
10.1

Unit 10

Fundamental Digital Building Blocks:

Decoders & Multiplexers

10.2

Checkers / Decoders

• Recall

– AND gates output '1' for only a single combination

– OR gates output '0' for only a single combination

– Inputs (inverted or non-inverted) determine which combination is
checked for

– We say that gate is "checking for" or "decoding" a specific combination

OR gate decoding

(checking for)

combination 110

FZYX

1000

1100

1010

1110

1001

1101

0011

1111

F
x
y
z

FZYX

0000

0100

1010

0110

0001

0101

0011

0111

F
x
y
z

AND gate decoding

(checking for)

combination 010

10.3

Motivation

• Just like there are patterns and structures that occur commonly

in nature, there are several common logic structures that occur

over and over again in digital circuits

– Decoders, Multiplexers, Adders, Registers

• In addition, we design hardware using a hierarchical approach

– We design a small component using basic logic gates (e.g. a 1-bit mux)

– We build a large component by interconnecting many copies of the small

component + a few extra gates (e.g. a 32-bit mux)

– We build chips by interconnecting many large components (e.g. a router)

– Each components is truly made out of many gates but the design process

is faster and easier by using hierarchy

• Let's look at a few common components

– We'll start by describing the behavior of the component and then

determine what gates are inside

10.4

DECODERS

10.5

Decoders

• A decoder is a building block that:

– Takes in an n-bit binary number as input

– Decodes that binary number and activates the corresponding output

– Individual outputs for _____________ input combinations

1 output for each

combination of the

input number

3-bit binary

number

3-to-8 Decoder

There are gates inside
to implement each
output

10.6

Decoders

• A decoder is a building block that:

– Takes a binary number as input

– Decodes that binary number and activates

the corresponding output

– Put in 6=110, Output 6 activates (‘1’)

– Put in 5=101, Output 5 activates (‘1’)

1

0

1

0

0

0

0

0

1

0

0
Binary #5

Only that

numbered output is

activated

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

ZYX

00000001000

00000010100

00000100010

00001000110

00010000001

00100000101

01000000011

10000000111

0

1

1

Binary #6 0

0

0

0

0

0

1

0

10.7

Decoder Sizes

• A decoder w/ an n-bit input has 2n outputs

– 1 output for every combination of the n-bit input

Y

X

D0

D1

D2

D3

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A2

A1

A0

2-to-4

Decoder

3-to-8

Decoder

0

1 1
0
0

0

n inputs
(2)

2n outputs
(4)

n inputs
(3)

2n outputs
(8)

0

0

0

1

0

0
0

0
0

0
0

(MSB) (MSB)

10.8

Exercise

• Complete the design of a 2-to-4 decoder

D0

D1

D2

D3

Y

X

D0

D1

D2

D3

(MSB)

y

x

D3D2D1D0YX

00

10

01

11

10.9

Building Decoders

Checker

for 000

Checker

for 001

Checker

for 010

Checker

for 011

Checker

for 100

Checker

for 101

Checker

for 110

Checker

for 111

3-bit

number

[A2:A0]

O0

O1

O2

O3

O4

O5

O6

O7

A0

A1

A2

O0

O1

O2

O3

O4

O5

O6

O7

10.10

Vending Machine Example

321

654

987

0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Consider any problems with this design.

Assuming the keypad produces a 4-bit numeric output, add logic to

produce the release signals for each of the 16 vending items.

10.11

Enables

• In a normal decoder, exactly one output is active at all times

• It may be undesirable to always have an active output

• We can add an extra input (called an enable) that can

independently force all the outputs to their inactive values

2-to-4 Decoder

1

0

0

1

0

0

One output

will always

be active

Will force all outputs

to 0 when E = 0

(i.e. not enabled)

(MSB) (MSB)

10.12

Enables

1

0

0

0

0

0

0

When E=0,

inputs is

ignored

1

0

0

1

0

0

1

Since E=1,

outputs will

function normally

Since E=0,

all outputs = 0

When E=1,

inputs will cause the

appropriate output to

go active

(MSB)

(MSB)

10.13

Implementing Enables

• Original 2-to-4 decoder

B

A

D0

D1

D2

D3

E

When E=0, force all outputs = 0

When E=1, outputs operate as they did originally

A’ A B’ B

(MSB)

10.14

Another Application of Decoders:

Memories

• All memories (RAMs, ROMs) use decoders to select the desired data given

an address (each location/byte corresponds to one address combination)

• If you have a 1 MB (220 bytes) RAM, there is a 20-to-220 decoder present in

that device

1100

0101

0010

1110

1011

0001

0110

1101

A2

A0

A1

D3 D2 D1 D0

0

1

2

3

4

5

6

7

Address

Inputs

Data

Outputs

1100

0101

0010

1110

1011

0001

0110

1101

A2

A0

A1

D3 D2 D1 D0

0

1

2

3

4

5

6

7

Address

Inputs

Data

Outputs

3
-t

o
-8

 D
e
c
o

d
e
r

10.15

Building Large Decoders

• If you have 1 MB (220 bytes) RAM, there is a 20-to-220 decoder present in

that device

• How can we create such large decoders?

