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What is state?

® |t's late at night. You see a DPS officer approaching you.
Are you happy?
= |t depends on what was happening just a minute ago.

"  Your car broke down.
= You've been partying a little too hard.

® You press the PAUSE/PLAY button on
a video player. What happens?

= |t depends on what was happening previously.

=  We also want to stay in that mode indefinitely
after the button is released.

= This requires maintaining STATE, which helps us remember the necessary
information for the system to operate correctly

This Photo by Unknown Author is licensed under CC BY-NC
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What is state?

® State: Everything that must be remembered to interpret the inputs (think the
play/pause button) and/or to produce outputs at appropriate times

= Usually, state is required for time-dependent behavior
® Asahuman:
= Your "state" determines your interpretation of your senses and thoughts
= The sum of all your previous experiences is what is known as state
® |n acircuit:
= State refers to all the bits being remembered in registers or memory
® |n software:

= State refers to all the variable values that are being used

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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State Machines and State Diagrams

® Hardware and software components that utilize state are referred
to as state machines (or FSMs = Finite State Machines)

® A state machine is modeled by a state diagram (i.e. a flow-chart)
® FSMs are a very nice problem-solving approach/strategy

= |f you can model your design with a state diagram, there are

straightforward transformations to either software (what we'll study today)
or hardware (later in the semester)

State Diagram
(Abstract representation of
FSM operation)

Hl
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State Diagrams

® The state diagram should have 3 parts:

» The states as circles or boxes

= The transitions as arrows labeled by input conditions

= The outputs, which can be generated

when in a particular state ..OR..
on a specific transition event

—

Play/Pause
button

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Play/Pause ==
Not pressed

Play/
Pause ==
PRESSED

PAUSED
(PlayVideo=0)

PLAY
(PlayVideo=1)

Play/
Pause == .
PRESSED PlayVideo
output
—

Play/Pause ==
Not pressed
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Operation

e State is used to generate the outputs even while the
inputs are not activated

e When an input is activated, the state can be updated...
e ..and remembered after the input has deactivated

Play/Pause = Play/Pause = Play/Pause =
Not pressed Not pressed Not pressed ‘
Not Play/ Play/ Not Play/
PAU_SED Pause = - Pressed PAU_SED Pause = PAUSED Pause =
Pressed (PlayVideo=0) prEssED | FlavVideo (PlayVideo=0) pREssED | PlayVideo Pressed (PlayVideo=0) pRESSED | PlayVideo
output output output
— >
Play/ Play/
PLAY Pause = 1 Pause = 1
PRESSED PRESSED
Play/Pause = Play/Pause = Play/Pause =

Play/Pause Play/
Pause =
Not pressed Not pressed Not pressed

PRESSED

button
(PlayVideo=1)

\
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Another Example: Traffic Light

® State machines can be used to trigger time-dependent
updates
= Consider a system controlling the traffic lights at an intersection
= There are no external inputs to indicate when the light should change
= |nstead, the outputs must change/transition based on time.
= The state helps determine what the next output should be.

Green
(Green=on)

If a transition does not have a condition, it means it is
unconditional. Sometimes we may just label it with 1 (true)

Yellow
(Yellow=on

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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Time-Based Conditions

® (Oftentimes we can use some kind of internal time counter to control when we
transition states

= Suppose our internal SW loop cycles every 1 second
® \We can generate our output/actions
" On each iteration, based on state (Green, Yellow, Red lights; increment counter)

= On specific iterations based on other conditions (if count is 30, reset it to 0)

/ Input Condition

Conditional
Output Actions

Reset (Power on) / count == 30 count==5
Init. countto O

G Y R
Unconditional Green=on Yellow=on Red=on
output action Count+=1 Count+=1 Count+=1
(regardless of input) ) jf( count == 30 ) if( count == 5) .
count=0 count=0 count=0

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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FSM Example 1-1

® Consider a system with one digital input
and one output.

® The output should be true whenever the
input is 1 for two consecutive time units

= Input: 90101101110 .
= Qutput: 000010011 Input Output
. —1 (22O
® Does this system need state? .
® To help answer the question:

= "Theinputis a1l right now, should the output be
true?"

= Need to know whether the input was true last time
unit as well? We need state!

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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FSM Example 1-2

® Draw the state diagram for the system that outputs true (1)
whenever the input has been 1 for two consecutive time
periods

State Machine to check for two consecutive 1's on a digital input

Input=0 Input=1 Input=1

'J@ =5
Out=False

On startup

Input=1

Input=0

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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FSM Example 2: Washing Machine

® Consider the design of an embedded controller for a coin/card-
operated laundry machine.

