Unit 10

Fundamental Digital Building Blocks:
Decoders & Multiplexers

e USCViterbi

School of Engineering

Checkers / Decoders

* Recall
— AND gates output '1' for only a single combination
— OR gates output '0' for only a single combination

— Inputs (inverted or non-inverted) determine which combination is
checked for

— We say that gate is "checking for" or "decoding" a specific combination

X|1Y [Z |F all R K2 i
S 1o 1o 1o 0 |0 [0 |1
5 1o 17 1o 0 |0 (1 |1
0 |1 (0 |1
x -g 0o |1 |0 |2 y @F

— F 1 |11 |1

g ol1]1]o 2 0
1 [0 |0 O L
1 5 1 0 1 0 1 1
AND gate decoding OR gate decoding 1 (1 |0]0

. 1 (1]0]O0 _
(che_ckm_g for) (checking for) 1 (1 |1 |1
combination 010 1 |11 (1 }]O0 combination 110

I (]S C Viterbi(0P

School of Engineering

Motivation

e Just like there are patterns and structures that occur commonly
in nature, there are several common logic structures that occur
over and over again in digital circuits

— Decoders, Multiplexers, Adders, Registers

* In addition, we design hardware using a hierarchical approach
— We design a small component using basic logic gates (e.g. a 1-bit mux)

— We build a large component by interconnecting many copies of the small
component + a few extra gates (e.g. a 32-bit mux)

— We build chips by interconnecting many large components (e.g. a router)

— Each components is truly made out of many gates but the design process
is faster and easier by using hierarchy

 Let's look at a few common components

— We'll start by describing the behavior of the component and then
determine what gates are inside

DECODERS

e USCViterbi

School of Engineering

Decoders

A decoder is a building block that:
— Takes in an n-bit binary number as input
— Decodes that binary number and activates the corresponding output
— Individual outputs for input combinations

There are gates inside

to implement each
3-to-8 DecocV output

o0

D1 |—

3-bit binary —* ¥ Ei: 1output f_or each
number —Y combination of the

— xmss) [input number
D5 p—
D6 |—

D7 }—

- USCViterbi
Decoders

* A decoder is a building block that: SRR S B S B
— Takes a binary number as input 0/0]0}%/0/0]0]0]09/0}0
. . ofoj1p0]110j0]J]0fO]JO0]|O
— Decodes that binary number and activates olilolololzlololololo
the corresponding output of1|1]ofofof{2|ofo]0]o0
— Put in 6=110, Output 6 activates (‘1’) 1 2 : 2 2 g g (1) 2 2 2
— Putin 5=101, Output 5 activates (‘1) 1l1]ofolo]olo]olol1]o0
1(12]1J0|0]J0f0O]J0OfO0O]O0O]1

Binary #6 pof—0 O

pi—0 O

\ 0 1 — 7 wsm p2—0 O

1 0 —v p3—0 O
n ; sl0 0 Only that |
/ —xwee .ﬁ numbered output is

| activated
Binary #5 o6 —0 1
p7—0 O

Decoder Sizes

* A decoder w/ an n-bit input has 2" outputs
— 1 output for every combination of the n-bit input

vol—1

Y1i—()

| 0 — ao =0

0 2(1)_8 0 a1 =0

1 xmse)y > 1 0 —aemse ™0

D3 |- O Ys — 0

Y6 —

n inputs 2" outputs Y7 —0

2 4 :

(2) (4) n inputs 2" outputs

(3) (8)

3-t0-8
Decoder

2-t0-4
Decoder

 Complete the design of a 2-to-4 decoder

DO

D1

D2

D3

R, |lOo|O]| X

ROl rRr|O| <

l—D(%
l—D&

Exercise

N

_xvsB) >
D3

- USCViterbi
Building Decoders

Z

\ 4

Checker
for 000

v

\ 4

Checker
for 001

\ 4

Checker
for 010

/7
3-bit
number
[A2:AQ]

\ 4

Checker
for 011

\ 4

Checker
for 100

v

\ 4

Checker
for 101

\ 4

Checker
for 110

\ 4

Checker
for 111

o0

o1

02

O3

04

O5

06

o7

2

A2

School of Engineering

>

YRV RURURURURURY

0]0)

o1

02

O3

O4

O5

06

o7

USC Viterbi@o:9

School of Engineering

Vending Machine Example

Assuming the keypad produces a 4-bit numeric output, add logic to
produce the release signals for each of the 16 vending items.

