
10.1

Unit 10

Fundamental Digital Building Blocks:

Decoders & Multiplexers
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Checkers / Decoders

• Recall 
– AND gates output '1' for only a single combination

– OR gates output '0' for only a single combination

– Inputs (inverted or non-inverted) determine which combination is 
checked for

– We say that gate is "checking for" or "decoding" a specific combination

OR gate decoding 

(checking for)  
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0 0 0 0
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AND gate decoding 

(checking for)  

combination 010
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Motivation

• Just like there are patterns and structures that occur commonly 
in nature, there are several common logic structures that occur 
over and over again in digital circuits
– Decoders, Multiplexers, Adders, Registers

• In addition, we design hardware using a hierarchical approach
– We design a small component using basic logic gates (e.g. a 1-bit mux)

– We build a large component by interconnecting many copies of the small 
component + a few extra gates (e.g. a 32-bit mux)

– We build chips by interconnecting many large components (e.g. a router)

– Each components is truly made out of many gates but the design process 
is faster and easier by using hierarchy

• Let's look at a few common components
– We'll start by describing the behavior of the component and then 

determine what gates are inside



10.4

DECODERS



10.5

Decoders

• A decoder is a building block that:
– Takes in an n-bit binary number as input

– Decodes that binary number and activates the corresponding output

– Individual outputs for ALL 2n input combinations

D0

D1

D2

D3

D4

D5

D6

D7

X (MSB)

Y

Z  (LSB) 1 output for each 

combination of the 

input number

3-bit binary 

number

3-to-8 Decoder

There are gates inside 

to implement each 

output
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Decoders

• A decoder is a building block that:
– Takes a binary number as input

– Decodes that binary number and activates 
the corresponding output

– Put in 6=110, Output 6 activates (‘1’)

– Put in 5=101, Output 5 activates (‘1’)

D0

D1

D2

D3

D4

D5

D6

D7

X (MSB)

Y

Z  (LSB)1

0

1

0

0

0

0

0

1

0

0
Binary #5

Only that 

numbered output is 

activated

X Y Z D
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D
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3

D

4
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D

6

D

7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

0

1

1

Binary #6 0

0

0

0

0

0

1

0
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Decoder Sizes

• A decoder w/ an n-bit input has 2n outputs

– 1 output for every combination of the n-bit input

Y

X

D0

D1

D2

D3

Y0

Y1
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Y3

Y4

Y5

Y6

Y7

A2

A1

A0

2-to-4 

Decoder

3-to-8 

Decoder

0

1 1
0
0

0

n inputs

(2)

2n outputs
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n inputs
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2n outputs
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Exercise

• Complete the design of a 2-to-4 decoder

Y

X

D0

D1

D2

D3
(MSB)

y

x

X Y D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

D0

D1

D2

D3
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Building Decoders

Checker 

for 000

Checker 

for 001

Checker 

for 010

Checker 

for 011

Checker 

for 100

Checker 

for 101

Checker 

for 110

Checker 

for 111

3-bit 

number

[A2:A0]

O0

O1

O2

O3

O4

O5

O6

O7

A0

A1

A2

O0

O1

O2

O3

O4

O5

O6

O7
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Vending Machine Example

1 2 3

4 5 6

7 8 9

0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Assuming the keypad produces a 4-bit numeric output, add logic to 

produce the release signals for each of the 16 vending items. 

4-to-16 decoder

A[3:0]

0 1 2 3         …                       15

Consider any problems with this design.
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Enables

• In a normal decoder, exactly one output is active at all times

• It may be undesirable to always have an active output

• We can add an extra input (called an enable) that can 
independently force all the outputs to their inactive values

Y

X

D0

D1

D2

D3

2-to-4 Decoder

1

0

0

1

0

0

One output 

will always 

be active

Y

X

D0

D1

D2

D3
E

Enable
Will force all outputs 

to 0 when E = 0 

(i.e. not enabled)

(MSB) (MSB)
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Enables

1

0

0

0

0

0

Y

X

D0

D1

D2

D3
E

Enable

0

When E=0, 

inputs is 

ignored

1

0

0

1

0

0

Y

X

D0

D1

D2

D3
E

Enable

1

Since E=1, 

outputs will 

function normally

Since E=0, 

all outputs = 0

When E=1, 

inputs will cause the 

appropriate output to 

go active

(MSB)

(MSB)
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Implementing Enables

• Original 2-to-4 decoder

When E=0, force all outputs = 0

When E=1, outputs operate as they did originally

(MSB) X

Y

D0

D1

D2

D3

E
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Another Application of Decoders: 
Memories

• All memories (RAMs, ROMs) use decoders to select the desired data given 
an address (each location/byte corresponds to one address combination)

• If you have a 1 MB (220 bytes) RAM, there is a 20-to-220 decoder present in 
that device

0 0 1 1

1 0 1 0

0 1 0 0

0 1 1 1

1 1 0 1

1 0 0 0

0 1 1 0

1 0 1 1
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Outputs
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Y2
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Building Large Decoders

• If you have 1 MB (220 bytes) RAM, there is a 20-to-220 decoder present in 
that device

• How can we create such large decoders?