– Through hierarchy (building-block methodology)..usually of linear chains or

tree-based structures

1100

0101

0010

…

1101

…

A0

A1

D7 … D0

0

1

2

220-1

Address

Inputs Data

Outputs

2
0
-t

o
-2

2
0

D
e
c
o

d
e
r

A19

Small decoders connected

in a tree to create a

LARGE decoder.

10.16

Larger Decoder Exercise 1

• Build a 3-to-8 decoder from 1-to-2 decoders

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A0

Y0

E
Y1

1-to-2

Decoder

Y1Y0A0E

X0

01

11

X = not relevant
(same result for all possible

values of A0)

1-to-2 Decoder Operation

10.17

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1a

Active
Output

A0A1A2

Y0000

Y1100

Y2010

Y3110

Y400

1
Y510

Y601

Y711

0 1

Decode the MSB…possible combos = 4-7

0

0

0

0

0

0

Outputs Y0–Y3 are
disabled (ruled out)

1 1

0

1

1

10.18

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1b

Active
Output

A0A1A2

Y0000

Y1100

Y2010

Y3110

Y40
0

1
Y51

Y601

Y711

0 1

0

1

0

0

0

0

0

0

1 1

1

0
0

0

0

1

Decode the A1 …possible combos = 5-6

10.19

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1c

Active
Output

A0A1A2

Y0000

Y1100

Y2010

Y3110

Y40
0

1
Y51

Y601

Y711

0 1

0

1

0

0

0

0

0

0

1 1

1

0
0

0

0

1

1

0

1

Decode the A0 …possible combo = 5

10.20

General Tree Decoder Approach

• Step 1: Outputs of one stage should connect

to the __________ of the next stage

• Step 2: All decoders in a stage (level) should

decode the same ______

– Usually, the MSB is connected to the first stage

and LSB to the last stage

10.21

Larger Decoder Exercise 2

• Different size decoders can be utilized

– Build a 3-to-8 decoder using 1-to-2 and 2-to-4 decoders

A0

Y0

E
Y1

1-to-2

Decoder

A1

A0

Y0

Y1

Y2

Y3E

2-to-4

Decoder

A1

A0

Y0

Y1

Y2

Y3E

2-to-4

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

10.22

MULTIPLEXERS

The if..else of digital hardware

10.23

Multiplexers

• Multiplexers are one of the most common digital circuits

• Anatomy: n data inputs, log2n select bits, 1 output

• A multiplexer (“mux” for short) selects one data input and
passes it to the output

4-to-1 Mux

n data inputs

log2n select

bits

1 output

i0

i1

i2

i3

y

s

YS0S1

i000

i110

i201

I311

10.24

Multiplexers

A

Thus, input 2 = C is

selected and passed

to the output

Select bits = 102 = 210.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B

C

D

C

YS0S1

i000

i110

i201

I311

As long as the select bits are 102 = 2, whatever bit value appears on input 2 is

copied to the output, same as if we had just wired input 2 directly to the output.

10.25

Multiplexers

A

Thus, input 0 = A is

selected and passed

to the output

Select bits = 002 = 010.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B

C

D

A

YS0S1

i000

i110

i201

I311

10.26

Exercise: Build a 4-to-1 mux

• Complete the 4-to-1

mux to the right by

drawing wires

between the 2-to-4

decode and the AND

gates

S1

S0

S1S0=00

S1S0=01

S1S0=10

S1S0=11

Y

AND Gates acting as

barrier gates

Final OR gate takes 3

zero’s and one selected

input

2-to-4 Decoder

I0

I1

I2

I3

10.27

Building a Mux

• To build a mux

– Decode the select bits and include the corresponding data
input.

– Finally OR all the first level outputs together.

S1S0 = 012

1
0

1
0

1
0

1
0

I
0

I1

I2

I3

S
1

S
0

Y

S
1

S
0

S
1

S
0

S
1

S
0

I1

0

0

0

I1

I1
1

1

YS0S1

i000

i110

i201

i311

10.28

Building a Mux

• To build a mux

– Decode the select bits and include the corresponding data
input.

– Finally OR all the first level outputs together.

