
6.1

EE 109 Unit 6

LCD Interfacing

6.2

LCD BOARD

6.3

The EE 109 LCD Shield

• The LCD shield is a 16 character by 2 row LCD
that mounts on top of the Arduino Uno.

• The shield also contains five buttons that can
be used as input sources.

5 Button Inputs

6.4

How Do We Use It?

• By sending it data (i.e. ASCII characters one at
a time) that it will display for us

• By sending it special commands to do things
like:

– Move the cursor to a specific location

– Clear the screen contents

– Upload new fonts/special characters

6.5

How Do We Communicate?

• The LCD uses a "parallel" interface (4-bits sent per transfer) to
communicate with the µC (Note: µC => microcontroller)

• Data is transferred 4 bits at a time and uses 2 other signals
(Register Select and Enable) to control where the 4-bits go and
when the LCD should capture them

Uno

Data lines
D7

D6

D5

D4

D8

D9

Register Select

Enable LCD

EE 109 is fun!

6.6

How Do We Communicate?

• To send an 8-bit byte we must send it in two groups of 4 bits
– First the upper 4-bits followed by the lower 4-bits

• RS=0 sets the destination as the command reg.

• RS=1 sets the destination as the data reg.

Uno

Data lines
D7

D6

D5

D4

D8

D9

Register Select

Enable LCD

0011 1001

Command Reg.

Data Reg.

0

1

Address
(Reg. Select)

Display
HW

7 6 5 4 3 2 1 0
0
0
1
1

0

1
0
0
1

0

1st

Transfer

2nd

Transfer

6.7

Commands and Data

• LCD contains two 8-bit registers which it uses
to control its actions: Command and Data

• A Register Select (RS) signal determines
which register is the destination of the data
we send it (RS acts like an address selector)
– RS = 0, info goes into the command register

– RS = 1, info goes into the data register

• To perform operations like clear display,
move cursor, turn display on or off, write the
command code to the command register.

• To display characters on the screen, write
the ASCII code for the character to the data
register.

Command Code

Clear LCD 0x01

Curser Home
(Upper-Left)

0x02

Display On 0x0f

Display Off 0x08

Move cursor
to top row,
column i

0x80+i

Move cursor
to bottom
row, column i

0xc0+i

6.8

How Do We Communicate?

• To send an 8-bit byte we must send it in two groups of 4 bits
– First the upper 4-bits followed by the lower 4-bits

• RS=0 sets the destination as the command reg.

• RS=1 sets the destination as the data reg.

Uno

Data lines
D7

D6

D5

D4

D8

D9

Register Select

Enable LCD

0011

0110

1001

0001

Command Reg.

Data Reg.

0

1

Address
(Reg. Select)

Display
HW

7 6 5 4 3 2 1 0
0
1
1
0

1

0
0
0
1

1

1st

Transfer

2nd

Transfer

6.9

Another View

• Data from the Uno is transferred by placing four bits on the data
lines (Port D bits 7-4).

• The Register Select (RS) line determines whether the data goes
to the LCD’s "Command Register" or "Data Register"
– RS=0 => Command Register RS=1 => Data Register

• The Enable (E) line acts as a "clock" signal telling the LCD to
capture the data and examine the RS bit on the 0-1-0 transition
– Pulse must be held at 1 for at least 230ns according to LCD datasheet

0000 0101 0110

(PB0) RS

(PD7-4) Data

(PB1) Enable

"0000 0101" sent to the

command register in the LCD
The first 4-bits of a

transfer to the data

register in the LCD

230 ns 230 ns 230 ns

6.10

Another View

• Data from the Uno is transferred by placing four bits on the data
lines (Port D bits 7-4).

• Whether sending info to the "command" or "data" register, the
LCD still wants a full byte (8-bits) of data so we must do 2
transfers
– We always send the upper 4-bits of the desired data first

– Then we transfer the lower 4-bits

0000 0101 0110

(PB0) RS

(PD7-4) Data

(PB1) Enable

"0000 0101" sent to the

command register in the LCD
The first 4-bits of a

transfer to the data

register in the LCD

230 ns 230 ns 230 ns

6.11

Who's Job Is It?