2 |3

il
5 | 6 o 7~1 722 7 3
819 Vil e

/8/9/10/11

/12/13/14/15

Consider any problems with this design.

- USCViterbi
Enables

School of Engineering

* In anormal decoder, exactly one output is active at all times

* It may be undesirable to always have an active output

 We can add an extra input (called an enable) that can
independently force all the outputs to their inactive values

DO —
D1
D2 |—

0 —x (MsB)
D3 |

2-t0-4 Decoder

o O+ O

One output
> will always
be active

DO -
D1 —
D2 —

— x (MSB)
D3

?\\
Will force all outputs

toOwhen E=0
(i.e. not enabled)

Enable

e USCViterbi

When E=0,)
Inputs Is

ignored

When E=1,
Inputs will cause the
appropriate output to

go active

Enables
DO
17 D1
O —{x (MSB) o
D3

E

O |

Enable

DO
17 D1
0O —x (MSB) o
D3

E

Enable

o O O O
g

o O+ O
g

School of Engineering

Since E=0,
all outputs =0

Since E=1,
outputs will
function normally

School of Engine

Implementing Enables

e Original 2-to-4 decoder

DO

D1

D2

D3

TYYY

E —
When E=0, force all outputs =0
When E=1, outputs operate as they did originally

USC Vlterbl

I]S C Viterbi 202
Another Application of Decoders: <

Memories

* All memories (RAMs, ROMs) use decoders to select the desired data given
an address (each location/byte corresponds to one address combination)

e |f you have a 1 MB (22° bytes) RAM, there is a 20-to-22° decoder present in

that device
Ao "'. ol0|O0f1(1 wrjolo|z1]|1]o
P A T > 11ol1lo vHilol1loh
-‘- A -—: > 1 “‘l..‘ E Y2_
. 2 « K R S 0 1 0 o |2
«. ’0. 2 0 1 O 0 :.AO > AO 8
ans H -) Y3_ 0 1 1 1 3
glo|1(1]1 PA a2
LAz p @ Y110 1|4
alrjrjogt AT e 5
Ceus® ..T; || 1 O O 0
Address 501(0]0]|0 ™ i
Inputs 6lofl1]1]o0 v o 111110
7110 1f1 iH 10|11}/
Address
Inputs
----- LN] LR Data “““(..--l‘yl LER T * .
Data —— VTR :, :
Outputs *..Ds D; Dy Dy Outputs ~..'.3.:°’....[.).2...I.3.1....[-)-°'

e USCViterbi

School of Engineering

Building Large Decoders

* If you have 1 MB (2%° bytes) RAM, there is a 20-to-22° decoder present in
that device

* How can we create such large decoders?

— Through hierarchy (building-block methodology)..usually of linear chains or
tree-based structures

".’ %
x o —*ol1|l0]|0]2 | J L
i 00 @
A —— D =
N cgl [L
el 1 S I
S Imilan
[— 1|0 |1]1 |21 il
B
Address | S I Small decoders connected
Inputs Data —»D Do in atreeto create a
Outputs "l et Q.* LARGE decoder.

Larger Decoder Exercise 1

 Build a 3-to-8 decoder from 1-to-2 decoders

1-to-2 Decoder Operation

YO—
—AQ 1-to-2
Decoder
e Y1
E |AO]YO| Y1
0| X
1 0
1 1

X =not relevant
(same result for all possible
values of AQ)

E

A2

YO0
AO 1-to-2

Decoder

Y1

A0

E

YO

1-to-2
Decoder

Y1

YO
AO 1l-to-2

Decoder

Y1

A0

YO

1-to-2
Decoder

Y1

YO
AOQO 1to-2

Decoder

Y1

A0

YO

1-to-2
Decoder

Y1

A0

YO

1-to-2
Decoder

Y1l

YO

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1a

1 0 1
A2 Al A0
Outpus YO-Y3 are YO
disagled (ruled out) AQ 1to2
Decoder
g —
YO
AQO 1l-to-2
Decoder 0 Y0
Y1 AO 1-to-2
— E _I—/ Decoder
N Y1
1 YO YO
A0 1-o-2 A0 1lto2
Decoder Decoder
Y1 Y1
E f‘— E
YO
AO 1l-to-2
Decoder Y0
Y1 AO 1l-to-2
E Decoder
r Y1

Decode the MSB...possible combos = 4-7

YO

Y1

Y2

Y3

Y4

Y5

Y6

Y7

USC Viterbi@o:?

