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What is state?
• It's late at night.  You see a DPS officer approaching you. 

Are you happy?
▪ It depends on what was happening just a minute ago.

▪ Your car broke down.

▪ You've been partying a little too hard.

• You press the PAUSE/PLAY button on
a video player. What happens?
▪ It depends on what was happening previously.

▪ We also want to stay in that mode indefinitely 
after the button is released.

▪ This requires maintaining STATE, which helps us remember the necessary 
information for the system to operate correctly
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What is state?
• State:  Everything that must be remembered to interpret the inputs (think the 

play/pause button) and/or to produce outputs at appropriate times

▪ Usually, state is required for time-dependent behavior

• As a human:

▪ Your "state" determines your interpretation of your senses and thoughts

▪ The sum of all your previous experiences is what is known as state

• In a circuit:

▪ State refers to all the bits being remembered in registers or memory

• In software:

▪ State refers to all the variable values that are being used
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State Machines and State Diagrams
• Hardware and software components that utilize state are referred 

to as state machines (or FSMs = Finite State Machines)

• A state machine is modeled by a state diagram (i.e. a flow-chart)

• FSMs are a very nice problem-solving approach/strategy
▪ If you can model your design with a state diagram, there are 

straightforward transformations to either software (what we'll study today) 
or hardware (later in the semester)
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State Diagrams
• The state diagram should have 3 parts:

▪ The states as circles or boxes

▪ The transitions as arrows labeled by input conditions

▪ The outputs, which can be generated 
when in a particular state ..OR..
on a specific transition event
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Operation
• State is used to generate the outputs even while the 

inputs are not activated

• When an input is activated, the state can be updated…

• …and remembered after the input has deactivated
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Another Example: Traffic Light
• State machines can be used to trigger time-dependent

updates
▪ Consider a system controlling the traffic lights at an intersection

▪ There are no external inputs to indicate when the light should change

▪ Instead, the outputs must change/transition based on time. 

▪ The state helps determine what the next output should be.
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Time-Based Conditions
• Oftentimes we can use some kind of internal time counter to control when we 

transition states

▪ Suppose our internal SW loop cycles every 1 second

• We can generate our output/actions

▪ On each iteration, based on state (Green, Yellow, Red lights; increment counter)

▪ On specific iterations based on other conditions (if count is 30, reset it to 0)

8

G Y R

count == 30 

Green=on

Count+=1

Yellow=on

Count+=1

Red=on

Count+=1

count == 5

count == 35  

Input Condition

Conditional 

Output Actions

Unconditional 

output action 

(regardless of input)

Reset (Power on) /

Init. count to 0

if( count == 30 )

count = 0

if( count == 5)

count = 0
if( count == 35)

count = 0



EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FSM Example 1-1
• Consider a system with one digital input 

and one output. 

• The output should be true whenever the 
input is 1 for  two consecutive time units
▪ Input:  0 1 0 1 1 0 1 1 1 0

▪ Output: 0 0 0 0 0 1 0 0 1 1

• Does this system need state?

• To help answer the question: 
▪ "The input is a 1 right now, should the output be 

true?"

▪ Need to know whether the input was true last time 
unit as well? We need state!
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FSM Example 1-2
• Draw the state diagram for the system that outputs true (1) 

whenever the input has been 1 for two consecutive time 
periods

S0
Out=False

S1
Out=False

S2
out=True

Input=1 Input=1

Input=0

Input=1

Input=0

Input=0

State Machine to check for two consecutive 1's on a digital input

On startup
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FSM Example 2: Washing Machine
• Consider the design of an embedded controller for a coin/card-

operated laundry machine.  

• Consider the inputs and outputs
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Washing Machine State Diagram

• Examine a potential state machine for this design.
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A Day in the Life of a State Machine
• State machines operate time step 

by time step

▪ Human analogy: day-by-day (see 
inset)

• Each time step, the state machine 
use current (today's) state to:

▪ Determine which inputs to 
examine to determine the next 
(tomorrow's) state

▪ Determine any outputs and 
actions to take (sometimes based 
on the inputs)
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State Machine Operation (1)
• Notice how the current state helps identify 

which inputs "matter" at specific times

Idle

Paid=1, Lid=0,

Full=0, Empty=1,…

Idle

Idle

Fill

Paid=1, Lid=1,

Full=0, Empty=1,…

t=0

14

Embedded 
Control

PAID=1

LID=0

FULL=0

EMPTY=1

WV=0

Motor=0

DV=0IDLE

t=1

Embedded 
Control

PAID=1

LID=1

FULL=0

EMPTY=1

WV=0

Motor=0

DV=0IDLE

FILL

WV=0, Motor=0, DV=0WV=0, Motor=0, DV=0



EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

State Machine Operation (2)
• When the state changes, we produce new 

output values and may look at a new set of 
inputs
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State Machine Operation (3)
• We can use internal "time" inputs to control 

when we change states.

