
10.1

Unit 10

Fundamental Digital Building Blocks:

Decoders & Multiplexers

10.2

Checkers / Decoders

• Recall 

– AND gates output '1' for only a single combination

– OR gates output '0' for only a single combination

– Inputs (inverted or non-inverted) determine which combination is 
checked for

– We say that gate is "checking for" or "decoding" a specific combination
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AND gate decoding 

(checking for)  

combination 010

10.3

Motivation

• Just like there are patterns and structures that occur commonly 

in nature, there are several common logic structures that occur 

over and over again in digital circuits

– Decoders, Multiplexers, Adders, Registers

• In addition, we design hardware using a hierarchical approach

– We design a small component using basic logic gates (e.g. a 1-bit mux)

– We build a large component by interconnecting many copies of the small 

component + a few extra gates (e.g. a 32-bit mux)

– We build chips by interconnecting many large components (e.g. a router)

– Each components is truly made out of many gates but the design process 

is faster and easier by using hierarchy

• Let's look at a few common components

– We'll start by describing the behavior of the component and then 

determine what gates are inside

10.4

DECODERS
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Decoders

• A decoder is a building block that:

– Takes in an n-bit binary number as input

– Decodes that binary number and activates the corresponding output

– Individual outputs for _____________ input combinations

1 output for each 

combination of the 

input number

3-bit binary 

number

3-to-8 Decoder

There are gates inside 
to implement each 
output
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Decoders

• A decoder is a building block that:

– Takes a binary number as input

– Decodes that binary number and activates 

the corresponding output

– Put in 6=110, Output 6 activates (‘1’)

– Put in 5=101, Output 5 activates (‘1’)
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Decoder Sizes

• A decoder w/ an n-bit input has 2n outputs

– 1 output for every combination of the n-bit input
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Exercise

• Complete the design of a 2-to-4 decoder
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Building Decoders

Checker 

for 000

Checker 

for 001

Checker 
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for 110

Checker 
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O0

O1

O2

O3

O4

O5

O6

O7

A0

A1

A2

O0

O1

O2

O3

O4
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Vending Machine Example

321

654

987

0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Consider any problems with this design.

Assuming the keypad produces a 4-bit numeric output, add logic to 

produce the release signals for each of the 16 vending items. 

10.11

Enables

• In a normal decoder, exactly one output is active at all times

• It may be undesirable to always have an active output

• We can add an extra input (called an enable) that can 

independently force all the outputs to their inactive values

2-to-4 Decoder
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One output 
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Will force all outputs 

to 0 when E = 0 

(i.e. not enabled)
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Enables
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appropriate output to 

go active
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(MSB)
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Implementing Enables

• Original 2-to-4 decoder
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When E=0, force all outputs = 0

When E=1, outputs operate as they did originally

A’ A B’ B
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Another Application of Decoders: 

Memories

• All memories (RAMs, ROMs) use decoders to select the desired data given 

an address (each location/byte corresponds to one address combination)

• If you have a 1 MB (220 bytes) RAM, there is a 20-to-220 decoder present in 

that device
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Building Large Decoders

• If you have 1 MB (220 bytes) RAM, there is a 20-to-220 decoder present in 

that device

• How can we create such large decoders?

– Through hierarchy (building-block methodology)..usually of linear chains or 

tree-based structures
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Small decoders connected 

in a tree to create a 

LARGE decoder.
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Larger Decoder Exercise 1

• Build a 3-to-8 decoder from 1-to-2 decoders
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Larger Decoder Exercise 1a

Active 
Output
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1 1

0

1

1
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Larger Decoder Exercise 1b
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Larger Decoder Exercise 1c
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General Tree Decoder Approach

• Step 1:  Outputs of one stage should connect 

to the __________ of the next stage

• Step 2:  All decoders in a stage (level) should 

decode the same ______

– Usually, the MSB is connected to the first stage 

and LSB to the last stage
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Larger Decoder Exercise 2

