
8.1

Unit 8

Minterm and Canonical Sums

2- and 3-Variable Boolean Algebra Theorems

DeMorgan's Theorem

Simplification using Boolean Algebra



8.2

Duality

• As we progress in this unit, remember and 
look for the idea of duality at work

• Duality says: A new, true statement could be 
found from another by swapping:

– ____  ____

– ____  ____

X + 1 = 1

Original equation Dual

_________



8.3

CHECKERS / DECODERS



8.4

Gates

• Gates can have more than 2 inputs but the operations stay 
the same
– AND = output = 1 if ALL inputs are 1

• Outputs 1 for only 1 input combination

– OR = output = 1 if ANY input is 1 
• Outputs 0 for only 1 input combination
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8.5

Checkers / Decoders

• An AND gate only outputs ‘1’ for 1 combination
– That combination can be changed by adding inverters to the inputs

– We can think of the AND gate as “checking” or “decoding” a specific 
combination and outputting a ‘1’ when it matches.
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8.6

Checkers / Decoders

• Place inverters at the input of the AND gates such 
that
– F produces ‘1’ only for input combination {x,y,z} = {_____}

– G produces ‘1’ only for input combination {x,y,z} = {_____}

X Y Z F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

F
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X Y Z G

0 0 0
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1 1 0

1 1 1

G
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combination ____

AND gate decoding 

(checking for)  

combination ____



8.7

Checkers / Decoders

• An OR gate only outputs ‘0’ for 1 combination
– That combination can be changed by adding inverters to the inputs

– We can think of the OR gate as “checking” or “decoding” a specific 
combination and outputting a ‘0’ when it matches.

Add inverters to 

create an OR gate 

decoding 

(checking for)  

combination 010
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decoding 
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combination 110
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8.8

Circuit Design and Analysis

• There are two basic tasks as a digital design engineer…
– Circuit Design/Synthesis:  Take a set of requirements or functional 

descriptions and arrive at a logic circuit

– Circuit Analysis:  Given a logic circuit, find or verify the logic function it 
implements

Problem 
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8.9

SYNTHESIZING LOGIC FUNCTIONS



8.10

The Problem

• The goal of this unit is to teach you how you can take ANY 
logic function expressed as a _____________ and design a 
digital circuit to implement that logic function
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How can I find a circuit 

that implements this 

truth table?

http://etmooc.org/hub/tag/animated-gif/
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8.11

Two Approaches: Minterms & Maxterms

• Because of duality, there are at least two ways 
to implement any circuit

• Using ______ gate checkers 
(aka product- or "_____" terms)

– Then combining their results with a single OR gate

• Using ______ gate checkers 
(aka sum- or "_____" terms) 

– Then combining their results with a single AND gate



8.12

Using AND Gates (Minterms) to Implement 
Functions

• Given an any logic function, it can be 
implemented with the superposition of AND 
gate decoders/checkers

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1



8.13

Using AND Gates (Minterms) to Implement 
Functions

• Generate an AND gate checker ("minterm") 
for each combination where the output of the 
logic function evaluates to 1 (i.e. F=1)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2

0 0 0 0
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1 1 0 0

1 1 1 0
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8.14

Using AND Gates (Minterms) to Implement 
Functions

• Generate an AND gate checker ("minterm") 
for each combination where the output of the 
logic function evaluates to 1 (i.e. F=1)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

X Y Z m2 m4

0 0 0 0 0

0 0 1 0 0

0 1 0 1 0

0 1 1 0 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 0 0
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8.15

Using AND Gates (Minterms) to Implement 
Functions

• Generate an AND gate checker ("minterm") 
for each combination where the output of the 
logic function evaluates to 1 (i.e. F=1)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0
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1 0 1 0

1 1 0 0

1 1 1 1
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8.16

Using AND Gates (Minterms) to Implement 
Functions

• Then, OR together all outputs of the AND gate 
checkers to form the overall function output

X Y Z F
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8.17

Using AND Gates (Minterms) to Implement 
Functions

• Test it by plugging in combinations that should cause 
F=1

– As long as one AND gate outputs 1, the output will be 1

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1
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8.18

