
EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

EE 109 Unit 5

LCD Interfacing

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

LCD BOARD

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The EE 109 LCD Shield

• The LCD shield is a 16 character by 2 row LCD that

mounts on top of the Arduino Uno.

 The shield also contains 5 buttons that can be used as input

sources (but they use an analog interface, so we'll wait to use

them)

5 Button Inputs

16 columns

2 rows

3

Power/GND

PORT B,C,D pins

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Do We Use It?

By sending it:

• Data: __________________ codes

 Send 'a' = 0x61 and that will appear on the screen

o Note: the cursor will automatically move over _____ position

 You can then send it the next character code

• ______________: Numeric codes for non-printing tasks

 Clear/erase the screen

 Return the cursor to the upper left

 Move the cursor to a specific location

 Upload new fonts.

4

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Do We Communicate? (1)

• ASCII characters are usually 8-bit values. Should we use 8-wires?

 We could. And some LCD's do.

 But that would be 8 of our ___________________ pins on the Arduino

• To save pins, though, we use a ___-bit interface (see next slide).

 Other LCD panels may use a 1-bit serial interface, an 8-bit parallel interface,

etc.

5

'a' = 0x61 = 0110 0001

??

0
1
1
0
0
0
0
1

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Do We Communicate? (2)
• The LCD uses a "parallel" interface (4-bits sent per transfer) to

receive information from the µC (Note: µC => microcontroller)

• Data and commands are transferred 4 bits at a time.

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

EE109
is fun!

PB0=Dig8

PB1=Dig9

6

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Do We Communicate? (3)
• Data or commands are transferred 4 bits at a time and are

connected to Group ___, bits ____ (________).

• To send an 8-bit value, the LCD expects…

 First, the _____-Significant (___-) 4-bits [i.e. the ______ 4 bits]

 Then, the _______-Significant (___-) 4-bits [i.e. the _______ 4 bits]

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

a

PB0=Dig8

PB1=Dig9

'a' = 0x61 = 0110 0001

0
0
0
1

0
1
1
0

7 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Apply What You've Learned

• The Arduino has several built-in hardware

(HW) modules to control certain devices,

BUT not the LCD

• So, we must use our ____________ skills by

applying certain bitwise operations

(&, |, ^) to specific bits of PORTB and

PORTD

• As we go through this unit, anytime you see

a 0 or 1 being sent to the LCD, realize you'll

need to perform some kind of bitwise

operation on a specific PORT bit

8

No built-in LCD
control !!

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Data vs. Command (1)
• How does the LCD know if the 8-bit value is data or a command?

• Via the ____________________ (RS) bit on Group B, bit 0 (i.e. PB0)

 RS (PB0) = ____ means Data (ASCII)

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

a

PB0=Dig8

PB1=Dig9

'a' = 0x61 = 0110 0001

0
0
0
1

0
1
1
0

1

9 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Data vs. Command (2)
• The Register Select (RS) bit (PB0) determines if the 8-bit value

being sent is interpreted as data or a command

 RS (PB0) = 1 means Data (ASCII)

 RS (PB0) = 0 means Command

• The command codes are defined by the LCD in its documentation

 More on a future slide.

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable LCD

PB0=Dig8

PB1=Dig9

0x01 = CLEAR LCD

0
0
0
1

0
0
0
0

0

Screen is cleared/erased

10

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Capturing Data (1)

• How does the LCD know _______ we are sending the

upper 4 vs. the lower 4 bits of our data?

 Option 1: Look for ______________ in the data lines

(e.g. 0x6 => 0x1)

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

PB0=Dig8

PB1=Dig9

'a' = 0x61 = 0110 0001

0
0
0
1

0
1
1
0

1

This Photo by Unknown Author is licensed under CC BY-SA-NC

How can I distinguish when the
upper 4 bits are being sent and then

when the lower 4 bits are sent?

11 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Capturing Data (2)

• Option 1: Looking for transitions in the data

 _________ work (ASCII 'w' = 0x77)

 As an analogy: What data have I sent you?

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

PB0=Dig8

PB1=Dig9

'w' = 0x77 = 0111 0111

0
1
1
1

0
1
1
1

1

This Photo by Unknown Author is licensed under CC BY-SA-NC

Did something change? I didn't see
anything.

