
EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

EE 109 Unit 6
Software State Machines

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What is state?
• It's late at night. You see a DPS officer approaching you.

Are you happy?
▪ It depends on what was happening just a minute ago.

▪ Your car broke down.

▪ You've been partying a little too hard.

• You press the PAUSE/PLAY button on
a video player. What happens?
▪ It depends on what was happening previously.

▪ We also want to stay in that mode indefinitely
after the button is released.

▪ This requires maintaining STATE, which helps us remember the necessary
information for the system to operate correctly

2

This Photo by Unknown Author is licensed under CC BY-NC

https://freepngimg.com/png/25636-pause-button-transparent
https://creativecommons.org/licenses/by-nc/3.0/

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What is state?
• State: Everything that must be remembered to interpret the inputs (think the

play/pause button) and/or to produce outputs at appropriate times

▪ Usually, state is required for time-dependent behavior

• As a human:

▪ Your "state" determines your interpretation of your senses and thoughts

▪ The sum of all your previous experiences is what is known as state

• In a circuit:

▪ State refers to all the bits being remembered in registers or memory

• In software:

▪ State refers to all the variable values that are being used

3

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

State Machines and State Diagrams
• Hardware and software components that utilize state are referred

to as state machines (or FSMs = Finite State Machines)

• A state machine is modeled by a state diagram (i.e. a flow-chart)

• FSMs are a very nice problem-solving approach/strategy
▪ If you can model your design with a state diagram, there are

straightforward transformations to either software (what we'll study today)
or hardware (later in the semester)

4

Inputs Outputs

State Machine

D Q

CLR

SET

Reset

GND

CLK

L
H

P

State Diagram

(Abstract representation of

FSM operation)

L'

L

H'H

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

State Diagrams
• The state diagram should have 3 parts:

▪ The states as circles or boxes

▪ The transitions as arrows labeled by input conditions

▪ The outputs, which can be generated
when in a particular state ..OR..
on a specific transition event

5

PAUSED
(PlayVideo=0)

PLAY
(PlayVideo=1)

Play/

Pause ==

PRESSED

Play/Pause ==

Not pressed

Play/Pause ==

Not pressed

Play/

Pause ==

PRESSED

Play/Pause

button

PlayVideo

output

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operation
• State is used to generate the outputs even while the

inputs are not activated

• When an input is activated, the state can be updated…

• …and remembered after the input has deactivated

6

Not
Pressed

0 1 1

Not
Pressed

Pressed

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another Example: Traffic Light
• State machines can be used to trigger time-dependent

updates
▪ Consider a system controlling the traffic lights at an intersection

▪ There are no external inputs to indicate when the light should change

▪ Instead, the outputs must change/transition based on time.

▪ The state helps determine what the next output should be.

7

Green Yellow Red

If a transition does not have a condition, it means it is

unconditional. Sometimes we may just label it with 1 (true)

(Green=on) (Yellow=on) (Red=on)

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Time-Based Conditions
• Oftentimes we can use some kind of internal time counter to control when we

transition states

▪ Suppose our internal SW loop cycles every 1 second

• We can generate our output/actions

▪ On each iteration, based on state (Green, Yellow, Red lights; increment counter)

▪ On specific iterations based on other conditions (if count is 30, reset it to 0)

8

G Y R

count == 30

Green=on

Count+=1

Yellow=on

Count+=1

Red=on

Count+=1

count == 5

count == 35

Input Condition

Conditional

Output Actions

Unconditional

output action

(regardless of input)

Reset (Power on) /

Init. count to 0

if(count == 30)

count = 0

if(count == 5)

count = 0
if(count == 35)

count = 0

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FSM Example 1-1
• Consider a system with one digital input

and one output.

• The output should be true whenever the
input is 1 for two consecutive time units
▪ Input: 0 1 0 1 1 0 1 1 1 0

▪ Output: 0 0 0 0 0 1 0 0 1 1

• Does this system need state?

• To help answer the question:
▪ "The input is a 1 right now, should the output be

true?"

▪ Need to know whether the input was true last time
unit as well? We need state!

9

Input Output

??

