
EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

EE 109 Unit 5
LCD Interfacing



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

LCD BOARD



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The EE 109 LCD Shield
• The LCD shield is a 16 character by 2 row LCD that 

mounts on top of the Arduino Uno.
▪ The  shield also contains 5 buttons that can be used as input 

sources (but they use an analog interface, so we'll wait to use 
them)

5 Button Inputs 

16 columns

2 rows

3

Power/GND

PORT B,C,D pins



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Do We Use It?
By sending it:

• Data:  ASCII character codes 
▪ Send 'a' = 0x61 and that will appear on the screen
o Note: the cursor will automatically move over by 1 position

▪ You can then send it the next character code

• Commands:  Numeric codes for non-printing tasks
▪ Clear/erase the screen

▪ Return the cursor to the upper left

▪ Move the cursor to a specific location

▪ Upload new fonts.

4



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Do We Communicate? (1)
• ASCII characters are usually 8-bit values. Should we use 8-wires?

▪ We could.  And some LCD's do. 

▪ But that would be 8 of our precious 20 pins on the Arduino

• To save pins, though, we use a 4-bit interface (see next slide).
▪ Other LCD panels may use a 1-bit serial interface, an 8-bit parallel interface, 

etc.

5

'a' = 0x61 = 0110 0001

??

0

1

1

0

0

0

0

1



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Do We Communicate? (2)
• The LCD uses a "parallel" interface (4-bits sent per transfer) to 

receive information from the µC (Note: µC => microcontroller)

• Data and commands are transferred 4 bits at a time.

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

EE109 
is fun!

PB0=Dig8

PB1=Dig9

6



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Do We Communicate? (3)
• Data or commands are transferred 4 bits at a time and are 

connected to Group D, bits 7-4 (PD7-PD4).

• To send an 8-bit value, the LCD expects…
▪ First, the Most-Significant (MS-) 4-bits [i.e. the upper 4 bits] 

▪ Then, the Least-Significant (LS-) 4-bits [i.e. the lower 4 bits]

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

a

PB0=Dig8

PB1=Dig9

'a' = 0x61 = 0110 0001

0

0

0

1

0

1

1

0

7



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Apply What You've Learned
• The Arduino has several built-in hardware 

(HW) modules to control certain devices, 
BUT not the LCD

• So, we must use our digital I/O skills by 
applying certain bitwise operations 
(&, |, ^) to specific bits of PORTB and 
PORTD

• As we go through this unit, anytime you see 
a 0 or 1 being sent to the LCD, realize you'll 
need to perform some kind of bitwise 
operation on a specific PORT bit

8

No built-in LCD 

control !!



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Data vs. Command (1)
• How does the LCD know if the 8-bit value is data or a command?

• Via the Register Select (RS) bit on Group B, bit 0 (i.e. PB0)
▪ RS (PB0) = 1 means Data (ASCII)

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

a

PB0=Dig8

PB1=Dig9

'a' = 0x61 = 0110 0001

0

0

0

1

0

1

1

0

1

9



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Data vs. Command (2)
• The Register Select (RS) bit (PB0) determines if the 8-bit value 

being sent is interpreted as data or a command
▪ RS (PB0) = 1 means Data (ASCII)

▪ RS (PB0) = 0 means Command

• The command codes are defined by the LCD in its documentation
▪ More on a future slide.

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable LCD

PB0=Dig8

PB1=Dig9

0x01 = CLEAR LCD

0

0

0

1

0

0

0

0

0

Screen is cleared/erased

10



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Capturing Data (1)
• How does the LCD know when we are sending the 

upper 4 vs. the lower 4 bits of our data?
▪ Option 1: Look for transitions in the data lines (e.g. 0x6 => 0x1)

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

PB0=Dig8

PB1=Dig9

'a' = 0x61 = 0110 0001

0

0

0

1

0

1

1

0

1

This Photo by Unknown Author is licensed under CC BY-SA-NC

How can I distinguish when the 

upper 4 bits are being sent and then 

when the lower 4 bits are sent?

11

http://etmooc.org/hub/tag/animated-gif/
https://creativecommons.org/licenses/by-nc-sa/3.0/


EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Capturing Data (2)
• Option 1: Looking for transitions in the data 

▪ Won't work (ASCII 'w' = 0x77)

▪ As an analogy: What data have I sent you?