S1S0 = 112

1
1

1
1

1
1

1
1

I
0

I1

I2

I3

S
1

S
0

Y

S
1

S
0

S
1

S
0

S
1

S
0

0

0

0

I3

I3

I3
1

1

YS0S1

i000

i110

i201

i311

10.29

2-to-1 Multiplexers

A

Thus, input 1 = B is

selected and passed

to the output

Select bits = 12 = 110.
1

2

2-to-1 Mux

i0

i1

y

s

B

B

YS

i00

I11

• We can design and build muxes with any number of
inputs (2-to-1, 5-to-1, 16-to-1, etc.)

10.30

Building a 2-to-1 Mux

• To build a mux

– Decode the select bits and include the corresponding data
input.

– Finally OR all the first level outputs together.

1

1

1
0

0

0

0
1

I1 I0

10.31

Building Large Muxes

• When we build large muxes, the number of inputs to the

gates grows too large to build them directly

• Instead, we will build larger muxes from smaller muxes

• Similar to a tournament of sports teams

– Many teams enter and then are narrowed down to 1 winner

– In each round winners play _________

Railroad Switch Station

10.32

Design an 8-to-1 mux with 2-to-1

Muxes

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

S0 S1 S2

Y

I0

I1

I2

I3

I4

I5

I6

I7

S0

S0

S0

S0

S1

S1

S2

10.33

Cascading Muxes

• Use several small muxes to build large ones

• Rules

1. Arrange the muxes in stages (based on necessary

number of inputs in 1st stage)

2. Outputs of one stage feed to inputs of the next until

only 1 final output

3. All muxes in a stage connect to the same group of

select bits

– Usually, LSB connects to first stage

– MSB connect to last stage

10.34

Building a 4-to-1 Mux

I
1

Y

S

I
0

I
1

Y

S

I
0

I
1

Y

S

I
0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0
4-to-1 mux built

w/ 2-to-1 muxes

Rule 1: Outputs from stage 1

connect to inputs of stage 2

Rule 2: LSB S0 connect to all muxes

in first stage. MSB S1 connects to all

muxes in second stage

10.35

Building a 4-to-1 Mux

I
1

Y

S

I
0

I
1

Y

S

I
0

I
1

Y

S

I
0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

YS0S1

D000

D110

D201

D311

Walk through an

example:

S1S0 = 01

1 0

10.36

Building a 4-to-1 Mux

I
1

Y

S

I
0

I
1

Y

S

I
0

I
1

Y

S

I
0

Stage 1 Stage 2

S1

1

1 Y

D0

D1

D2

D3

S1S0

YS0S1

D000

D110

D201

D311

Walk through an

example:

S1S0 = 01

1 0

S0 = 1 narrows our
choices down to D1

and D3

D1

D3

10.37

Building a 4-to-1 Mux

I
1

Y

S

I
0

I
1

Y

S

I
0

I
1

Y

S

I
0

Stage 1 Stage 2

0

1

1 D1

D0

D1

D2

D3

S1S0

YS0S1

D000

D110

D201

D311

Walk through an

example:

S1S0 = 01

1 0

S1 = 0 selects our final
choice, D1

D1

D3

10.38

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

Device vs. System Labels

• When using hierarchy (i.e. building blocks) to design a circuit be

sure to show both device and system labels

– Device Labels: Signal names used _____________ the block

• _______________ names the designer/manufacturer of the block uses to indicate which

input/output is which to the outside user (Names may __________; read the manual)

– System labels: Signal names used ____________ the block

• ______________ signals from the circuit being built

• Can have the same name as the device label if such a signal name exists at the outside level

Device Labels:

Indicate which

input/output is

which inside

the bock.

System Labels:

Actual signals from

the circuit being built

int div(int i0, int i1)

{ int t = i0/i1;

return t; }

int main()

{

int d0=10, d1=2;

int s = div(d0,d1);

}

Analogy: Formal and Actual parameters in
software function calls

1. i0 and i1 are like device labels and
indicate the names used inside a block.

2. d0 and d1 are like system labels and
represent the actual values to be used.

10.39

Exercise

• Sketch how you could build a 16-to-1 mux with

4-to-1 muxes? 8-to-1 and 2-to1 muxes?