• Different size decoders can be utilized

– Build a 3-to-8 decoder using 1-to-2 and 2-to-4 decoders
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MULTIPLEXERS

The if..else of digital hardware

10.23

Multiplexers

• Multiplexers are one of the most common digital circuits

• Anatomy:  n data inputs, log2n select bits, 1 output

• A multiplexer (“mux” for short) selects one data input and 
passes it to the output

4-to-1 Mux

n data inputs

log2n select 

bits

1 output

i0

i1

i2

i3

y

s

YS0S1

i000

i110

i201

I311
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Multiplexers

A

Thus, input 2 = C is 

selected and passed 

to the output

Select bits = 102 = 210.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B

C

D

C

YS0S1

i000

i110

i201

I311

As long as the select bits are 102 = 2, whatever bit value appears on input 2 is 

copied to the output, same as if we had just wired input 2 directly to the output.
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Multiplexers

A

Thus, input 0 = A is 

selected and passed 

to the output

Select bits = 002 = 010.
1

2

4-to-1 Mux
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i1

i2

i3

y

s

B

C

D

A

YS0S1

i000

i110

i201

I311
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Exercise:  Build a 4-to-1 mux

• Complete the 4-to-1 

mux to the right by 

drawing wires 

between the 2-to-4 

decode and the AND 

gates

S1

S0

S1S0=00

S1S0=01

S1S0=10

S1S0=11

Y

AND Gates acting as 

barrier gates

Final OR gate takes 3 

zero’s and one selected 

input

2-to-4 Decoder

I0

I1

I2

I3
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Building a Mux

• To build a mux 

– Decode the select bits and include the corresponding data 
input. 

– Finally OR all the first level outputs together.

S1S0 = 012

1
0

1
0

1
0

1
0
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0
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S
0

S
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S
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S
0
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0

0

0
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I1
1

1

YS0S1
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i201
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Building a Mux

• To build a mux 

– Decode the select bits and include the corresponding data 
input. 

– Finally OR all the first level outputs together.

S1S0 = 112

1
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1
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1
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1
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I
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S
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0
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YS0S1

i000

i110

i201

i311
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2-to-1 Multiplexers

A

Thus, input 1 = B is 

selected and passed 

to the output

Select bits = 12 = 110.
1

2

2-to-1 Mux

i0

i1

y

s

B

B

YS

i00

I11

• We can design and build muxes with any number of 
inputs (2-to-1, 5-to-1, 16-to-1, etc.)

10.30

Building a 2-to-1 Mux

• To build a mux 

– Decode the select bits and include the corresponding data 
input. 

– Finally OR all the first level outputs together.

1

1

1
0

0

0

0
1

I1 I0
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Building Large Muxes

• When we build large muxes, the number of inputs to the 

gates grows too large to build them directly

• Instead, we will build larger muxes from smaller muxes

• Similar to a tournament of sports teams

– Many teams enter and then are narrowed down to 1 winner

– In each round winners play _________

 

Railroad Switch Station

10.32

Design an 8-to-1 mux with 2-to-1 

Muxes

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

S0 S1 S2

Y

I0

I1

I2

I3

I4

I5

I6

I7

S0

S0

S0

S0

S1

S1

S2
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Cascading Muxes

• Use several small muxes to build large ones

• Rules

1. Arrange the muxes in stages (based on necessary 

number of inputs in 1st stage)

2. Outputs of one stage feed to inputs of the next until 

only 1 final output

3. All muxes in a stage connect to the same group of 

select bits

– Usually, LSB connects to first stage

– MSB connect to last stage

10.34

Building a 4-to-1 Mux

I
1

Y

S

I
0

I
1

Y

S

I
0

I
1

Y

S

I
0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0
4-to-1 mux built 

w/ 2-to-1 muxes

Rule 1: Outputs from stage 1 

connect to inputs of stage 2

Rule 2: LSB S0 connect to all muxes 

in first stage.  MSB S1 connects to all 

muxes in second stage
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Building a 4-to-1 Mux

