Hardware Datapath Components
Lab

N UsCViterbi 2
School of Engineering

Hardware Lab

* We will use combinational and
sequential components to: = T T
— lllustrate what is happening in the +| o l
HW modules integrated on the T o B
Arduino —— | .
— Offload software tasks from the — |®E:
Arduino. T ;::;; |
* In many embedded systems there will Il —=—
be too much processing and control j
for software to keep up with o (|| e
— Illustrate how to save I/O pins by e e s B

using external hardware

i, TS(“Viterbi -

School of Engineering

RGB LED

* You will build your own controllable PWM system to produce
varying intensities of red, green, or blue light from an RGB LED

— While normally we would control all 3 colors at the same time, our

This Photo by
Unknown Author is
licensed under CC
BY-SA

system will produce varying intensities on only 1 color at a time and
leave the other two colors off

+5

rr-————-——---1

1 |

I |

I

I |

1 |

] |

] |

] |

I I‘\IM |

] ' Green
! ——" VW
1 |

I |

1 |

] |

I |

I

1 |

Blue-"'7 T *_ AN Blue

Green

Anode resistor needed for each

Common Separate current limiting
of the three LEDs

The RGB LEDs consist of three separate LEDs in one
package. Each color has a separate cathode (-) lead, and
all the the anode (+) leads are connected together.

https://it.wikipedia.org/wiki/RGB
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

P USCViterbi
Overall System Description

* You will produce various duty cycles (PWM) signals with a
counter and custom logic (NAND gates), then choose the
desired duty cycle with a mux and route it to the R, G, or B
signal of the RGB LED with a demux (decoder)

* Which signal and color are selected is under control of
software and output by a serial (1-bit) data output and clock.

3 PWM

S|gnals N Selected 4’@
Counter clock - A PWM
from Arduino 4-bit > Logic 4-to-1 signal 2-t0-4 > :)
—_— ; > — > -
O binary » circuits T multiplexer decoder
counter |
© mm— . . A A A
b Mux and decoder bits e
L from Arduino J o abit Mux selector bits N ,—| ,—|
o shift e
Shift register clock register A
from Arduino Decoder selector bits | |_| |_| |_

Block diagram of circuit to control 3 LEDs

DEMULTIPLEXERS AND DECODERS

Demuxes = Decoders

A demultiplexer does the opposite job as a mux:
passes the 1 input to the selected output

e |t turns out a demux is EQUIVALENT to a decoder

o\ /D

0
— A Y
1 axa D1 — 2-t0-4 Yo
Mux Y }— —1D 1x4 D d 1
—2 Demux D2p— 5 ecodery,
Y
—3 SO D; }— E 3

NEGATIVE (ACTIVE-LO) LOGIC

i, TS(“Viterbi

Negative (Active-Lo) Logic

Recall it is up to us humans to assign MEANING to the TWO voltage levels
our digital circuits produce and process

School of Engineering

— Thus, far we’ve (unknowingly) used the positive logic convention where:
1 means true and 0 means false

— In negative logic,
0 means true and 1 means false

volts 1=true/on volts 1=false/off
(Value/Meaning) (Value/Meaning)

— —
\

\
/ \ / \
/ \ / \

___|O=false/off|__ ___[O=true/on __

time

time
Positive Logic (Active-Hi)

Negative Logic (Active-Lo)
Convention

Convention

Why Active-low

* Some digital circuits are better at “sinking”
(draining/sucking) electric current than
“sourcing” (producing) current

ﬁctive-hi output

WVdd

GND

+
<
-
m
)

LED is on when
\ gate outputs "1

~

6ctive-low output

Vdd

Vdd

EIEI'III.'!,'.._

J'GI’*\JD

LED is on when
\ gate outputs 0’

~

USCViterbi ¢

School of Engine

Converting Between Active-hi and low

Vdd

?2??
Active-hi convention Avad .
— 1 = on/true/active :T)7
— 0 = off/false/inactive GND
. . Active-high Active-low
Active-low convention (Produces '1' when (Needs '0' to turn
we want to turn the the LED on)

— 0 = on/true/active LED on)

— 1 = off/false/inactive

As shown above, what if | had an active-high output
and wanted to connect it to an active-low input?

To convert between conventions

i, TS(“Viterbi)

When E=0,)
Inputs Is

ignored

When E=1,
Inputs will cause the
appropriate output to

go active

Enables

DO

D1

D2

D3

1 —v
0 —x
0
Enable
1 —v
0 —x

DO

D1

D2

D3

Enable

o O O O
g

o O+ O
g

School of Engineering

Since E=0,
all outputs =0

Since E=1,
outputs will
function normally

Decoder w/ Active Low Enable and Outputs

/DO O—

A
/D1 O—
/D2 OD—

— B
/D3 O—

[E
Enable

Inputs and outputs that
have a "true/false" or
"yes/no" meaning (e.g.
enable or decoder outputs)
are often candidates to be
active-low.

