EE 109 Final Review

"Final" Jeopardy

Binary Brainteasers	1	2	3	4	5
Programming Picklers	1	2	3	4	5
Logic Functions Uncertainties	1	2	3	4	5
Combinational Conundrums	1	2	3	4	5
Sequential Stumpers	1	2	3	4	5
Computer Queries	1	2	3	4	5

School of Engineering

"Final" Jeopardy

Binary Brainteasers	1	2	3	4	5
Programming Picklers	1	2	3	4	5
Logic Functions Uncertainties	1	2	3	4	5
Combinational Conundrums	1	2	3	4	5
Sequential Stumpers	1	2	3	4	5
Computer Queries	1	2	3	4	5
2022	1	2	3	4	5

DESIGN PROBLEMS

State Machine Example

- An old TV remote control and TV only supports 2-digit channels: 00-99. Normally, to change the channel we would have to hit two buttons: 38, first 3 then 8 , and as soon as you hit the second button it should change the channel. However, for channels 2-9 the remote should allow you to just enter 1-digit and if another button is not pushed soon afterwards should cause the channel to be changed. Implement a state machine that can indicate when the channel should be changed. Have a single input PUSH and single output CHANGE. If you don't push the second button with in 2 clock periods of the first press it should just change the channel no matter what. Four states: OPUSH, 1PUSH, WAIT, CHGCHAN.
- INPUTS: PUSH
- OUTPUTS: CHANGE

State Machine Example

Adder and Combinational Design

- Suppose team X and team Y play a game where their scores range 0-7 decimal. Team X is much better than team Y so they give Y a handicap: to truly win, team X must score 5 points more than team Y. Design a circuit that will produce a signal: XLoses given the two 3bit unsigned input numbers $\mathrm{X}[2: 0]$ and $\mathrm{Y}[2: 0]$ representing the scores of each team.

ISR

- Determine a prescalar, OCROA value, and ISR for an 8 -bit timer generate at 400 Hz square wave for 3 seconds on PD1. Recall the Arduino runs at 16 MHz and valid prescalars are: $1,8,64,256,1024$ (choose the smallest prescalar that works).
- OCROA: \qquad
- Prescalar:

ISR Code

ISR(TIMER0_COMPA_vect)
\{
\}

FPGA

- Show how to implement this flip-flop with load enable by determining the values to program into an FPGA's configurable logic block shown to the right.

A2 A1 A0

School of Engineering

SOLUTIONS

State Machine Example

	P=0	P=1	Change
OPush	OPush	1Push	0
1Push	Wait	ChgChan	0
Wait	ChgChan	ChgChan	0
ChgChan	OPush	OPush	1

D0Push = Q0Push*~P + QChgChan
D1Push = Q0Push*P
Dwait $=$ Q1Push* $\sim P$
DChgChan = Q1Push*P + Qwait
Change = QChange

Adder and Combinational Design

- Suppose team X and team Y play a game where their scores range 0-7 decimal. Team X is much better than team Y so they give Y a handicap: to truly win, team X must score 5 points more than team Y. Design a circuit that will produce a signal: XLoses given the two 3bit input numbers $\mathrm{X}[2: 0]$ and $\mathrm{Y}[2: 0]$ representing the scores of each team.

X-Y	S3S2S1SO	XLOSES
0	0111	1
1	0110	1
2	0101	1
3	0100	1
4	0100	1
5	0101	0
6	0110	0
7	0111	0
-8	1000	1
-7		1
-6		1
-5		1
-4		1
-3		1
-2		1
-1		1

S3+S2'+S1'S0'

ISR

- Determine a prescalar, OCROA value, and ISR for an 8 -bit timer generate at 400 Hz square wave for 3 seconds on PD1. Recall the Arduino runs at 16 MHz and valid prescalars are: $1,8,64,256,1024$ (choose the smallest prescalar that works).

Timer/ISRs

- $400 \mathrm{HZ}=1 / 400$ second $=2.5 \mathrm{~ms}$
- So ISR at half that rate: 1.25 ms
- 800 ISR/sec; 2400 total ISRs for 3 secs
- 16 MHz clk * $1.25 \mathrm{~ms}=20,000$ clocks but an 8 bit counter can hold 255 max
- Prescalar of $64=>20000 / 64=312.5$
- Prescalar of $256=>20000 / 256=78.125$
- Prescalar of $1024=>20000 / 1024=19.53125$
- Choose prescalar of 256 and set OCR to 78

Solutions

```
int cnt=0;
ISR(TIMER0_COMPA_vect)
{
    if (cnt < 2400) {
        PORTD ^= (1<<1);
    cnt++;
}
else {
cnt=0;
// turn off prescalar - we wouldn't expect
// you to know the exact bits.
}
\}
```


USCViterbi 24

A2 A1 A0

En	\mathbf{D}	\mathbf{Q}	\mathbf{Q}^{*}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

A2 A1 A0

En	\mathbf{D}	\mathbf{Q}	\mathbf{Q}^{*}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