12

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Capturing Data (3)
• Option 2: Use a ___________ signal to indicate when the 4-bits

are ready

 Enable bit on group B, bit 1 (PB1)

 To signal the LCD that 4-bits of data are ready to be collected, the enable

must make a _________ (low-high-low) transition

 Pulse must be held at 1 for at least 230ns according to LCD datasheet

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

w

PB0=Dig8

PB1=Dig9

'w' = 0x77 = 0111 0111

0
1
1
1

0
1
1
1

1

This Photo by Unknown Author is licensed under CC BY-SA-NC

Oh, I see a pulse on the enable
signal. Must be time to capture the
incoming 4-bits.

13 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (1)
• To send the 8-bit ASCII code for an 'a' (0x61), use digital I/O to

 Set RS=1 (destination as the data register)

 First, send the upper four bits of the ASCII code: 6 = 01102.

14

Uno

Data lines

Register Select

Enable

LCD

0110

Command Reg.

Data Reg.

0

1

Display

HW

7 6 5 4 3 2 1 0

0

1

1

0

1

1st

Transfer

0110(PD7-4) Data

(PB1) Enable

1

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

Address

(Reg. Select)

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (2)
• To send the 8-bit ASCII code for an 'a' (0x61), use digital I/O to

 Set RS=1 (destination as the data register)

 Then, send the lower four bits of the ASCII code: 1 = 00012.

15

Uno

Data lines

Register Select

Enable

LCD

0110 0001

Command Reg.

Data Reg.

0

1

Address

(Reg. Select)

Display

HW

7 6 5 4 3 2 1 0

0

0

0

1

1

2nd

Transfer

0110 0001(PD7-4) Data

(PB1) Enable
230 ns

1

230 ns

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

Display

'a'

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (3)
• To send the 8-bit command of (0x01) to clear the LCD, use digital I/O to:

 Clearing RS=0 indicates the destination as the command register

 First, send the upper four bits of the ASCII code: 0 = 00002.

16

Uno

Data lines

Register Select

Enable

LCD

0000

Command Reg.

Data Reg.

0

1

Display

HW

7 6 5 4 3 2 1 0

0

0

0

0

1

1st

Transfer

0

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

Address

(Reg. Select)

0110 0001(PD7-4) Data

(PB1) Enable
230 ns

230 ns

0000

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (4)
• To send the 8-bit command of (0x01) to clear the LCD, use digital I/O to:

 Clearing RS=0 indicates the destination as the command register

 Then, send the lower four bits of the ASCII code: 1 = 00012.

17

Uno

Data lines

Register Select

Enable

LCD

0000 0001

Command Reg.

Data Reg.

0

1

Display

HW

7 6 5 4 3 2 1 0

0

0

0

1

1

2nd

Transfer

0

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

Address

(Reg. Select)

0110 0001(PD7-4) Data

(PB1) Enable
230 ns

230 ns

0000 0001

Clear the

LCD

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Whose Job Is It? Yours!

• Recall, how are we producing the values on the RS and Data

lines and the 0-1-0 transition on the E line?

• With basic digital I/O (setting and clearing PORT bits)!

// E => 1
PORTB |= _________

// Delay 1 us > 230ns needed
// A better way in a few slides
_delay_us(1);

// E => 0
PORTB &= _________

Uno

Register Select0

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB1=Dig9

PB0=Dig8

Enable

// RS = 0
PORTB ________________

Note: This is not the final way we want to

implement the Enable pulse (see later slides)

18

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Command Codes and Cursor Location

• To perform the operations shown at the right,

send the given code to the command register.

• See below for an illustration of the commands

to move the cursor.

19

CodeCommand

0x01Clear LCD

0x02Curser Home

(Upper-Left)

0x0fDisplay On

0x08Display Off

0x80+iMove cursor

to top row,

column i

0xc0+iMove cursor to

bottom row,

column i

1514131211109876543210Col.No.

8f8e8d8c8b8a89888786858483828180Hex Addr

si901EERow 0

NUF Row 1

cfcecdcccbcac9c8c7c6c5c4c3c2c1c0Hex Addr

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Cursor Movement
• The LCD panel uses the same controller chip for several different

models with different _______________ (e.g. 2x64, 4x16, etc.)

leaving gaps in the cursor addresses/locations (e.g. 0x90-0xbf)

• As we send data the cursor location increments, but NO

___________ are added for you. You must move the cursor to the

next line as needed. Otherwise, the next 48 characters will be lost

until the cursor location again falls into an actual display location.