Agitate

Agitate

Paid=1, Lid=1,

Full=0, …, 5MIN=0
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IMPLEMENTING STATE MACHINES IN 
SOFTWARE
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Software and Hardware Implementation
• Software Implementation

▪ Current State = just a variable(s) 

▪ Input/output Logic = if statements to 
update the next state or produce 
outputs
o if(state == 0 && input == 1)

{ state = 1; output = 0; }

▪ Transitions triggered by input or timers

▪ We'll start by implementing state 
machines in SW

• Later in the semester we'll see how 
to implement state machines in 
hardware
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Coding State Machines 1
• Setup (declare and initialize) your state variable

▪ Choose some numeric code for each state:
0=Idle, 1=Fill, 2 = Agitate, etc.

• Use one while loop and a single delay
(or timer) to repeat the "day-in-the-life" routine of a 
state machine

int main(){
char currst = 0, n = 2; int timer;
// other initialization
while(1) {

_delay_ms(100);
}
return 0;

}
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Coding State Machines 2
• In the while loop, setup a series of 

if..else if..else statements to 
determine what state you are in 
"today"

int main(){
char currst = 0, n = 2; int timer;
// other initialization
while(1) {

if( currst == 0 ){ // Idle
// code pertinent to Idle

} 
else if( currst == 1 ){ // Fill

// code pertinent to Fill
}
else if( currst == 2 ){ // Agitate

// code pertinent to Agitate
}
else if( currst == 3 ){ // Drain

// code pertinent to Drain
}
else { // Decrement

// code pertinent to last state
}
_delay_ms(100);

}
return 0;

}
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Coding State Machines 3a
• Sample the inputs at the start of each 

iteration (each day)

• In each if statement for the current 
state, use a nested if statement for 
the input conditions to determine 
next state and output actions

int main(){
char currst = 0, n = 2; int timer;  
// other initialization
while(1) {
char paid = PIND & (1 << PD0);
char lid = PIND & (1 << PD1);
char full = PIND & (1 << PD2); 
if( currst == 0 ){ // Idle

if(paid && lid) 
{ currst = 1; /* Goto Fill */ }  

} 
else if( currst == 1 ){ // Fill

PORTC |= (1 << PC0); // WV=1
if(full)

{ currst = 2; timer = 0; }
}
else if( currst == 2 ){ // Agitate

PORTC &= ~(1 << PC0); // WV=0
PORTC |= (1 << PC1);  // Motor=1
...

}
...
_delay_ms(100);

}
return 0;

}
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Notice the nested IF statement 

structure used for state machines.
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Coding State Machines 3b
• Sample the inputs at the start of each 

iteration (each day)

• In each if statement for the current 
state, use a nested if statement for 
the input conditions to determine 
next state and output actions

int main(){
char currst = 0, n = 2; int timer;  
while(1) {
...
char full = PIND & (1 << PD2); 
char empty = PIND & (1 << PD3);         
...
else if( currst == 2 ){ // Agitate
timer++;
PORTC &= ~(1 << PC0); // WV=0
PORTC |= (1 << 1); // Motor=1
if(timer=3000) // 5 min

{ currst = 3; timer = 0; }    
}
else if( currst == 3 ){ // Drain

PORTC &= ~(1 << PC1); // Motor=0
PORTC |= (1 << PC2); // DV = 1
if(empty) { currst = 4; }    

}   
else { if(--n > 0) currst = 1;

else currst = 0;  }
_delay_ms(100);

}
return 0;

}
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Enumerations

• It would be nice to use symbolic names 
for states, rather than numbers

• In C/C++, enumerations associate an 
integer code (number) with a symbolic 
name

• Syntax:
enum [optional_collection_name] {SymName1, 
SymName2, … SymNameN}

▪ SymName1 = 0

▪ SymName2 = 1

▪ …

▪ SymNameN = N-1

• Use symbolic item names in your code and 
compiler will replace the symbolic names with 
corresponding integer values…makes the code 
much more readable!

const int IDLE=0;
const int FILL=1;
const int AGITATE=2;
...
char state = IDLE;
...
if(state == FILL && full == true) {

state = AGITATE;
}

// First enum item is associated with code 0
enum States {IDLE, FILL, AGITATE, DRAIN, DEC};
// auto-assign 0     1      2        3    4
char state = IDLE; // same as state = 0;
...
if(state == FILL && full == true) {   

state = AGITATE;   // same as state = 2;
}

Option 1: Hard coding symbolic state names with given 

codes. Better than nothing, but enumerations (below) 

are often preferred.

