
1

Hardware Datapath Components
Lab

2

Lab Overview

• This lab will use:

– A new output: An RGB LED that can produce many
different colors when combined with the hardware PWM
of your Arduino

– New inputs: The buttons on your LCD panel and a
potentiometer (dial that creates a variable resistance) that
generates an varying ANALOG voltage as you twist it (i.e. 0,
0.1, 0.2, …, 4.8, 4.9, 5V)

• You will learn how to use the Arduino's built-in Analog-to-Digital
Converter (ADC) to convert these analog voltage to digital
numbers in the range 0-255

– Combinational and sequential logic chips to offload some
processing to hardware (and not software)

3

RGB LED
• You will build your own controllable PWM system to produce

varying combinations of intensities of red, green, or blue light from
an RGB LED
– While normally we would control all 3 colors at the same time, our system

will produce varying intensities on only 1 color at a time but allow you to turn
the other LED's on or off to produce many combinations

This Photo by

Unknown Author is

licensed under CC

BY-SA

https://it.wikipedia.org/wiki/RGB
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

4

Analog Inputs

• Potentiometer is a variable resistor
that chances as you rotate it

• The LCD shield has 5 buttons

• However, they do not produce 5
individual signals like you are used to
from previous labs

• They are configured in such a way
such that they sum together to
produce a single analog voltage
which the shield connects to the A0
input of the Arduino

5 Button Inputs
=> 1 analog

voltage

Uno
A0

5

Hardware/Software Lab

• We will use combinational and
sequential components to:

– Offload software tasks from the
Arduino.

• In many embedded systems there will
be too much processing and control
for software to keep up with

– Illustrate how to save I/O pins by
using external hardware

– Illustrate how the internal Arduino
hardware operates

6

Overall System Description
• You will use a "potentiometer" dial to produce a continuous range of voltages that

you will then digitize to the range 0-255.

• That digitized input will control the duty cycle (on-time) of a PWM signal that your
Arduino will generate.

• Using buttons on the LCD and external hardware, you will then be able to route
(demultiplex) that PWM signal to any of the 3 light segments (R, G, B).

• Using the buttons on the LCD you'll be able to also control whether the other
segments are ON or OFF to produce a variety of colors.

• You'll save pins by using only 2 outputs to control the various selections of light
segments and which color uses the PWM signal.

or

Including

LCD

buttons

7

ANALOG TO DIGITAL CONVERSION

8

Electric Signals

• Information is
represented
electronically as a time-
varying voltage

– Each voltage level may
represent a unique value

– Frequencies may
represent unique values
(e.g. sound)

Sound converted to electronic signal

(voltage vs. time)

9

Electronic Information

• Digital Camera

– CCD’s (Charge-Coupled
Devices) output a
voltage proportional to
the intensity of light
hitting it

– 3 CCD’s filtered for
measuring Red, Green,
and Blue light produce 1
color pixel

More info: http://www.science.ca/scientists/scientistprofile.php?pID=129

http://www.microscopy.fsu.edu/primer/digitalimaging/concepts/ccdanatomy.html

How a CCD (Charge Coupled Device) works. Click to enlarge.

CCD’s

Color Filters

http://images.google.com/imgres?imgurl=http://www.itnewsonline.com/images/news/Motorola-RAZR-V3m-ss.jpg&imgrefurl=http://futuremark.yougamers.com/forum/showthread.php?t%3D12319&h=394&w=364&sz=32&hl=en&start=5&um=1&tbnid=MKUe1pEDnFoiKM:&tbnh=124&tbnw=115&prev=/images?q%3Dmotorola%2Brazor%2Bv3m%26um%3D1%26hl%3Den%26rlz%3D1T4DMUS_enUS211US211%26sa%3DN

10

Signal Types
• Analog signal

– Continuous time signal where each voltage level has a unique meaning

– Most information types are inherently analog

• Digital signal
– Continuous signal where voltage levels are mapped into 2 ranges

meaning 0 or 1

– Possible to convert a single analog signal to a set of digital signals

0

1

0

1

0

v
o

lt
s

v
o

lt
s

time
time

Analog Digital

Threshold

11

Analog to Digital Conversion

• 1 Analog signal can be converted to a set of
digital signals (0’s and 1’s)

• 3 Step Process

– Sample

– Quantize (Measure)

– Digitize

Analog

time

Digital

Analog to

Digital

Converter

volts

time

0

1

0

1

0

1

0

1

0

1

11000

12

Sampling

• Measure (take samples) of the signals voltage at a
regular time interval

• Sampling converts the continuous time scale into
discrete time samples

∆t
Sampled SignalOriginal Analog Signal

13

Quantization
• Voltage scale is divided into a set of finite numbers (e.g. 256

values: 0 – 255)

• Each sample is rounded to the nearest number on the scale

• Quantization converts continuous voltage scale to a discrete
(finite) set of numbers

000

255

177

∆t
Sampled Signal Each sample is quantized

14

Digitization

• The measured number from each sample is
converted to a set of 1’s and 0’s

000

255

177 177 = 10110001

Each sample is quantized Quantized value is converted

to bits

Measurement Scale

Sample

15

Error

• Error is introduced because the discrete time and
quantized samples only approximate the original
analog signal

Original Analog Signal Sampled Signal

16

Sampling Rates and Quantization Levels

• Higher sampling rates and quantization levels
produce more accurate digital representations

∆t

Lower sampling rate and

quantization levels

Higher sampling rate and

more quantization levels

17

Digital Sound

• Lossless / High Quality (aka
CD Quality) Sound

– 44.1 Kilo-samples per second

– 65,536 quantization levels (16-
bits per sample)

– 44.1KSamples * 16-
bits/sample = 705 Kbps

• MP3 files compress that
information to 128Kbps –
320 Kbps

Your parents know

what these are!