• So who is producing the
values on the RS and Data
lines and the 0-1-0
transition on the E line?

• You!! With your digital I/O
(setting and clearing PORT
bits)

(PD0)

This code would produce some

voltage pattern like this on PD0

Note: The LCD connection doesn't
use PD0, you'll need to modify this

appropriately to generate the E
signal

// Turn on bit 0 of PORTD

PORTD |= ___

// Delay 1 us > 230ns needed

// A better way in a few slides

_delay_us(1);

// Turn off bit 0 of PORTD

PORTD &= _____

6.12

Other LCD Interface

• Other LCD devices may use

– Only one signal (a.k.a. serial link) to communicate
between the µC and LCD

• This makes wiring easier but requires more complex
software control to "serialize" the 8- or 16-bit numbers
used inside the µC

– 8-data wires plus some other control signals so
they can transfer an entire byte

• This makes writing the software somewhat easier

6.13

LCD LAB PREPARATION

6.14

Step 1

• Mount the LCD shield on the
Uno without destroying the
pins

• Download the “test.hex” file
and Makefile from the web
site, and modify the Makefile
to suite your computer.

• Run “make test” to download
test program to the Uno+LCD.

• Should see a couple of lines of
text on the screen.

6.15

Step 2

• Develop a set of functions that will
abstract the process of displaying
text on the LCD

– A set of functions to perform specific
tasks for a certain module is often
known as an API (application
programming interface)

– Once the API is written it gives other
application coders a nice simple
interface to do high-level tasks

• Download the skeleton file and
examine the functions outlines on
the next slides

6.16

LCD API Development Overview

• Write the routines to control the LCD in layers

– Top level routines that your code or others can use: write
a string to LCD, move the cursor, initialize LCD, etc.

– Mid level routines: write a byte to the command register,
write a byte to the data register

– Low level routines: controls the 4 data lines and E to
transfer a nibble to a register

• Goal: Hide the ugly details about how the interface
actually works from the user who only wants to put
a string on the display.

6.17

Low Level Functions

• lcd_writenibble(unsigned char x)

– Assumes RS is already set appropriately

– Send four bits from ‘x’ to the LCD

• Takes 4-bits of x and copies them to PD[7:4] (where we've

connected the data lines of the LCD)

• SEE NEXT SLIDES ON COPYING BITS

• Produces a 0-1-0 transition on the Enable signal

– Must be consistent with mid-level routines as to which

4 bits to send, MSB or LSB

– Uses: logical operations (AND/OR) on the PORT bits

This will be your challenge to write in lab!

6.18

Mid-Level Functions

• lcd_writecommand(unsigned char x)

– Send the 8-bit byte ‘x’ to the LCD as a command

– Set RS to 0, send data in two nibbles, delay

– Uses: lcd_writenibble()

• lcd_writedata(unsigned char x)

– Send the 8-bit byte ‘x’ to the LCD as data

– Set RS to 1, send data in two nibbles, delay

– Uses: lcd_writenibble()

• Could do as one function
– lcd_writebyte(unsigned char x, unsigned char rs)

This will be your challenge to write these two functions in lab!

6.19

High Level API Routines

• lcd_init()
– Mostly complete code to perform initialization sequence

– See lab writeup for what code you MUST add.