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FSM Example 1-2
• Draw the state diagram for the system that outputs true (1)

whenever the input has been 1 for two consecutive time
periods

S0
Out=False

S1
Out=False

S2
out=True

Input=1 Input=1

Input=0

Input=1

Input=0

Input=0

State Machine to check for two consecutive 1's on a digital input

On startup

10

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FSM Example 2: Washing Machine
• Consider the design of an embedded controller for a coin/card-

operated laundry machine.

• Consider the inputs and outputs

11

Empty

Sensor

Full Sensor

Water Valve (WV)

Drain

Valve (DV)

Agitator Motor

$

Lid Closed

Paid

Embedded
Control

LID

FULL

PAID

EMPTY

DRAIN

AGITATOR

WATER

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Washing Machine State Diagram

• Examine a potential state machine for this design.

12

Idle

N=2

Fill

WaterValve = 1

Agitate

Motor = 1

Drain

DrainValve = 1

N = N - 1
N > 0

PAID + LID

PAID • LID

FULL

FULL / StartTimer

5MIN

5MIN / ResetTimer

EMPTY

EMPTY

RESET

N = 0

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Day in the Life of a State Machine
• State machines operate time step

by time step

▪ Human analogy: day-by-day (see
inset)

• Each time step, the state machine
use current (today's) state to:

▪ Determine which inputs to
examine to determine the next
(tomorrow's) state

▪ Determine any outputs and
actions to take (sometimes based
on the inputs)

13

Logic

Inputs
(A-to-D, Timer,

Buttons) Outputs

State

(memory)

Current

State

(Today)

Next State

(for

tomorrow)

Human analogy: day-by-day
• Wake up with only a memory of the current state
• Use current state (and inputs) to determine

outputs and actions for today
• Use current state and inputs to update state (i.e.

determine state for tomorrow)
• Go to sleep and repeat same process tomorrow

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

State Machine Operation (1)
• Notice how the current state helps identify

which inputs "matter" at specific times

Idle

Paid=1, Lid=0,

Full=0, Empty=1,…

Idle

Idle

Fill

Paid=1, Lid=1,

Full=0, Empty=1,…

t=0

14

Embedded
Control

PAID=1

LID=0

FULL=0

EMPTY=1

WV=0

Motor=0

DV=0IDLE

t=1

Embedded
Control

PAID=1

LID=1

FULL=0

EMPTY=1

WV=0

Motor=0

DV=0IDLE

FILL

WV=0, Motor=0, DV=0WV=0, Motor=0, DV=0

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

State Machine Operation (2)
• When the state changes, we produce new

output values and may look at a new set of
inputs

15

t=3

Fill

Fill

Paid=1, Lid=1,

Full=0, Empty=1,…

t=2

Embedded
Control

PAID=1

LID=1

FULL=0

EMPTY=0

WV=1

Motor=0

DV=0Fill

Fill

Fill

Paid=1, Lid=1,

Full=0, Empty=1,…

Embedded
Control

PAID=1

LID=1

FULL=0

EMPTY=0

WV=1

Motor=0

DV=0Fill

WV=1, Motor=0, DV=0 WV=1, Motor=0, DV=0

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

State Machine Operation (3)
• We can use internal "time" inputs to control

when we change states.

Agitate

Agitate

Paid=1, Lid=1,

Full=0, …, 5MIN=0

16

t=k+1

Embedded
Control

PAID=1

LID=1

FULL=0

EMPTY=0

WV=0

Motor=1

DV=0Agitate

Fill

Agitate

Paid=1, Lid=1,

Full=1, Empty=1,…

t=k

Embedded
Control

PAID=1

LID=1

FULL=1

EMPTY=0

WV=1

Motor=0

DV=0Fill

Agitate

Timer=0

5MIN=0

WV=0, Motor=1, DV=0WV=1, Motor=0, DV=0

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

IMPLEMENTING STATE MACHINES IN
SOFTWARE

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Software and Hardware Implementation
• Software Implementation

▪ Current State = just a variable(s)

▪ Input/output Logic = if statements to
update the next state or produce
outputs
o if(state == 0 && input == 1)

{ state = 1; output = 0; }

▪ Transitions triggered by input or timers

▪ We'll start by implementing state
machines in SW

• Later in the semester we'll see how
to implement state machines in
hardware

18

Logic

Inputs
(A-to-D, Timer,

Buttons) Outputs

State

(memory)

Current

State

(Today)

Next State

(for

tomorrow)

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coding State Machines 1
• Setup (declare and initialize) your state variable

▪ Choose some numeric code for each state:
0=Idle, 1=Fill, 2 = Agitate, etc.

