
10.1

Unit 10

Fundamental Digital Building Blocks:

Decoders & Multiplexers

10.2

Checkers / Decoders

• Recall
– AND gates output '1' for only a single combination

– OR gates output '0' for only a single combination

– Inputs (inverted or non-inverted) determine which combination is
checked for

– We say that gate is "checking for" or "decoding" a specific combination

OR gate decoding

(checking for)

combination 110

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

F
x

y

z

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

F
x

y

z

AND gate decoding

(checking for)

combination 010

10.3

Motivation

• Just like there are patterns and structures that occur commonly
in nature, there are several common logic structures that occur
over and over again in digital circuits
– Decoders, Multiplexers, Adders, Registers

• In addition, we design hardware using a hierarchical approach
– We design a small component using basic logic gates (e.g. a 1-bit mux)

– We build a large component by interconnecting many copies of the small
component + a few extra gates (e.g. a 32-bit mux)

– We build chips by interconnecting many large components (e.g. a router)

– Each components is truly made out of many gates but the design process
is faster and easier by using hierarchy

• Let's look at a few common components
– We'll start by describing the behavior of the component and then

determine what gates are inside

10.4

DECODERS

10.5

Decoders

• A decoder is a building block that:
– Takes in an n-bit binary number as input

– Decodes that binary number and activates the corresponding output

– Individual outputs for ALL 2n input combinations

D0

D1

D2

D3

D4

D5

D6

D7

X (MSB)

Y

Z (LSB) 1 output for each

combination of the

input number

3-bit binary

number

3-to-8 Decoder

There are gates inside

to implement each

output

10.6

Decoders

• A decoder is a building block that:
– Takes a binary number as input

– Decodes that binary number and activates
the corresponding output

– Put in 6=110, Output 6 activates (‘1’)

– Put in 5=101, Output 5 activates (‘1’)

D0

D1

D2

D3

D4

D5

D6

D7

X (MSB)

Y

Z (LSB)1

0

1

0

0

0

0

0

1

0

0
Binary #5

Only that

numbered output is

activated

X Y Z D

0

D

1

D

2

D

3

D

4

D

5

D

6

D

7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

0

1

1

Binary #6 0

0

0

0

0

0

1

0

10.7

Decoder Sizes

• A decoder w/ an n-bit input has 2n outputs

– 1 output for every combination of the n-bit input

Y

X

D0

D1

D2

D3

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A2

A1

A0

2-to-4

Decoder

3-to-8

Decoder

0

1 1
0
0

0

n inputs

(2)

2n outputs

(4)
n inputs

(3)

2n outputs

(8)

0

0

0

1

0

0
0

0
0

0
0

(MSB) (MSB)

10.8

Exercise

• Complete the design of a 2-to-4 decoder

Y

X

D0

D1

D2

D3
(MSB)

y

x

X Y D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

D0

D1

D2

D3

10.9

Building Decoders

Checker

for 000

Checker

for 001

Checker

for 010

Checker

for 011

Checker

for 100

Checker

for 101

Checker

for 110

Checker

for 111

3-bit

number

[A2:A0]

O0

O1

O2

O3

O4

O5

O6

O7

A0

A1

A2

O0

O1

O2

O3

O4

O5

O6

O7

10.10

Vending Machine Example

1 2 3

4 5 6

7 8 9

0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Assuming the keypad produces a 4-bit numeric output, add logic to

produce the release signals for each of the 16 vending items.

4-to-16 decoder

A[3:0]

0 1 2 3 … 15

Consider any problems with this design.

10.11

Enables

• In a normal decoder, exactly one output is active at all times

• It may be undesirable to always have an active output

• We can add an extra input (called an enable) that can
independently force all the outputs to their inactive values

Y

X

D0

D1

D2

D3

2-to-4 Decoder

1

0

0

1

0

0

One output

will always

be active

Y

X

D0

D1

D2

D3
E

Enable
Will force all outputs

to 0 when E = 0

(i.e. not enabled)

(MSB) (MSB)

10.12

Enables

1

0

0

0

0

0

Y

X

D0

D1

D2

D3
E

Enable

0

When E=0,

inputs is

ignored

1

0

0

1

0

0

Y

X

D0

D1

D2

D3
E

Enable

1

Since E=1,

outputs will

function normally

Since E=0,

all outputs = 0

When E=1,

inputs will cause the

appropriate output to

go active

(MSB)

(MSB)

