
7.1

Unit 7

Exceptions & Interrupts

7.2

Disclaimer 1

• This is just an introduction to the topic of

interrupts. You are not meant to master these

right now but just start to use them

• We will cover more about them as we

investigate other modules that can make use

of them

7.3

Exceptions

• In computer systems we may NOT know when

– External hardware events will occur.

• Can you think of an example?

– Errors will occur

• Exception processing refers to

– Handling events whose timing we cannot predict

• 3 questions to answer:
– Q: Who detects these events and how? A: The hardware

– Q: How do we respond? A: Calling a pre-defined SW function

– Q: What is the set of possible events? A: Specific to each processor

7.4

An Analogy

• Scenario:

– You're studying (i.e. listening to music and

watching Netflix) but all of a sudden you get a text

message. What do you do?

– You stop what your doing and message back

– When you're done you go back to studying (i.e.

playing a video game or going to get coffee)

• This is what computers do when an

______________________ occurs

7.5

What are Exceptions?

• Definition: Any event that causes a _______________

– "Exceptions" is a broad term to catch many kinds of events
that interrupt normal software execution

• Examples

– Hardware Interrupts / __________ Events [Focus for today]

• PC: Handling a keyboard press, mouse moving, USB data transfer, etc.

• Arduino: Value change on a pin, ADC conversion done, Timers, etc.

– Error Conditions [Focus for some other time]

• Invalid address, illegal memory access, arithmetic error
(e.g. divide by 0)

– System Calls / Traps [Focus for some other time]

• User applications calling OS code

7.6

Interrupt Exceptions

• Two methods for processor and I/O devices to notify each other of
events
– __________________________ (responsibility on proc.)

• Processor has responsibility of checking each I/O device

• Many I/O events happen infrequently (1-10 ms) with respect to the processors
ability to execute instructions (1-100 ns) causing the loop to execute many times

– _______________ (responsibility on I/O device)
• I/O device notifies processor only when it needs attention

while ((KBDCSR & (1 << KEYP)) == 0);

Polling Loop Based Interrupt-based

Proc.

I/O Device (KBD)

KBDCSR Proc.

I/O Device (KBD)

KBDSTAT

Suppose: A Keyboard interface has a control/status

register (KBDCSR) which sets a bit (say, the 6th) when a

key is pressed (KEYP=6). How would we "poll" to check

if a key is pressed.

With Interrupts: We can ask the Keyboard

to "interrupt" the processor when a key is

pressed, so the processor doesn't have to sit

there polling.

KEYP=6 KEYP=6

KDBDAT
KDBDAT

7.7

Recall: Instruction Cycle

• Processor hardware
performs the same 3-step
process over and over again
as it executes a software
program

– Fetch an instruction from
memory

– Decode the instruction

• Is it an ADD, SUB, etc.?

– Execute the instruction

• Perform the specified operation

• This process is known as the
Instruction Cycle

Processor

Memory

ADD

SUB

CMP

Arithmetic
Circuitry

Decode
Circuitry

1 Fetch
Instruction

It’s an ADD

Add the
specified values

2

3

7.8

HW Detects Exceptions

• There's actually a 4th step

• After finishing each instruction
the processor hardware checks
for ____________________
automatically (i.e. this is built into
the hardware)

– Fetch an instruction from memory

– Decode the instruction

• Is it an ADD, SUB, etc.?

– Execute the instruction

• Perform the specified operation

– Check for exceptions

• If so, pause the current program and
go execute other software to deal
with the exception

Processor

Memory

ADD

SUB

CMP

Arithmetic
Circuitry

Decode
Circuitry

1 Fetch
Instruction

It’s an ADD

Add the
specified values

2

3

Did an exception
occur?

4

7.9

SW Handles Exceptions

• When exceptions occur, what

should happen?

– We could be anywhere in our

software program…who knows

where

• Common approach…

– 1. ___________ in current code

and disable other ___________

– 2. Automatically have the

processor call some

function/subroutine to handle

the issue (a.k.a. ____________

__________________ or ISR)

– 3. ___________ interrupts &

resume normal processing back

in original code

#include<avr/io.h>
#include<avr/interrupt.h>

void codeToHandleInterrupt();

int main()
{

// this is just generic code
// for a normal application
PORTC |= (1 << PC2);
int cnt = 0;
while(1){
if(PINC & (1 << PC2)) {

cnt++;
PORTD = segments[cnt];

}
}
return 0;

}

ISR()
{

// do something in response
// to the event

}

If an interrupt
happens here…

…the processor will
automatically call a
predetermined function
(a.k.a. ISR)

…then resume the code
it was executing
previously

Important Point:
HW detects exceptions.

