

Unit 8

Minterm and Canonical Sums 2- and 3-Variable Boolean Algebra Theorems DeMorgan's Theorem Simplification using Boolean Algebra

Duality

- As we progress in this unit, remember and look for the idea of duality at work
- Duality says: A new, true statement could be found from another by swapping:

Original equation Dual

8.2

School of Engineering

CHECKERS / DECODERS

Gates

- Gates can have more than 2 inputs but the operations stay the same
	- $-$ AND = output = 1 if ALL inputs are 1
		- Outputs 1 for only 1 input combination
	- $-$ OR = output = 1 if ANY input is 1
		- Outputs 0 for only 1 input combination

x y z

F x y z

8.4

Checkers / Decoders

- An AND gate only outputs '1' for 1 combination
	- That combination can be changed by adding inverters to the inputs
	- We can think of the AND gate as "checking" or "decoding" a specific combination and outputting a '1' when it matches.

Add inverters to create an AND gate decoding (checking for) combination 101

Add inverters to create an AND gate decoding (checking for) combination 000

8.5

Checkers / Decoders

- Place inverters at the input of the AND gates such that
	- F produces '1' only for input combination $\{x,y,z\} = \{_$
	- G produces '1' only for input combination {x,y,z} = {_____}

x y z

combination ____

G

8.6

Checkers / Decoders

- An OR gate only outputs '0' for 1 combination
	- That combination can be changed by adding inverters to the inputs
	- We can think of the OR gate as "checking" or "decoding" a specific combination and outputting a '0' when it matches.

Add inverters to create an OR gate decoding (checking for) combination 010

Add inverters to create an OR gate decoding (checking for) combination 110

8.7

Circuit Design and Analysis

8.8

- There are two basic tasks as a digital design engineer…
	- Circuit Design/Synthesis: Take a set of requirements or functional descriptions and arrive at a logic circuit
	- Circuit Analysis: Given a logic circuit, find or verify the logic function it

SYNTHESIZING LOGIC FUNCTIONS

The Problem

• The goal of this unit is to teach you how you can take *ANY* logic function expressed as a set and design a digital circuit to implement that logic function

8.10

School of Engineering

[This Photo](http://etmooc.org/hub/tag/animated-gif/) by Unknown Author is licensed under [CC BY-SA-NC](https://creativecommons.org/licenses/by-nc-sa/3.0/)

Two Approaches: Minterms & Maxterms

- Because of duality, there are at least two ways to implement any circuit
- Using gate checkers (aka **product- or** "**_____**" **terms**)

– Then combining their results with a single OR gate

• Using gate checkers (aka **sum- or "_____" terms**)

– Then combining their results with a single AND gate

8.12

• Given an any logic function, it can be implemented with the superposition of AND gate decoders/checkers

Using AND Gates (Minterms) to Implement^{er} Functions

• Generate an **AND** gate checker ("minterm") for each combination *where the output of the logic function evaluates to 1 (i.e. F=1)*

• Generate an **AND** gate checker ("minterm") for each combination *where the output of the logic function evaluates to 1 (i.e. F=1)*

• Generate an **AND** gate checker ("minterm") for each combination *where the output of the logic function evaluates to 1 (i.e. F=1)*

• Then, OR together all outputs of the AND gate checkers to form the overall function output

 8.17)

USCViterbi

- Test it by plugging in combinations that should cause $F=1$
	- As long as one AND gate outputs 1, the output will be 1

 $F(1,0,0) = 1$

 8.18

USCViterbi

- Test it by plugging in combinations that should cause $F=1$
	- As long as one AND gate outputs 1, the output will be 1

 $F(0,1,0) = 1$

F

- Test it by plugging in combinations that should cause $F=0$
	- All AND gates output 0, thus the OR gate will output 0

USCViterbi

8.19

 $F(0,1,1) = 0$

Minterms

8.20

- An n-input combinational function can be described with 2ⁿ row truth table
- Each row in the truth table (input combination) has a **unique logic expression** (i.e. an AND gate) that only evaluates to '1' for that combination
	- This logic expression is known as a **minterm**

Applying Minterms to Synthesize a Function

Each numbered minterm checks whether the inputs are equal to the corresponding combination. When the inputs are equal, the minterm will evaluate to 1 and thus the whole function will evaluate to 1.