Bubbles and signals
starting with a slash '/'
Indicate an active-low input
or output...not an
Inverter...the inverters are
actually in the logic diagram
on the next pages...

USC Viterbi

School of Engineering

Active-Lo Outputs

kv
SIels]o

When E=inactive (inactive means 0), Outputs turn off (off means 1)

When E=active (active means 1), Selected outputs turn on (on means 0)

School of Engineering

Active-Lo Enable

[l
.

oie]olv

When E=inactive (inactive means 1), Outputs turn off (off means 1)

When E=active (active means 0), Selected outputs turn on (on means 0)

USC Viterbi

* The reset signal might also be active low
(O = Reset, 1 = Normal operations)

* FFs can be made with active low /CLR & /PRE

PRE

D
>clLk
CLR

Q

?

/IRESET
0

IRESET

When /RESET =0,
/CLR is activated
and Qis forcedto O

 Need to be able to initialize Q to a known value (O or

1)
1 IRESET /
D PRE Q L Q* =D When /RESET = 1,
/CLR is inactive and
Q looks at D at each
"'>CLK clock edge
CLR

?

/IRESET
1

COMPONENTS USED

i, TS(“Viterbi

School of Engineering

Mux and Decoder (Demux) Components

74L.S153 Mux 7415139 Decoder/DeMux
Component Component
+5 +5
16 16 2
PWR
. PWR o YOO
BRIGHT b i | 74130 va 02
MID 2 ; 2 en vah®
DIM —" Y — valoZ
=210
1 S1 S0 GND
_;(3 EN 3[4 |8
; S1 S0 GND -
}2 I14 8
—Jo—— /DO O—
Components As — A SO (LSB) o1
Presented in Lecture —1 . Oo—
— 2 : | D2 D—
] —{ B S1 (MSB
3 5150 /D3 D—
/E

g 2-to-4 decoder
4-to-1 mux Enable acting as a demux

i, TS(“Viterbi

School of Engineering

Counter and Shift Register Components

4-bit Counter

CEP/CET =CE

Active-low Load "

and Clear
TC output

— True only when
QD-QA =1111
(i.e. the max
count before it
overflows back
to 0000)

CLK

RST LD CE Q*

0,1

D[3:0]

Q+1

== |7 |=

o|lo|o|=|Xx
C|lo|=|X|X
o= |X|X|X

B4
+5

0 | ceT TcHS

—1d cLr o= L A

20 Lp 74163 cP&— s
CEP apfl—————

GND

I

7415163 Counter
Component

—CE
—{DO QO |—
—{D1 .. Q1|
I 4-bit 02—
—1D3 CNTR Q3—
—{LD

—{RST

— CLK

Component As
Presented in Lecture

PC5
+5

PC3

94

N
9
[
=

(A

CLR Q1
B Q2

DIN Q4

Qo

@ | |

Q3

Qs
Q6
Q7

74164

GND

7

7415164 Shift

—t
s

- | =
L |

|_.;

Register Component

D_IN —

D

CLK

Qo0

Q1

D Q D Q

Q2

D Q
D cik

— Q3

Clock r

-

CLK |—> CLK

Shift Register w/ FF’s

Component As

Presented in Lecture

TASKS

i, TS(“Viterbi -«

School of Engineering

Laying Out your Circuit Board

* You have the 74HCTO0O in your kit. All others can be
collected when you come to lab.

e Layout your chips as we show below to make your
wiring task easier and so our staff can help you more
quickly via common placement.

o000 00000 00000 00000 00000 00000 00000 00000 00000 0CO0O0O0
peooo 00000 0OCOOC 0QOQOOO0O0 0OOO0OOQ 00000 0Q0OOOO0 0OCO0Q 0Q0OQO0O0O0 O0OOO0O0O0
-1 - ° E & 2 3 B 2 2 3 2 3
o Q0000000000 0000000O00000000000000000000000000000000000O0O0O00O000
&) Q0000000000000 00
o 00000000000 000
o CQO0000000000000000000C00
o 0000000000000
o G 00000 QOQO0000Q0
o 00000000000 000
o Q0000000000000 00
o 0000000000000 0000O00000C0O000000000000000000000000000000000000
o Q0000000000000 00
- 2 2 8 8 3 3 g g 3 8 8
HEO oQo000 00000 00000 00000 00000 00000 ©OOO0O0OO0 00000 0QOOOO0
0000 00000 00000 00000 00000 00000 00000 00000 00000

i, TS(“Viterbi (2

School of Engineering

Circuit 1 — Counter Outputs

* Counter can generate all combinations of 4 bits which we can
use as inputs to produce our desired PWM signal(s)