Option 2: Using enumeration to simplify state coding 

and make the code more readable!
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Another Example: 2 Consecutive 1's FSM
• How would we begin to code the 

implementation of this state machine?

▪ Start with an enum to list the states 

▪ Declare and initialize your state variable

▪ Choose or determine the rate / delay at 
which transitions in state should be made 
or output actions must occur.
o 1 iteration of the loop handles 1 time step (a 

"day")
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enum { S0, S1, S2 };
// input = PD0,  output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{ 

_delay_ms(10); // use approp. Time
} return 0;

}
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Consecutive 1's FSM – State 
• Again, notice the structure:

▪ The purple 'if' statements determine which 
state we are in 
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enum { S0, S1, S2 };
// input = PD0,  output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{ 

if(state == S0){  

}
else if(state == S1){ 

}
else { // state == S2

}
_delay_ms(10); // use approp. Time

} return 0;
}
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Consecutive 1's FSM – Transitions
• Again, notice the structure:

▪ The nested orange 'if' statements 
determine which input conditions are true 
to determine how we update the state
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enum { S0, S1, S2 };
// input = PD0,  output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{ 
input = PIND & (1 << PD0);
if(state == S0){  

if( input ){ state = S1; }
}
else if(state == S1){ 

if( input ){ state = S2; }
else { state = S0; }

}
else { // state == S2

if( !input ) { state = S0; }
}
_delay_ms(10); // use approp. Time

} return 0;
}
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Consecutive 1's FSM – Output Actions 
• Again, notice the structure:

▪ We can add appropriate output actions
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enum { S0, S1, S2 };
// input = PD0,  output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{ 
input = PIND & (1 << PD0);
if(state == S0){  
PORTD &= ~(1 << PD7);
if( input ){ state = S1; }

}
else if(state == S1){ 
PORTD &= ~(1 << PD7);
if( input ){ state = S2; }
else { state = S0; }

}
else { // state == S2
PORTD |= (1 << PD7);
if( !input ) { state = S0; }

}
_delay_ms(10); // use approp. Time

} return 0;
}
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Consecutive 1's FSM – Summary
• Again, notice the structure:

▪ 1 iteration of the loop handles 1 time step 
(a "day")

▪ The purple ’if’ statements determine which 
state we are in and the nested orange 'if'
statements determine which input 
conditions are true to determine how we 
update the state and what output actions we 
take

▪ Some delay before the next iteration begins
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enum { S0, S1, S2 };
// input = PD0,  output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{ 
input = PIND & (1 << PD0);
if(state == S0){  
PORTD &= ~(1 << PD7);
if( input ){ state = S1; }

}
else if(state == S1){ 
PORTD &= ~(1 << PD7);
if( input ){ state = S2; }
else { state = S0; }

}
else { // state == S2
PORTD |= (1 << PD7);
if( !input ) { state = S0; }

}
_delay_ms(10); // use approp. Time

} return 0;
}
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A Potential Alternate Structure
• Sometimes, it may be easiest 

to separate :
▪ the state transition code and 

▪ the output action code 

• We can use separate 'if'
sequences. 
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enum { S0, S1, S2 };
int main() { 

unsigned char state=S0, input;
while(1) {

// state transitions
input = PIND & (1 << PD0);
if(state == S0){  
if( input ){ state = S1; }

}
else if(state == S1){ 
if( input ){ state = S2; }
else { state = S0; }

}
else { // state == S2
if( !input ) { state = S0; }

}
// output actions
if( state == S2) 
PORTD |= (1 << PD7);

else
PORTD &= ~(1 << PD7);

_delay_ms(10); // use approp. Time
} return 0;

}
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State Machines as a Problem-Solving Technique

• Modeling a problem as a state machine is a powerful 
problem-solving tool

• When you need to write a program, design HW, or solve 
a more abstract problem at least consider if it can be 
modeled with a state machine
▪ Ask questions like:  
o What do I need to remember to interpret my inputs or produce my 

outputs?  [e.g. Checking for two consecutive 1's]
o Is there a distinct sequence of "steps" or "modes" that are used 

(each step/mode is a state) [e.g. Washing machine, etc.]
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A Note About Timing
• Write a program to blink an LED at 2HZ

• What delays should you use?