Using AND Gates (Minterms) to Implement 
Functions

• Test it by plugging in combinations that should cause 
F=1

– As long as one AND gate outputs 1, the output will be 1
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8.19

Using AND Gates (Minterms) to Implement 
Functions

• Test it by plugging in combinations that should cause 
F=0

– All AND gates output 0, thus the OR gate will output 0
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8.20

Minterms

• An n-input combinational function can be described with 
2n row truth table

• Each row in the truth table (input combination) has a 
unique logic expression (i.e. an AND gate) that only 
evaluates to '1' for that combination
– This logic expression is known as a minterm

n 

inputs Circuit

2n row 

truth table

ഥ𝒙 ∙ 𝒚 ∙ ത𝒛

𝒙 ∙ 𝒚 ∙ 𝒛



8.21

Applying Minterms to Synthesize a Function

• Each numbered minterm checks whether the inputs are equal 
to the corresponding combination.  When the inputs are 
equal, the minterm will evaluate to 1 and thus the whole 
function will evaluate to 1.

x y z P
0 0 0 0
0 0 1 0 use…
0 1 0 1 m2

0 1 1 1 m3

1 0 0 0
1 0 1 1 m5

1 1 0 0
1 1 1 1 m7

P =     m2     +     m3     +     m5     +     m7

 =   x’yz’   +   x’yz    +    xy’z    +    xyz

when x,y,z = {0,1,0} = 2 then

  P  =  0’•1•0’  +   0’•1•0   +   0•1’•0   +  0•1•0

      =       1 +        0      +      0        +      0  =  1

when x,y,z = {1,0,1} = 5 then

  P  =  1’•0•1’  +   1’•0•1   +   1•0’•1   +  1•0•1

      =       0       +        0      +      1        +      0  =  1

when x,y,z = {0,0,1} = 1 then

  P  =  0’•0•1’  +   0’•0•1   +   0•0’•1   +  0•0•1

      =       0       +        0      +      0        +      0  =  0
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8.22

AN ALTERNATIVE

Using OR-gate checkers



8.23

OR-Gate Checkers / Decoders

• An OR gate only outputs ‘0’ for a single combination
– That combination can be changed by adding inverters to the inputs

– We can think of the OR gate as “checking” or “decoding” a specific 
combination and outputting a ‘0’ when it matches.

OR gate decoding 

(checking for)  

combination 010

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

F
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z

OR gate decoding 

(checking for)  

combination 110

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1
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8.24

Using OR Checkers to Implement Functions

• Given an any logic function, it can be 
implemented with the superposition of OR-gate 
checkers/decoders (aka "sum or maxterms")

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1



8.25

Using OR Checkers to Implement Functions

• Generate an OR gate checker ("maxterm") for 
each combination where the output of the 
logic function evaluates to 0 (i.e. G=0)

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

M1x
y
z



8.26

Using OR Checkers to Implement Functions

• Generate an OR gate checker ("maxterm") for 
each combination where the output of the 
logic function evaluates to 0 (i.e. G=0)

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4

0 0 0 1 1

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

M1x
y
z

x
y
z

M4



8.27

Using OR Checkers to Implement Functions

• Generate an OR gate checker ("maxterm") for 
each combination where the output of the 
logic function evaluates to 0 (i.e. G=0)

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6

0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 1 1 1

0 1 1 1 1 1

1 0 0 1 0 1

1 0 1 1 1 1

1 1 0 1 1 0

1 1 1 1 1 1

M1x
y
z

x
y
z

M6x
y
z

M4



8.28

Using OR Checkers to Implement Functions

• Then, AND together all outputs of the OR gate 
checkers to form the overall function output

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6 G

0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 1 1

G

Ax
y
z

x
y
z

Cx
y
z

B

M1

M6

M4
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Using OR Checkers to Implement Functions

• Test it by plugging in combinations that should cause 
G=0

– As long as one OR gate outputs 0, the output will be 0

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6 G

0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 1 1

G
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B
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8.30