CLK | J__I__,
S O e N O O N B
4-bit Counter output - <0000 ><0001 ><0010 ><0011 >< 0100 ><0101 > ... ><1111 >< 0000>
(QD,QC,QB,QA)

Te /O

Qb QC QB QA [MID | TC
0 0 0 0
S o Y 0 0 0 1
| The BRIGHT signal is always 0. | BRIGHT 0 0 1 0
+|5 :l — !] 0o o0 1 1
‘;WR N 0 1 0 0
PB4 —=2—> CLK Qa 4 > , o 1 o 1
+s —10 CLR aB [> LpgicltoH;rﬁa:thEe MFIJ?BP‘;“I:;H | MID 8 i i ‘1’
| 12 _1signal: Hig = ofthe ————*
—;D 5 eARles e ™ period. | 1 0 0 0
CEP QD - ; 1 0 0 1
10 | ceT I - 15 Jmpapaupppapa . 1 0 1 0
8 : Logic to create the DIM PWM , DIM 1 0 1 1
J_ "\ signal: High 15/16 of the period. | 00
= ') 1 1 0 1
"""""""""" 1 1 1 0
1 1 1 1

_USCViterbi@
Circuit 1 — PWM Generation

,—
| The BRIGHT signal is always 0. | BRIGHT
+5 ! N | -
1Ei| . "
PWR pmmmmmmmm—m e
PB4 —=2—> CLK QA 4 > \
+5 —0 CLR B 13 » Logic to create the MID PWM I MID
i = Hi - | ——
L 95 D 74183 ac 12 > S|gr_1al. High 10/16 = 5/8 of the |
7 11 | period. !
CEP QD - y
10 | ceT TcHE S .
GND , DIM

* We only have 4 2-input NAND gates to
work with (no separate inverters, OR
gates, etc.). DeMorgan's Theorem to the
rescue!

* 1 NAND gate should be used to produce
DIM from TC

* We can produce our MID circuit by
choosing 10 consecutive input
combinations to produce a 1

* But given our limitation of NO separate
inverters and ONLY 4-input NAND gates
we have to choose the 10 combinations
that will produce the least inversions

Logic to create the DIM PWM 1

|
|
1 signal: High 15/16 of the period. !
|

TC

PR R RRLPRERPERPL,RLROOOOOOOO
PP PP OOOORRRLRERLOOOO
PP OORRFROORROORRER OO
PORrRORORORORORORERDO

School of Engineering

:‘:a
:|oa

;
7

E
&

~[]
[
w[]
[
o]
o[|
~[]

Pin diagram for the 74HCTQ0

USC Viterbi

School of Engineering
IrCuUl Nntro
i Sel d
C u O N signals Selcte —(R)
= Logi 4-10-1 signal T
— Eil‘(::?.llit;s muhi;?lexer dzet:uod:r —@
[] L] L]
Wire the remaining
shift
register r
t Decoder selector bits
+5.
R GJZ EgZ
+5
+5
16 16 2400 2400
PWR SR
8liz e 1o YO 4 1.3k02
4 1, 74158 74139 10>
31 Y ——Q3 EN v208
6 7
) Y30~
1
+5 _—JEN S1 S0 GND
|14 S1 S0 GND 3[4 J_ﬂ
PWR 2 |14 Ji L
8 3 ;
PC5 Dok ao y —
s —20cr Qi .
21 Q2 .
Q3 ”
PC3 1 DIN 04?
QSE
74164 QBE
Q7 —
GND

B (S Vierbi
Software Task 1a

3 PWM
signals Selected 4>®
Counter clock > > PWM
PB4 from Arduino 4-bit > Logic 4-to-1 signal 2-t0-4 > :)
[B > - - t
binary » circuits multiplexer decoder
O counter | I
C A A A A
0 mm—
U Mux and decoder bits Qo
from Arduino . Mux selector bits
> 8-bit Q1
- PC3 o shift
Shift register clock registe)2
P C 5 from Arduino Q3 Decoder selector bits