20

63…161514131211109876543210Col.No
.

bf…908f8e8d8c8b8a89888786858483828180Hex Addr

NVEN..ESDNAEROCSRUOFRow 0

NOITANWERow 1

ff…d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0Hex Addr

48 locations

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

IMPORTANT RECIPE: HOW TO COPY BITS

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Copying Bits

• We know how to make an individual bit change to 1 or 0

• But how can we take 4-bits from some char variable

(e.g. char c) and copy WHATEVER those bits are to

PORTD, bits 7-4?

22

Uno

Data lines

Register Select

Enable

0

1

1

0

11

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

char c = 'a'

This Photo by Unknown Author is licensed under CC BY-SA-NC

0110 0001

How can I copy bits from the
variable, c, to PORT D?

0

1

1

0

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Copying Multiple Bits Recipe (1)
• Let's step aside from the LCD specifics (so that

you can apply what we learn here to other
generic situations, as well as to write the LCD
code).

• Goal: Copy a portion of one variable/register
into another ________ affecting the other bits

• Example: Copy the lower 4 bits of x into the
lower 4-bits of PORTB WITHOUT affecting the
other bits

• Can we simply use assignment?

 PORTB = x;

• ____! Assignment changes ____ bits of PORTB.

0x 1 1 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? 0 0 1 1

Desired Result

PORTB

Undesirable result of
PORTB = x;

(upper bits affected)

Assignment copies
all bits!

0 1 1 0 0 0 1 1

23 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recipe: Copying (Aligned) Bits

• Solution…use these steps:

• Step 1: Define a _____ that has 1’s

where the bits are to be copied

#define MASKBITS 0x0f

• Step 2: ______ those bits in the

destination register using the MASK

________ &= ~MASKBITS

• Step 3: Mask the appropriate field

of x and then ____ it with the

destination, PORTB

PORTB |= (_________________);

24

0x 1 0 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? 0 0 0 0

1 1 1 1 0 0 0 0

0x 1 0 0 0 0 1 1

& MASKBITS 0 0 0 0 1 1 1 1

0 0 0 0

?| PORTB ? ? ? 0 0 0 0

?PORTB ? ? ? 0 0 1 1

MASKBITS = 0 0 0 0 1 1 1 1Step 1

Step 2

Step 3

Result

temp

temp

& ~MASKBITS =

0 0 1 1

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Do We Really Need Step 2?

• YES!! Consider if we removed it.

• Step 1: Define a mask that has 1’s

where the bits are to be copied

#define MASKBITS 0x0f

• Step 2: Clear those bits in the

destination register using the MASK

PORTB &= ~MASKBITS

• Step 3: Mask the appropriate field

of x and then OR it with the

destination, PORTB

PORTB |= (x & MASKBITS);

25

0x 1 0 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? 0 0 0 0

1 1 1 1 0 0 0 0

0x 1 0 0 0 0 1 1

& MASKBITS 0 0 0 0 1 1 1 1

0 0 0 0

?| PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? ? ? 1 1

MASKBITS = 0 0 0 0 1 1 1 1Step 1

Step 2

Step 3

Result

temp

temp

& ~MASKBITS =

0 0 1 1

These bits may be ANYTHING and
may NOT be the two 0's we want!

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Do We Need Step 2…Yes!!!
• We need step 2 to CLEAR the destination

bits, because what if the destination

(PORTB) already had some 1's where we

wanted 0's to go…

• …Just ___________ wouldn't change the

bits to ____

 OR'ing never has the power to make bits 0

 …and AND'ing never has the power to make 1s

• That's why we need step 2

 Step 2: Clear those bits in the

destination register using the MASK

PORTB &= ~MASKBITS;

26

0x 1 0 0 0 0 1 1

?PORTB ? ? ? 0 1 1 1

What if PORTB just happened to
have these LOWER 4-bits initially

x

& MASKBITS 0 0 0 0 1 1 1 1

0 1 0 0 0 0 1 1

0 0 0 0

?| PORTB ? ? ? 0 1 1 1

?PORTB ? ? ? 0 1 1 1Result

temp 0 0 1 1

Step 1 & 3

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recipe: Copying (Shifted) Bits
• What if the source bits are in a different

location than the destination

 Ex. Copy middle 4 bits of x (bits 5:2) to

upper 4 bits of PORTB (bits 7:4)

• Step 1: Define a mask that has 1’s where the

bits are to be copied

#define MASKBITS 0xf0

• Step 2: Clear those bits in the destination

register using the MASK

PORTB &= ~MASKBITS

• Step 3: _______ the bits of x to align them

appropriately, then perform the regular step 3

PORTB |= ((_______) & MASKBITS);

?PORTB ? ? ? ? ? ? ?