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

PB0=Dig8

PB1=Dig9

'w' = 0x77 = 0111 0111

0

1

1

1

0

1

1

1

1

This Photo by Unknown Author is licensed under CC BY-SA-NC

Did something change? I didn't see 

anything.

12

http://etmooc.org/hub/tag/animated-gif/
https://creativecommons.org/licenses/by-nc-sa/3.0/


EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Capturing Data (3)
• Option 2: Use a separate signal to indicate when the 4-bits are 

ready
▪ Enable bit on group B, bit 1 (PB1) 

▪ To signal the LCD that 4-bits of data are ready to be collected, the enable
must make a 0-1-0 (low-high-low) transition

▪ Pulse must be held at 1 for at least 230ns according to LCD datasheet

Uno

Data lines
PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

Register Select

Enable
LCD

w

PB0=Dig8

PB1=Dig9

'w' = 0x77 = 0111 0111

0

1

1

1

0

1

1

1

1

This Photo by Unknown Author is licensed under CC BY-SA-NC

Oh, I see a pulse on the enable 

signal. Must be time to capture the 

incoming 4-bits.

13

http://etmooc.org/hub/tag/animated-gif/
https://creativecommons.org/licenses/by-nc-sa/3.0/


EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (1)
• To send the 8-bit ASCII code for an 'a' (0x61), use digital I/O to 

▪ Set RS=1 (destination as the data register)

▪ First, send the upper four bits of the ASCII code: 6 = 01102.

14

Uno

Data lines

Register Select

Enable

LCD

0110

Command Reg.

Data Reg.

0

1

Display
HW

7  6  5  4  3  2  1  0
0
1
1
0

1

1st

Transfer

0110(PD7-4) Data

(PB1) Enable

1

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

Address 
(Reg. Select)



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (2)
• To send the 8-bit ASCII code for an 'a' (0x61), use digital I/O to 

▪ Set RS=1 (destination as the data register)

▪ Then, send the lower four bits of the ASCII code: 1 = 00012.

15

Uno

Data lines

Register Select

Enable

LCD

0110 0001

Command Reg.

Data Reg.

0

1

Address 
(Reg. Select)

Display
HW

7  6  5  4  3  2  1  0
0
0
0
1

1

2nd

Transfer

0110 0001(PD7-4) Data

(PB1) Enable
230 ns

1

230 ns

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

Display 
'a'



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (3)
• To send the 8-bit command of (0x01) to clear the LCD, use digital I/O to:

▪ Clearing RS=0 indicates the destination as the command register

▪ First, send the upper four bits of the ASCII code: 0 = 00002.

16

Uno

Data lines

Register Select

Enable

LCD

0000

Command Reg.

Data Reg.

0

1

Display
HW

7  6  5  4  3  2  1  0
0
0
0
0

1

1st

Transfer

0

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

Address 
(Reg. Select)

0110 0001(PD7-4) Data

(PB1) Enable
230 ns

230 ns

0000



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (4)
• To send the 8-bit command of (0x01) to clear the LCD, use digital I/O to:

▪ Clearing RS=0 indicates the destination as the command register

▪ Then, send the lower four bits of the ASCII code: 1 = 00012.

17

Uno

Data lines

Register Select

Enable

LCD

0000 0001

Command Reg.

Data Reg.

0

1

Display
HW

7  6  5  4  3  2  1  0
0
0
0
1

1

2nd

Transfer

0

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

Address 
(Reg. Select)

0110 0001(PD7-4) Data

(PB1) Enable
230 ns

230 ns

0000 0001

Clear the 
LCD



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Whose Job Is It? Yours!
• Recall, how are we producing the values on the RS and Data 

lines and the 0-1-0 transition on the E line?

• With basic digital I/O (setting and clearing PORT bits)!

// E => 1
PORTB |= (1 << 1);

// Delay 1 us > 230ns needed
// A better way in a few slides
_delay_us(1);

// E => 0
PORTB &= ~(1 << 1);

Uno

Register Select0

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB1=Dig9

PB0=Dig8

Enable

// RS = 0
PORTB &= ~(1 << 0);

Note:  This is not the final way we want to 
implement the Enable pulse (see later slides)

18



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Command Codes and Cursor Location
• To perform the operations shown at the right, 

send the given code to the command register.