AN ALTERNATIVE

Using OR-gate checkers

OR-Gate Checkers / Decoders

- An OR gate only outputs '0' for a single combination
	- That combination can be changed by adding inverters to the inputs
	- We can think of the OR gate as "checking" or "decoding" a specific combination and outputting a '0' when it matches.

OR gate decoding (checking for) combination 010

OR gate decoding (checking for) combination 110

8.23

• Given an any logic function, it can be implemented with the superposition of OR-gate checkers/decoders (aka "sum or maxterms")

• Generate an **OR** gate checker ("maxterm") for each combination *where the output of the logic function evaluates to 0 (i.e. G=0)*

• Generate an **OR** gate checker ("maxterm") for each combination *where the output of the logic function evaluates to 0 (i.e. G=0)*

• Generate an **OR** gate checker ("maxterm") for each combination *where the output of the logic function evaluates to 0 (i.e. G=0)*

• Then, AND together all outputs of the OR gate checkers to form the overall function output

- Test it by plugging in combinations that should cause $G=0$
	- As long as one OR gate outputs 0, the output will be 0

 $F(0,0,1) = 0$

- Test it by plugging in combinations that should cause $G=0$
	- As long as one OR gate outputs 0, the output will be 0

 $F(1,1,0) = 0$

- Test it by plugging in combinations that should cause $G=1$
	- All OR gates output 1, thus the AND gate will output 1

 $F(1,0,1) = 1$

Applying Maxterms to Synthesize a Function

- Each output that should produce a '0' can be checked-for with an OR gate
	- $-$ We refer to that OR-gate checker as a Maxterm of the function (M_i) where i represents the decimal value of the binary combination being checked
- We then AND together the maxterms

Defining Min-/Max-terms

8.33

- Below are the min-/max-terms for a function of 3-inputs: x,y,z
- Given a desired output, the designer could choose to include the appropriate set of min-/max-terms

School of Engineering

Finding simplified equations and circuits

2- AND 3-VARIABLE THEOREMS

Why Boolean Algebra

- We can now convert *any truth table* into an equation and circuit by using **minterms or maxterms**
- But minterms/maxterms yield the **_________** equation/circuit
- By starting with sum of minterm (product of maxterm) form and then using

_________________ to simplify, we can arrive

and smaller (even minimal) circuits

2 & 3 Variable Theorems

School of Engineering

Proofs Through Other Theorems

• Prove $T9: X + XY = X$

T8 $XY+XZ = X(Y+Z)$ **T8'** $(X+Y)(X+Z) = X+YZ$ **T9** $X + XY = X$ **T9'** $X(X+Y) = X$ **T10** $XY + XY' = X$ **T10'** $(X+Y)(X+Y') = X$ $T11$ $XY + X^2 + YZ =$ $XY + X'Z$ **T11'** $(X+Y)(X+Z)(Y+Z) =$ $(X+Y)(X'+Z)$

• Prove $T10: XY + XY' = X$

• Prove $T10'$: $(X+Y)(X+Y')=X$

OR

Logic Synthesis

8.38

School of Engineering

• Describe the function

– Usually with a truth table

- Find the sum of minterm (or product of maxterm) expression
- Use Boolean Algebra (T8-T11) to find a simplified expression

8.39

School of Engineering

Synthesize/Simplify Exercise 1

- Synthesize this function
	- First generate the canonical sum
	- Then use theorems to simplify

 \bullet $P =$

Primes between 0-7

Primes between 0-7

Synthesize/Simplify Exercise 2a

- Synthesize each output separately
	- First generate the canonical prod.
	- Then use theorems to simplify

Encode the highest input ID (ie. 3, 2, or 1) that is ON (=1)