School of Engineering

P

>
S

Active
Output

|0 |0 |0

RIP|IO|IO(FR,|IFL|O|O

RIO|IFP|IO(FRL|O|FL,|O

1 0 1
A2 Al A0
YO
AO 1-to-2
Decoder
L L E—
YO
AO 1l-to-2
Decoder O Y0
Y1 AQO 1-to-2
— E _I—/ Decoder
E Y1
1 YO YO
A0 lto2 A0 1lto2
Decoder Decoder
Y1 Y1
: T LE
0 YO
AO 1l-to-2
Decoder YO0
Y1 AO 1-to-2
E Decoder
E Y1

Decode the A, ...possible combos = 5-6

YO

Y1

Y2

Y3

Y4

Y5

Y6

Y7

USC ViterbiCo:2
Larger Decoder Exercise 1b

School of Engineering

A, | A; | Ay | Active
Output
O[0|O Yo
O[O0]| 1 Y,
O(1]|O0 Y,
011 Y,
0 Y,
0 1 Y
1 110 Ys
111 Y,

E

1 0 1
A2 Al A0
U
YO
AO 1-to-2
Decoder O
L L E—
YO
AO 1l-to-2 YO O
Decoder O
Y1 AQO 1-to-2
— E _I—/ Decoder 0
E Y1
0
1 Y0 1 YO
A0 lto2 A0 1lto2
Decoder Decoder 1
Y1l
E e
0 YO
AO 1l-to-2
Decoder YO0
Y1 A 1-to-2
E 0 Decoder O
Y1

Decode the A, ...possible combo =5

YO

Y1

Y2

Y3

Y4

Y5

Y6

Y7

USC ViterbiCo:2
Larger Decoder Exercise 1c

School of Engineering

A, | A; | Ay | Active
Output
O[0|O Yo
O[O0]| 1 Y,
O(1]|O0 Y,
011 Y,
0 Y,
0 1 Y
1 110 Ys
111 Y,

e USCVlterbl

General Tree Decoder Approach

e Step 1: Outputs of one stage should connect
to the of the next stage

e Step 2: All decoders in a stage (level) should
decode the same

— Usually, the MSB is connected to the first stage
and LSB to the last stage

Larger Decoder Exercise 2

e Different size decoders can be utilized
— Build a 3-to-8 decoder using 1-to-2 and 2-to-4 decoders

E AiZ Al A0
YO YO
AO
>0t Y1l Y1l
O
Al Decoder
Y2 Y2
E Y3 Y3
YO
AO 1-to-2
Decoder
E Yl YO Y4
AO v1
Al 2-to-4 Y5
Decoder
Y2 Y6
E Y3 Y7

The if..else of digital hardware

MULTIPLEXERS

Multiplexers

* Multiplexers are one of the most common digital circuits

* Anatomy: n data inputs, log,n select bits, 1 output

A multiplexer (“mux” for short) selects one data input and

passes it to the output

n data inputs

<

—1 10
—1 i1
—1 12

—1 13

4-to-1 Mux

a

o

log,n select
bits

y_

1 output

S, | S, | v
0 0 i0
0 1 i1
1 0 i2
1 1 13

e USCViterbi

School of Engineering

Multiplexers

4-to-1 Mux
A i0
1
@ B /y — C

Thus, input2=Cis C —1 12
selected and passed D — i3 S; So Y
to the output S 0 0 i0
0 1 i1
@ Select bits =10, = 2,,. 1 0 12
1 1 13

As long as the select bits are 10, = 2, whatever bit value appears on input 2 is
copied to the output, same as if we had just wired input 2 directly to the output.

e USCViterbi

School of Engineering

Multiplexers

4-to-1 Mux
A i0
B — il\ky LA

®Thus, input 0 =Ais C— 12

selected and passed D — i3 S; So Y
to the output .