• If all we are doing is blinking, we can 
simplify to use an XOR to flip the output 
bit

int main()
{

// Initialization
while(1)
{

PORTD |= (1 << 7);  // LED on PD7
_delay_ms(250); 
PORTD &= ~(1 << 7); 
_delay_ms(250); 

}
return 0;

}

T = ½ = 0.5 seconds

But requires a change every 

d = 0.25 seconds = 250 ms
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int main()
{

// Initialization
while(1)
{

PORTD ^= (1 << 7); // LED on PD7
_delay_ms(250); 

}
return 0;

}

F = 2HZ = 2 Cycles / sec. implies…
1 sec.
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Tunnel Vision (1)
• Consider a program that constantly 

monitors several inputs and takes 
appropriate actions:

▪ If button1 is pressed it should blink an LED 
10 times at a rate of 2 HZ

▪ If button2 is pressed it should output 
something to the LCD screen

▪ If button3 is pressed it should enable a 
motor

▪ And even more tasks…

• To do something 10 times, it would be 
easiest to use a for loop, RIGHT?!?

// Ad-hoc implementation
int main()
{
while(1)
{

int i;
if(checkInput(1) == 0) {

for(i=0; i < 10; i++) {
blink(250); // on for 250, off for 250
// delays are in the blink() functions

}
}
if(checkInput(2) == 0) {

// output to LCD
}
if(checkInput(3) == 0) {     

// enable motor
}
if(...) {     

// even more tasks
}

}
return 0;

}

T = 0.25 second = 250 ms
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Tunnel Vision (2)
• Consider a program that constantly 

monitors several inputs and takes 
appropriate actions:

▪ If button1 is pressed it should blink an LED 
10 times at a rate of 2 HZ

▪ If button2 is pressed it should output 
something to the LCD screen

▪ If button3 is pressed it should enable a 
motor

▪ And even more tasks…

• To do something 10 times, it would be 
easiest to use a for loop, RIGHT?!?

• No!  When we are in the for loop, we 
would not be performing our other 
tasks and miss actions. 

// Ad-hoc implementation
int main()
{
while(1)
{

int i;
if(checkInput(1) == 0) {

for(i=0; i < 10; i++) {
blink(250); // on for 250, off for 250
// what if button 2, 3, ... are pressed?

}
}
if(checkInput(2) == 0) {

// output to LCD
}
if(checkInput(3) == 0) {     

// enable motor
}
if(...) {     

// even more tasks
}

}
return 0;

}

T = 0.25 second = 250 ms
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A Better Approach
34

To keep many things  

going at once, cycle 

through all the tasks 

doing only a short / 

small amount of the 

task at a time!
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A Better Approach
• Instead, perform 1 blink per iteration, 

tracking your count!

• This allows other checks and actions to 
be performed after each single blink

• You can use your count as a "state"
variable:

▪ cnt: 0-9 tracks how many blinks

▪ cnt: 10 DONE/OFF

• …or use a separate state variable  
(s=1: counting, s=0: DONE/OFF) in 
combination with cnt

• Every time we press button 1, we reset 
the cnt to start 10 more blinks

35

// Ad-hoc implementation
int main()
{

int cnt=10;
while(1)
{

if(checkInput(1) == 0) {
cnt=0;

}
if(cnt < 10) { 

blink(250); // 1 blink per iter.
cnt++;

}
if(checkInput(2) == 0) {

// output to LCD
}
if(checkInput(3) == 0) {     

// enable motor
}
if(...) {     

// more tasks
}

}
return 0;

}
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Operations at Different Rates (1)
• Consider a program to blink one LED at a rate of 2 Hz 

and another at 5 Hz at the same time

• Desired:

• Problem:  Does the code to the right work correctly?

▪ No!  When one LED blinks the other will be off

int main()
{

while(1)
{

LED1_OFF();
_delay_ms(250);
LED1_ON();
_delay_ms(250);

LED2_OFF();
_delay_ms(100);
LED2_ON();
_delay_ms(100);

}

return 0;
}

36
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Operations at Different Rates (2)
• Use a SINGLE delay and separate state (count) variables 

to do work on each task at the "same time".  This mimics 
"parallel" (aka multithreaded) execution.