& ~MASKBITS

?PORTB ? ? ?0 0 0 0

0 0 0 0 1 1 1 1

x

& MASKBITS

?| PORTB ? ? ?0 0 0 0

?PORTB ? ? ?0 0 1 1

MASKBITS =

______ 0 0

0x 1 0 0 1 1 1 0

1 1 1 1 0 0 0 0Step 1

Step 2

Step 3

Result

1 1 1 1 0 0 0 0

0 0 1 1

0 0 0 00 0 1 1temp

0 1 0 0 1 1 1 0

1 0

7 6 5 4 3 2 1 0

temp

27 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

LCD LAB PREPARATION DETAILS

28

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 1
• Mount the LCD shield on the Uno

without destroying the pins

• Download the test.hex file and

Makefile from the website, and

modify the Makefile programmer

line to suite your computer.

• Run make test to download test

program to the Uno+LCD.

• You should see a couple of lines of text

on the screen similar to what is shown

to the right.

29 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 2
• Develop a set of functions that will abstract the

process of displaying text on the LCD

 A set of functions to perform specific tasks

for a certain module is often known as an

_____ (application programming interface)

 Once the API is written it gives other

application coders a nice simple interface to

do high-level tasks

 You can then reuse this code in every future

lab.

• Download the skeleton file and examine the

functions outlines on the next slides

30

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

LCD API Development Overview

• Write the routines to control the LCD in

layers

 Top-level routines that your code or others can

use: write a string to LCD, move the cursor,

initialize LCD, etc.

 Mid-level routines: Set RS appropriate to write a

data byte or a command register and calls a low-

level function to send groups of 4-bits

 Low-level routines: Sets the 4 data lines and

generates pulse on E to transfer

• Goal: Hide the ___________ about how the

interface actually works from the user who

only wants to put a string on the display.

lcd_stringout("hello");

lcd_writedata('h'); //0x68
lcd_writedata('e'); //0x65
...
lcd_writedata('o'); //0x6f

// Send 'h'
lcd_writenibble(0x6?);
lcd_writenibble(0x8?);
// Send 'e'
lcd_writenibble(0x6?);
lcd_writenibble(0x5?);
...

31 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Code Organization

lcd_writenibble(val)

lcd_writecommand()
Sets RS bit to 0 and then writes

a byte

lcd_stringout()
Write an entire text string

1 character at a time

lcd_writedata()
Sets RS bit to 1 and then

writes a byte

lcd_init()
Initialize the LCD

Set DDR bits

lcd_moveto()
Move the cursor to a

given row and columm

32

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Low Level Functions

• lcd_writenibble(unsigned char x)

 Assumes RS is already set appropriately

 Send four bits from x to the LCD
o Takes 4-bits of x and copies them to PD[7:4] (where we've connected the data

lines of the LCD)
o Use the recipe for copying bits provided earlier
o Produces a 0-1-0 transition on the Enable signal

 Must be consistent with mid-level routines as to which 4 bits of the
input to send, MSB or LSB

 Uses: logical operations (AND/OR) on the PORT bits

This will be your challenge to write in lab!

33 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Mid-Level Functions

• lcd_writecommand(unsigned char x)

 Send the 8-bit byte ‘x’ to the LCD as a command

 Set RS to 0, send data in two nibbles, delay

 Calls: lcd_writenibble()

• lcd_writedata(unsigned char x)

 Send the 8-bit byte ‘x’ to the LCD as data

 Set RS to 1, send data in two nibbles, delay

 Calls: lcd_writenibble()

This will be your challenge to write these two functions in lab!

34

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

High Level API Routines

• lcd_init()
 Mostly complete code to perform initialization sequence

 See lab writeup for what code you MUST add.