$G1 =$

 $60 =$

8.41

School of Engineering

Synthesize/Simplify Exercise 2b

- Synthesize each output separately
	- First generate the canonical sum
	- Then use theorems to simplify

- $A'BC' + A'BC + AB'C' + AB'C + ABC' + ABC$
- $-$ [T3 (A = A + A) allows us to replicate m_6 and m_7 (ABC' + ABC)]
- A'BC' + A'BC + ABC' + ABC + AB'C' + AB'C + ABC' + ABC
- $-$ B(A'C' +A'C + AC' + AC) + A(B'C' + B'C + BC' + BC) [T8]
- $-$ B(A'(C'+C) + A(C'+C)) + A(B'(C+C') + B(C' + C)) [T8/T5 or T10]
- $B(A^{\prime} + A) + A(B^{\prime} + B)$ [T8/T5] = **B + A** [Final Answer]
- $G0 = m1 + m4 + m5 + m6 + m7$
	- $A'B'C + AB'C' + AB'C + ABC' + ABC$
	- $-$ A'B'C + AB'C + AB'C' + AB'C + ABC' + ABC [Use T3 to replicate m_5]
	- $-$ B'C(A' + A) + A(B'C' + B'C + BC' + BC) [T8]
	- B'C + A [T8/T5 or T10] = **B'C + A** [Final Answer]

Encode the highest input ID (ie. 3, 2, or 1) that is ON (=1)

School of Engineering

Synthesize/Simplify Exercise 3 (Optional)

- Synthesize each output separately
	- First generate the canonical sum
	- Then use theorems to simplify

$C1 =$

- $CO = m1 + m2 + m4 + m7$
	- A'B'C + A'BC' + AB'C' + ABC [Not much to factor that will cause simplification]
	- $A'(B'C + BC') + A(B'C' + BC)$ [But write the truth tables of B'C+BC' and B'C'+BC]
	- $A'(B\oplus C) + A(B\oplus C)'$ [But if we let W=B \oplus C then we have $A'W + AW'$...write its TT]
	- **A Ꚛ B Ꚛ C [Final Answer]**

DEFINITIONS, EXPRESSION FORMS, SPEED, AND DEMORGAN'S

How to make faster circuits…

Definitions

8.44

- **Literal:** A single bit _________ or its __________
	- **Good:** x, y', SLEEPING'
	- **Bad:** (x+y)
- **Product Term:** A single literal by itself or an Ting (not Ting) of literals
	- **Good:** z**,** x•y, AWAKE•LISTENING•THINKING
	- **BAD:** (x•y)', AWAKE•(LISTENING+THINKING)
	- **The ____________ we defined earlier are product terms where EACH input variable of a function is 1 literal in the product term**
- **Sum Term:** A single literal by itself or an _____'ing (not _____'ing) of literals
	- **Good:** z**,** x'+y, CURIOUS+PERSISTENT
	- **BAD:** (x+y)', TIRED•(BORED+SLEEPY)
	- **The ___________ we defined earlier are sum terms where EACH input variable of a function is 1 literal in the sum term**

Expression/Circuit Forms

- **SOP (__________________) Form**: An **SOP** expression is a logical sum (OR) of product terms
	- Correct Examples: [x'•y'•z + w + a'•b•c], [w + x'•z•y + y'z]
	- Incorrect Examples: $[x' \cdot y \cdot z + w \cdot (a+b)]$, $[x \cdot y + (y' \cdot z)']$
- SOP equations yield **___-level circuits** with AND gates in the 1 st level with an OR gate in the 2nd (aka **________** circuits)
- **POS (_____________________) Form**: A **POS** expression is a logical product (AND) of sum terms.
	- Correct Examples: [(x+y'+z) (w'+z) (a)], [z'•(x+y)•(w'+y)]
	- Incorrect Examples: $[x' + y \cdot (x+w)], [(x+y) \cdot (x+z)']$
- POS equations yield **___-level circuits** with OR gates in the 1st level with an AND gate in the 2nd (aka **_________** circuits)
- 1 level circuits (i.e. a single gate) are generally BOTH SOP and POS