• Use one while loop and a single delay
(or timer) to repeat the "day-in-the-life" routine of a
state machine

int main(){
char currst = 0, n = 2; int timer;
// other initialization
while(1) {

_delay_ms(100);
}
return 0;

}

19

Idle

N=2

Fill

WaterValve = 1

Agitate

Motor = 1

Drain

DrainValve = 1

N = N - 1
N > 0

PAID + LID

PAID • LID

FULL

FULL / StartTimer

5MIN

5MIN / ResetTimer

EMPTY

EMPTY

RESET

N = 0

0

1

2

3

4

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coding State Machines 2
• In the while loop, setup a series of

if..else if..else statements to
determine what state you are in
"today"

int main(){
char currst = 0, n = 2; int timer;
// other initialization
while(1) {

if(currst == 0){ // Idle
// code pertinent to Idle

}
else if(currst == 1){ // Fill

// code pertinent to Fill
}
else if(currst == 2){ // Agitate

// code pertinent to Agitate
}
else if(currst == 3){ // Drain

// code pertinent to Drain
}
else { // Decrement

// code pertinent to last state
}
_delay_ms(100);

}
return 0;

}

20

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coding State Machines 3a
• Sample the inputs at the start of each

iteration (each day)

• In each if statement for the current
state, use a nested if statement for
the input conditions to determine
next state and output actions

int main(){
char currst = 0, n = 2; int timer;
// other initialization
while(1) {
char paid = PIND & (1 << PD0);
char lid = PIND & (1 << PD1);
char full = PIND & (1 << PD2);
if(currst == 0){ // Idle

if(paid && lid)
{ currst = 1; /* Goto Fill */ }

}
else if(currst == 1){ // Fill

PORTC |= (1 << PC0); // WV=1
if(full)

{ currst = 2; timer = 0; }
}
else if(currst == 2){ // Agitate

PORTC &= ~(1 << PC0); // WV=0
PORTC |= (1 << PC1); // Motor=1
...

}
...
_delay_ms(100);

}
return 0;

}

21

Notice the nested IF statement

structure used for state machines.

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coding State Machines 3b
• Sample the inputs at the start of each

iteration (each day)

• In each if statement for the current
state, use a nested if statement for
the input conditions to determine
next state and output actions

int main(){
char currst = 0, n = 2; int timer;
while(1) {
...
char full = PIND & (1 << PD2);
char empty = PIND & (1 << PD3);
...
else if(currst == 2){ // Agitate
timer++;
PORTC &= ~(1 << PC0); // WV=0
PORTC |= (1 << 1); // Motor=1
if(timer=3000) // 5 min

{ currst = 3; timer = 0; }
}
else if(currst == 3){ // Drain

PORTC &= ~(1 << PC1); // Motor=0
PORTC |= (1 << PC2); // DV = 1
if(empty) { currst = 4; }

}
else { if(--n > 0) currst = 1;

else currst = 0; }
_delay_ms(100);

}
return 0;

}

22

Notice the nested IF statement

structure used for state machines.

The final "else" is equivalent

to "else if (currst == 4)".

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Enumerations

• It would be nice to use symbolic names
for states, rather than numbers

• In C/C++, enumerations associate an
integer code (number) with a symbolic
name

• Syntax:
enum [optional_collection_name] {SymName1,
SymName2, … SymNameN}

▪ SymName1 = 0

▪ SymName2 = 1

▪ …

▪ SymNameN = N-1

• Use symbolic item names in your code and
compiler will replace the symbolic names with
corresponding integer values…makes the code
much more readable!

const int IDLE=0;
const int FILL=1;
const int AGITATE=2;
...
char state = IDLE;
...
if(state == FILL && full == true) {

state = AGITATE;
}

// First enum item is associated with code 0
enum States {IDLE, FILL, AGITATE, DRAIN, DEC};
// auto-assign 0 1 2 3 4
char state = IDLE; // same as state = 0;
...
if(state == FILL && full == true) {

state = AGITATE; // same as state = 2;
}

Option 1: Hard coding symbolic state names with given

codes. Better than nothing, but enumerations (below)

are often preferred.