I
1

Y

S

I
0

I
1

Y

S

I
0

I
1

Y

S

I
0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

YS0S1

D000

D110

D201

D311

Walk through an 

example:

S1S0 = 01

1 0
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Building a 4-to-1 Mux

I
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I
0

I
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I
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S

I
0

Stage 1 Stage 2

S1

1

1 Y

D0

D1

D2

D3

S1S0

YS0S1

D000

D110

D201

D311

Walk through an 

example:

S1S0 = 01

1 0

S0 = 1 narrows our 
choices down to D1

and D3

D1

D3
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Building a 4-to-1 Mux

I
1

Y

S

I
0

I
1

Y

S

I
0

I
1

Y

S

I
0

Stage 1 Stage 2

0

1

1 D1

D0

D1

D2

D3

S1S0

YS0S1

D000

D110

D201

D311

Walk through an 

example:

S1S0 = 01

1 0

S1 = 0 selects our final 
choice, D1

D1

D3
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I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

Device vs. System Labels

• When using hierarchy (i.e. building blocks) to design a circuit be 

sure to show both device and system labels

– Device Labels:  Signal names used _____________ the block 

• _______________ names the designer/manufacturer of the block uses to indicate which 

input/output is which to the outside user (Names may __________; read the manual)

– System labels: Signal names used ____________ the block

• ______________ signals from the circuit being built

• Can have the same name as the device label if such a signal name exists at the outside level

Device Labels:  

Indicate which 

input/output is 

which inside 

the bock.

System Labels:  

Actual signals from 

the circuit being built

int div(int i0, int i1)

{ int t = i0/i1;

return t;  }

int main()

{

int d0=10, d1=2;

int s = div(d0,d1);

}

Analogy: Formal and Actual parameters in 
software function calls

1. i0 and i1 are like device labels and 
indicate the names used inside a block.  

2. d0 and d1 are like system labels and 
represent the actual values to be used.
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Exercise

• Sketch how you could build a 16-to-1 mux with 

4-to-1 muxes?  8-to-1 and 2-to1 muxes?

10.40

Exercise

• Create a 3-to-1 mux using 2-to-1 muxes

– Inputs:  I0, I1, I2 and select bits S1,S0

– Output: Y

I1

Y

S

I0

S0

I1

Y

S

I0

S1

I0

I1

I2

Y

YS0S1

I000

I110

I201



10.41

Select-bit Ordering

• If we connect the select bits as shown to build an 8-to-1 mux, 

show how to label the inputs (i0-i7) so that the correct input is 

passed based on the binary value of S2:S0

Selects OUT 

S2 S1 S0 Y 

0 

0 
0 

 

1  

0 

1 
 

1  

0 

0 
1 

 

1  

0 

1 
 

1  
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A

B

C

D

E

F

Y

S0

S1

S2

Alternate Select Bit Ordering Example

• Given 6 inputs: A-F, design 

a 6-to-1 mux from 4- and 

2-to-1 muxes that uses the 

following select bit 

combinations

YS0S1S2

A000

B010

C110

D001

E011

F111
Tip 1: Whatever inputs you connect to a 4-to-1 mux, must correspond to 2 

select bits that take on all combinations: 00, 01, 10, 11

Tip 2: For later stages, the select bit you connect must differentiate all 

potential options on 1 input from all the options on another (e.g. S1 

differentiates A,D from B,C,E,F

YS0S1S2

A000

B010

C110

D001

E011

F111

YS0S1S2

A000

B010

C110

D001

E011

F111
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TRI-STATE GATES

Another way to multiplex

10.44

Typical Logic Gate
• Gates can output two values: 0 & 1

– Logic ‘1’ (Vdd = 3V or 5V), or Logic ‘0’ (GND)

– But they are ALWAYS outputting something!!!