8.45

(Product of sums yields OR-AND circuits)

Check Yourself

Factoring and Distributing (Size vs. Speed)

- Factoring decreases _
- Distributing decreases

$$
G = a \cdot (b + (c \cdot (d + \bar{e}f))) =
$$

DeMorgan's Theorem

- Inverting output of an AND gate = inverting the inputs of an OR gate
- Inverting output of an OR gate = inverting the inputs of an AND gate

A function's inverse is equivalent to inverting all the inputs and changing AND to OR and vice versa

AND-OR / NAND-NAND

- Canonical Sums yield
	- AND-OR Implementation

Implementation

– ______________

• Recall inverting gates such as NAND gates may be " cr have desirable properties vs. typical AND/OR gates

=

8.49

8.50

School of Engineering

OR-AND / NOR-NOR

- Canonical Products yield
	- OR-AND Implementation

Implementation

– ______________

• Recall inverting gates such as NOR gates may be "faster" or have desirable properties vs. typical AND/OR gates

DeMorgan's Practice

• Convert the circuits shown below to use only NAND or NOR gates?

DeMorgan's Theorem Example

8.52

School of Engineering

• Cancel as many bubbles as you can using DeMorgan's theorem.

• Convert as many gates as possible to NOR gates. You are allowed to add additional inverters

School of Engineering DeMorgan's Theorem

- DeMorgan's let's us break large inversions (of whole expressions) into smaller inversions (of individual literals).
	- This is necessary to arrive at SOP or POS (which can only have inversions of literals)
- Recursively find the last (lowest precedence operation) and apply DeMorgan's theorem by flipping the operation and inverting the inputs

$$
F = (\overline{X} + Y) + \overline{Z} \cdot (Y + W)
$$

8.53

Use DeMorgan's theorem to simplify "move" inversions (either to break-up "big bars" or join "small bars"

Generalized DeMorgan's Theorem

 $F'(X_1,...,X_n,+,\bullet) = F(X_1^{'},...,X_n^{'},\bullet,+)$

To find F', swap AND's and OR's and complement each literal. However, you must maintain the original order of operations.

Note: This parentheses doesn't matter (we are just OR'ing X', Y, and the following subexpression)

$$
F = (X+Y) + Z \cdot (Y+W)
$$

F = $\overline{X}+Y + (\overline{Z} \cdot (Y+W))$

Fully parenthesized to show original order of ops.

$$
\overline{F} = X \cdot \overline{Y} \cdot (Z + (\overline{Y} \cdot \overline{W}))
$$

AND's & OR's swapped Each literal is inverted

Additional Content

Not Tested

Canonical Sums and Products

LOGIC FUNCTION NOTATION

Canonical Sums and Products

8.57

- Truth tables require us to list all $2ⁿ$ combinations of the n inputs
- A shorthand for a truth table is to describe the function using the canonical sum (sigma, __) or product (pi, ___) notation
- These forms of expressing a function have all the information in the truth table but can be written more compactly
	- $-$ Though still may require listing 2ⁿ input values
- We'll often use these shorthand notations in assignments/exams

8.58 School of Engineering

Canonical Sums

• Given a T.T., use the minterms where F=1 and SUM them together

 $-(\Sigma = SUM$ or OR of all the minterms)

Canonical Products

8.59

School of Engineering

• Given a T.T., AND together all the maxterms where $F = 0$

Canonical Sums & Products

8.60

- **Canonical Sum**: An SOP expression where all the product terms are minterms (i.e. have each literal in each product term)
- **Canonical Product**: A POS expression where all the sum terms are maxterms (i.e. each literal in each sum term)

Definitions

8.61

School of Engineering

• **Minterm**: A **product** term where all the input variables of a function appear as exactly one literal

Maxterm: A sum term where each input variable of a function appears as exactly one literal