– Through hierarchy (building-block methodology)..usually of linear chains or 
tree-based structures

0 0 1 1

1 0 1 0

0 1 0 0

…

1 0 1 1

…

A0

A1

D7 … D0

0

1

2

220-1

Address 

Inputs Data 

Outputs

2
0

-t
o

-2
2
0
 D

e
c

o
d

e
r

A19

Small decoders connected 

in a tree to create a 

LARGE decoder.
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Larger Decoder Exercise 1

• Build a 3-to-8 decoder from 1-to-2 decoders

A0

Y0

E
Y1

1-to-2 

Decoder

E A0 Y0 Y1

0 X 0 0

1 0 1 0

1 1 0 1

X = not relevant 

(same result for all possible 

values of A0)

1-to-2 Decoder Operation

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7
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A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1a

A2 A1 A0 Active 

Output

0 0 0 Y0

0 0 1 Y1

0 1 0 Y2

0 1 1 Y3

1

0 0 Y4

0 1 Y5

1 0 Y6

1 1 Y7

0 1

Decode the MSB…possible combos = 4-7

0

0

0

0

0

0

Outputs Y0–Y3 are 

disabled (ruled out)

1 1

0

1

1
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A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1b

A2 A1 A0 Active 

Output

0 0 0 Y0

0 0 1 Y1

0 1 0 Y2

0 1 1 Y3

1
0

0 Y4

1 Y5

1 0 Y6

1 1 Y7

0 1

0

1

0

0

0

0

0

0

1 1

1

0
0

0

0

1

Decode the A1 …possible combos = 5-6
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A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A0

Y0

E
Y1

1-to-2 

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Larger Decoder Exercise 1c

A2 A1 A0 Active 

Output

0 0 0 Y0

0 0 1 Y1

0 1 0 Y2

0 1 1 Y3

1
0

0 Y4

1 Y5

1 0 Y6

1 1 Y7

0 1

0

1

0

0

0

0

0

0

1 1

1

0
0

0

0

1

1

0

1

Decode the A0 …possible combo = 5
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General Tree Decoder Approach

• Step 1:  Outputs of one stage should connect 
to the enables of the next stage

• Step 2:  All decoders in a stage (level) should 
decode the same bit(s)

– Usually, the MSB is connected to the first stage 
and LSB to the last stage
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Larger Decoder Exercise 2

• Different size decoders can be utilized

– Build a 3-to-8 decoder using 1-to-2 and 2-to-4 decoders

A0

Y0

E
Y1

1-to-2 

Decoder

A1

A0

Y0

Y1

Y2

Y3E

2-to-4 

Decoder

A1

A0

Y0

Y1

Y2

Y3E

2-to-4 

Decoder

A2 A1 A0E

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7
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MULTIPLEXERS

The if..else of digital hardware
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Multiplexers

• Multiplexers are one of the most common digital circuits
• Anatomy:  n data inputs, log2n select bits, 1 output
• A multiplexer (“mux” for short) selects one data input and 

passes it to the output

4-to-1 Mux

n data inputs

log2n select 

bits

1 output

i0

i1

i2

i3

y

s

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 I3
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Multiplexers

A

Thus, input 2 = C is 

selected and passed 

to the output

Select bits = 102 = 210.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B

C

D

C

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 I3

As long as the select bits are 102 = 2, whatever bit value appears on input 2 is 
copied to the output, same as if we had just wired input 2 directly to the output.
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Multiplexers

A

Thus, input 0 = A is 

selected and passed 

to the output

Select bits = 002 = 010.
1

2

4-to-1 Mux

i0

i1

i2

i3

y

s

B

C

D

A

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 I3
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Exercise:  Build a 4-to-1 mux

• Complete the 4-to-1 
mux to the right by 
drawing wires 
between the 2-to-4 
decode and the AND 
gates

S1

S0

S1S0=00

S1S0=01

S1S0=10

S1S0=11

Y

AND Gates acting as 

barrier gates

Final OR gate takes 3 

zero s and one selected 

input

2-to-4 Decoder

I0

I1

I2

I3
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Building a Mux

• To build a mux 
– Decode the select bits and include the corresponding data 

input. 

– Finally OR all the first level outputs together.