Software handles exceptions.

7.10

When Exceptions Occur…

• How does the processor know

which function to call

"automatically" when an

interrupt occurs

• We must tell the processor in

__________ which function to

associate (i.e. call) with the

various exceptions it will check

for

• Just like a waiver forms asks for

an emergency contact to call if

something bad happens, we

indicate what function to call

when an interrupt occurs

#include<avr/io.h>
#include<avr/interrupt.h>

unsigned char value = 0;

int main()
{

// this is just generic code
lcd_init();
// enable KBD interrupts
KEYCTRL |= (1 << KIE);
sei();
while(1)
{ /* do useful work here */}

return 0;
}

ISR(PCINT0_vect)
{

// get the key value (ASCII)
char value = KEYDAT;
// echo the value to the LCD
lcd_writedata(value);

}

If an interrupt
happens here…

…and the processor
will automatically call a
predetermined function

PCINT0_vect is not an argument. It identifies
the ISR as being from a change on PORTB

This is fictitious
"keyboard" code

7.11

Function Calls vs. Interrupts

Normal function calls

• _______________: Called

whenever the program reaches

that point in the code

• Programmer can pass arguments

and receive return values

Interrupts

• _____________: Called whenever an

event occurs (can be anywhere in our

program when the ISR needs to be

called)

– Requires us to know in advance

which ISR to call for each possible

exception/interrupt

– Use ISR(interrupt_type) naming

scheme in the Arduino to make this

association

• No ____________ or _______ values

– How would we know what to pass if

we don't know when it will occur

– Generally interrupts update some

global variables

7.12

AVR INTERRUPT SOURCES

7.13

Interrupt Sources

• An AVR processor like the ATmega328P has numerous sources of possible

interrupts, many of which you will use in upcoming labs

• Communications modules

– The AVR has several serial communications modules built in (think of these like

forerunners of modern USB interfaces)

– Interrupts can be configured to occur when data is received, sent, etc.

• Analog-to-Digital Converter (ADC) module

– The ADC can generate an interrupt once it's done converting the analog voltage

(i.e. you start it and then it will "interrupt" you when its done) to a digital number

• External Interrupts and Pin Change Interrupts (See next slides)

– Can be used to connect 3rd party devices to the system and have them

generate interrupts on _____ or ______ transitions

• Timer interrupts (See next slides)

– Generate an interrupt at a regular ______

3rd Party

Device

3rd Party

Device

Arduino

DIG2

DIG3

7.14

Pin Change Interrupts

• Pin Change Interrupt can detect if any pin that is part of a

particular PORT (i.e. B, C, D) has changed its value

– Interrupt if a pin changes state (0→1 or 1→0)

– 3 individual pin change interrupts

• Pin Change Interrupt 0 = any bits on PORTB change

• Pin Change Interrupt 1 = any bits on PORTC change

• Pin Change Interrupt 2 = any bits on PORTD change

– Interrupt only says ____ pin of the port has changed but not

_________ one

• The function that gets called can figure out what happened by reading the

PINx register and AND'ing it appropriately just like we did in previous labs

– Useful if you have to monitor a number of external sources for

changes

7.15

Counter/Timer Interrupts (1)
• Most processors have some hardware counters that count at

some known ______________________ (i.e. 1 KHz) and a

register that can be loaded with some _________ limit, n.

• HW counter starts counting at 0 and generates an interrupt

when it reaches the upper limit (n)

Interrupts generated

at a fixed time interval

TT T

F = 1/T

1

2

3

n

Δt

T
im

e
r

C
o
u
n
t

(T
C

N
T

x
)

T = n • Δt

7.16

Counter/Timer Interrupts (2)
• Suppose we se the timer to count at a frequency of 500 KHz.

• We can then load the upper limit register (usually referred to as

OCRx) with the value, n.

• The timer has an internal register/variable, TCNTx, that will

start at ____ and _____________ at the specified frequency

(e.g. 500KHz). When the count reaches the upper limit (TCNTx

== OCRx), an interrupt will be generated

– If OCRx = 1000 and the frequency is 500Khz, an interrupt will occur after

_____________ = ______ milliseconds

• The timers can be set to immediately ___________ at 0 (i.e.