] 0 0 10
0 1 11
@ Select bits = 00, = 0y, 1 0 12
1 1 13

e USCViterbi

School of Engineering

Exercise: Build a 4-to-1 mux

lo }

e Complete the 4-to-1
mux to the right by : RS
drawing wires ’ O [N
between the 2-to-4 —_ app -

decode and the AND _
gates —

Y

AND Gates acting as
barrier gates

v

8180=01

v

8180=1O

Final OR gate takes 3
zero’s and one selected

S;1So=11 in put

Si —cﬁ 2-to-4 Decoder

v

7y

Building a Mux

 To build a mux

— Decode the select bits and include the corresponding data

input.
— Finally OR all the first level outputs together.

b TS 4 V0
0 Sl /a_J

b TS DL

S,S, = 01, oS, —

L TE CDL
0 —

h —5 A
0 Si _/_J

| O| kL, | O

Building a Mux

 To build a mux

— Decode the select bits and include the corresponding data

input.
— Finally OR all the first level outputs together.
18,
s)
S;S,=11, 15

5 15\ s

_/__'L_I

0
| 0
2 18, Q
1S
3
1

R | O| L,]| O

2-to-1 Multiplexers

 We can design and build muxes with any number of
inputs (2-to-1, 5-to-1, 16-to-1, etc.)

2-t0-1 Mux

@ ’ B
Thus, input 1 =B is /
: S Y

selected and passed

to the output S 0 i0
1 11

@ Select bits =1, =1,,.

Building a 2-to-1 Mux

 To build a mux

— Decode the select bits and include the corresponding data
input.
— Finally OR all the first level outputs together.

10 10 _>_
— 0 —J 1
. Y 0 Y
i Y
1 0

e USCViterbi

School of Engineering

Building Large Muxes

 When we build large muxes, the number of inputs to the
gates grows too large to build them directly

* Instead, we will build larger muxes from smaller muxes
e Similar to a tournament of sports teams

— Many teams enter and then are narrowed down to 1 winner
— In each round winners play

Final output

Stage 1 b———

Railroad Switch Station

SCVitgrbi®2
Design an 8-T0-1 MUX WIth 2-to i

Muxes
K

Y

lo

Y
Iy s
lo

Y
Iy s
lo

Y
Iy s

Cascading Muxes

Use several small muxes to build large ones

Rules

1. Arrange the muxes in stages (based on necessary
number of inputs in 1% stage)

2. Outputs of one stage feed to inputs of the next until
only 1 final output

3. All muxes in a stage connect to the same group of
select bits

— Usually, LSB connects to first stage
— MSB connect to last stage

e USCViterbi

School of Engineering

Building a 4-to-1 Mux

Rule 1: Outputs from stage 1
connect to inputs of stage 2

Mesrsssssssssssnnnnns .I...%....I Rule 2: LSB SO connect to all muxes

. : in first stage. MSB S, connects to all
4-to-1 mux built So S muxes in second stage
w/ 2-to-1 muxes

S, | S, | Y
0 0 D,
0 1 D,
1 0 D,
1 1 D,

Walk through an
example:

S,S, =01

School of Engine

Building a 4-to-1 Mux

USC Vlterbl

Stage 1 Stage 2
S, S, Y
0 0 D,
0 1 D,
1 0 D, Y
1 1 D,
Walk through an
example: :
P : 1 Sy = 1 narrows our
— choices down to D,
5150 = 01 S {{ and Dy

USC Vlterbl

School of Engine

Building a 4-to-1 Mux

Stage 1 Stage 2
S, S, Y
0 0 D,
0 1 D,
1 0 D,
1 1 D,
Walk through an
example: : :
P : 1 S, = 0 selects our final
: : choice, D
S,S, =01 i e
S0 | S1

— 15 Viterh{ 2=
Device vs. System Labels

 When using hierarchy (i.e. building blocks) to design a circuit be
sure to show both device and system labels

— Device Labels: Signal names used the block
. names the designer/manufacturer of the block uses to indicate which
input/output is which to the outside user (Names may ; read the manual)
— System labels: Signal names used the block
. signals from the circuit being built

e Can have the same name as the device label if such a signal name exists at the outside level

Analogy: Formal and Actual parameters in
software function calls
1. i0andil are like device labels and

indicate the names used inside a block. Device Labels:
2. dOand d1 are like system labels and Indicate which /
represent the actual values to be used. input/output is

Y
int div@int ie, int i which inside
{ int t = ie/i1; the bock. :
return t; }
int main() System Labels:
{ | Actual signals from
int do:W/ the circuit being built
}

- USCViterbi
Exercise

e Sketch how you could build a 16-to-1 mux with
4-to-1 muxes? 8-to-1 and 2-tol muxes?