Block diagram of circuit to control 3 LEDs

Bit3/Q3 Bit2/Q2 Bit1/Q1 Bit0/QO0

* Sending bits to the shift register is similar to DATA >®®
ey <o >l <1

your LCD interface

* Output 1 data bit at a time on PC3 (in the
correct order) and then generate your own CLK
"clock" pulse on PC5 which will cause the (PC5) |_| I_l H |_|
shift register to capture the data bit and shift

all the other outputs over by 1 location. QO < 0 >< 1 >< 1 >®®
* Notice we can't change just 1 or 2 bits 1 X 0 1 1 X
without affecting others (since they all shift). Q < >< >< >< >< >

Thus we must always send 4 bits, repeating Q2 < X >< X >< 0 >< 1 >< X >
any bits we don't want to change. 03 < X >< X >< X >< 0 >< X >

B ()5 Vierbi
Software Task 1b

e Actual button interface and display software are written

* You need only write the functions to serially send the 4 mux
and demux (decoder) select bits to the shift register

* You will write
— shiftlbit(uint8 t bit);
* Sends the LSB of bit variable (as data on PC3) and generates a clock pulse on PC5
— shift_load(uint8 t mux, uint8 t demux);
* Sends the 4-bits of mux and demux
Bit3/Q3 Bit2/Q2 Bit1/Q1 Bit0/Q0

select bits assuming the bits to send DATA
poy <0 <ED<OA<IID><X_>

are in the lower 2 bits of each argument.

* Take care to decide the order to send CLK |-| |-| H H
the 4 bits (refer to the schematic and look ~ (PC9

at how the shift register outputs are wired) o9 <o ><Ta ><TT >< x>
01 < x >0 ><T1 ><I1 > x >
Q2 <X X x> o X1 > x >
3 <X XX X x> o > x >

BACKUP

P USCViterbi
Duality and DeMorgan Equivalents

* If we used the active-lo convention, what
would that do to our logic

O = D>
> - 1>
| -

-

School of Engineering

Negative Logic ‘AND’ Function

Traditional
P.L. AND

P.L. P.L.

X — P.L.
y —| AND

R P O o|X
R ok oL
R O O O|N

Traditional AND gate
functionality assumes
positive logic
convention

N.L. AND
function
NLo NL
XJ-O P.L. I 7
YJ'O AND |

L= o
N.L. AN

X Y Z

1 1 1

1 0 1

0 1 1

0 0 0

Given negative logic
signals, we can invert to
positive logic, perform the
AND operation, then
convert back to negative
logic

N.L. AND =
P.L. OR

N.L. N.L.

X
@Z
Y

O oO|X
R O r oL
F F~ ~ O|N

However, we then see that
an OR gate implements the
negative logic ‘AND’
function

USC Viterbi

School of Engineering

Negative Logic ‘OR’ Function

Traditional
P.L.OR

P.L. P.L.

X P.L. 7
Y OR

R P O o|X
R ok oL
2 O|N

Traditional OR gate
functionality assumes
positive logic
convention

N.L. OR
function
N.L. — N.L.
et
|, o1~ Z
Y1 Z="_
N.L. O
X Y Z
1 1 1
1 0 0
0 1 0
0 0 0

Given negative logic
signals, we can invert to
positive logic, perform the
OR operation, then convert
back to negative logic

N.L. OR =
P.L. AND

N.L. N.L.

X— N.L ~
Y — OR

O oO|X
R O r oL
R O o o|N

However, we then see that
an AND gate implements
the negative logic ‘OR’
function

USC Viterbi

	Slide 1: Hardware Datapath Components Lab
	Slide 2: Hardware Lab
	Slide 3: RGB LED
	Slide 4: Overall System Description
	Slide 5: Demultiplexers and Decoders
	Slide 6: Demuxes = Decoders
	Slide 7: Negative (Active-Lo) Logic
	Slide 8: Negative (Active-Lo) Logic
	Slide 9: Why Active-low
	Slide 10: Converting Between Active-hi and low
	Slide 11: Enables
	Slide 12: Decoder w/ Active Low Enable and Outputs
	Slide 13: Active-Lo Outputs
	Slide 14: Active-Lo Enable
	Slide 15: Active Low CLR and PRESET
	Slide 16: Active Low CLR and PRESET
	Slide 17: Components Used
	Slide 18: Mux and Decoder (Demux) Components
	Slide 19: Counter and Shift Register Components
	Slide 20: Tasks
	Slide 21: Laying Out your Circuit Board
	Slide 22: Circuit 1 – Counter Outputs
	Slide 23: Circuit 1 – PWM Generation
	Slide 24: Circuit 2 – LED Control
	Slide 25: Software Task 1a
	Slide 26: Software Task 1b
	Slide 27: Backup
	Slide 28: Duality and DeMorgan Equivalents
	Slide 29: Negative Logic ‘AND’ Function
	Slide 30: Negative Logic ‘OR’ Function