S1S0 = 012

1

0

1

0

1

0

1

0

I
0

I1

I2

I3

S
1

S
0

Y
S

1

S
0

S
1

S
0

S
1

S
0

I1

0

0

0

I1

I1
1

1

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 i3
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Building a Mux

• To build a mux 
– Decode the select bits and include the corresponding data 

input. 

– Finally OR all the first level outputs together.

S1S0 = 112

1

1

1

1

1

1

1

1

I
0

I1

I2

I3

S
1

S
0

Y
S

1

S
0

S
1

S
0

S
1

S
0

0

0

0

I3

I3

I3
1

1

S1 S0 Y

0 0 i0

0 1 i1

1 0 i2

1 1 i3
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2-to-1 Multiplexers

A

Thus, input 1 = B is 

selected and passed 

to the output

Select bits = 12 = 110.
1

2

2-to-1 Mux

i0

i1

y

s

B

B

S Y

0 i0

1 I1

• We can design and build muxes with any number of 
inputs (2-to-1, 5-to-1, 16-to-1, etc.)
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Building a 2-to-1 Mux

• To build a mux 
– Decode the select bits and include the corresponding data 

input. 

– Finally OR all the first level outputs together.

1

1

1
0

0

0

0
1

I1 I0
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Building Large Muxes
• When we build large muxes, the number of inputs to the 

gates grows too large to build them directly

• Instead, we will build larger muxes from smaller muxes

• Similar to a tournament of sports teams
– Many teams enter and then are narrowed down to 1 winner

– In each round winners play winners

 

Stage 1

Stage 2

Stage 3
Final output

Railroad Switch Station
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Design an 8-to-1 mux with 2-to-1 
Muxes

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

I1

Y

S

I0

S0 S1 S2

Y

I0

I1

I2

I3

I4

I5

I6

I7

S0

S0

S0

S0

S1

S1

S2
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Cascading Muxes

• Use several small muxes to build large ones

• Rules
1. Arrange the muxes in stages (based on necessary 

number of inputs in 1st stage)

2. Outputs of one stage feed to inputs of the next until 
only 1 final output

3. All muxes in a stage connect to the same group of 
select bits
– Usually, LSB connects to first stage

– MSB connect to last stage
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Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0
4-to-1 mux built 

w/ 2-to-1 muxes

Rule 1: Outputs from stage 1 

connect to inputs of stage 2

Rule 2: LSB S0 connect to all muxes 

in first stage.  MSB S1 connects to all 

muxes in second stage
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Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an 

example:

S1S0 = 01

1 0
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Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

S1

1

1 Y

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an 

example:

S1S0 = 01

1 0

S0 = 1 narrows our 

choices down to D1 

and D3

D1

D3
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Building a 4-to-1 Mux

I1

Y

S

I
0

I1

Y

S

I0

I1

Y

S

I0

Stage 1 Stage 2

0

1

1 D1

D0

D1

D2

D3

S1S0

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Walk through an 

example:

S1S0 = 01

1 0

S1 = 0 selects our final 

choice, D1

D1

D3
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I
1

Y

S

I
0

I1

Y

S

I
0

I1

Y

S

I
0

S1

S0

S0
Y

D0

D1

D2

D3

S1S0

Device vs. System Labels

• When using hierarchy (i.e. building blocks) to design a circuit be 
sure to show both device and system labels
– Device Labels:  Signal names used inside the block 

• Placeholder names the designer/manufacturer of the block uses to indicate which 
input/output is which to the outside user (Names may vary; read the manual)

– System labels: Signal names used outside the block 
• Actual signals from the circuit being built

• Can have the same name as the device label if such a signal name exists at the outside level

Device Labels:  

Indicate which 

input/output is 

which inside 

the bock.

System Labels:  

Actual signals from 

the circuit being built

int div(int i0, int i1)
{ int t = i0/i1;
  return t;  }
int main()
{
  int d0=10, d1=2;
  int s = div(d0,d1);
}

Analogy: Formal and Actual parameters in 

software function calls

1. i0 and i1 are like device labels and 

indicate the names used inside a block.  

2. d0 and d1 are like system labels and 

represent the actual values to be used.
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Exercise

• Sketch how you could build a 16-to-1 mux with 
4-to-1 muxes?  8-to-1 and 2-to1 muxes?