 Uses: lcd_writenibble(), lcd_writecommand(), delays

• lcd_moveto(unsigned char row, unsigned char col)

 Moves the LCD cursor to “row” (0 or 1) and “col” (0-15)

 Translates from row/column notation to the format the LCD uses for positioning the
cursor (see lab writeup)

 Uses: lcd_writecommand()

• lcd_stringout(char *s)
 Writes a string of character starting at the current cursor position

 Uses: lcd_writedata()

35 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Choice: Upper-4 or Lower-4

• Recall: The smallest

variable in C is

1-byte = 8-bits (i.e. char)

• When we call

lcd_writenibble() we have

to pass it at least 1-byte,

but it only needs to copy

_______ to PORTD.

• So, we must make a choice

as to __________ we

assume are the ones we

should copy to PORTD

36

Uno

Data lines

Register Select

Enable
1

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

char c = 'h'

0110 1000

You must decide whether
lcd_writenibble() will
copy the upper 4-bits of
its input to PD[7:4] or the
lower 4-bits.

void lcd_writenibble(char c){
// Which 4-bits from c
// should we send?

}

0110 1000

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Either Choice Can Work!
• EITHER choice is acceptable as long as both lcd_writenibble() and

lcd_writedata()/lcd_writecommand() agree.

• Consider how to use shift operators to help align the desired bits as you pass

your arguments to lcd_writenibble()

37

// Sends UPPER 4-bits
void lcd_writenibble(char c){

}

void lcd_writedata(char c){
// Set RS = 1
lcd_writenibble(0110 xxxx);

// Send upper 4

lcd_writenibble(1000 xxxx);

}

'h'=0110 1000

???? xxxx

These get sent!

// Sends LOWER 4-bits
void lcd_writenibble(char c){

}

void lcd_writedata(char c){
// Set RS = 1
lcd_writenibble(xxxx 0110);

lcd_writenibble(xxxx 1000);
// Send lower 4

}

'h'=0110 1000

xxxx ????

These get sent!

Send
Upper-4

(For EE109,
we chose

this.)

Send
Lower

(For EE109,
we DO NOT

do this.)

Send lower 4 by
moving to upper 4

Send upper 4 by
moving to lower 4

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A STORY: THE DEVIL IN THE DETAILS…

If time permits: Ensuring the Enable pulse is long enough

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Not That Long Ago…

• At the dawn of EE109, Prof. Weber and Redekopp put together

the LCD Lab

• The lab required students to generate the Enable (E) pulse.

• Example: The writenibble() routine controls the PB1 bit that

is connected to the LCD Enable line.

 PORTB |= (1 << PB1); // Set E to 1

 PORTB &= ~(1 << PB1); // Clear E to 0

• Creates a 0➞1➞0 pulse to clock data/commands into LCD.

39 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Not That Long Ago…

• Students were told how to generate the pulse with that code

• But NOBODY's LCD would work?!?

 Confusion abounded! Professors were perplexed! Students were

frustrated!

 Rumors circulated that the E pulse had to be made longer by putting a

delay in the code that generated it.

 Don't Guess!

• It was time to read the manual (at least a little bit).

40

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Making Things Work Together

• LCD lab required the program to generate an Enable (E) pulse.

• Example: The writenibble() routine controls the PB1 bit that

is connected to the LCD Enable line.

 PORTB |= (1 << PB1); // Set E to 1

 PORTB &= ~(1 << PB1); // Clear E to 0

• Creates a 0➞1➞0 pulse to clock data/commands into LCD.

• But is it a pulse that will work with the LCD?

• Rumors circulated that the E pulse had to be made longer by

putting a delay in the code that generated it.

• Don’t Guess. Time to read the manual, at least a little bit.

41 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Making Things Work Together

• Check the LCD controller datasheet

42

PWEH = Pulse Width Enable High

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Check the Generated code

• Can check the code generated by the compiler to see what is

happening.

• For the creation of the E pulse the compiler generated this code:

 SBI PORTB, 1 ; Set Bit Immediate, PORTB, bit 1

 CBI PORTB, 1 ; Clear Bit Immediate, PORTB, bit 1

• According to the manual, the SBI and CBI instructions each take 2

clock cycles

• 16MHz ⇒ 62.5nsec/cycle, so pulse will be high for 125nsec

43 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Verify With the Oscilloscope
44

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Extend the Pulse

• At 125nsec, the E pulse it not long enough although it might work

on some boards.