10.13

Implementing Enables

• Original 2-to-4 decoder

When E=0, force all outputs = 0

When E=1, outputs operate as they did originally

(MSB) X

Y

D0

D1

D2

D3

E

10.14

Another Application of Decoders:
Memories

• All memories (RAMs, ROMs) use decoders to select the desired data given
an address (each location/byte corresponds to one address combination)

• If you have a 1 MB (220 bytes) RAM, there is a 20-to-220 decoder present in
that device

0 0 1 1

1 0 1 0

0 1 0 0

0 1 1 1

1 1 0 1

1 0 0 0

0 1 1 0

1 0 1 1

A2

A0

A1

D3 D2 D1 D0

0

1

2

3

4

5

6

7

Address

Inputs

Data

Outputs

0 0 1 1

1 0 1 0

0 1 0 0

0 1 1 1

1 1 0 1

1 0 0 0

0 1 1 0

1 0 1 1

A2

A0

A1

D3 D2 D1 D0

0

1

2

3

4

5

6

7

Address

Inputs

Data

Outputs

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A2

A1

A0

3
-t

o
-8

 D
e

c
o

d
e

r

10.15

Building Large Decoders

• If you have 1 MB (220 bytes) RAM, there is a 20-to-220 decoder present in
that device

• How can we create such large decoders?

– Through hierarchy (building-block methodology)..usually of linear chains or
tree-based structures

0 0 1 1

1 0 1 0

0 1 0 0

…

1 0 1 1

…

A0

A1

D7 … D0

0

1

2

220-1

Address

Inputs Data

Outputs

2
0

-t
o

-2
2
0
 D

e
c

o
d

e
r

A19

Small decoders connected

in a tree to create a

LARGE decoder.

10.16

Larger Decoder Exercise 1

• Build a 3-to-8 decoder from 1-to-2 decoders

A0

Y0

E
Y1

1-to-2

Decoder

E A0 Y0 Y1

0 X 0 0

1 0 1 0

1 1 0 1

X = not relevant

(same result for all possible

values of A0)

1-to-2 Decoder Operation

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

10.17

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1a

A2 A1 A0 Active

Output

0 0 0 Y0

0 0 1 Y1

0 1 0 Y2

0 1 1 Y3

1

0 0 Y4

0 1 Y5

1 0 Y6

1 1 Y7

0 1

Decode the MSB…possible combos = 4-7

0

0

0

0

0

0

Outputs Y0–Y3 are

disabled (ruled out)

1 1

0

1

1

10.18

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1b

A2 A1 A0 Active

Output

0 0 0 Y0

0 0 1 Y1

0 1 0 Y2

0 1 1 Y3

1
0

0 Y4

1 Y5

1 0 Y6

1 1 Y7

0 1

0

1

0

0

0

0

0

0

1 1

1

0
0

0

0

1

Decode the A1 …possible combos = 5-6

10.19

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A0

Y0

E
Y1

1-to-2

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1c

A2 A1 A0 Active

Output

0 0 0 Y0

0 0 1 Y1

0 1 0 Y2

0 1 1 Y3

1
0

0 Y4

1 Y5

1 0 Y6

1 1 Y7

0 1

0

1

0

0

0

0

0

0

1 1

1

0
0

0

0

1

1

0

1

Decode the A0 …possible combo = 5

10.20

General Tree Decoder Approach

• Step 1: Outputs of one stage should connect
to the enables of the next stage

• Step 2: All decoders in a stage (level) should
decode the same bit(s)

– Usually, the MSB is connected to the first stage
and LSB to the last stage

10.21

Larger Decoder Exercise 2

• Different size decoders can be utilized

– Build a 3-to-8 decoder using 1-to-2 and 2-to-4 decoders

A0

Y0

E
Y1

1-to-2

Decoder

A1

A0

Y0

Y1

Y2

Y3E

2-to-4

Decoder

A1

A0

Y0

Y1

Y2

Y3E

2-to-4

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

10.22

MULTIPLEXERS

The if..else of digital hardware

10.23

Multiplexers

• Multiplexers are one of the most common digital circuits
• Anatomy: n data inputs, log2n select bits, 1 output
• A multiplexer (“mux” for short) selects one data input and

passes it to the output

4-to-1 Mux

n data inputs

log2n select

bits

1 output

i0

i1

i2

i3

y

s

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 I3

10.24

Multiplexers

A

Thus, input 2 = C is

selected and passed

to the output

Select bits = 102 = 210.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B

C

D

C

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 I3

As long as the select bits are 102 = 2, whatever bit value appears on input 2 is
copied to the output, same as if we had just wired input 2 directly to the output.