– Uses: lcd_writenibble(), lcd_writecommand(), delays

• lcd_moveto(unsigned char row, unsigned char col)

– Moves the LCD cursor to “row” (0 or 1) and “col” (0-15)

– Translates from row/column notation to the format the LCD uses

for positioning the cursor (see lab writeup)

– Uses: lcd_writecommand()

• lcd_stringout(char *s)
– Writes a string of character starting at the current cursor position

– Uses: lcd_writedata()

6.20

Activity: Code-Along

• Assuming the lcd_writecommand() and
lcd_writedata() functions are correctly
written, code the high-level functions:

– void lcd_stringout(char* str);

– void lcd_moveto(int row, int col);

6.21

COPYING BITS
To implement writenibble() these slides will help you…

6.22

Copying Multiple Bits
• Suppose we want to copy a portion

of a variable or register into another
BUT WITHOUT affecting the other
bits

• Example: Copy the lower 4 bits of X
into the lower 4-bits of PORTB…but
leave the upper 4-bits of PORTB
UNAFFECTED

• Assignment doesn't work since it will
overwrite ALL bits of PORTB
– PORTB = x; // changes all bits of PORTB

0x 1 0 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? 0 0 1 1

Desired Result

0PORTB 1 0 0 0 0 1 1

PORTB = x;

Result

6.23

Copying Into a Register
• Solution…use these steps:

• Step 1: Define a mask that has 1’s
where the bits are to be copied

#define MASKBITS 0x0f

• Step 2: Clear those bits in the
destination register using the MASK

PORTB &= ~MASKBITS

• Step 3: Mask the appropriate field
of x and then OR it with the
destination, PORTB

PORTB |= (x & MASKBITS);

0x 1 0 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

&

?PORTB ? ? ? 0 0 0 0

1 1 1 1 0 0 0 0

0x 1 0 0 0 0 1 1

& MASKBITS 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

?| PORTB ? ? ? 0 0 0 0

?PORTB ? ? ? 0 0 1 1

MASKBITS = 0 0 0 0 1 1 1 1Step 1

Step 2

Step 3

Result

6.24

Do We Need Step 2…Yes!!!
• Can't we just do step 1 and 3 and

OR the bits of x into PORTB

#define MASKBITS 0x0f

PORTB |= (x & MASKBITS);

• No, because what if the destination
(PORTB) already had some 1's
where we wanted 0's to go…

• …Just OR'ing wouldn't change the
bits to 0

• That's why we need step 2
• Step 2: Clear those bits in the

destination register using the MASK

PORTB &= ~MASKBITS;

0x 1 0 0 0 0 1 1

& MASKBITS 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

?| PORTB ? ? ? 1 1 1 0

?PORTB ? ? ? 1 1 1 1

Step 1 & 3

Result

?PORTB ? ? ? 1 1 1 0

What if PORTB just

happened to have these

bits initially

0x 1 0 0 0 0 1 1

6.25

Copying To Different Bit Locations
• What if the source bits are in a

different location than the
destination
– Ex. Copy lower 4 bits of x to upper 4

bits of PORTB

• Step 1: Define a mask that has 1’s
where the bits are to be copied

#define MASKBITS 0xf0

• Step 2: Clear those bits in the
destination register using the MASK

PORTB &= ~MASKBITS

• Step 3: Shift the bits of x to align
them appropriately, then perform
the regular step 3

PORTB |= ((x<<4) & MASKBITS);

0x 1 0 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

&

?PORTB ? ? ?0 0 0 0

0 0 0 0 1 1 1 1

0x 1 0 0 0 0 1 1

& MASKBITS 1 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0

?| PORTB ? ? ?0 0 0 0

?PORTB ? ? ?0 0 1 1

MASKBITS = 1 1 1 1 0 0 0 0Step 1

Step 2

Step 3

Result

x << 4 0 0 1 1 0 0 0 0

6.26

Coding a Byte Transfer to the LCD

? ? ? ? ? ? ? ?

7 6 5 4 3 2 1 0

writenibble
lcdbits

PORTD ? ? ? ? ? ? ? ?

a b c d e f g h

7 6 5 4 3 2 1 0Transfer

Byte
data

writenibble

writenibble e f g h ? ? ? ?

a b c d e f g h

Uno

Data lines
D7

D6

D5

D4

D8

D9

Register Select

Enable LCD

0011

0110

1001

0001

Command Reg.