• See below for an illustration of the commands 
to move the cursor.

19

Command Code

Clear LCD 0x01

Curser Home 
(Upper-Left)

0x02

Display On 0x0f

Display Off 0x08

Move cursor
to top row, 
column i

0x80+i

Move cursor to 
bottom row, 
column i

0xc0+i

Col.No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hex Addr 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f

Row 0 E E 1 0 9 i s

Row 1 F U N
Hex Addr c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Cursor Movement
• The LCD panel uses the same controller chip for several different 

models with different aspect ratios (e.g. 2x64, 4x16, etc.) leaving 
gaps in the cursor addresses/locations (e.g. 0x90-0xbf)

• As we send data the cursor location increments, but NO 
NEWLINES are added for you.  You must move the cursor to the 
next line as needed.  Otherwise, the next 48 characters will be lost 
until the cursor location again falls into an actual display location.

20

Col.No

.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 63

Hex Addr 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f 90 … bf

Row 0 F O U R S C O R E A N D S E VEN.. N

Row 1 E W N A T I O N
Hex Addr c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf d0 … ff

48 locations



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

IMPORTANT RECIPE: HOW TO COPY BITS



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Copying Bits
• We know how to make an individual bit change to 1 or 0

• But how can we take 4-bits from some char variable 
(e.g. char c) and copy WHATEVER those bits are to 
PORTD, bits 7-4?

22

Uno

Data lines

Register Select

Enable

0
1
1
0

11

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

char c = 'a' 

This Photo by Unknown Author is licensed under CC BY-SA-NC

0110 0001

How can I copy bits from the 

variable, c, to PORT D?

0
1
1
0

http://etmooc.org/hub/tag/animated-gif/
https://creativecommons.org/licenses/by-nc-sa/3.0/


EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Copying Multiple Bits Recipe (1)
• Let's step aside from the LCD specifics (so that 

you can apply what we learn here to other 
generic situations, as well as to write the LCD 
code).

• Goal:  Copy a portion of one variable/register 
into another WITHOUT affecting the other bits

• Example:  Copy the lower 4 bits of x into the 
lower 4-bits of PORTB WITHOUT affecting the 
other bits

• Can we simply use assignment?
▪ PORTB = x;  

• No! Assignment changes all bits of PORTB.

0x 1 1 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? 0 0 1 1

Desired Result

PORTB

Undesirable result of 

PORTB = x;

(upper bits affected)

Assignment copies 

all bits!

0 1 1 0 0 0 1 1

23



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recipe: Copying (Aligned) Bits
• Solution…use these steps:

• Step 1: Define a mask that has 1’s 
where the bits are to be copied

#define  MASKBITS   0x0f

• Step 2: Clear those bits in the 
destination register using the MASK

PORTB &= ~MASKBITS

• Step 3: Mask the appropriate field 
of x and then OR it with the 
destination, PORTB

PORTB |= (x & MASKBITS);

24

0x 1 0 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? 0 0 0 0

1  1   1   1  0  0   0   0

0x 1 0 0 0 0 1 1

& MASKBITS 0  0   0   0  1  1   1   1

0  0   0   0

?| PORTB ? ? ? 0 0 0 0

?PORTB ? ? ? 0 0 1 1

MASKBITS = 0  0   0   0  1  1   1   1Step 1

Step 2

Step 3

Result

temp

temp

& ~MASKBITS =

0 0 1 1



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Do We Really Need Step 2?
• Yes!! Consider if we removed it.

• Step 1: Define a mask that has 1’s 
where the bits are to be copied

#define  MASKBITS   0x0f

• Step 2: Clear those bits in the 
destination register using the MASK

PORTB &= ~MASKBITS

• Step 3: Mask the appropriate field 
of x and then OR it with the 
destination, PORTB

PORTB |= (x & MASKBITS);

25

0x 1 0 0 0 0 1 1

?PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? 0 0 0 0

1  1   1   1  0  0   0   0

0x 1 0 0 0 0 1 1

& MASKBITS 0  0   0   0  1  1   1   1

0  0   0   0

?| PORTB ? ? ? ? ? ? ?

?PORTB ? ? ? ? ? 1 1

MASKBITS = 0  0   0   0  1  1   1   1Step 1

Step 2

Step 3

Result

temp

temp

& ~MASKBITS =

0 0 1 1

These bits may be ANYTHING and 

may NOT be the two 0's we want!