Using OR Checkers to Implement Functions

• Test it by plugging in combinations that should cause 
G=0

– As long as one OR gate outputs 0, the output will be 0

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6 G

0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 1 1

G

Ax
y
z

x
y
z

Cx
y
z

B

F(1,1,0) = 0

1

1
0

0
1
1

0
1
1

1

0

1

0

M1

M6

M4



8.31

Using OR Checkers to Implement Functions

• Test it by plugging in combinations that should cause 
G=1

– All OR gates output 1, thus the AND gate will output 1

X Y Z G

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z M1 M4 M6 G

0 0 0 1 1 1 1

0 0 1 0 1 1 0

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 0

1 0 1 1 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 1 1

G
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8.32

Applying Maxterms to Synthesize a Function

• Each output that should produce a '0' can be checked-for with an 
OR gate
– We refer to that OR-gate checker as a Maxterm of the function (Mi) where i 

represents the decimal value of the binary combination being checked

• We then AND together the maxterms

x y z P use…
0 0 0 0 M0

0 0 1 0 M1

0 1 0 1
0 1 1 1
1 0 0 0 M4

1 0 1 1
1 1 0 0 M6

1 1 1 1

P =     M0      •      M1      •      M4      •      M6

 = (x+y+z)  • (x+y+z’) • (x’+y+z)  • (x’+y’+z)

when x,y,z = {0,0,1} = 1 then

  P  = (0+0+1) • (0+0+1’) • (0’+0+1) • (0’+0’+1)

      =       1       •        0 •      1         •      1  =  0

when x,y,z = {1,1,0} = 6 then

  P  = (1+1+0) • (1+1+0’) • (1’+1+0) • (1’+1’+0)

      =       1       •        1      •      1         •      0  =  0

when x,y,z = {1,1,1} = 7 then

  P  = (1+1+1) • (1+1+1’) • (1’+1+1) • (1’+1’+1)

      =       1       •        1      •      1         •      1  =  1

x
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x
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z

x
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P



8.33

Defining Min-/Max-terms

• Below are the min-/max-terms for a function of 3-inputs: x,y,z

• Given a desired output, the designer could choose to include 
the appropriate set of min-/max-terms

Inputs Min-/Max-term Outputs

Row # Abbrev Min-/Max-term Expression x y z m0/
M0

m1/
M1

m2/
M2

m3/
M3

m4/
M4

m5/
M5

m6/
M6

m7/
M7

0 m0/M0 x'•y'•z' /  x+y+z 0 0 0 1/0 0/1 0/1 0/1 0/1 0/1 0/1 0/1

1 m1/M1 x'•y'•z  /  x+y+z' 0 0 1 0/1 1/0 0/1 0/1 0/1 0/1 0/1 0/1

2 m2/M2 x'•y•z'  /  x+y'+z 0 1 0 0/1 0/1 1/0 0/1 0/1 0/1 0/1 0/1

3 m3/M3 x'•y•z   / x+y'+z' 0 1 1 0/1 0/1 0/1 1/0 0/1 0/1 0/1 0/1

4 m4/M4 x•y'•z'  / x'+y+z 1 0 0 0/1 0/1 0/1 0/1 1/0 0/1 0/1 0/1

5 m5/M5 x•y'•z   / x'+y+z' 1 0 1 0/1 0/1 0/1 0/1 0/1 1/0 0/1 0/1

6 m6/M6 x•y•z'   / x'+y'+z 1 1 0 0/1 0/1 0/1 0/1 0/1 0/1 1/0 0/1

7 m7/M7 x•y•z    / x'+y'+z' 1 1 1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/0



8.34

2- AND 3-VARIABLE THEOREMS

Finding simplified equations and circuits



8.35

Why Boolean Algebra

• We can now convert any truth table into an 
equation and circuit by using minterms or 
maxterms

• But minterms/maxterms yield the _________ 
equation/circuit

• By starting with sum of minterm (product of 
maxterm) form and then using 
_________________ to simplify, we can arrive 
and smaller (even minimal) circuits
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2 & 3 Variable Theorems

T6 X+Y =  Y+X T6' X•Y = Y•X Commutativity

T7 (X+Y)+Z = X+(Y+Z) T7' (X•Y)•Z = X•(Y•Z) Associativity

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ Distribution &

Factoring

T9 X + XY = X T9’ X(X+Y) = X Covering

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X Combining

T11 XY + X’Z + YZ = 

                   XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) = 

               (X+Y)(X’+Z)