Exercise

* Create a 3-to-1 mux using 2-to-1 muxes

— Inputs: 10, 11, 12 and select bits S1,50
— Output: Y

Select-bit Ordering

* |f we connect the select bits as shown to build an 8-to-1 mux,
show how to label the inputs (i0-i7) so that the correct input is

passed based on the binary value of $2:S0

0
1

S2

S1

SO

8Y

w
N

Selects
St

So

ouT

el liell el e

=l

e USCViterbi

School of Engineering

Alternate Select Bit Ordering Example

. . . A—
* G@Given 6 inputs: A-F, design
a 6-to-1 mux from 4- and B_
2-to-1 muxes that uses the
. . C—
following select bit
combinations b T
S, | S; | S Y E—
0 0 0 A S2 | Si]So] ¥ - s, [s, | s | v
olo o] A —
0 1 0 B P v v / oo o] a
/ ol 1| o]sB
0 1 1 C S L L ol 1] 1]c
Gl L U S0 - 1|l o]o]D
1 0 0 D 1|11]0]E S1— 1] 1]o0]cE
11| 1]F S2 —
1 1 0 E 11| 1]F
Tip 1: Whatever inputs you connect to a 4-to-1 mux, must correspond to 2
1 1 1 F select bits that take on all combinations: 00, 01, 10, 11

Tip 2: For later stages, the select bit you connect must differentiate all
potential options on 1 input from all the options on another (e.g. S1
differentiates A,D from B,C,E,F

Another way to multiplex

TRI-STATE GATES

Inputs

Typical Logic Gate

e Gates can output two values: 0 & 1
Logic ‘1’ (Vdd = 3V or 5V), or Logic ‘0’ (GND)
But they are ALWAYS outputting something!!!

Analogy: a sink faucet

output to VDD OR VSS

T +3V

Transistors
i to allow high
— voltageto |

Trapsistors :

—>- to al Iow§
i vottage to

2 possibilities: Hot (‘1’) or Cold (‘0’)
* In a real circuit, inputs cause E/ITHER a pathway from

—I__ +3V

Inputs

Trghsistors |

i to aljow low!

USC Viterbi@o

School of Engineering

Hot Water = Logic 1

(Strapped together so always one type
of water coming out)

GND

Output Connections

* Can we connect the output of two logic gates together?

. | Possible (static, low-resistance
pathway from Vdd to GND)
 We call this situation “ g
Inputs
vdd ,
_ﬁ Src1 | y
L/ : : I Src1
" = -—--\‘l
Vss 1
— +>
I
]
— "\ Src2 }I
+

e USCViterbi

Tri-State Buffers
T +3V

* Normal digital gates can output two { Transistprs |
ito a ight
Va|ue52 O & 1 —» vol eto !

o i /pass\ | Z(high

1. Logic 0=0volts Inputs PT — fmpedance)

2. Logic 1="5volts T P S omﬁn
e Tristate buffers can output a third i OSTS |
value: i vofagdo i
3 = = "Floating" LR

(no connection to any voltage
source...infinite resistance)

* Analogy: a sink faucet

@
— 3 possibilities:
1.) Hot water, Hot Water = Logic 1
2.) Cold water,
3.) water

_____Water = Z (High-Impedance)

Tri-State Buffers

Tri-state buffers have an extra
enable input

When disabled, output is said
to be at high impedance (a.k.a.
Z)

— High Impedance is equivalent to

no connection (i.e. floating
output) or an infinite resistance

— It's like a brick wall between the
output and any connection to
source

When enabled, normal buffer

USC Viterbi@os)

School of Engineering

Tri-State Buffer

In Out =In
Enable=1
In \ Out =
>—
Enable=0
En In | Out
0 Z
1 0 0)
1 1 1

e USCViterbi

Tri-State Buffers

* We use tri-state buffers to one output
amongst several sources
 Rule: Only at a time