TCNTx = 0) again to generate interrupts at a regular interval

• ATmega328P has _______ such timers that can be used

a

7.17

Who You Gonna Call?
…Which User Defined

Function to Call

Table

Entry

Interrupt that HW Associates with this

entry…

0Reset

ISR(INT0_vect)1External Interrupt Request 0

ISR(INT1_vect)2External Interrupt Request 1

ISR(PCINT0_vect)3Pin Change Interrupt Request 0 (Port B)

ISR(PCINT1_vect)4Pin Change Interrupt Request 1 (Port C)

ISR(PCINT2_vect)5Pin Change Interrupt Request 2 (Port D)

6Watchdog Time-out Interrupt

7Timer/Counter2 Compare Match A

……

ISR(TIMER0_COMPA_vect)14Timer/Counter0 Compare Match A

ISR(TIMER0_COMPB_vect)15Timer/Counter0 Compare Match B

ISR(TIMER0_OVF_vect)16Timer/Counter0 Overflow

17SPI Serial Transfer Complete

ISR(USART_RX_vect)18USART Rx Complete

ISR(USART_UDRE_vect)19USART Data Register Empty

ISR(USART_TX_vect)20USART Tx Complete

ISR(ADC_vect)21ADC Conversion Complete

22EEPROM Ready

23Analog Comparator

24Two-wire Serial Interface

25Store Program Memory Read

• The HW maintains a table/array

(a.k.a. interrupt vector table) in

memory

– Each location in the table is

___________ with a specific

interrupt

– Each entry specifies which function

to call when that interrupt occurs

• When a certain interrupt occurs,

the HW automatically looks up the

ISR/function to call in the table and

then calls it

• More on this in your OS class

(CS 350) or Architecture course

(EE 457)

Page 58 on http://www.atmel.com/images/Atmel-8271-8-bit-AVR-
Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-
328P_datasheet_Complete.pdf

7.18

Interrupt Service Routines
• An ISR is written like any other

function (almost)

– Must be declared as an ISR for a specific

interrupt by using a special name [e.g.

ISR(TIMER1_COMPA_vect)]. This tells the

compiler to fill in the interrupt vector table
to call this code when an ADC interrupt

occurs.

– No arguments can be passed

– No values can be returned

– Must include the avr/interrupt.h
header

• ISRs have access to other functions

and global variables like any other

function

#include <avr/io.h>
#include <avr/interrupt.h>

int main()
{
...

}

ISR(TIMER1_COMPA_vect)
{
// get the key value (ASCII)
char value = KEYDAT;
// echo the value to the LCD
lcd_writedata(value);

}

7.19

To Use Arduino Interrupts

• Define the ISR in your software program

– If an interrupt occurs for which there is no ISR, the Arduino

will _____________!

• During initialization you must enable the interrupt

source

• Either…

– Wait for the interrupt to occur (e.g. wait for a pin to

change or the timer to reach the modulus count)

– or Invoke behavior that will eventually lead to an interrupt

(start the timer so that eventually it will generate an

interrupt when the count reaches the upper limit)

7.20

Enabling Interrupts
• Each interrupt source is DISABLED by default and must be ENABLED

• For an interrupt to be handled, ______ "enablers" need to agree

– Enabler 1: A separate "________" interrupt enable bit per source (i.e. ADC,

timer, pin change, etc.)

– Enabler 2: A single "________" interrupt enable bit (1-bit for entire

processor called the I-bit)

• Analogy: Local judge per state but 1 supreme court for entire nation

– Both local judge and supreme court must agree (be set to '1') for the

interrupt to occur. If _______ are '0' then the interrupt will ______ occur.

"Local" Interrupt Enable
(1 per interrupt source)

"Global" Interrupt Enable
(1 for entire system)

7.21

Enabling Interrupts
• All interrupt sources must be enabled before they can be used

• Each source of an interrupt has its own _______________ bit

– Located in one of the control registers for the module

– __ = Don't use interrupts, ___ = Can interrupt

– Example: TIMSK1 |= (1 << OCIE1A);

• Processor has a _________ interrupt enable bit in the status

register

– I-bit = 0 ⇒ all interrupts are ignored

– I-bit = 1 ⇒ interrupts are allowed

– Set or clear in C with the sei() and cli() function calls.

• Summary: For a module to generate an interrupt

– The global I-bit must be a one

– The local interrupt enable bit must be a one

– Something must happen to cause the interrupt

- - ICIE1 - OCIE1

B

OCIE1

A

TOIE1-

TIMSK1 Register

7.22

Interrupt Example

• Example: Updating a variable or printing to the LCD at a certain

interval

• Tracking time without interrupts

– Use delays

– Is this an accurate way to track time?

• Better to use interrupts

– Setup timer to generate an interrupt at a fixed period

– Enable interrupts and start the hardware timer

– The program is now free to do other things

– After the specified time, an ISR will

be called

– The program can start several tasks,

(e.g. multiple timers, an ADC conversion,

etc.) and handle each when they finish

via an ISR

int qsecs = 0;

while(1)

{

qsecs++;

lcd_moveto(0,0);

lcd_stringout("0.25s elapsed");

_delay_ms(250);

}

// is "0.25s elapsed" printed

// every 250 ms?