® Consider the inputs and outputs o
— Lid Closed
Water Valve (WV) <
—  Full Sensor
Paid
Empty Agitator Motor <=
Sensor
Drain
0 Valve (DV) N
LD DRAIN
FULL
> Embedded AGITATOR
eab Control
EMPTY WATER

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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Washing Machine State Diagram

e Examine a potential state machine for this design.

RESET é

Idle PAID + LID
—lt

N=2 —
— Lid Closed
PAID - LID l Water Valve (WV) €—
Fill —  Full Sensor
i —_—
WaterValve = 1 D FULL $
lFULL [ StartTimer
— Paid
Agitate : )
|\/|ogtor =1 SMIN _ Empty Agitator Motor ~ #—
Sensor
lSMIN /| ResetTimer Q Drain
Valve (DV)
Drain EMPTY
DrainValve = 1 Lo, DRAIN
FULL
lEMPTY AD Embedded AGITATOR
> Control
N>0 EMPTY WATER

N=N-1

IN:O

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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A Day in the Life of a State Machine

® State machines operate time step Input_s
. (A-to-D, Timer,
by time step Buttons) Logic Outputs
—p —
= Human analogy: day-by-day (see
inset)
® Each time step, the state machine Current Next State
use current (today's) state to: State state (for
Y - (Today) (memory) tomorrow)
=  Determine which inputs to
examine to determine the next
(tomorrow's) state
= Determine any outputs and [ Human analogy: day-by-day A
actions to take (sometimes based - Wake up with only a memory of the current state
on the inputs) * Use current state (and inputs) to determine

outputs and actions for today

* Use current state and inputs to update state (i.e.
determine state for tomorrow)

* Go to sleep and repeat same process tomorrow )

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. L
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State Machine Operation (1) =
§‘ldle PAID + LID
® Notice how the current state helps identify PAID- D J
which inputs "matter" at specific times — st vatve -1 ) POLL
JFULL/ StartTimer
[ PR L—
O i S
i
! Embedded
! Control
i
! @[)
|
I A
| FILL
Paid=1, Lid=0, E Paid=1, Lid=1,
Full=0, Empty=1,... [ Wv=0, Motor=0,bv=0 | I Full=0, Empty=1,... [ Wv=0, Motor=0, Dv=0 |
— Logi i — |  Logi :
Idle 1 Fill
State i State J
[__lde ) : ___ldle )
|

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.



State Machine Operation (2)

® When the state changes, we produce new
output values and may look at a new set of

inputs

=2 |
| PAID=1 | Embedded
[ LID=1 | Control
‘
| EMPTY=0 | CFill D

Paid=1, Lid=1,
Full=0, Empty— vvv 1, Motor=0, DV=0 |

F|II
State J
F|II

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FULL=0
_EMPTY=0 |
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RESET :

PAID + LID
Idle
— )
PAID LIDl
—> Fill FULL
WaterValve = 1
lFULL/ StartTimer
[ m L—
=3
Embedded
Control
Paid=1, Lid=1,
Fullz0, Empty=1,... [ WV=1, Motor=0, DV=0
——  Log
Fill
State J
)
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State Machine Operation (3) =<
Idle PAID + LID
® We can use internal "time" inputs to control PAID- D J
when we change states. — ot oo 1 | )OI
lFULL/ StartTimer
I PR L—
Ltk ] L=kl |
__PAID=1 | Embedded Embedded
[ LiD=1 | Control Control

FULL=1
EvPTY=0 | i
,

A
C Agitate )

Paid=1, Lid=1, Paid=1, Lid=1,
Full=1, Empty=1,... [ WV=1, Motor=0, DV=0 | Full=0, ..., 5SMIN=0 | wv=0, Motor=1, DV=0 |
EE— LOQF—iz\- EE— Log}c_?
Agitate Agitate
State J State J
) )
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IMPLEMENTING STATE MACHINES IN
SOFTWARE

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.