Option 2: Using enumeration to simplify state coding

and make the code more readable!

23

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another Example: 2 Consecutive 1's FSM
• How would we begin to code the

implementation of this state machine?

▪ Start with an enum to list the states

▪ Declare and initialize your state variable

▪ Choose or determine the rate / delay at
which transitions in state should be made
or output actions must occur.
o 1 iteration of the loop handles 1 time step (a

"day")

24

enum { S0, S1, S2 };
// input = PD0, output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{

_delay_ms(10); // use approp. Time
} return 0;

}

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Consecutive 1's FSM – State
• Again, notice the structure:

▪ The purple 'if' statements determine which
state we are in

25

enum { S0, S1, S2 };
// input = PD0, output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{

if(state == S0){

}
else if(state == S1){

}
else { // state == S2

}
_delay_ms(10); // use approp. Time

} return 0;
}

S
e

le
c
t
c
u

rr
e

n
t
s
ta

te

S0 S1 S2

On startup

State Machine to check for two consecutive 1's on a digital input

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Consecutive 1's FSM – Transitions
• Again, notice the structure:

▪ The nested orange 'if' statements
determine which input conditions are true
to determine how we update the state

26

enum { S0, S1, S2 };
// input = PD0, output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{
input = PIND & (1 << PD0);
if(state == S0){

if(input){ state = S1; }
}
else if(state == S1){

if(input){ state = S2; }
else { state = S0; }

}
else { // state == S2

if(!input) { state = S0; }
}
_delay_ms(10); // use approp. Time

} return 0;
}

S
e

le
c
t
c
u

rr
e

n
t
s
ta

te

S
e
le

c
t

in
p
u
t

v
a
l.

S0 S1 S2

Input=1 Input=1

Input=0

Input=1

Input=0

Input=0

On startup

State Machine to check for two consecutive 1's on a digital input

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Consecutive 1's FSM – Output Actions
• Again, notice the structure:

▪ We can add appropriate output actions

27

enum { S0, S1, S2 };
// input = PD0, output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{
input = PIND & (1 << PD0);
if(state == S0){
PORTD &= ~(1 << PD7);
if(input){ state = S1; }

}
else if(state == S1){
PORTD &= ~(1 << PD7);
if(input){ state = S2; }
else { state = S0; }

}
else { // state == S2
PORTD |= (1 << PD7);
if(!input) { state = S0; }

}
_delay_ms(10); // use approp. Time

} return 0;
}

S
e

le
c
t
c
u

rr
e

n
t
s
ta

te

S
e
le

c
t

in
p
u
t

v
a
l.

S0
Out=False

S1
Out=False

S2
out=True

Input=1 Input=1

Input=0

Input=1

Input=0

Input=0

On startup

State Machine to check for two consecutive 1's on a digital input

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Consecutive 1's FSM – Summary
• Again, notice the structure:

▪ 1 iteration of the loop handles 1 time step
(a "day")

▪ The purple ’if’ statements determine which
state we are in and the nested orange 'if'
statements determine which input
conditions are true to determine how we
update the state and what output actions we
take

▪ Some delay before the next iteration begins

28

enum { S0, S1, S2 };
// input = PD0, output = PD7
int main()
{ // be sure to init. state
unsigned char state=S0, input;
while(1)
{
input = PIND & (1 << PD0);
if(state == S0){
PORTD &= ~(1 << PD7);
if(input){ state = S1; }

}
else if(state == S1){
PORTD &= ~(1 << PD7);
if(input){ state = S2; }
else { state = S0; }

}
else { // state == S2
PORTD |= (1 << PD7);
if(!input) { state = S0; }

}
_delay_ms(10); // use approp. Time

} return 0;
}

S
e

le
c
t
c
u

rr
e

n
t
s
ta

te

S
e
le

c
t

in
p
u
t

v
a
l.

