x•y, AWAKE•LISTENING•THINKING

– BAD: (x•y)', AWAKE•(LISTENING+THINKING)

– The ____________ we defined earlier are product terms where EACH input variable of
a function is 1 literal in the product term

• Sum Term: A single literal by itself or an _____'ing (not ______'ing) of
literals

– Good: z, x'+y, CURIOUS+PERSISTENT

– BAD: (x+y)', TIRED•(BORED+SLEEPY)

– The ___________ we defined earlier are sum terms where EACH input variable of a
function is 1 literal in the sum term

8.45

Expression/Circuit Forms
• SOP (__________________) Form: An SOP expression is a

logical sum (OR) of product terms
– Correct Examples: [x’•y’•z + w + a’•b•c], [w + x’•z•y + y’z]

– Incorrect Examples: [x’•y•z + w•(a+b)], [x•y + (y’•z)’]

• SOP equations yield ___-level circuits with AND gates in the
1st level with an OR gate in the 2nd (aka ________ circuits)

• POS (_____________________) Form: A POS expression is a
logical product (AND) of sum terms.

– Correct Examples: [(x+y’+z) • (w’+z) • (a)], [z’•(x+y)•(w’+y)]

– Incorrect Examples: [x’ + y•(x+w)], [(x+y)•(x+z)’]

• POS equations yield ___-level circuits with OR gates in the 1st
level with an AND gate in the 2nd (aka _________ circuits)

• 1 level circuits (i.e. a single gate) are generally
BOTH SOP and POS

=
=

SOP  AND-OR

(Sum of products

yields AND-OR

circuits)

POS  OR-AND

(Product of sums

yields OR-AND

circuits)

8.46

Check Yourself

Expression SOP / POS / Both / Neither

w•x•(y•z)’ + xy’z + w

xy+xz+(w’yz)

(w+y’+z)(w+x)

(w+y)x(w’+z)

wy + wy + xy’

w+x+y

8.47

Factoring and Distributing
(Size vs. Speed)

• Factoring decreases ______

• Distributing decreases ___________________

𝐺 = 𝑎 ∙ (𝑏 + 𝑐 ∙ (𝑑 + ҧ𝑒𝑓)) =_______________

e
f

d

c

b

a G

8.48

DeMorgan’s Theorem

• Inverting output of an AND gate = inverting the inputs of an OR gate
• Inverting output of an OR gate = inverting the inputs of an AND gate

A function’s inverse is equivalent to inverting all the inputs and changing AND to OR and
vice versa

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A•B

A+B

A+B

A•B

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A B Out

0 0 1

0 1 0

1 0 0

1 1 0
Analogy: Turning a gate "____________" (like your ________).

8.49

AND-OR / NAND-NAND

• Canonical Sums yield

– AND-OR Implementation

– ______________
Implementation

• Recall inverting gates such as
NAND gates may be
"________" or have desirable
properties vs. typical AND/OR
gates

=

8.50

OR-AND / NOR-NOR

• Canonical Products yield

– OR-AND Implementation

– ______________
Implementation

• Recall inverting gates such
as NOR gates may be
"faster" or have desirable
properties vs. typical
AND/OR gates

=
=

8.51

DeMorgan's Practice

• Convert the circuits shown below to use only
NAND or NOR gates?

e
f

d

c

b

a G

a
b

a
c
d

a
c
e
f

G

8.52

DeMorgan’s Theorem Example

• Cancel as many bubbles as you can using DeMorgan’s theorem.

• Convert as many gates as possible to NOR gates. You are allowed to add
additional inverters

X

Z

Y

W

F

d

c

b
a

e

H

8.53

DeMorgan’s Theorem

• DeMorgan's let's us break large
inversions (of whole
expressions) into smaller
inversions (of individual
literals).
– This is necessary to arrive at SOP

or POS (which can only have
inversions of literals)

• Recursively find the last
(lowest precedence operation)
and apply DeMorgan's
theorem by flipping the
operation and inverting the
inputs

F = (X+Y) + Z • (Y+W)

Use DeMorgan’s theorem to simplify

"move" inversions (either to break-up

"big bars" or join "small bars"

8.54

Generalized DeMorgan’s Theorem

F = (X+Y) + Z • (Y+W)

F = X•Y • (Z + (Y•W))

To find F’, swap AND’s and OR’s and complement each

literal. However, you must maintain the original order of

operations.

F’(X1,…,Xn,+,•) = F(X1
’,…,Xn

’,•,+)

F = X+Y + (Z • (Y+W))
Fully parenthesized to

show original order of ops.

AND’s & OR’s swapped

Each literal is inverted

Note: This parentheses

doesn’t matter (we are

just OR’ing X’, Y, and the

following subexpression)

8.55

Additional Content

Not Tested

8.56

LOGIC FUNCTION NOTATION

Canonical Sums and Products

8.57

Canonical Sums and Products
• Truth tables require us to list all 2n combinations of the n inputs

• A shorthand for a truth table is to describe the function using the
canonical sum (sigma, __) or product (pi, ___) notation

• These forms of expressing a function have all the information in
the truth table but can be written more compactly
– Though still may require listing 2n input values

• We'll often use these shorthand notations in assignments/exams

F = ____________

8.58

Canonical Sums

• Given a T.T., use the minterms where F=1 and SUM
them together

– ( = SUM or OR of all the minterms)