7.23

Interrupt Example
• Interrupt method:

– #include <avr/interrupt.h>

– Initialize the on-board hardware module

– Enable interrupts

– Start the timer hardware module

– Loop using the results
• In most application, should check if ISR actually

executed by using a flag mechanism (more on

this in later slides)

– As the time elapses, the ISR associated
with the timer will execute and the timer
will start tracking the next time period

• Be sure to follow the special syntax for

how to declare the ISR which starts with

ISR and has the name of the interrupt
vector (e.g. ISR(TIMER1_COMPA_vect))

• Note: If you enable an interrupt but have

no ISR() written the Arduino will reboot

immediately when the interrupt occurs

#include<avr/io.h>
#include<avr/interrupt.h>
volatile int qsecs = 0;
volatile char qsec_flag = 0;
int main() {
// Set to CTC (repeat) mode

TCCR1B |= (1 << WGM12);

// Load the MAX count. Assuming prescalar

// of 256, counting to 15625 = 0.25s

// w/ 16 MHz clock

OCR1A = 15625;

// Local Timer Interrupt & global enable

TIMSK1 |= (1 << OCIE1A);

sei();

// Set prescalar = 256 and start counter

TCCR1B |= (1 << CS12);

while (1) {
// Do real work while waiting for interrupt
if(qsec_flag) {
// use qsec data variable
qsec_flag = 0;

}
} }
ISR(TIMER1_COMPA_vect){

qsecs++; // will increments every 0.25s
qsec_flag = 1;

}

7.24

Interrupt Flag Bits

(Skip)
• Modules usually contain an interrupt flag (IF) bit in the

same register as the interrupt enable (IE) bits

– Flag is set when the module wants to generate an interrupt.

– Flag is cleared when the ISR is called

– Allows the program to see if interrupts would have occurred if they

were enabled (i.e. If we aren't using interrupts for the timer we can

still look at the OCF1A bit to see if it would have tried to generate

an interrupt)

- - - - OCF1B OCF1A TOV0-

TIFR1 Register

7.25

Disclaimer 2

• All processors handle interrupts differently.

– The AVR is typical in some ways, not in others.

– If working with a different processor, don’t

assume it works the same as the AVR.

– READ THE MANUAL!

7.26

COMMUNICATING WITH ISRS

Flags and volatile variables

7.27

Communicating with ISRs & Other Code

• Global variables can be shared

between main code and ISR’s

• ISR’s can modify the contents of

a global variable and other code

and check for changes in that

global variable

• Common idiom: a "______"

variable to indicate a desired

event has happened

• ISR ________ on every interrupt to

see if the desired event occurred

and only then _____ a flag to __

• Main or other code checks the flag

variable then ______ it to __

#include<avr/io.h>
#include <avr/interrupt.h>
int flag; // shared variable
main()
{

flag = 0;

// Loop waiting for interrupt to occur
while (flag == 0);

// Do something
}

ISR(SOME_INTERRUPT_vect)
{

flag = 1;
}

7.28

Using a Flag Variable

• A common idiom is to use a

"flag" variable to indicate a

desired event has happened

• Approach

• Initialize a global variable to 0

• ISR checks on every change to

see if the desired event occurred

and only then sets a flag to 1

• Main or other code checks the

flag variable then resets it to 0

awaiting the next time the event

occurs

int pb2flag; // shared variable

main() {
pb2flag = 0; // Initialize to 0
while(1){

// Loop waiting for flag to be set
if (pb2flag == 1){

pb2flag = 0; // reset flag to 0 so we
// can detect the next push

stringout("button push!");
}
// Check for other things or do work

}
}
ISR(PCINT0_vect)
{

// Some bit changed, see if it is PB2
if((PINB & (1 << PB2)) == 0){

pb2flag = 1;
}

}

7.29

ISR Timing

• Why not just do the work in

the ISR?

• Because an ________ can not

___________ another

____________!

– That's a mouthful

– When you are in an ISR no other

interrupts can occur possibly

delaying important events, or

even ________ information (e.g.

a "high-speed" communications

link with limited space)

• Solution: Never do ________

_________ work in an ISR

main() {
while(1){

// Check for other things or do work
}

}
ISR(PCINT0_vect)
{

// Some bit changed, see if it is PB2
if((PINB & (1 << PB2)) == 0){

stringout("button push!");
}

}

Main Point:
Get ___________ of an ISR quickly.