® Software Implementation

Current State = just a variable(s)

Input/output Logic = if statements to

update the next state or produce

outputs

O if(state == 0 && input == 1)
{ state = 1; output = 0; }

Transitions triggered by input or timers

We'll start by implementing state
machines in SW

® |aterin the semester we'll see how
to implement state machines in
hardware

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Inputs

(A-to-D, Timer,

Buttons)

—

Current
State
(Today)
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Software and Hardware Implementation

—

Logic

Outputs
—

State
(memory)

Next State

(for
tomorrow)
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Coding State Machines 1

® Setup (declare and initialize) your state variable int main(){
char currst = 8, n = 2; int timer;
=  Choose some numeric code for each state: // other initialization
O=Idle, 1=Fill, 2 = Agitate, etc. while(1) {

® Use one while loop and a single delay
(or timer) to repeat the "day-in-the-life" routine of a
state machine

RESET

Y

PAID -

_delay ms(100);
}

return 0;

N=0
© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. }
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Coding State Machines 2

* In the while loop, setup a series of e Oy | i
if..else if..else statements to gy (o aatization
determine what state you are in 16 RN { // Tdle
"today" // code pertinent to Idle

}

else if( currst == 1 ){ // Fill
// code pertinent to Fill

}

else if( currst == 2 ){ // Agitate
// code pertinent to Agitate

}

else if( currst == 3 ){ // Drain
// code pertinent to Drain

}

else { // Decrement
// code pertinent to last state

}

_delay ms(100);

}

return 0;

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. }
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Coding State Machines 3a

e Sample the inputs at the start of each
iteration (each day) —

® |n each if statement for the current

state, use a nested if statement for
the input conditions to determine
next state and output actions

RESET

Idle 0 FAID +LID
M=2

FAID - LD

Fill e
Wateriave = 7

FULL

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main(){
char currst = @, n = 2; int timer;
// other initialization
while(1) {
char paid = PIND & (1 << PD@);
char 1id = PIND & (1 << PD1);
char full = PIND & (1 << PD2);
= if( currst == @ ){ // Idle
if(paid && 1lid)
{ currst = 1; /* Goto Fill */ }
}
else if( currst 1){ // Fill
PORTC |= (1 << PCO); // Wv=1
if(full)
{ currst = 2; timer = 0; }

—

else if( currst == 2 ){ // Agitate
PORTC &= ~(1 << PCO); // Wv=0
PORTC |= (1 << PC1); // Motor=1

} cee

_delay ms(100);

N
} ¢ 0: Notice the nested IF statement
el 12 structure used for state machines. )




e Sample the inputs at the start of each
iteration (each day)

® |n each if statement for the current
state, use a nested if statement for
the input conditions to determine
next state and output actions

FAID - LD

Fill ﬂ
Wateriave = 1
J

The final "else" is equivalent
to "else if (currst == 4)".
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Coding State Machines 3b

int main(){
char currst = 8, n = 2; int timer;
while(1) {

char full = PIND & (1 << PD2);
char empty = PIND & (1 << PD3);

else if( currst == 2 ){ // Agitate
timer++;
™ PORTC &= ~(1 << PCO); // Wv=0
PORTC |= (1 << 1); // Motor=1
if(timer=3000) // 5 min
{ currst = 3; timer = 0; }
}
else if( currst == 3 ){ // Drain
=] PORTC &= ~(1 << PC1l); // Motor=0
PORTC |= (1 << PC2); // DV = 1
if(empty) { currst = 4; }
}
___1:else { if(--n > @) currst

1;
0; 1}

else currst
_delay_ms(100);

}

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

) return o Notice the nested IF statement
} structure used for state machines. )

~
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Enumerations

® |t would be nice to use symbolic names

for states, rather than numbers

In C/C++, enumerations associate an
integer code (number) with a symbolic
name

Syntax:
enum [optional collection_name] {SymNamel,
SymName2, .. SymNameN}

. SymNamel = ©
= SymName2 =1
. SymNameN = N-1

Use symbolic item names in your code and
compiler will replace the symbolic names with
corresponding integer values...makes the code
much more readable!

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

const int IDLE=0;
const int FILL=1;
const int AGITATE=2;

char state = IDLE;
if(state == FILL && full == true) {

state = AGITATE;
}

Option 1: Hard coding symbolic state names with given
codes. Better than nothing, but enumerations (below)
are often preferred.

// First enum item is associated with code ©
enum States {IDLE, FILL, AGITATE, DRAIN, DEC};
// auto-assign 0 1 2 3 4
char state = IDLE; // same as state = 0;

if(state == FILL && full == true) {
state = AGITATE; // same as state

2;
}

Option 2: Using enumeration to simplify state coding
and make the code more readable!
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Another Example: 2 Consecutive 1's FSM

® How would we begin to code the
implementation of this state machine?