Consensus

DM (X+Y)' = X'•Y' DM' (X•Y)'=X'+Y' DeMorgan's
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Proofs Through Other Theorems

• Prove T9: X + XY = X

• Prove T10: XY + XY' = X

• Prove T10': (X+Y)(X+Y')=X

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ = 

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) = 

(X+Y)(X’+Z)

OR



8.38

Logic Synthesis

• Describe the function 
– Usually with a truth table

• Find the sum of minterm (or product of 
maxterm) expression

• Use Boolean Algebra (T8-T11) to find a 
simplified expression
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Synthesize/Simplify Exercise 1

• Synthesize this function
– First generate the canonical sum

– Then use theorems to simplify

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
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T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ = 

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) = 

(X+Y)(X’+Z)

• P =
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Synthesize/Simplify Exercise 2a

• Synthesize each output 
separately
– First generate the canonical prod.

– Then use theorems to simplify

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ = 

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) = 

(X+Y)(X’+Z)

A B C G1 G0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Encode the highest input ID 

(ie. 3, 2, or 1) that is ON (=1)

• G1 = 

• G0 =
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Synthesize/Simplify Exercise 2b

• Synthesize each output 
separately
– First generate the canonical sum

– Then use theorems to simplify

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ = 

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) = 

(X+Y)(X’+Z)

A B C G1 G0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Encode the highest input ID 

(ie. 3, 2, or 1) that is ON (=1)

• G1 = m2 + m3 + m4 + m5 + m6 + m7

– A'BC' + A'BC + AB'C' + AB'C + ABC' + ABC

– [T3 (A = A + A) allows us to replicate m6 and m7 ( ABC' + ABC )]

– A'BC' + A'BC + ABC' + ABC + AB'C' + AB'C + ABC' + ABC

– B(A'C' +A'C + AC' + AC) + A(B'C' + B'C + BC' + BC) [T8]

– B(A'(C'+C) + A(C'+C) ) + A(B'(C+C') + B(C' + C)) [T8/T5 or T10]

– B(A'+ A ) + A(B' + B) [T8/T5]  = B + A [Final Answer]

• G0 = m1 + m4 + m5 + m6 + m7

– A'B'C + AB'C' + AB'C + ABC' + ABC

– A'B'C + AB'C + AB'C' + AB'C + ABC' + ABC [Use T3 to replicate m5]

– B'C(A' + A) + A(B'C' + B'C + BC' + BC) [T8]

– B'C + A [T8/T5 or T10]  = B'C + A [Final Answer]
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Synthesize/Simplify Exercise 3 (Optional)

• Synthesize each output 
separately
– First generate the canonical sum

– Then use theorems to simplify

T8 XY+XZ = X(Y+Z) T8’ (X+Y)(X+Z) = X+YZ

T9 X + XY = X T9’ X(X+Y) = X

T10 XY + XY’ = X T10’ (X+Y)(X+Y’) = X

T11 XY + X’Z + YZ = 

XY + X’Z

T11’ (X+Y)(X’+Z)(Y+Z) = 

(X+Y)(X’+Z)

A B C C1 C0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1
’s

 C
o

u
n

t 
o

f 
In

p
u

ts

• C1 = 

• C0 = m1 + m2 + m4 + m7

– A'B'C + A'BC' + AB'C' + ABC  [Not much to factor that will cause simplification]

– A'(B'C + BC') + A(B'C' + BC)  [But write the truth tables of B'C+BC' and B'C'+BC]

– A'(BꚚC) + A(BꚚC)' [But if we let W=BꚚC then we have A'W + AW'…write its TT]

– A Ꚛ B Ꚛ C [Final Answer]
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DEFINITIONS, EXPRESSION FORMS, 
SPEED, AND DEMORGAN'S

How to make faster circuits…



8.44

Definitions
• Literal: A single bit _________ or its __________

– Good:  x, y', SLEEPING'

– Bad:  (x+y)

• Product Term:  A single literal by itself or an ______'ing (not _______'ing) 
of literals 