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Do We Need Step 2…Yes!!!
• We need step 2 to CLEAR the destination 

bits, because what if the destination 
(PORTB) already had some 1's where we 
wanted 0's to go…

• …Just OR'ing wouldn't change the bits to 0

▪ OR'ing never has the power to make bits 0

▪ …and AND'ing never has the power to make 1s

• That's why we need step 2

▪ Step 2: Clear those bits in the 
destination register using the MASK

PORTB &= ~MASKBITS; 

26

0x 1 0 0 0 0 1 1

?PORTB ? ? ? 0 1 1 1

What if PORTB just happened to 

have these LOWER 4-bits initially

x

& MASKBITS 0  0   0   0  1  1   1   1

0 1 0 0 0 0 1 1

0  0   0   0

?| PORTB ? ? ? 0 1 1 1

?PORTB ? ? ? 0 1 1 1Result

temp 0 0 1 1

Step 1 & 3



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recipe: Copying (Shifted) Bits
• What if the source bits are in a different 

location than the destination 

▪ Ex.  Copy middle 4 bits of x (bits 5:2) to 
upper 4 bits of PORTB (bits 7:4)

• Step 1:  Define a mask that has 1’s where the 
bits are to be copied

#define  MASKBITS   0xf0

• Step 2: Clear those bits in the destination 
register using the MASK

PORTB &= ~MASKBITS

• Step 3: Shift the bits of x to align them 
appropriately, then perform the regular step 3

PORTB |= ((x<<2) & MASKBITS);

?PORTB ? ? ? ? ? ? ?

& ~MASKBITS

?PORTB ? ? ?0 0 0 0

0  0   0   0  1  1   1   1

x

& MASKBITS

?| PORTB ? ? ?0 0 0 0

?PORTB ? ? ?0 0 1 1

MASKBITS =

x << 2 0   0

0x 1 0 0 1 1 1 0

1  1   1   1  0  0   0   0Step 1

Step 2

Step 3

Result

1  1   1   1  0  0   0   0

0 0 1 1

0   0   0   00 0 1 1temp

0 1 0 0 1 1 1 0

1 0

7 6 5 4 3 2 1 0

temp

27



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

LCD LAB PREPARATION DETAILS

28



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 1

• Mount the LCD shield on the Uno 
without destroying the pins

• Download the test.hex file and 
Makefile from the website, and 
modify the Makefile programmer 
line to suite your computer.

• Run make test to download test 
program to the Uno+LCD.

• You should see a couple of lines of text 
on the screen similar to what is shown 
to the right.

29



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Step 2
• Develop a set of functions that will abstract the 

process of displaying text on the LCD 

▪ A set of functions to perform specific tasks 
for a certain module is often known as an 
API (application programming interface)

▪ Once the API is written it gives other 
application coders a nice simple interface to 
do high-level tasks

▪ You can then reuse this code in every future 
lab.

• Download the skeleton file and examine the 
functions outlines on the next slides

30



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

LCD API Development Overview
• Write the routines to control the LCD in 

layers

▪ Top-level routines that your code or others can 
use: write a string to LCD, move the cursor, 
initialize LCD, etc.

▪ Mid-level routines: Set RS appropriate to write a 
data byte or a command register and calls a low-
level function to send groups of 4-bits

▪ Low-level routines: Sets the 4 data lines and 
generates pulse on E to transfer

• Goal: Hide the ugly details about how the 
interface actually works from the user who 
only wants to put a string on the display.

lcd_stringout("hello");

lcd_writedata('h'); //0x68
lcd_writedata('e'); //0x65
...
lcd_writedata('o'); //0x6f

// Send 'h' 
lcd_writenibble(0x6?);
lcd_writenibble(0x8?);
// Send 'e' 
lcd_writenibble(0x6?);
lcd_writenibble(0x5?);
...