= Start with an enum to list the states
= Declare and initialize your state variable

» Choose or determine the rate / delay at
which transitions in state should be made
or output actions must occur.

O 1iteration of the loop handles 1 time step (a
Ildayll)

State Machine to check for two consecutive 1's on a digital input

Input=0 Input=1 Input=1

o
Out=False

On startup

Input=0

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

enum { SO, S1, S2 };

// input = PDO, output = PD7

int main()

{ // be sure to init. state
unsigned char state=So0, input;
while(1)

{

_delay ms(10); // use approp. Time
} return 0;

}
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Consecutive 1's FSM - State

® Again, notice the structure:

= The purple 'if' statements determine which

state we are in

State Machine to check for two consecutive 1's on a digital input

- 4

On startup \

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Select current state

enum { SO, S1, S2 };

// input = PDO, output = PD7

int main()

{ // be sure to init. state
unsigned char state=S0, input;
while(1)

{

— if(state == S@){

}
else if(state == S1){

}
else { // state == S2

}

== _delay _ms(10); // use approp. Time
} return 0;

}
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Consecutive 1's FSM - Transitions

® Again, notice the structure: enum { S@, S1, S2 };
1ogl i t = PDO, tput = PD7
= The nested orange 'if' statements ﬁtl:,z:n() o
determine which input conditions are true { // be sure to init. state
to determine how we update the state unsigned char state=se, input;
while(1)
{

_ input = PIND & (1 << PDO);
if(state == S0){

{j_-F( input ){ state = S1; }
}

T else if(state == S1){

2

g.[ if( input ){ state = S2; }
State Machine to check for two consecutive 1's on a digital input § . else { state = 50; }

Input=0 Input=1 Input=1 Input=1 else { // state == S2

Select cul_rrent state

{if( linput ) { state = So; }
=}

_delay ms(10); // use approp. Time
} return 0;

}

On startup

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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Consecutive 1's FSM - Output Actions

® Again, notice the structure: S 55 G 5 1
i : i t = PDO, tput = PD7
= We can add appropriate output actions ﬁtlr:z:n() outpu

{ // be sure to init. state
unsigned char state=S0, input;
while(1)

{
__ dinput = PIND & (1 << PD@);
if(state == S0){
PORTD &= ~(1 << PD7);
if( input ){ state = S1; }
}
else if(state == S1){
PORTD &= ~(1 << PD7);
if( input ){ state = S2; }
else { state = S9; }

Select input val.

State Machine to check for two consecutive 1's on a digital input

}
else { // state == S2

PORTD |= (1 << PD7);
{if( linput ) { state = So; }

Input=0 Input=1 Input=1 Input=1

Select cul_rrent state

=}

TR - _delay ms(10); // use approp. Time
On startup Input=0 M } return @; ’

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. }
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Consecutive 1's FSM - Summary

® Again, notice the structure: enum { S0, S1, S2 };
. . . input = PD@, tput = PD7
= 1 jteration of the loop handles 1 time step ﬁtl::.g:n() ouEpe
(a"day") { // be sure to init. state
X . . unsigned char state=S0, input;
=  The purple ’if’ statements determine which while(1)
state we are in and the nested orange 'if’ {

input = PIND & (1 << PDO);

statements determine which input Q| [ if(state == se){
conditions are true to determine how we [ PORTD &= ~(1 << PD7);
update the state and what output actions we o ) 1( input ){ state = S1; }
take qC) T else if(state == S1){
. . . | |2 _PORTD &= ~(1 << PD7);
= Some delay before the next iteration begins S S a6 input ){ state = s2; )
State Machine to check for two consecutive 1's on a digital input B ﬁ y else { state = 50; }
O
Input=0 Input=1 Input=1 Input=1 Q else { // state == S2
I PORTD |= (1 << PD7);
) {if( linput ) { state = So; }
=}

_delay ms(10); // use approp. Time

On startup } return 0;

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. }
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A Potential Alternate Structure

® Sometimes, it may be easiest
to separate .
= the state transition code and
= the output action code

® We can use separate 'if’
seguences.