• To determine that delay, find the GCD (Greatest 
Common Divisor) of the minimum periods that action is 
needed for each task.

▪ Task 1: Flip the LED every 250 ms

▪ Task 2: Flip the LED every 100 ms

▪ Use a delay of 50ms = GCD (250, 100)

int main()
{

int cnt1 = 0, cnt2 = 0;

// set initial state of LEDs as "off"
LED1_OFF();
LED2_OFF();

while(1)
{   

if(cnt1 == 5)
{

FLIP_LED1();
cnt1 = 0;

}
cnt1++;
if(cnt2 == 2)
{

FLIP_LED2();
cnt2 = 0;

}
cnt2++;
// Delay the minimum granularity
_delay_ms(50);

}
return 0;

}

LED1 ON

cnt1++

LED1 OFF

cnt1++
LED2 ON

cnt2++

cnt2 == 2 /

Reset cnt2 LED2 OFF

cnt2++
cnt2 == 2 / 

Reset cnt2

cnt1 == 5 /

Reset cnt1

cnt1 == 5 / 

Reset cnt1

On startup
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Operations at Different Rates (3)
• To determine that delay, find the GCD (Greatest 

Common Divisor) of the minimum periods that action 
is needed for each task.

▪ Task 1: Flip the LED every 250 ms;  
Task 2: Flip the LED every 100 ms

▪ Use a delay of 50ms = GCD (250, 100)

• We can use a single counter looking for multiples of 
the individual task periods (every 2 or every 5 
iterations) using the modulo operator

• Can reset the count to 0 after the Least Common 
Multiple of the task periods

▪ LCM(250,100) = 500ms = 10 iterations. 

int main()
{
int cnt = 0;

// set initial state of LEDs as "on"
LED1_ON();
LED2_ON();

while(1) {   
if(cnt % 5 == 0) {
FLIP_LED1();

}
if(cnt % 2 == 0) {
FLIP_LED2();

}
cnt++;
if(cnt == 10)
{ cnt = 0; }

// Delay the minimum granularity
_delay_ms(50);

}
return 0;

}
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Summary Definition
• To specify a state machine, we must specify 6 things:

▪ A set of possible input values:  {0, 1}

▪ A set of possible states: {S0, S1, S2}

▪ A set of possible outputs: {False, True}

▪ An initial state = S0

▪ A transition function:  
o {States x Inputs} -> the Next state

▪ An output function: 
o {States x Inputs} -> Output value(s)

Inputs

State 0 1

S0 S0 S1

S1 S0 S2

S2 S0 S2

State Transition 

Function

State Outputs

S0 False

S1 False

S2 True

Output Function

Inputs: {0, 1}

States: {S0, S1, S2}

Outputs:  {False, True}

Initial State: S0

All the info in the 

state diagram is 

presented in the sets 

and tables to the 

right

39



EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MORE EXAMPLES IF TIME
HW (Instruction Cycle) & Software (String Matching)

40
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Thermostat
• Sample state machine to control a thermostat

INRANGE
heater = off

ac = off

HEAT
heater = on

COOL
ac = on

PROGRAM
(Update 

THRESH_HI & 

THRESH_LO)

OFF
heater = off

ac = off

temp < THESH_LO

temp > THESH_HI

temp >= THRESH_LO

temp <= THRESH_HI

PROG_BTN

DONE_BTN

RUN_BTN

R
U

N
_
B

T
N

O
F

F
_
B

T
N

PROG_BTN

temp > THESH_HI

temp < THESH_LO
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Counter Example
• Consider a system that has two button inputs: UP and DOWN and a 

1-decimal digit display.  It should count up or down at a rate of 500 milliseconds and change 
directions only when the appropriate direction button is pressed

• Every time interval we need to poll the inputs to check for a direction change, update the state 
and then based on the current state, increment or decrement the count

UP
cnt++ (wrap 

to 0 after 9)

DOWN
cnt-- (wrap to 

9 after 0)

DOWN=1

UP=1

DOWN=0

State Machine to count up or down (and continue counting) based on 2 

pushbutton inputs: UP and DOWN

UP=0

Counter
UP

DOWN

DIGIT 

DISPLAY

On startup
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More State Machines
• State machines are all over the place in digital systems

• Instruction Cycle of a computer processor

Fetch Decode Execute

! Error && ! Interrupt

Error || Interrupt

On Startup
Process

Exception
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