31



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Code Organization

lcd_writenibble(val)

lcd_writecommand()
Sets RS bit to 0 and then writes 

a byte

lcd_stringout()
Write an entire text string 

1 character at a time

lcd_writedata()
Sets RS bit to 1 and then 

writes a byte

lcd_init()
Initialize the LCD

Set DDR bits

lcd_moveto()
Move the cursor to a 

given row and columm

32



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Low Level Functions

• lcd_writenibble(unsigned char x)

▪ Assumes RS is already set appropriately

▪ Send four bits from x to the LCD
o Takes 4-bits of x and copies them to PD[7:4] (where we've connected the data 

lines of the LCD)

o Use the recipe for copying bits provided earlier

o Produces a 0-1-0 transition on the Enable signal

▪ Must be consistent with mid-level routines as to which 4 bits of the 
input to send, MSB or LSB

▪ Uses: logical operations (AND/OR) on the PORT bits

This will be your challenge to write in lab! 

33



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Mid-Level Functions

• lcd_writecommand(unsigned char x)

▪ Send the 8-bit byte ‘x’ to the LCD as a command

▪ Set RS to 0, send data in two nibbles, delay

▪ Calls: lcd_writenibble()

• lcd_writedata(unsigned char x)

▪ Send the 8-bit byte ‘x’ to the LCD as data

▪ Set RS to 1, send data in two nibbles, delay

▪ Calls: lcd_writenibble()

This will be your challenge to write these two functions in lab! 

34



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

High Level API Routines

• lcd_init()
▪ Mostly complete code to perform initialization sequence

▪ See lab writeup for what code you MUST add.

▪ Uses: lcd_writenibble(), lcd_writecommand(), delays

• lcd_moveto(unsigned char row, unsigned char col)

▪ Moves the LCD cursor to “row” (0 or 1) and “col” (0-15)

▪ Translates from row/column notation to the format the LCD uses for positioning the 
cursor (see lab writeup)

▪ Uses: lcd_writecommand()

• lcd_stringout(char *s)
▪ Writes a string of character starting at the current cursor position

▪ Uses: lcd_writedata()

35



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Choice: Upper-4 or Lower-4
• Recall: The smallest 

variable in C is 
1-byte = 8-bits (i.e. char)

• When we call 
lcd_writenibble() we have 
to pass it at least 1-byte, 
but it only needs to copy 
4-bits to PORTD.

• So, we must make a choice 
as to which 4-bits we 
assume are the ones we 
should copy to PORTD

36

Uno

Data lines

Register Select

Enable
1

PD7=Dig7

PD6=Dig6

PD5=Dig5

PD4=Dig4

PB0=Dig8

PB1=Dig9

char c = 'h' 

0110 1000

You must decide whether 

lcd_writenibble() will 

copy the upper 4-bits of 

its input to PD[7:4] or the 

lower 4-bits.

void lcd_writenibble( char c ){
// Which 4-bits from c 
//  should we send? 

} 

0110 1000



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Either Choice Can Work!
• EITHER choice is acceptable as long as both lcd_writenibble() and 

lcd_writedata()/lcd_writecommand() agree.

• Consider how to use shift operators to help align the desired bits as you pass 
your arguments to lcd_writenibble()

37

// Sends UPPER 4-bits
void lcd_writenibble(    char c   ){

} 

void lcd_writedata(char c){
// Set RS = 1
lcd_writenibble( 0110 xxxx ); 

// Send upper 4

lcd_writenibble(1000 xxxx ); 

} 

'h'=0110 1000

???? xxxx

These get sent!

// Sends LOWER 4-bits
void lcd_writenibble(    char c   ){

} 

void lcd_writedata(    char c){
// Set RS = 1
lcd_writenibble( xxxx 0110 ); 

lcd_writenibble( xxxx 1000 ); 
// Send lower 4

} 

'h'=0110 1000

xxxx ????

These get sent!

Send 

Upper-4

(For EE109, 

we chose 

this.)

Send 

Lower

(For EE109, 

we DO NOT 

do this.)

Send lower 4 by 
moving to upper 4

Send upper 4 by 
moving to lower 4



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A STORY: THE DEVIL IN THE DETAILS…
If time permits: Ensuring the Enable pulse is long enough



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Not That Long Ago…
• At the dawn of EE109, Prof. Weber and Redekopp put together 

the LCD Lab

• The lab required students to generate the Enable (E) pulse.

• Example:  The writenibble() routine controls the PB1 bit that 
is connected to the LCD Enable line.
▪ PORTB |= (1 << PB1); // Set E to 1

▪ PORTB &= ~(1 << PB1); // Clear E to 0

• Creates a 0➞1➞0 pulse to clock data/commands into LCD.