])Srcl ‘ >

EN1

— Src 2
| £ * 1 D Q —
D-FF

o —>cCLK Q—

—)Sch ‘ >

EN3

Tri-State Buffers

We use tri-state buffers to share one output amongst several
sources

Rule: Only 1 buffer enabled at a time

When 1 buffer enabled, its output overpowers the Z’s (no
connection) from the other gates

- 0 0
Select source _3% output of 0
1to passits ——— 1 overpowers

. 0
5 L o>z | -—{p 0 —
D-FF
0

—I>ck QF

- 0 Z Disabled
buffers
0

output ‘2’

School of Engineering

Enable Polarity

* Side note: Some tri-states are design to pass the input (be enabled)
when the enable is O (rather than 1)

— Ainversion bubble is shown at the enable input to indicate the "
polarity needed to enable the tristate

In out=1In In Out =In
E E
Enable=1 Enable=0
= O
In Out=Z _
: In [] out=2
Enable=0 Enable=1 -
En In Out En In Out
0)

USC Viterbi@oso

 Multiple entities need to communicate

* We could use
— Point-to-point connections
— A

Separate point to point
connections

Shared Bus

Bidirectional Bus

e 1 transmitter (otherwise bus contention)
* N receivers

* Each device can send (though 1 at a time) or
receive

: o , ot Pl _ :
i Device 1 i i Device 2 : 1 Devicen |
o o o o e o] o o o o e e o o o o o e e o o o o o e e e

] USCV1terb1
Tri-State Gates

 Advantage: don’t have to know in advance how many devices will
be connected together

— Tri-State gates give us the option of connecting together the outputs of
many devices without requiring a circuit to multiplex many signals into one

* Just have to make sure only one is enabled (output active) at any

one time.
Source w/ Tri-State Gates

srcO
— | srcO

srcl
— srcl

src2 | Single output
— SIc2 MUX

Srcn-1

NV

—1 Srcn-1 |
Input

Output
Select Enables

	Slide 1: Unit 10
	Slide 2: Checkers / Decoders
	Slide 3: Motivation
	Slide 4: Decoders
	Slide 5: Decoders
	Slide 6: Decoders
	Slide 7: Decoder Sizes
	Slide 8: Exercise
	Slide 9: Building Decoders
	Slide 10: Vending Machine Example
	Slide 11: Enables
	Slide 12: Enables
	Slide 13: Implementing Enables
	Slide 14: Another Application of Decoders: Memories
	Slide 15: Building Large Decoders
	Slide 16: Larger Decoder Exercise 1
	Slide 17: Larger Decoder Exercise 1a
	Slide 18: Larger Decoder Exercise 1b
	Slide 19: Larger Decoder Exercise 1c
	Slide 20: General Tree Decoder Approach
	Slide 21: Larger Decoder Exercise 2
	Slide 22: Multiplexers
	Slide 23: Multiplexers
	Slide 24: Multiplexers
	Slide 25: Multiplexers
	Slide 26: Exercise: Build a 4-to-1 mux
	Slide 27: Building a Mux
	Slide 28: Building a Mux
	Slide 29: 2-to-1 Multiplexers
	Slide 30: Building a 2-to-1 Mux
	Slide 31: Building Large Muxes
	Slide 32: Design an 8-to-1 mux with 2-to-1 Muxes
	Slide 33: Cascading Muxes
	Slide 34: Building a 4-to-1 Mux
	Slide 35: Building a 4-to-1 Mux
	Slide 36: Building a 4-to-1 Mux
	Slide 37: Building a 4-to-1 Mux
	Slide 38: Device vs. System Labels
	Slide 39: Exercise
	Slide 40: Exercise
	Slide 41: Select-bit Ordering
	Slide 42: Alternate Select Bit Ordering Example
	Slide 43: Tri-State Gates
	Slide 44: Typical Logic Gate
	Slide 45: Output Connections
	Slide 46: Tri-State Buffers
	Slide 47: Tri-State Buffers
	Slide 48: Tri-State Buffers
	Slide 49: Tri-State Buffers
	Slide 50: Enable Polarity
	Slide 51: Communication Connections
	Slide 52: Bidirectional Bus
	Slide 53: Tri-State Gates