Don't call functions that will take a

long time to complete (e.g. LCD

output)

7.30

Another Issue: Compiler Optimizations

• Example: When optimizing this

code, compiler sees that "flag" is

never modified in main (and

doesn't see any "calls" to the ISR)

• Thus, the compiler will optimize

the code to avoid reading "flag"

from memory each time (since

that is slow)

• Problem: Due to the compiler

optimization our code won't work

even if the ISR sets the flag to 1

• Solution: Tell the compiler that

"flag" can change due to some ISR

by declaring it as volatile

int flag;
main() {

flag = 0;
// Loop waiting for flag non-zero
while (flag == 0);

// Do something
}

ISR(SOME_INTERRUPT_vect)
{

flag = 1;
}

Result of compiler optimization

If you just look at
main, would you
expect this while
loop to
terminate?

int flag;
main() {

flag = 0;
// compiler optimized result
while (______);

// Do something
}
ISR(SOME_INTERRUPT_vect)
{

flag = 1;
}

Original Code

7.31

Another Issue: Compiler Optimizations

• Solution: Tell the compiler that

"flag" can change due to some ISR

by declaring it as volatile

• Declaring a global variable as volatile

tells the compiler not to optimize the

code but always get the __________

value of the variable

• Important Rule: Use "volatile" for

any global variable that is updated

in an ISR and used elsewhere in the

code

• Corollary: No need to use "volatile"

for variables not used with ISRs (e.g.

"buf" in the example at the right).

• Arrays are implicitly "volatile"

(processor always gets latest values)

char buf[17]; // not used in an ISR.
volatile int flag;
main() {

flag = 0;
// Loop waiting for flag non-zero
while (flag == 0);

// Do something
snprintf(buf,3,"Hi");

}

ISR(SOME_INTERRUPT_vect)
{

flag = 1;
}

Volatile declaration
tells compiler to
always look at the
latest value of "flag"

Original Code

7.32

NEED FOR ATOMIC OPERATIONS

Performing critical sections without be interrupted

7.33

Need for Atomic Operations

• Sometimes performing an

operation requires several

steps (ex. Copying bits into a

register)

• If an interrupt occurs in the

middle of the sequence it

may see a strange

value/state of the variable

and do something we didn't

expect

• Atomic operations are

compound statements that

should execute all together

(not be interrupted)

#define MASK 0b00001111
main() {

PORTD = 0x0f; // PORTD starts at 1's
char x = 0x05;

// copy lower 4 bits of x to PORTD
PORTD &= ~MASK;
PORTD |= (x & MASK);
// both lines should be done "together"

// we would expect PORTD to end w/ 5
// but what if interrupt occurred
// between these two lines

}

ISR(SOME_INTERRUPT_vect)
{

// if lower 4 bits all = 0
if((PORTD & MASK) == 0){

// do something
}

}

7.34

Atomic Operations

• "Atomic" ⇒ Can’t be ______________ while executing

• The problem gets worse at the assembly level since many C

operations (one line of code) require multiple assembly language

instructions, and interrupts can occur between them.

– Even "x++" is actually 3 steps: ______ old value of x, ____ 1, ________ x to

new value

• Need a way to ensure all operations occur __________ and are

not interrupted (e.g. ensure an interrupt doesn't occur in the

middle)

7.35

Updated Code for Atomicity

• Solution to ensure "atomic"

operation

– Disable interrupts using cli()

– Perform the operation

– Re-enable interrupts using

sei()

• The code between cli() and

sei() that cannot be

interrupted is called a

"critical section" (since it

must be done together)

#define MASK 0b00001111
main() {

PORTD = 0x0f; // PORTD starts at 1's
char x = 0x05;

// blue code can't be interrupted
cli();
PORTD &= ~MASK;
PORTD |= (x & MASK);
sei();

// now we can be interrupted

}

ISR(SOME_INTERRUPT_vect)
{

// if lower 4 bits all = 0
if((PORTD&MASK) == 0){

// do something
}

}

Can't happen
during the critical
section

Code between cli()
and sei() is called a
"critical section"

7.36

Built-In Atomic Block

• In a larger program there

are some issues that

might arise

– OK to disable interrupts,

but shouldn’t turn them

back on if they were

already disabled by some

other code

• Solution: Use atomic.h

and the ATOMIC_BLOCK()

• Turns interrupts off, then

restores to previous state.

#include <util/atomic.h>

main() {

ATOMIC_BLOCK()
{ /* like cli() */

// interrupts now off
// Do critical section

} /* like sei() */

// interrupt setting restored
}

ISR(SOME_INTERRUPT_vect)
{
}