39



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Not That Long Ago…
• Students were told how to generate the pulse with that code

• But NOBODY's LCD would work?!?
▪ Confusion abounded!  Professors were perplexed!  Students were 

frustrated!

▪ Rumors circulated that the E pulse had to be made longer by putting a 
delay in the code that generated it.

▪ Don't Guess!

• It was time to read the manual (at least a little bit).

40



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Making Things Work Together
• LCD lab required the program to generate an Enable (E) pulse.

• Example:  The writenibble() routine controls the PB1 bit that 
is connected to the LCD Enable line.
▪ PORTB |= (1 << PB1);             // Set E to 1

▪ PORTB &= ~(1 << PB1);           // Clear E to 0

• Creates a 0➞1➞0 pulse to clock data/commands into LCD.

• But is it a pulse that will work with the LCD?

• Rumors circulated that the E pulse had to be made longer by 
putting a delay in the code that generated it.

• Don’t Guess.  Time to read the manual, at least a little bit.

41

https://cdn.sparkfun.com/assets/9/5/f/7/b/HD44780.pdf


EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Making Things Work Together
• Check the LCD controller datasheet

42

PWEH = Pulse Width Enable High



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Check the Generated code
• Can check the code generated by the compiler to see what is 

happening.

• For the  creation of the E pulse the compiler generated this code:
▪ SBI   PORTB, 1      ; Set Bit Immediate, PORTB, bit 1

▪ CBI   PORTB, 1      ; Clear Bit Immediate, PORTB, bit 1

• According to the manual, the SBI and CBI instructions each take 2 
clock cycles

• 16MHz ⇒ 62.5nsec/cycle, so pulse will be high for 125nsec 

43



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Verify With the Oscilloscope
44



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Extend the Pulse
• At 125nsec, the E pulse it not long enough although it might work 

on some boards.

• Can use _delay_us() or _delay_ms() functions but these are longer 
than needed since the minimum delay is 1 us (=1000 ns) and we 
only need 230 ns

• Trick for extending the pulse by a little bit:
PORTB |= (1 << PB1); // Set E to 1

PORTB |= (1 << PB1); // Add another 125nsec to the pulse

PORTB &= ~(1 << PB1); // Clear E to 0

45



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Working Pulse Length!
46



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Extending the Pulse (The "Geeky" Way)
• Use the "asm" compiler directive to embed low level assembly 

code within the C code.

• The AVR assembly instruction "NOP" (no-operation) does nothing 
and takes 1 cycle to do it.

PORTB |= (1 << PB1);        // Set E to 1

asm("nop"::); // NOP delays another 62.5ns

asm("nop"::);

PORTB &= ~(1 << PB1);       // Clear E to 0

47



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Read the Manual
• When working with a device, make sure you know what types of 

signals it needs to see
▪ Voltage

▪ Current

▪ Polarity  (does 1 mean enable/true or does 0)

▪ Duration (how long the signal needs to be valid)

▪ Sequence (which transitions comes first, etc.)

• Have the manufacturer’s datasheet for the device available
▪ Most of it can be ignored, but some parts are critical

▪ Learn how to read it

• When in doubt ➔ follow the acronym used industry-wide:
RTFM (read the *!@^-ing manual)

48



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BACKUP



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coding a Byte Transfer to the LCD
• Writing a byte requires two transfers of 4 

bits from different physical locations 

▪ First the upper 4 and then the lower 4

• Since we want only 1 version of 
lcd_writenibble and the smallest 
argument we can pass is 8-bits, it must 
assume a specific group of 4-bits are the 
desired bits to transfer in the argument

• lcd_writedata() and 
lcd_writecommand() must adjust to place 
the desired bits in the correct location
that lcd_writenibble() expects

? ? ? ? ? ? ? ?

7 6 5 4 3 2 1 0

lcd_writenibble
arg

PORTD ? ? ? ? ? ? ? ?

a b c d e f g h

7 6 5 4 3 2 1 0Transfer 

Byte
data

writenibble

writenibble e f g h ? ? ? ?

a b c d e f g h

Implementation where lcd_writenibble

expects data in the upper 4 bits.