X Y Z F

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

m0
m1
m2
m3
m4
m5
m6
m7

F = xyz(2,3,5,7)

Canonical Sum:

List the minterms where F is 1,

and just list their decimal

number equivalent

F = m2+m3+m5+m7
=(X'YZ')+(X'YZ)+(XY'Z)+(XYZ)

List the variables in the

_______ they would appear

in the truth table and that

you'd use to find the

decimal values

8.59

Canonical Products

• Given a T.T., AND together all the maxterms where F = 0

F = M0•M1•M4•M6
=(X+Y+Z)•(X+Y+Z')•
 (X'+Y+Z)•(X'+Y'+Z)

X Y Z F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

M0
M1
M2
M3
M4
M5
M6
M7 F = xyz(0,1,4,6)

Canonical Product:

List the maxterms where F is 0,

and just list their decimal

number equivalent

List the variables in the

order they would appear in

the truth table and that

you'd use to find the

decimal values

8.60

Canonical Sums & Products

• Canonical Sum: An SOP expression where all the product terms
are minterms (i.e. have each literal in each product term)

• Canonical Product: A POS expression where all the sum terms
are maxterms (i.e. each literal in each sum term)

X Y Z F

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

F = xyz(2,3,5,7)

Canonical Sum:

F = M0•M1•M4•M6 =
(X+Y+Z)•(X+Y+Z')• (X'+Y+Z)•(X'+Y'+Z)

F = m2+m3+m5+m7

 =(X'YZ’)+(X'YZ)+(XY’Z)+(XYZ)

F = xyz(0,1,4,6)

Canonical Product:

8.61

Definitions
• Minterm: A product term where all the input variables of a function

appear as exactly one literal

• Maxterm: A sum term where each input variable of a function appears as
exactly one literal

f(a,b,c) Yes (Mi) / No g(v,w,x,y,z) Yes (Mi) / No

a+b'+c Yes, M12

a+b' v+z No

a'•(b'+c) v'+w+x+y'+z' Yes, M19

(a'+b+c)'

f(x,y,z) Yes (mi) / No g(w,x,y,z) Yes (mi) / No

x•y Yes, m4

x'•y•z' w•x'•z' No

x+y'•z' w•x'•y•z Yes, m11

(x•y'•z)' Yes, m6

	Slide 1: Unit 8
	Slide 2: Duality
	Slide 3: CHECKERS / Decoders
	Slide 4: Gates
	Slide 5: Checkers / Decoders
	Slide 6: Checkers / Decoders
	Slide 7: Checkers / Decoders
	Slide 8: Circuit Design and Analysis
	Slide 9: Synthesizing Logic Functions
	Slide 10: The Problem
	Slide 11: Two Approaches: Minterms & Maxterms
	Slide 12: Using AND Gates (Minterms) to Implement Functions
	Slide 13: Using AND Gates (Minterms) to Implement Functions
	Slide 14: Using AND Gates (Minterms) to Implement Functions
	Slide 15: Using AND Gates (Minterms) to Implement Functions
	Slide 16: Using AND Gates (Minterms) to Implement Functions
	Slide 17: Using AND Gates (Minterms) to Implement Functions
	Slide 18: Using AND Gates (Minterms) to Implement Functions
	Slide 19: Using AND Gates (Minterms) to Implement Functions
	Slide 20: Minterms
	Slide 21: Applying Minterms to Synthesize a Function
	Slide 22: An Alternative
	Slide 23: OR-Gate Checkers / Decoders
	Slide 24: Using OR Checkers to Implement Functions
	Slide 25: Using OR Checkers to Implement Functions
	Slide 26: Using OR Checkers to Implement Functions
	Slide 27: Using OR Checkers to Implement Functions
	Slide 28: Using OR Checkers to Implement Functions
	Slide 29: Using OR Checkers to Implement Functions
	Slide 30: Using OR Checkers to Implement Functions
	Slide 31: Using OR Checkers to Implement Functions
	Slide 32: Applying Maxterms to Synthesize a Function
	Slide 33: Defining Min-/Max-terms
	Slide 34: 2- and 3-Variable Theorems
	Slide 35: Why Boolean Algebra
	Slide 36: 2 & 3 Variable Theorems
	Slide 37: Proofs Through Other Theorems
	Slide 38: Logic Synthesis
	Slide 39: Synthesize/Simplify Exercise 1
	Slide 40: Synthesize/Simplify Exercise 2a
	Slide 41: Synthesize/Simplify Exercise 2b
	Slide 42: Synthesize/Simplify Exercise 3 (Optional)
	Slide 43: Definitions, Expression Forms, Speed, and Demorgan's
	Slide 44: Definitions
	Slide 45: Expression/Circuit Forms
	Slide 46: Check Yourself
	Slide 47: Factoring and Distributing (Size vs. Speed)
	Slide 48: DeMorgan’s Theorem
	Slide 49: AND-OR / NAND-NAND
	Slide 50: OR-AND / NOR-NOR
	Slide 51: DeMorgan's Practice
	Slide 52: DeMorgan’s Theorem Example
	Slide 53: DeMorgan’s Theorem
	Slide 54: Generalized DeMorgan’s Theorem
	Slide 55: Additional Content
	Slide 56: Logic Function Notation
	Slide 57: Canonical Sums and Products
	Slide 58: Canonical Sums
	Slide 59: Canonical Products
	Slide 60: Canonical Sums & Products
	Slide 61: Definitions