S0
Out=False

S1
Out=False

S2
out=True

Input=1 Input=1

Input=0

Input=1

Input=0

Input=0

On startup

State Machine to check for two consecutive 1's on a digital input

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Potential Alternate Structure
• Sometimes, it may be easiest

to separate :
▪ the state transition code and

▪ the output action code

• We can use separate 'if'
sequences.

29

enum { S0, S1, S2 };
int main() {

unsigned char state=S0, input;
while(1) {

// state transitions
input = PIND & (1 << PD0);
if(state == S0){
if(input){ state = S1; }

}
else if(state == S1){
if(input){ state = S2; }
else { state = S0; }

}
else { // state == S2
if(!input) { state = S0; }

}
// output actions
if(state == S2)
PORTD |= (1 << PD7);

else
PORTD &= ~(1 << PD7);

_delay_ms(10); // use approp. Time
} return 0;

}

S
ta

te
 t

ra
n

s
it
io

n
s

O
u
tp

u
ts

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

State Machines as a Problem-Solving Technique

• Modeling a problem as a state machine is a powerful
problem-solving tool

• When you need to write a program, design HW, or solve
a more abstract problem at least consider if it can be
modeled with a state machine
▪ Ask questions like:
o What do I need to remember to interpret my inputs or produce my

outputs? [e.g. Checking for two consecutive 1's]
o Is there a distinct sequence of "steps" or "modes" that are used

(each step/mode is a state) [e.g. Washing machine, etc.]

30

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Note About Timing
• Write a program to blink an LED at 2HZ

• What delays should you use?

• If all we are doing is blinking, we can
simplify to use an XOR to flip the output
bit

int main()
{

// Initialization
while(1)
{

PORTD |= (1 << 7); // LED on PD7
_delay_ms(250);
PORTD &= ~(1 << 7);
_delay_ms(250);

}
return 0;

}

T = ½ = 0.5 seconds

But requires a change every

d = 0.25 seconds = 250 ms

31

int main()
{

// Initialization
while(1)
{

PORTD ^= (1 << 7); // LED on PD7
_delay_ms(250);

}
return 0;

}

F = 2HZ = 2 Cycles / sec. implies…
1 sec.

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tunnel Vision (1)
• Consider a program that constantly

monitors several inputs and takes
appropriate actions:

▪ If button1 is pressed it should blink an LED
10 times at a rate of 2 HZ

▪ If button2 is pressed it should output
something to the LCD screen

▪ If button3 is pressed it should enable a
motor

▪ And even more tasks…

• To do something 10 times, it would be
easiest to use a for loop, RIGHT?!?

// Ad-hoc implementation
int main()
{
while(1)
{

int i;
if(checkInput(1) == 0) {

for(i=0; i < 10; i++) {
blink(250); // on for 250, off for 250
// delays are in the blink() functions

}
}
if(checkInput(2) == 0) {

// output to LCD
}
if(checkInput(3) == 0) {

// enable motor
}
if(...) {

// even more tasks
}

}
return 0;

}

T = 0.25 second = 250 ms

32

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tunnel Vision (2)
• Consider a program that constantly

monitors several inputs and takes
appropriate actions:

▪ If button1 is pressed it should blink an LED
10 times at a rate of 2 HZ

▪ If button2 is pressed it should output
something to the LCD screen

▪ If button3 is pressed it should enable a
motor

▪ And even more tasks…

• To do something 10 times, it would be
easiest to use a for loop, RIGHT?!?

• No! When we are in the for loop, we
would not be performing our other
tasks and miss actions.

// Ad-hoc implementation
int main()
{
while(1)
{

int i;
if(checkInput(1) == 0) {

for(i=0; i < 10; i++) {
blink(250); // on for 250, off for 250
// what if button 2, 3, ... are pressed?