– Good: z, x•y,  AWAKE•LISTENING•THINKING

– BAD: (x•y)',   AWAKE•(LISTENING+THINKING)

– The ____________ we defined earlier are product terms where EACH input variable of 
a function is 1 literal in the product term

• Sum Term:  A single literal by itself or an _____'ing (not ______'ing) of 
literals 

– Good: z, x'+y,  CURIOUS+PERSISTENT

– BAD: (x+y)',   TIRED•(BORED+SLEEPY)

– The ___________ we defined earlier are sum terms where EACH input variable of a 
function is 1 literal in the sum term
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Expression/Circuit Forms
• SOP (__________________) Form:  An SOP expression is a 

logical sum (OR) of product terms
– Correct Examples:  [x’•y’•z + w + a’•b•c],  [w + x’•z•y + y’z]

– Incorrect Examples:  [ x’•y•z + w•(a+b) ],   [ x•y + (y’•z)’ ]

• SOP equations yield ___-level circuits with AND gates in the 
1st level with an OR gate in the 2nd (aka ________ circuits)

• POS (_____________________) Form:  A POS expression is a 
logical product (AND) of sum terms.

– Correct Examples:  [(x+y’+z) • (w’+z) • (a)],   [z’•(x+y)•(w’+y)]

– Incorrect Examples:  [x’ + y•(x+w)],    [(x+y)•(x+z)’ ]

• POS equations yield ___-level circuits with OR gates in the 1st 
level with an AND gate in the 2nd (aka _________ circuits)

• 1 level circuits (i.e. a single gate) are generally 
BOTH SOP and POS

=
=

SOP  AND-OR

(Sum of products 

yields AND-OR 

circuits)

POS  OR-AND

(Product of sums 

yields OR-AND 

circuits)
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Check Yourself

Expression SOP / POS / Both / Neither

w•x•(y•z)’ + xy’z + w

xy+xz+(w’yz)

(w+y’+z)(w+x)

(w+y)x(w’+z)

wy + wy + xy’

w+x+y
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Factoring and Distributing 
(Size vs. Speed)

• Factoring decreases ______ 

• Distributing decreases ___________________

𝐺 = 𝑎 ∙ (𝑏 + 𝑐 ∙ (𝑑 + ҧ𝑒𝑓 )) =_______________

e
f

d

c

b

a G
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DeMorgan’s Theorem

• Inverting output of an AND gate = inverting the inputs of an OR gate
• Inverting output of an OR gate = inverting the inputs of an AND gate 

A function’s inverse is equivalent to inverting all the inputs and changing AND to OR and 
vice versa

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A•B

A+B

A+B

A•B

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A B Out

0 0 1

0 1 0

1 0 0

1 1 0
Analogy: Turning a gate "____________" (like your ________).
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AND-OR / NAND-NAND

• Canonical Sums yield

– AND-OR Implementation

– ______________ 
Implementation

• Recall inverting gates such as 
NAND gates may be 
"________" or have desirable 
properties vs. typical AND/OR 
gates

=
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OR-AND / NOR-NOR

• Canonical Products yield

– OR-AND Implementation

– ______________ 
Implementation

• Recall inverting gates such 
as NOR gates may be 
"faster" or have desirable 
properties vs. typical 
AND/OR gates

=
=
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DeMorgan's Practice

• Convert the circuits shown below to use only 
NAND or NOR gates?

e
f

d

c

b

a G

a
b

a
c
d

a
c
e
f

G
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DeMorgan’s Theorem Example

• Cancel as many bubbles as you can using DeMorgan’s theorem.

• Convert as many gates as possible to NOR gates. You are allowed to add 
additional inverters

X

Z

Y

W

F

d

c

b
a

e

H
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DeMorgan’s Theorem

• DeMorgan's let's us break large 
inversions (of whole 
expressions) into smaller 
inversions (of individual 
literals).
– This is necessary to arrive at SOP 

or POS (which can only have 
inversions of literals)

• Recursively find the last 
(lowest precedence operation) 
and apply DeMorgan's 
theorem by flipping the 
operation and inverting the 
inputs

F = (X+Y) + Z • (Y+W)

Use DeMorgan’s theorem to simplify 

"move" inversions (either to break-up 

"big bars" or join "small bars"
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Generalized DeMorgan’s Theorem

F = (X+Y) + Z • (Y+W)

F = X•Y • (Z + (Y•W))

To find F’, swap AND’s and OR’s and complement each 

literal.  However, you must maintain the original order of 

operations.