State Machine to check for two consecutive 1's on a digital input

Input=0 Input=1

RN
Out=False

On startup

Input=0

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

State transitions

Outputs

enum { SO, S1, S2 };
int main() {
unsigned char state=S0, input;
while(1) {
// state transitions
input = PIND & (1 << PDO);
if(state == SO){
if( input ){ state = S1; }
}
else if(state == S1){
if( input ){ state = S2; }
else { state = So; }
}
else { // state == S2
if( !input ) { state = So; }

-}
// output actions
if( state == S2)
PORTD |= (1 << PD7);
else
PORTD &= ~(1 << PD7);
_delay_ms(10); // use approp. Time
} return 0;

}
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State Machines as a Problem-Solving Technique

e Modeling a problem as a state machine is a powerful
problem-solving tool

e When you need to write a program, design HW, or solve
a more abstract problem at least consider if it can be
modeled with a state machine

= Ask questions like:
o What do | need to remember to interpret my inputs or produce my
outputs? [e.g. Checking for two consecutive 1's]
o Is there a distinct sequence of "steps" or "modes" that are used
(each step/mode is a state) [e.g. Washing machine, etc.]
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A Note About Timing

® \Write a program to blink an LED at 2HZ int main()
{
® What delays should you use? // Initialization
while(1)
1 sec. {
I » F=2Hz=2Cycles / sec. implies... PORTD |= (1 << 7); // LED on PD7
_delay_ms(250);
l— T-=1=0.5seconds PORTD &= ~(1 << 7);
J L _delay_ms(250);
}
l— But requires a change every return 0;
d = 0.25 seconds = 250 ms }
int main()
{
. . ) . // Initialization
® |f all we are doing is blinking, we can while(1)
simplify to use an XOR to flip the output - (1 << 7); // LED on PD7
bit _delay_ms(250);
}
return O;

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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Tunnel Vision (1)

// Ad-hoc implementation
int main() T =0.25 second = 250 ms

® Consider a program that constantly
monitors several inputs and takes
appropriate actions:

= |f buttonl is pressed it should blink an LED
10 times at a rate of 2 HZ

= |f button2 is pressed it should output
something to the LCD screen

= |f button3 is pressed it should enable a
motor

=  And even more tasks...

® To do something 10 times, it would be
easiest to use a for loop, RIGHT?!?

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

{
{

}

le—>i

while(1) J L

int i;
if(checkInput(l) == 0) {
for(i=0; i < 10; i++) {
blink(250); // on for 250, off for 250
// delays are in the blink() functions

}

}

if(checkInput(2) == @) {
// output to LCD

}

if(checkInput(3) == @) {
// enable motor

}

if(...) {
// even more tasks

}

return 0;

}
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Tunnel Vision (2)

® Consider a program that constantly
monitors several inputs and takes
appropriate actions:

= |f buttonl is pressed it should blink an LED
10 times at a rate of 2 HZ

= |f button2 is pressed it should output
something to the LCD screen

= |f button3 is pressed it should enable a
motor

=  And even more tasks...

® To do something 10 times, it would be
easiest to use a for loop, RIGHT?!?

® No! When we are in the for loop, we
would not be performing our other
tasks and miss actions.

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

// Ad-hoc implementation
int main() T =0.25 second = 250 ms

{ le—]

while(1) J L

{

int i;
if(checkInput(l) == 0) {
for(i=0; i < 10; i++) {
blink(250); // on for 250, off for 250
// what if button 2, 3, ... are pressed?

}

}

if(checkInput(2) == @) {
// output to LCD

}

if(checkInput(3) == @) {
// enable motor

}

if(...) {
// even more tasks

}

}

return 0;

}
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A Better Approach

@QO
2 @Og &=/
)

lu

=

P

~

/To keep many things
going at once, cycle
through all the tasks
doing only a short /
small amount of the

task at a time!

o _

-

4

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.
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A Better Approach

Instead, perform 1 blink per iteration,
tracking your count!

This allows other checks and actions to
be performed after each single blink

You can use your count as a "state"
variable:

= c¢nt: 0-9 tracks how many blinks
= c¢nt: 10 DONE/OFF

...Or use a separate state variable
(s=1: counting, s=0: DONE/OFF) in
combination with cnt

Every time we press button 1, we reset
the cnt to start 10 more blinks

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Other checks and actions

// Ad-hoc implementation
int main()
{
int cnt=10;
while(1)
{
if(checkInput(1l) == 0) {
cnt=0;
}
if(cnt < 10) {
blink(250); // 1 blink per iter.
cnt++;

~ if(checkInput(2) == @) {
// output to LCD

}

if(checkInput(3) == 0) {

- // enable motor

}

if(...) {

// more tasks




EE109 | SW State Machines | Unit6| 36

Operations at Different Rates (1)

® Consider a program to blink one LED at a rate of 2 Hz
and another at 5 Hz at the same time

® Desired:
0 sec

LED1

1 sec.