10.40

Exercise

• Create a 3-to-1 mux using 2-to-1 muxes

– Inputs: I0, I1, I2 and select bits S1,S0

– Output: Y

I1

Y

S

I0

S0

I1

Y

S

I0

S1

I0

I1

I2

Y

YS0S1

I000

I110

I201

10.41

Select-bit Ordering

• If we connect the select bits as shown to build an 8-to-1 mux,

show how to label the inputs (i0-i7) so that the correct input is

passed based on the binary value of S2:S0

Selects OUT

S2 S1 S0 Y

0

0
0

1

0

1

1

0

0
1

1

0

1

1

10.42

A

B

C

D

E

F

Y

S0

S1

S2

Alternate Select Bit Ordering Example

• Given 6 inputs: A-F, design

a 6-to-1 mux from 4- and

2-to-1 muxes that uses the

following select bit

combinations

YS0S1S2

A000

B010

C110

D001

E011

F111
Tip 1: Whatever inputs you connect to a 4-to-1 mux, must correspond to 2

select bits that take on all combinations: 00, 01, 10, 11

Tip 2: For later stages, the select bit you connect must differentiate all

potential options on 1 input from all the options on another (e.g. S1

differentiates A,D from B,C,E,F

YS0S1S2

A000

B010

C110

D001

E011

F111

YS0S1S2

A000

B010

C110

D001

E011

F111

10.43

TRI-STATE GATES

Another way to multiplex

10.44

Typical Logic Gate
• Gates can output two values: 0 & 1

– Logic ‘1’ (Vdd = 3V or 5V), or Logic ‘0’ (GND)

– But they are ALWAYS outputting something!!!

• Analogy: a sink faucet

– 2 possibilities: Hot (‘1’) or Cold (‘0’)

• In a real circuit, inputs cause EITHER a pathway from

output to VDD OR VSS

Hot Water = Logic 1

Cold Water = Logic 0

(Strapped together so always one type
of water coming out)

+3V

Output

Inputs

Vdd

GND

Inputs

+3V

Output

Inputs

Transistors

to allow low

voltage to

pass

Transistors

to allow high

voltage to

pass

Transistors

to allow low

voltage to

pass

Transistors

to allow high

voltage to

pass

10.45

Output Connections

• Can we connect the output of two logic gates together?

• _______! Possible _______________ (static, low-resistance
pathway from Vdd to GND)

• We call this situation “_________________”

Src 1

Src 2

Vdd

Vss

Inputs

Vdd

Vss

Inputs

Src 1

Src 2

10.46

Tri-State Buffers

• Normal digital gates can output two

values: 0 & 1

1. Logic 0 = 0 volts

2. Logic 1 = 5 volts

• Tristate buffers can output a third

value:

3. ____ = __________________ = "Floating"

(no connection to any voltage

source…infinite resistance)

• Analogy: a sink faucet

– 3 possibilities:

1.) Hot water,

2.) Cold water,

3.) _____ water

Hot Water = Logic 1

Cold Water = Logic 0

___ Water = Z (High-Impedance)

+3V

Output

Inputs

Transistors

to allow low

voltage to

pass

Transistors

to allow high

voltage to

pass Z (high

impedance)

10.47

Tri-State Buffers

• Tri-state buffers have an extra

enable input

• When disabled, output is said

to be at high impedance (a.k.a.

Z)

– High Impedance is equivalent to

no connection (i.e. floating

output) or an infinite resistance

– It's like a brick wall between the

output and any connection to

source

• When enabled, normal buffer

In Out = In

Enable=1

Tri-State Buffer

OutInEn

Z-0

001

111

E

In Out = ____

Enable=0

E

10.48

Tri-State Buffers

• We use tri-state buffers to __________ one output
amongst several sources

• Rule: Only _________________________ at a time

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

D Q

QCLK

D-FF

10.49

Tri-State Buffers

• We use tri-state buffers to share one output amongst several
sources

• Rule: Only 1 buffer enabled at a time

• When 1 buffer enabled, its output overpowers the Z’s (no
connection) from the other gates

0

1

0

1

0

0

Select source

1 to pass its

data

Disabled

buffers

output ‘Z’

Z

0

Z

output of 0

overpowers

the Z

0

E

E

E

D Q

QCLK

D-FF

10.50

Enable Polarity
• Side note: Some tri-states are design to pass the input (be enabled)

when the enable is 0 (rather than 1)

– A inversion bubble is shown at the enable input to indicate the "______"

polarity needed to enable the tristate

In Out = In

Enable=1

OutInEn

Z-0

001

111

E

In Out = Z

Enable=0

E

In Out = In

Enable=0

OutInEn

Z-1

000

110

E

In Out = Z

Enable=1

E

10.51

Communication Connections

• Multiple entities need to communicate

• We could use

– Point-to-point connections

– A ______________________________

Separate point to point

connections

Shared Bus

10.52

Bidirectional Bus

• 1 transmitter (otherwise bus contention)

• N receivers

• Each device can send (though 1 at a time) or

receive

0 1 0 0

10.53

Tri-State Gates

• Advantage: don’t have to know in advance how many devices will

be connected together

– Tri-State gates give us the option of connecting together the outputs of

many devices without requiring a circuit to multiplex many signals into one

• Just have to make sure only one is enabled (output active) at any

one time.

src0

src1

src2

Srcn-1

MUX

Input

Select

src0

src1

src2

Srcn-1

Output

Enables

Single output

Source w/ Tri-State Gates