F’(X1,…,Xn,+,•) = F(X1
’,…,Xn

’,•,+)

F = X+Y + (Z • (Y+W))
Fully parenthesized to 

show original order of ops.

AND’s & OR’s swapped

Each literal is inverted

Note: This parentheses 

doesn’t matter (we are 

just OR’ing X’, Y, and the 

following subexpression)
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Additional Content

Not Tested
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LOGIC FUNCTION NOTATION

Canonical Sums and Products
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Canonical Sums and Products
• Truth tables require us to list all 2n combinations of the n inputs

• A shorthand for a truth table is to describe the function using the 
canonical sum (sigma, __) or product (pi, ___) notation

• These forms of expressing a function have all the information in 
the truth table but can be written more compactly
– Though still may require listing 2n input values

• We'll often use these shorthand notations in assignments/exams

F = ____________
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Canonical Sums

• Given a T.T., use the minterms where F=1 and SUM 
them together

– ( = SUM or OR of all the minterms) 

X  Y  Z   F

0  0  0   0
0  0  1   0
0  1  0   1
0  1  1   1
1  0  0   0
1  0  1   1
1  1  0   0
1  1  1   1

m0
m1
m2
m3
m4
m5
m6
m7

F = xyz(2,3,5,7)

Canonical Sum:

List the minterms where F is 1, 

and just list their decimal 

number equivalent

F = m2+m3+m5+m7   
=(X'YZ')+(X'YZ)+(XY'Z)+(XYZ)

List the variables in the 

_______ they would appear 

in the truth table and that 

you'd use to find the 

decimal values
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Canonical Products

• Given a T.T., AND together all the maxterms where F = 0 

F = M0•M1•M4•M6 
=(X+Y+Z)•(X+Y+Z')•
  (X'+Y+Z)•(X'+Y'+Z)

X  Y  Z   F
0  0  0   0
0  0  1   0
0  1  0   1
0  1  1   1
1  0  0   0
1  0  1   1
1  1  0   0
1  1  1   1

M0
M1
M2
M3
M4
M5
M6
M7 F = xyz(0,1,4,6)

Canonical Product:

List the maxterms where F is 0, 

and just list their decimal 

number equivalent

List the variables in the 

order they would appear in 

the truth table and that 

you'd use to find the 

decimal values
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Canonical Sums & Products

• Canonical Sum: An SOP expression where all the product terms 
are minterms (i.e. have each literal in each product term)

• Canonical Product: A POS expression where all the sum terms 
are maxterms  (i.e. each literal in each sum term)

X  Y  Z   F

0  0  0   0
0  0  1   0
0  1  0   1
0  1  1   1
1  0  0   0
1  0  1   1
1  1  0   0
1  1  1   1

F = xyz(2,3,5,7)

Canonical Sum:

F = M0•M1•M4•M6 =
(X+Y+Z)•(X+Y+Z')• (X'+Y+Z)•(X'+Y'+Z)

F = m2+m3+m5+m7 

   =(X'YZ’)+(X'YZ)+(XY’Z)+(XYZ)

F = xyz(0,1,4,6)

Canonical Product:
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Definitions
• Minterm:  A product term where all the input variables of a function 

appear as exactly one literal

• Maxterm:  A sum term where each input variable of a function appears as 
exactly one literal

f(a,b,c) Yes (Mi) / No g(v,w,x,y,z) Yes (Mi) / No

a+b'+c Yes, M12

a+b' v+z No

a'•(b'+c) v'+w+x+y'+z' Yes, M19

(a'+b+c)'

f(x,y,z) Yes (mi) / No g(w,x,y,z) Yes (mi) / No

x•y Yes, m4

x'•y•z' w•x'•z' No

x+y'•z' w•x'•y•z Yes, m11

(x•y'•z)' Yes, m6
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