10.40

Exercise

• Create a 3-to-1 mux using 2-to-1 muxes

– Inputs:  I0, I1, I2 and select bits S1,S0

– Output: Y

I1

Y

S

I0

S0

I1

Y

S

I0

S1

I0

I1

I2

Y

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2
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Select-bit Ordering

• If we connect the select bits as shown to build an 8-to-1 mux, 
show how to label the inputs (i0-i7) so that the correct input is 
passed based on the binary value of S2:S0

Selects OUT 

S2 S1 S0 Y 

0 
0 

0 
 

1  

0 
1  

1  

0 
0 

1 
 

1  

0 
1  

1  

 

 

0

1
S

Y

0

1
S

Y

0

1
S

Y

0

1
S

Y

0

1
S

Y

0

1
S

Y

S2

0

1
S

Y

S1 S0

8Y

i0

i4

i2

i6

i1

i5

i3

i7
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Alternate Select Bit Ordering Example

• Given 6 inputs: A-F, design 
a 6-to-1 mux from 4- and 
2-to-1 muxes that uses the 
following select bit 
combinations

S2 S1 S0 Y

0 0 0 A

0 1 0 B

0 1 1 C

1 0 0 D

1 1 0 E

1 1 1 F
Tip 1: Whatever inputs you connect to a 4-to-1 mux, must correspond to 2 

select bits that take on all combinations: 00, 01, 10, 11

Tip 2: For later stages, the select bit you connect must differentiate all 

potential options on 1 input from all the options on another (e.g. S1 

differentiates A,D from B,C,E,F

D0

D1

D2

D3

S1
S0

Y

I1

Y

S

I0

I1

Y

S

I0

A

B

C

D

E

F

Y

A

D

B

C

E

F

S0

S1

S2

S2 S0

S1

S2

S2 S1 S0 Y

0 0 0 A

0 1 0 B

0 1 1 C

1 0 0 D

1 1 0 E

1 1 1 F

S2 S1 S0 Y

0 0 0 A

0 1 0 B

0 1 1 C

1 0 0 D

1 1 0 E

1 1 1 F
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TRI-STATE GATES

Another way to multiplex
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Typical Logic Gate
• Gates can output two values: 0 & 1
– Logic ‘1’ (Vdd = 3V or 5V), or Logic ‘0’ (Vss = GND)

– But they are ALWAYS outputting something!!!

• Analogy: a sink faucet
– 2 possibilities:  Hot (‘1’) or Cold (‘0’)

• In a real circuit, inputs cause EITHER a pathway from 
output to VDD OR VSS

Hot Water = Logic 1

Cold Water = Logic 0

(Strapped together so always one type 

of water coming out)
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Output Connections

• Can we connect the output of two logic gates together?

• No!  Possible short circuit (static, low-resistance pathway 
from Vdd to GND)

• We call this situation “bus contention”
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Tri-State Buffers

• Normal digital gates can output two 
values: 0 & 1

1. Logic 0 = 0 volts

2. Logic 1 = 5 volts

• Tristate buffers can output a third 
value:

3. Z = High-Impedance = "Floating"
(no connection to any voltage 
source…infinite resistance)

• Analogy: a sink faucet
– 3 possibilities:  

1.) Hot water,  
2.) Cold water, 
3.) NO water

Hot Water = Logic 1

Cold Water = Logic 0

NO Water = Z (High-Impedance)
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Tri-State Buffers

• Tri-state buffers have an extra 
enable input

• When disabled, output is said 
to be at high impedance (a.k.a. 
Z)
– High Impedance is equivalent to 

no connection (i.e. floating 
output) or an infinite resistance

– It's like a brick wall between the 
output and any connection to 
source

• When enabled, normal buffer
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Tri-State Buffers

• We use tri-state buffers to share one output 
amongst several sources

• Rule:  Only 1 buffer enabled at a time
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Tri-State Buffers

• We use tri-state buffers to share one output amongst several 
sources

• Rule:  Only 1 buffer enabled at a time
• When 1 buffer enabled, its output overpowers the Z’s (no 

connection) from the other gates
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Enable Polarity
• Side note:  Some tri-states are design to pass the input (be enabled) 

when the enable is 0 (rather than 1)

– A inversion bubble is shown at the enable input to indicate the "low" polarity 
needed to enable the tristate  

In Out = In

Enable=1

En In Out

0 - Z

1 0 0

1 1 1

E

In Out = Z

Enable=0

E

In Out = In

Enable=0

En In Out

1 - Z

0 0 0

0 1 1

E

In Out = Z

Enable=1

E



10.51

Communication Connections

• Multiple entities need to communicate

• We could use 

– Point-to-point connections

– A shared bus (set of wires)

Separate point to point 

connections

Shared Bus
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Bidirectional Bus

• 1 transmitter (otherwise bus contention)

• N receivers

• Each device can send (though 1 at a time) or 
receive

0 1 0 0
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Tri-State Gates
• Advantage: don’t have to know in advance how many devices will 

be connected together
– Tri-State gates give us the option of connecting together the outputs of 

many devices without requiring a circuit to multiplex many signals into one

• Just have to make sure only one is enabled (output active) at any 
one time.
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