• Can use _delay_us() or _delay_ms() functions but these are longer

than needed since the minimum delay is 1 us (=1000 ns) and we

only need 230 ns

• Trick for extending the pulse by a little bit:

PORTB |= (1 << PB1); // Set E to 1

PORTB |= (1 << PB1); // Add another 125nsec to the pulse

PORTB &= ~(1 << PB1); // Clear E to 0

45 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Working Pulse Length!
46

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Extending the Pulse (The "Geeky" Way)

• Use the "asm" compiler directive to embed low level assembly

code within the C code.

• The AVR assembly instruction "NOP" (no-operation) does nothing

and takes 1 cycle to do it.

PORTB |= (1 << PB1); // Set E to 1

asm("nop"::); // NOP delays another 62.5ns

asm("nop"::);

PORTB &= ~(1 << PB1); // Clear E to 0

47 EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Read the Manual

• When working with a device, make sure you know what types of

signals it needs to see

 Voltage

 Current

 Polarity (does 1 mean enable/true or does 0)

 Duration (how long the signal needs to be valid)

 Sequence (which transitions comes first, etc.)

• Have the manufacturer’s datasheet for the device available

 Most of it can be ignored, but some parts are critical

 Learn how to read it

• When in doubt ➔ follow the acronym used industry-wide:

RTFM (read the *!@^-ing manual)

48

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BACKUP

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coding a Byte Transfer to the LCD

• Writing a byte requires two transfers of 4
bits from different physical locations

 First the upper 4 and then the lower 4

• Since we want only 1 version of
lcd_writenibble and the smallest
argument we can pass is 8-bits, it must
assume a specific group of 4-bits are the
desired bits to transfer in the argument

• lcd_writedata() and
lcd_writecommand() must adjust to place
the desired bits in the correct location
that lcd_writenibble() expects

? ? ? ? ? ? ? ?

7 6 5 4 3 2 1 0

lcd_writenibble
arg

PORTD ? ? ? ? ? ? ? ?

a b c d e f g h

7 6 5 4 3 2 1 0Transfer
Byte

data

writenibble

writenibble e f g h ? ? ? ?

a b c d e f g h

Implementation where lcd_writenibble
expects data in the upper 4 bits.

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coding a Byte Transfer to the LCD

• Writing a byte requires two transfers of 4
bits from different physical locations

 First the upper 4 and then the lower 4

• Since we want only 1 version of
lcd_writenibble and the smallest
argument we can pass is 8-bits, it must
assume a specific group of 4-bits are the
desired bits to transfer in the argument

• lcd_writedata() and
lcd_writecommand() must adjust to place
the desired bits in the correct location
that lcd_writenibble() expects

? ? ? ? ? ? ? ?

7 6 5 4 3 2 1 0

lcd_writenibble
arg

PORTD ? ? ? ? ? ? ? ?

a b c d e f g h

7 6 5 4 3 2 1 0Transfer
Byte

data

writenibble

writenibble ? ? ? ? e f g h

? ? ? ? a b c d

Implementation where lcd_writenibble
expects data in the lower 4 bits.

EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Either Choice Can Work!
• EITHER choice is acceptable as long as both lcd_writenibble() and

lcd_writedata()/lcd_writecommand() agree.

• Consider how to use shift operators to help align the desired bits as you pass

your arguments to lcd_writenibble()

52

// Sends UPPER 4-bits
void lcd_writenibble(char c){

}

void lcd_writedata(char c){
// Set RS = 1
lcd_writenibble(0110 xxxx);

// Send upper 4

lcd_writenibble(1000 xxxx);
// Send lower 4

}

'h'=0110 1000

???? xxxx

These get sent!

// Sends LOWER 4-bits
void lcd_writenibble(char c){

}

void lcd_writedata(char c){
// Set RS = 1
lcd_writenibble(xxxx 0110);

// Send upper 4

lcd_writenibble(xxxx 1000);
// Send lower 4

}

'h'=0110 1000

xxxx ????

These get sent!

Send
Upper-4

(For EE109,
we chose

this.)

Send
Lower

(For EE109,
we chose

this.)