}
}
if(checkInput(2) == 0) {

// output to LCD
}
if(checkInput(3) == 0) {

// enable motor
}
if(...) {

// even more tasks
}

}
return 0;

}

T = 0.25 second = 250 ms

33

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Better Approach
34

To keep many things

going at once, cycle

through all the tasks

doing only a short /

small amount of the

task at a time!

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Better Approach
• Instead, perform 1 blink per iteration,

tracking your count!

• This allows other checks and actions to
be performed after each single blink

• You can use your count as a "state"
variable:

▪ cnt: 0-9 tracks how many blinks

▪ cnt: 10 DONE/OFF

• …or use a separate state variable
(s=1: counting, s=0: DONE/OFF) in
combination with cnt

• Every time we press button 1, we reset
the cnt to start 10 more blinks

35

// Ad-hoc implementation
int main()
{

int cnt=10;
while(1)
{

if(checkInput(1) == 0) {
cnt=0;

}
if(cnt < 10) {

blink(250); // 1 blink per iter.
cnt++;

}
if(checkInput(2) == 0) {

// output to LCD
}
if(checkInput(3) == 0) {

// enable motor
}
if(...) {

// more tasks
}

}
return 0;

}

O
th

e
r

c
h

e
c
k
s
 a

n
d

 a
c
ti
o

n
s

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operations at Different Rates (1)
• Consider a program to blink one LED at a rate of 2 Hz

and another at 5 Hz at the same time

• Desired:

• Problem: Does the code to the right work correctly?

▪ No! When one LED blinks the other will be off

int main()
{

while(1)
{

LED1_OFF();
_delay_ms(250);
LED1_ON();
_delay_ms(250);

LED2_OFF();
_delay_ms(100);
LED2_ON();
_delay_ms(100);

}

return 0;
}

36

LED2

LED1

1 sec.0 sec.

LED2

LED1

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operations at Different Rates (2)
• Use a SINGLE delay and separate state (count) variables

to do work on each task at the "same time". This mimics
"parallel" (aka multithreaded) execution.

• To determine that delay, find the GCD (Greatest
Common Divisor) of the minimum periods that action is
needed for each task.

▪ Task 1: Flip the LED every 250 ms

▪ Task 2: Flip the LED every 100 ms

▪ Use a delay of 50ms = GCD (250, 100)

int main()
{

int cnt1 = 0, cnt2 = 0;

// set initial state of LEDs as "off"
LED1_OFF();
LED2_OFF();

while(1)
{

if(cnt1 == 5)
{

FLIP_LED1();
cnt1 = 0;

}
cnt1++;
if(cnt2 == 2)
{

FLIP_LED2();
cnt2 = 0;

}
cnt2++;
// Delay the minimum granularity
_delay_ms(50);

}
return 0;

}

LED1 ON

cnt1++

LED1 OFF

cnt1++
LED2 ON

cnt2++

cnt2 == 2 /

Reset cnt2 LED2 OFF

cnt2++
cnt2 == 2 /

Reset cnt2

cnt1 == 5 /

Reset cnt1

cnt1 == 5 /

Reset cnt1

On startup

37

On startup

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operations at Different Rates (3)
• To determine that delay, find the GCD (Greatest

Common Divisor) of the minimum periods that action
is needed for each task.

▪ Task 1: Flip the LED every 250 ms;
Task 2: Flip the LED every 100 ms

▪ Use a delay of 50ms = GCD (250, 100)

• We can use a single counter looking for multiples of
the individual task periods (every 2 or every 5
iterations) using the modulo operator

• Can reset the count to 0 after the Least Common
Multiple of the task periods

▪ LCM(250,100) = 500ms = 10 iterations.

int main()
{
int cnt = 0;

// set initial state of LEDs as "on"
LED1_ON();
LED2_ON();

while(1) {
if(cnt % 5 == 0) {
FLIP_LED1();

}
if(cnt % 2 == 0) {
FLIP_LED2();

}
cnt++;
if(cnt == 10)
{ cnt = 0; }

// Delay the minimum granularity
_delay_ms(50);

}
return 0;

}

38

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary Definition
• To specify a state machine, we must specify 6 things:

▪ A set of possible input values: {0, 1}

▪ A set of possible states: {S0, S1, S2}

▪ A set of possible outputs: {False, True}

▪ An initial state = S0

▪ A transition function:
o {States x Inputs} -> the Next state

▪ An output function:
o {States x Inputs} -> Output value(s)

Inputs

State 0 1

S0 S0 S1

S1 S0 S2

S2 S0 S2

State Transition

Function

State Outputs

S0 False

S1 False

S2 True

Output Function

Inputs: {0, 1}

States: {S0, S1, S2}

Outputs: {False, True}

Initial State: S0

All the info in the

state diagram is

presented in the sets

and tables to the

right

39

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MORE EXAMPLES IF TIME
HW (Instruction Cycle) & Software (String Matching)

40

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Thermostat
• Sample state machine to control a thermostat

INRANGE
heater = off

ac = off

HEAT
heater = on

COOL
ac = on

PROGRAM
(Update

THRESH_HI &

THRESH_LO)

OFF
heater = off

ac = off

temp < THESH_LO

temp > THESH_HI

temp >= THRESH_LO

temp <= THRESH_HI

PROG_BTN

DONE_BTN

RUN_BTN

R
U

N
_
B

T
N

O
F

F
_
B

T
N

PROG_BTN

temp > THESH_HI

temp < THESH_LO

41

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Counter Example
• Consider a system that has two button inputs: UP and DOWN and a

1-decimal digit display. It should count up or down at a rate of 500 milliseconds and change
directions only when the appropriate direction button is pressed

• Every time interval we need to poll the inputs to check for a direction change, update the state
and then based on the current state, increment or decrement the count

UP
cnt++ (wrap

to 0 after 9)

DOWN
cnt-- (wrap to

9 after 0)

DOWN=1

UP=1

DOWN=0

State Machine to count up or down (and continue counting) based on 2

pushbutton inputs: UP and DOWN

UP=0

Counter
UP

DOWN

DIGIT

DISPLAY

On startup

42

EE109 | SW State Machines | Unit 6 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

More State Machines
• State machines are all over the place in digital systems

• Instruction Cycle of a computer processor

Fetch Decode Execute

! Error && ! Interrupt

Error || Interrupt

On Startup
Process

Exception

43

	Slide 1: EE 109 Unit 6
	Slide 2: What is state?
	Slide 3: What is state?
	Slide 4: State Machines and State Diagrams
	Slide 5: State Diagrams
	Slide 6: Operation
	Slide 7: Another Example: Traffic Light
	Slide 8: Time-Based Conditions
	Slide 9: FSM Example 1-1
	Slide 10: FSM Example 1-2
	Slide 11: FSM Example 2: Washing Machine
	Slide 12: Washing Machine State Diagram
	Slide 13: A Day in the Life of a State Machine
	Slide 14: State Machine Operation (1)
	Slide 15: State Machine Operation (2)
	Slide 16: State Machine Operation (3)
	Slide 17: Implementing State Machines in software
	Slide 18: Software and Hardware Implementation
	Slide 19: Coding State Machines 1
	Slide 20: Coding State Machines 2
	Slide 21: Coding State Machines 3a
	Slide 22: Coding State Machines 3b
	Slide 23: Enumerations
	Slide 24: Another Example: 2 Consecutive 1's FSM
	Slide 25: Consecutive 1's FSM – State
	Slide 26: Consecutive 1's FSM – Transitions
	Slide 27: Consecutive 1's FSM – Output Actions
	Slide 28: Consecutive 1's FSM – Summary
	Slide 29: A Potential Alternate Structure
	Slide 30: State Machines as a Problem-Solving Technique
	Slide 31: A Note About Timing
	Slide 32: Tunnel Vision (1)
	Slide 33: Tunnel Vision (2)
	Slide 34: A Better Approach
	Slide 35: A Better Approach
	Slide 36: Operations at Different Rates (1)
	Slide 37: Operations at Different Rates (2)
	Slide 38: Operations at Different Rates (3)
	Slide 39: Summary Definition
	Slide 40: More Examples if time
	Slide 41: Thermostat
	Slide 42: Counter Example
	Slide 43: More State Machines