10.25

Multiplexers

A

Thus, input 0 = A is

selected and passed

to the output

Select bits = 002 = 010.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B

C

D

A

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 I3

10.26

Exercise: Build a 4-to-1 mux

• Complete the 4-to-1
mux to the right by
drawing wires
between the 2-to-4
decode and the AND
gates

S1

S0

S1S0=00

S1S0=01

S1S0=10

S1S0=11

Y

AND Gates acting as

barrier gates

Final OR gate takes 3

zero s and one selected

input

2-to-4 Decoder

I0

I1

I2

I3

10.27

Building a Mux

• To build a mux
– Decode the select bits and include the corresponding data

input.

– Finally OR all the first level outputs together.

S1S0 = 012

1

0

1

0

1

0

1

0

I
0

I1

I2

I3

S
1

S
0

Y
S

1

S
0

S
1

S
0

S
1

S
0

I1

0

0

0

I1

I1
1

1

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 i3

10.28

Building a Mux

• To build a mux
– Decode the select bits and include the corresponding data

input.

– Finally OR all the first level outputs together.

S1S0 = 112

1

1

1

1

1

1

1

1

I
0

I1

I2

I3

S
1

S
0

Y
S

1

S
0

S
1

S
0

S
1

S
0

0

0

0

I3

I3

I3
1

1

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 i3

10.29

2-to-1 Multiplexers

A

Thus, input 1 = B is

selected and passed

to the output

Select bits = 12 = 110.
1

2

2-to-1 Mux

i0

i1

y

s

B

B

S Y

0 i0

1 I1

• We can design and build muxes with any number of
inputs (2-to-1, 5-to-1, 16-to-1, etc.)

10.30

Building a 2-to-1 Mux

• To build a mux
– Decode the select bits and include the corresponding data

input.

– Finally OR all the first level outputs together.

1

1

1
0

0

0

0
1

I1 I0

10.31

Building Large Muxes
• When we build large muxes, the number of inputs to the

gates grows too large to build them directly

• Instead, we will build larger muxes from smaller muxes

• Similar to a tournament of sports teams
– Many teams enter and then are narrowed down to 1 winner

– In each round winners play winners

Stage 1

Stage 2

Stage 3
Final output

Railroad Switch Station

10.32

Design an 8-to-1 mux with 2-to-1
Muxes

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

S0 S1 S2

Y

I0

I1

I2

I3

I4

I5

I6

I7

S0

S0

S0

S0

S1

S1

S2

10.33

Cascading Muxes

• Use several small muxes to build large ones

• Rules
1. Arrange the muxes in stages (based on necessary

number of inputs in 1st stage)

2. Outputs of one stage feed to inputs of the next until
only 1 final output

3. All muxes in a stage connect to the same group of
select bits
– Usually, LSB connects to first stage

– MSB connect to last stage

10.34

Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0
4-to-1 mux built

w/ 2-to-1 muxes

Rule 1: Outputs from stage 1

connect to inputs of stage 2

Rule 2: LSB S0 connect to all muxes

in first stage. MSB S1 connects to all

muxes in second stage

10.35

Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an

example:

S1S0 = 01

1 0

10.36

Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

1

1 Y

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an

example:

S1S0 = 01

1 0

S0 = 1 narrows our

choices down to D1

and D3

D1

D3

10.37

Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

0

1

1 D1

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an

example:

S1S0 = 01

1 0

S1 = 0 selects our final

choice, D1

D1

D3

10.38

I
1

Y

S

I
0

I1

Y

S

I
0

I1

Y

S

I
0

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

Device vs. System Labels

• When using hierarchy (i.e. building blocks) to design a circuit be
sure to show both device and system labels
– Device Labels: Signal names used inside the block

• Placeholder names the designer/manufacturer of the block uses to indicate which
input/output is which to the outside user (Names may vary; read the manual)

– System labels: Signal names used outside the block
• Actual signals from the circuit being built

• Can have the same name as the device label if such a signal name exists at the outside level

Device Labels:

Indicate which

input/output is

which inside

the bock.

System Labels:

Actual signals from

the circuit being built

int div(int i0, int i1)
{ int t = i0/i1;
 return t; }
int main()
{
 int d0=10, d1=2;
 int s = div(d0,d1);
}

Analogy: Formal and Actual parameters in

software function calls

1. i0 and i1 are like device labels and

indicate the names used inside a block.