Data Reg.

0

1

Address
(Reg. Select)

Display
HW

7 6 5 4 3 2 1 0
0
1
1
0

1

0
0
0
1

1

1st

Transfer

2nd

Transfer

6.27

THE DEVIL IN THE DETAILS…
Ensuring the Enable pulse is long enough

6.28

Making Things Work Together

Does your code do the right thing?

• LCD lab required the program to generate an Enable (E) pulse.

• Example: The writenibble() routine controls the PB1 bit that is
connected to the LCD Enable line.

PORTB |= (1 << PB1); // Set E to 1

PORTB &= ~(1 << PB1); // Clear E to 0

• Creates a 0➞1➞0 pulse to clock data/commands into LCD.

• But is it a pulse that will work with the LCD?

• Rumors circulated that the E pulse had to be made longer by
putting a delay in the code that generated it.

• Don’t Guess. Time to read the manual, at least a little bit.

6.29

Making Things Work Together

Check the LCD controller datasheet
HD44780U

225

Timing Characteristics

RS

R/W

E

DB0 to DB7

VIH1
VIL1

VIH1
VIL1

tAS tAH

VIL1 VIL1

tAHPWEH

tEf

VIH1
VIL1

VIH1
VIL1

tEr
tDSW tH

VIH1
VIL1

VIH1
VIL1

tcycE

VIL1

Valid data

Figure 27 Write Operation

RS

R/W

E

DB0 to DB7

VIH1
VIL1

VIH1
VIL1

tAS tAH

VIH1 VIH1

tAHPWEH

tEf

VIH1
VIL1

VIH1
VIL1

tDDR tDHR

tEr

VIL1

VOH1
VOL1 *

 VOH1
* VOL1Valid data

tcycE

Note: * VOL1 is assumed to be 0.8 V at 2 MHz operation.

Figure 28 Read Operation

6.30

Making Things Work Together

Check the generated code

• Can check the code generated by the compiler to see what is
happening.

• For the creation of the E pulse the compiler generated this
code:

SBI PORTB, 1 ; Set Bit Immediate, PORTB, bit 1

CBI PORTB, 1 ; Clear Bit Immediate, PORTB, bit 1

• According to the manual, the SBI and CBI instructions each
take 2 clock cycles

• 16MHz ⇒62.5nsec/cycle, so pulse will be high for 125nsec

6.31

Making Things Work Together

Check with the oscilloscope

6.32

Making Things Work Together

Extend the pulse

• At 125nsec, the E pulse it not long enough although it might
work on some boards.

• Can use _delay_us() or _delay_ms() functions but these are
longer than needed since the minimum delay is 1 us (=1000
ns) and we only need 230 ns

• Trick for extending the pulse by a little bit:
PORTB |= (1 << PB1); // Set E to 1

PORTB |= (1 << PB1); // Add another 125nsec to the pulse

PORTB &= ~(1 << PB1); // Clear E to 0

6.33

Making Things Work Together

Better looking pulse

6.34

Making Things Work Together

Extend the pulse (geek way)

• Use the “asm” compiler directive to embed low level
assembly code within the C code.

• The AVR assembly instruction “NOP” does nothing, and takes
1 cycle to do it.

PORTB |= (1 << PB1); // Set E to 1

asm(“nop”::); // NOP delays another 62.5ns

asm(“nop”::);

PORTB &= ~(1 << PB1); // Clear E to 0

6.35

Making Things Work Together

Don’t guess that things will work

• When working with a device, make sure you know what types
of signals it needs to see
– Voltage

– Current

– Polarity (does 1 mean enable/true or does 0)

– Duration (how long the signal needs to be valid)

– Sequence (which transitions comes first, etc.)

• Have the manufacturer’s datasheet for the device available
– Most of it can be ignored, but some parts are critical

– Learn how to read it

• When in doubt ➔ follow the acronym used industry-wide:
RTFM (read the *!@^-ing manual)