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coding a Byte Transfer to the LCD
• Writing a byte requires two transfers of 4 

bits from different physical locations 

▪ First the upper 4 and then the lower 4

• Since we want only 1 version of 
lcd_writenibble and the smallest 
argument we can pass is 8-bits, it must 
assume a specific group of 4-bits are the 
desired bits to transfer in the argument

• lcd_writedata() and 
lcd_writecommand() must adjust to place 
the desired bits in the correct location
that lcd_writenibble() expects

? ? ? ? ? ? ? ?

7 6 5 4 3 2 1 0

lcd_writenibble
arg

PORTD ? ? ? ? ? ? ? ?

a b c d e f g h

7 6 5 4 3 2 1 0Transfer 

Byte
data

writenibble

writenibble ? ? ? ? e f g h

? ? ? ? a b c d

Implementation where lcd_writenibble

expects data in the lower 4 bits.



EE109 | LCD Interfacing | Unit 5 |

© 2025 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Either Choice Can Work!
• EITHER choice is acceptable as long as both lcd_writenibble() and 

lcd_writedata()/lcd_writecommand() agree.

• Consider how to use shift operators to help align the desired bits as you pass 
your arguments to lcd_writenibble()

52

// Sends UPPER 4-bits
void lcd_writenibble(    char c   ){

} 

void lcd_writedata(char c){
// Set RS = 1
lcd_writenibble( 0110 xxxx ); 
// Send upper 4

lcd_writenibble(1000 xxxx ); 
// Send lower 4

} 

'h'=0110 1000

???? xxxx

These get sent!

// Sends LOWER 4-bits
void lcd_writenibble(    char c   ){

} 

void lcd_writedata(char c){
// Set RS = 1
lcd_writenibble( xxxx 0110 ); 
// Send upper 4

lcd_writenibble( xxxx 1000 ); 
// Send lower 4

} 

'h'=0110 1000

xxxx ????

These get sent!

Send 

Upper-4

(For EE109, 

we chose 

this.)

Send 

Lower

(For EE109, 

we chose 

this.)


	Slide 1: EE 109 Unit 5
	Slide 2: LCD Board
	Slide 3: The EE 109 LCD Shield
	Slide 4: How Do We Use It?
	Slide 5: How Do We Communicate? (1)
	Slide 6: How Do We Communicate? (2)
	Slide 7: How Do We Communicate? (3)
	Slide 8: Apply What You've Learned
	Slide 9: Data vs. Command (1)
	Slide 10: Data vs. Command (2)
	Slide 11: Capturing Data (1)
	Slide 12: Capturing Data (2)
	Slide 13: Capturing Data (3)
	Slide 14: Example (1)
	Slide 15: Example (2)
	Slide 16: Example (3)
	Slide 17: Example (4)
	Slide 18: Whose Job Is It? Yours!
	Slide 19: Command Codes and Cursor Location
	Slide 20: Cursor Movement
	Slide 21: Important Recipe: How to copy bits
	Slide 22: Copying Bits
	Slide 23: Copying Multiple Bits Recipe (1)
	Slide 24: Recipe: Copying (Aligned) Bits
	Slide 25: Do We Really Need Step 2?
	Slide 26: Do We Need Step 2…Yes!!!
	Slide 27: Recipe: Copying (Shifted) Bits
	Slide 28: Lcd Lab Preparation DETAILS
	Slide 29: Step 1
	Slide 30: Step 2
	Slide 31: LCD API Development Overview
	Slide 32: Code Organization
	Slide 33: Low Level Functions
	Slide 34: Mid-Level Functions
	Slide 35: High Level API Routines
	Slide 36: A Choice: Upper-4 or Lower-4
	Slide 37: Either Choice Can Work!
	Slide 38: A Story: The Devil in the Details…
	Slide 39: Not That Long Ago…
	Slide 40: Not That Long Ago…
	Slide 41: Making Things Work Together
	Slide 42: Making Things Work Together
	Slide 43: Check the Generated code
	Slide 44: Verify With the Oscilloscope
	Slide 45: Extend the Pulse
	Slide 46: A Working Pulse Length!
	Slide 47: Extending the Pulse (The "Geeky" Way)
	Slide 48: Read the Manual
	Slide 49: Backup
	Slide 50: Coding a Byte Transfer to the LCD
	Slide 51: Coding a Byte Transfer to the LCD
	Slide 52: Either Choice Can Work!