2. d0 and d1 are like system labels and

represent the actual values to be used.

10.39

Exercise

• Sketch how you could build a 16-to-1 mux with
4-to-1 muxes? 8-to-1 and 2-to1 muxes?

10.40

Exercise

• Create a 3-to-1 mux using 2-to-1 muxes

– Inputs: I0, I1, I2 and select bits S1,S0

– Output: Y

I1

Y

S

I0

S0

I1

Y

S

I0

S1

I0

I1

I2

Y

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

10.41

Select-bit Ordering

• If we connect the select bits as shown to build an 8-to-1 mux,
show how to label the inputs (i0-i7) so that the correct input is
passed based on the binary value of S2:S0

Selects OUT

S2 S1 S0 Y

0
0

0

1

0
1

1

0
0

1

1

0
1

1

0

1
S

Y

0

1
S

Y

0

1
S

Y

0

1
S

Y

0

1
S

Y

0

1
S

Y

S2

0

1
S

Y

S1 S0

8Y

i0

i4

i2

i6

i1

i5

i3

i7

10.42

Alternate Select Bit Ordering Example

• Given 6 inputs: A-F, design
a 6-to-1 mux from 4- and
2-to-1 muxes that uses the
following select bit
combinations

S2 S1 S0 Y

0 0 0 A

0 1 0 B

0 1 1 C

1 0 0 D

1 1 0 E

1 1 1 F
Tip 1: Whatever inputs you connect to a 4-to-1 mux, must correspond to 2

select bits that take on all combinations: 00, 01, 10, 11

Tip 2: For later stages, the select bit you connect must differentiate all

potential options on 1 input from all the options on another (e.g. S1

differentiates A,D from B,C,E,F

D0

D1

D2

D3

S1
S0

Y

I1

Y

S

I0

I1

Y

S

I0

A

B

C

D

E

F

Y

A

D

B

C

E

F

S0

S1

S2

S2 S0

S1

S2

S2 S1 S0 Y

0 0 0 A

0 1 0 B

0 1 1 C

1 0 0 D

1 1 0 E

1 1 1 F

S2 S1 S0 Y

0 0 0 A

0 1 0 B

0 1 1 C

1 0 0 D

1 1 0 E

1 1 1 F

10.43

TRI-STATE GATES

Another way to multiplex

10.44

Typical Logic Gate
• Gates can output two values: 0 & 1
– Logic ‘1’ (Vdd = 3V or 5V), or Logic ‘0’ (Vss = GND)

– But they are ALWAYS outputting something!!!

• Analogy: a sink faucet
– 2 possibilities: Hot (‘1’) or Cold (‘0’)

• In a real circuit, inputs cause EITHER a pathway from
output to VDD OR VSS

Hot Water = Logic 1

Cold Water = Logic 0

(Strapped together so always one type

of water coming out)

Vdd

Vss

Inputs

+3V

Output

Inputs

+3V

Output

Inputs

Transistors

to allow low

voltage to

pass

Transistors

to allow high

voltage to

pass

Transistors

to allow low

voltage to

pass

Transistors

to allow high

voltage to

pass

10.45

Output Connections

• Can we connect the output of two logic gates together?

• No! Possible short circuit (static, low-resistance pathway
from Vdd to GND)

• We call this situation “bus contention”

Vdd

Vss

Inputs

Vdd

Vss

Inputs

Src 1

Src 2

B
us C

onte
ntio

n
Src 1

Src 2

10.46

Tri-State Buffers

• Normal digital gates can output two
values: 0 & 1

1. Logic 0 = 0 volts

2. Logic 1 = 5 volts

• Tristate buffers can output a third
value:

3. Z = High-Impedance = "Floating"
(no connection to any voltage
source…infinite resistance)

• Analogy: a sink faucet
– 3 possibilities:

1.) Hot water,
2.) Cold water,
3.) NO water

Hot Water = Logic 1

Cold Water = Logic 0

NO Water = Z (High-Impedance)

+3V

Output

Inputs

Transistors

to allow low

voltage to

pass

Transistors

to allow high

voltage to

pass Z (high

impedance)