• Analogy: a sink faucet

– 2 possibilities:  Hot (‘1’) or Cold (‘0’)

• In a real circuit, inputs cause EITHER a pathway from 

output to VDD OR VSS

Hot Water = Logic 1

Cold Water = Logic 0

(Strapped together so always one type 
of water coming out)

+3V

Output

Inputs

Vdd

GND

Inputs

+3V

Output

Inputs

Transistors

to allow low

voltage to 

pass

Transistors

to allow high

voltage to 

pass

Transistors

to allow low

voltage to 

pass

Transistors

to allow high

voltage to 

pass
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Output Connections

• Can we connect the output of two logic gates together?

• _______!  Possible _______________ (static, low-resistance 
pathway from Vdd to GND)

• We call this situation “_________________”

Src 1

Src 2

Vdd

Vss

Inputs

Vdd

Vss

Inputs

Src 1

Src 2
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Tri-State Buffers

• Normal digital gates can output two 

values: 0 & 1

1. Logic 0 = 0 volts

2. Logic 1 = 5 volts

• Tristate buffers can output a third 

value:

3. ____ = __________________ = "Floating"

(no connection to any voltage 

source…infinite resistance)

• Analogy: a sink faucet

– 3 possibilities:  

1.) Hot water,  

2.) Cold water, 

3.) _____ water

Hot Water = Logic 1

Cold Water = Logic 0

___ Water = Z (High-Impedance)

+3V

Output

Inputs

Transistors

to allow low

voltage to 

pass

Transistors

to allow high

voltage to 

pass Z (high 

impedance)
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Tri-State Buffers

• Tri-state buffers have an extra 

enable input

• When disabled, output is said 

to be at high impedance (a.k.a. 

Z)

– High Impedance is equivalent to 

no connection (i.e. floating 

output) or an infinite resistance

– It's like a brick wall between the 

output and any connection to 

source

• When enabled, normal buffer

In Out = In

Enable=1

Tri-State Buffer

OutInEn

Z-0

001

111

E

In Out = ____

Enable=0

E

10.48

Tri-State Buffers

• We use tri-state buffers to __________ one output 
amongst several sources

• Rule:  Only _________________________ at a time

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

D Q

QCLK

D-FF
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Tri-State Buffers

• We use tri-state buffers to share one output amongst several 
sources

• Rule:  Only 1 buffer enabled at a time

• When 1 buffer enabled, its output overpowers the Z’s (no 
connection) from the other gates

0

1

0

1

0

0

Select source 

1 to pass its 

data

Disabled 

buffers 

output ‘Z’

Z

0

Z

output of 0 

overpowers 

the Z

0

E

E

E

D Q

QCLK

D-FF
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Enable Polarity
• Side note:  Some tri-states are design to pass the input (be enabled) 

when the enable is 0 (rather than 1)

– A inversion bubble is shown at the enable input to indicate the "______" 

polarity needed to enable the tristate  

In Out = In

Enable=1

OutInEn

Z-0

001

111

E

In Out = Z

Enable=0

E

In Out = In

Enable=0

OutInEn

Z-1

000

110

E

In Out = Z

Enable=1

E
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Communication Connections

• Multiple entities need to communicate

• We could use 

– Point-to-point connections

– A ______________________________

Separate point to point 

connections

Shared Bus

10.52

Bidirectional Bus

• 1 transmitter (otherwise bus contention)

• N receivers

• Each device can send (though 1 at a time) or 

receive

0 1 0 0



10.53

Tri-State Gates

• Advantage: don’t have to know in advance how many devices will 

be connected together

– Tri-State gates give us the option of connecting together the outputs of 

many devices without requiring a circuit to multiplex many signals into one

• Just have to make sure only one is enabled (output active) at any 

one time.

src0

src1

src2

Srcn-1

MUX

Input

Select

src0

src1

src2

Srcn-1

Output 

Enables

Single output

Source w/ Tri-State Gates