LED?2

® Problem: Does the code to the right work correctly?
= No! When one LED blinks the pthgr vyill .be.off.

LED1

LED?2

1 '
—

1

" '
H . . . . H H
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int main()
{
while(1)
{
LED1_OFF();
_delay_ms(250);
LED1_ON();
_delay_ms(250);

LED2_OFF();
_delay_ms(100);

LED2_ON();
_delay_ms(100);

}

return 0O;
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Operations at Different Rates (2)

int main()

® Use a SINGLE delay and separate state (count) variables {
to do work on each task at the "same time". This mimics

int cntl = 9, cnt2 = 0;

// set initial state of LEDs as "off"

"parallel" (aka multithreaded) execution. LEDL_OFF();
LED2_OFF();
® To determine that delay, find the GCD (Greatest while(t)
Common Divisor) of the minimum periods that action is L ——
if(cn ==
needed for each task. {
FLIP_LED1();
=  Task 1: Flip the LED every 250 ms ) cntl = 0;
=  Task 2: Flip the LED every 100 ms cntl++;
if(cnt2 == 2)
= Use adelay of 50ms = GCD (250, 100) {
FLIP_LED2();
cnt2 = 0;
}
cnt2++;

// Delay the minimum granularity
_delay_ms(50);
}

return 0;

}

On startup On startup
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Operations at Different Rates (3)

® To determine that delay, find the GCD (Greatest %"t main()
Common Divisor) of the minimum periods that action int cnt = o;
IS needed fOI’ eaCh taSk' // set initial state of LEDs as "on"
=  Task 1: Flip the LED every 250 ms; LED1_ON();
Task 2: Flip the LED every 100 ms LED2_ON();
=  Use adelay of 50ms = GCD (250, 100) while(1) {

if(cnt % 5 == @) {
FLIP_LED1();

. . . }
® \We can use a single counter looking for multiples of if(cnt % 2 == @) {
the individual task periods (every 2 or every 5  FHP-LER0s
iterations) using the modulo operator cnt++;
if(cnt == 10)
® (Can reset the count to 0 after the Least Common { cnt = 0; }
. . 1 h ini lari
Multiple of the task periods iée'i:yi?n’sfsg)':mlmum Eranlarsey
= LCM(250,100) = 500ms = 10 iterations. Y o o

}
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Summary Definition

Inputs: {0, 1}

® To specify a state machine, we must specify 6 things: States: {S0, S1, S2}
Outputs: {False, True}
Initial State: SO

= Aset of possible states: {SO, S1, S2} m

= Aset of possible input values: {0, 1}

= Aset of possible outputs: {False, True} —. 0 8
= Aninitial state = S0 S0 ) s1
= Atransition function: s1 ) s2
O {States x Inputs} -> the Next state s2 S0 $2
=  An output function:
O {States x Inputs} -> Output value(s) State Transition
Function

Input=0 Input=1 Input=1 Input=1 State Outputs
' 30 ” SO False
Out=False

All the info in the S1 False
On startup Input=0

state diagram is
presented in the sets S2 True
and tables to the

right \_ Output Function  /
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HW (Instruction Cycle) & Software (String Matching)

MORE EXAMPLES IF TIME
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Thermostat

® Sample state machine to control a thermostat

temp < THESH_LO

a\

HEAT

OFF

PROG_BTN
- heater = off
heater = on
ac = off
DONE_BTN 2
PROGRAM M temp < THESH_LO
(Update g
THRESH_HI & temp >= THRESH_LO

THRESH_LO)

INRANGE

heater = off
ac = off

PROG_BTN
- temp <= THRESH_HI

temp > THESH_HI
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Counter Example

® Consider a system that has two button inputs: UP and DOWN and a

1-decimal digit display. It should count up or down at a rate of 500 milliseconds and change
directions only when the appropriate direction button is pressed

Every time interval we need to poll the inputs to check for a direction change, update the state
and then based on the current state, increment or decrement the count

State Machine to count up or down (and continue counting) based on 2
pushbutton inputs: UP and DOWN

DOWN=0 DOWN=1 UP=0

§]= DIGIT
UP DOWN —> Counter| DISPLAY
cnt++ (wrap cnt-- (wrap to DOWN —>
/ 9 after 0) —

On startup
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More State Machines

e State machines are all over the place in digital systems
e |nstruction Cycle of a computer processor

' Error && ! Interrupt

On Startup
Error || Interrupt

Process
Exception
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