10.47

Tri-State Buffers

• Tri-state buffers have an extra
enable input

• When disabled, output is said
to be at high impedance (a.k.a.
Z)
– High Impedance is equivalent to

no connection (i.e. floating
output) or an infinite resistance

– It's like a brick wall between the
output and any connection to
source

• When enabled, normal buffer

In Out = In

Enable=1

Tri-State Buffer

En In Out

0 - Z

1 0 0

1 1 1

E

In Out = ____

Enable=0

E

10.48

Tri-State Buffers

• We use tri-state buffers to share one output
amongst several sources

• Rule: Only 1 buffer enabled at a time

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

D Q

QCLK

D-FF

10.49

Tri-State Buffers

• We use tri-state buffers to share one output amongst several
sources

• Rule: Only 1 buffer enabled at a time
• When 1 buffer enabled, its output overpowers the Z’s (no

connection) from the other gates

0

1

0

1

0

0

Select source

1 to pass its

data

Disabled

buffers

output ‘Z’

Z

0

Z

output of 0

overpowers

the Z

0

E

E

E

D Q

QCLK

D-FF

10.50

Enable Polarity
• Side note: Some tri-states are design to pass the input (be enabled)

when the enable is 0 (rather than 1)

– A inversion bubble is shown at the enable input to indicate the "low" polarity
needed to enable the tristate

In Out = In

Enable=1

En In Out

0 - Z

1 0 0

1 1 1

E

In Out = Z

Enable=0

E

In Out = In

Enable=0

En In Out

1 - Z

0 0 0

0 1 1

E

In Out = Z

Enable=1

E

10.51

Communication Connections

• Multiple entities need to communicate

• We could use

– Point-to-point connections

– A shared bus (set of wires)

Separate point to point

connections

Shared Bus

10.52

Bidirectional Bus

• 1 transmitter (otherwise bus contention)

• N receivers

• Each device can send (though 1 at a time) or
receive

0 1 0 0

10.53

Tri-State Gates
• Advantage: don’t have to know in advance how many devices will

be connected together
– Tri-State gates give us the option of connecting together the outputs of

many devices without requiring a circuit to multiplex many signals into one

• Just have to make sure only one is enabled (output active) at any
one time.

src1

src2

src3

srcn

MUX

Input

Select

src1

src2

src3

srcn

Output

Enables

Single output

Source w/ Tri-State Gates

	Slide 1: Unit 10
	Slide 2: Checkers / Decoders
	Slide 3: Motivation
	Slide 4: Decoders
	Slide 5: Decoders
	Slide 6: Decoders
	Slide 7: Decoder Sizes
	Slide 8: Exercise
	Slide 9: Building Decoders
	Slide 10: Vending Machine Example
	Slide 11: Enables
	Slide 12: Enables
	Slide 13: Implementing Enables
	Slide 14: Another Application of Decoders: Memories
	Slide 15: Building Large Decoders
	Slide 16: Larger Decoder Exercise 1
	Slide 17: Larger Decoder Exercise 1a
	Slide 18: Larger Decoder Exercise 1b
	Slide 19: Larger Decoder Exercise 1c
	Slide 20: General Tree Decoder Approach
	Slide 21: Larger Decoder Exercise 2
	Slide 22: Multiplexers
	Slide 23: Multiplexers
	Slide 24: Multiplexers
	Slide 25: Multiplexers
	Slide 26: Exercise: Build a 4-to-1 mux
	Slide 27: Building a Mux
	Slide 28: Building a Mux
	Slide 29: 2-to-1 Multiplexers
	Slide 30: Building a 2-to-1 Mux
	Slide 31: Building Large Muxes
	Slide 32: Design an 8-to-1 mux with 2-to-1 Muxes
	Slide 33: Cascading Muxes
	Slide 34: Building a 4-to-1 Mux
	Slide 35: Building a 4-to-1 Mux
	Slide 36: Building a 4-to-1 Mux
	Slide 37: Building a 4-to-1 Mux
	Slide 38: Device vs. System Labels
	Slide 39: Exercise
	Slide 40: Exercise
	Slide 41: Select-bit Ordering
	Slide 42: Alternate Select Bit Ordering Example
	Slide 43: Tri-State Gates
	Slide 44: Typical Logic Gate
	Slide 45: Output Connections
	Slide 46: Tri-State Buffers
	Slide 47: Tri-State Buffers
	Slide 48: Tri-State Buffers
	Slide 49: Tri-State Buffers
	Slide 50: Enable Polarity
	Slide 51: Communication Connections
	Slide 52: Bidirectional Bus
	Slide 53: Tri-State Gates