18

ADC MODULE

Converting voltages to digital numbers

19

ADC Module
• Your Atmel micro has an

A-to-D Converter (ADC) built
in

• The ADC module can be
used to convert an analog
voltage signal into 10 bit
digital numbers.

• Not fast enough for video or
audio.

• Controlled by a set of six
registers which you must
program appropriately

20

Note

• Microcontroller modules often come with
many adjustable features and settings to make
it useful to a wide variety of applications

• In EE 109 we may not want to use all that
functionality, so we have to enable or disable
those features or alter certain settings

• How do we do this? By setting bits in specific
registers

– The values we program into the registers control
how the hardware works!

21

ADC Registers

• ADC is primarily controlled by two registers
whose bits control various aspects of the ADC

– ADMUX – ADC Multiplexor Selection Register

– ADCSRA – ADC Control and Status Register A

• We will see what these bits means as we
continue through our slides…

7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX3 MUX2 MUX1 MUX0 ADMUX

7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

22

ADC INITIALIZATION PROCESS

Only need to perform once before you start using the ADC

23

ADC Code Organization

• Just like with our
LCD, we will create
separate files for our
ADC software so we
can easily reuse it in
later labs

• We will walk through
how to write each
function

void adc_init()
{
 // Initialization steps

}

uint8_t adc_sample(uint8_t channel)
{
 // Take a sample and

 // return the numeric result
}

adc.c

void adc_init();
uint8_t adc_sample(uint8_t channel);

adc.h

24

ADC Voltage Reference

• The ADC can only measure voltages in the range of Vhi to Vlow
– If the voltage is higher than Vhi it just converts to 1023=0x3ff

– If the voltage is lower than Vlow it just converts to 0

– Voltages between the limits are converted linearly to digital values.

• Samples will be taken either at regular intervals or just when you
tell it to take a sample

Input Voltage

Vhi

Vlow

0x3FF (1023 dec.)

0x000

Vref_Hi = Vdd

Vref_Lo = GND

12-bit ADC

scale

4095 = $FFF

0 = $000
0 0

1500
1900

2273

3999 4095 4095

ADC Sampling CLK

0x1ff = 511

0x3ff =

 1023

915

230

1023
862

Input

voltage
Digitized

number from

ADC

25

ADC Voltage Reference
• The low reference is fixed at

ground = 0V.

• High reference is selectable
– AVCC (connected to VCC)

• Usually the one we want!

– AREF

– Internal 1.1V reference

• Reference selection controlled
by bits in a register

• ADC Init Step 1: Set REF bits to
choose AVCC to give analog
range of 0-5V
– Set ADMUX register bit

• REFS1 to a 0

• REFS0 to a 1 ADMUX Register

REF

S1

REF

S0

AD

LAR

MUX

3

MUX

2

MUX

1

MUX

0

0 0 = AREF

 0 1 = AVCC

 1 1 = Int 1.1V

26

ADC Clock Generation
• Documentation requirement: The ADC

needs a clock in the range 50kHz to
200kHz in order to operate.

• Clock generated for the Arduino's
processor is 16Mhz

• Prescalar (a.k.a. divider) reduces the
clock to a lower frequency by dividing
its frequency

• Divide by 2, 4, 8, 16, 32, 64, or 128

– 𝐴𝐷𝐶 𝐹𝑟𝑒𝑞 =
𝐶𝑃𝑈 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑎𝑟

– If Precalar=64 then ADC Freq = 16MHz /
64 = 250KHz (still too fast)

• ADC Init Step 3: Set prescalar to
128 by turning on (setting) ADPS2,
ADPS1, ADPS0 bits in ADCSRA
register

ADCSRA Register

ADEN ADSC AD

ATE

ADIE AD

PS2

AD

PS1

AD

PS0

ADIF

Prescalar: 2 = 0 0 1

Prescalar: 4 = 0 1 0

 ….

Prescalar: 64 = 1 1 0

Prescalar: 128 = 1 1 1

27

Scale
• Analogy: Some scales give your weight to the nearest

pound (137) while others are accurate to the tenth of
pound (137.6)

– It's nice to have accuracy but for most of us we are
content with the accuracy just at the nearest pound

• Our ADC can provide readings up to 10-bits accuracy
(on a scale from 1023)…

• …but it can also drop the lower 2 bits to provide
readings of 8-bit accuracy (on a scale from 256)

• The question is simply do we need 10-bit accuracy or
is 8-bit accuracy sufficient

• In EE109 we'll always use 8-bit readings

• ADC Init Step 4: Set ADLAR bit to 1 in the ADMUX
register (1 = 8-bit results, 0 = 10-bit results)

1023

836

0

255

209

0Sample
VoltageADMUX Register

REF

S1

REF

S0

AD

LAR

MUX

3

MUX

2

MUX

1

MUX

0

28

Enable the ADC

• The ADC module has an 'enable' bit which
effectively acts as an on/off switch (turn off to
save power)

• ADC Init Step 5: Set ADEN bit to 1

ADCSRA Register

ADEN ADSC AD

ATE

ADIE AD

PS2

AD

PS1

AD

PS0

ADIF

1 = Enable

0 = Disable

29

ADC Register Review

• ADMUX – ADC Multiplexor Selection Register

– REFS - Voltage reference selection (bits 7-6)

• 01 to select AVCC, connected to VCC (+5V) on µC

– ADLAR - Left adjust results (bit 5)

• 0 = "right adjust" for 10-bit result

• 1 = "left adjust" for 8-bit result

– MUX - Input channel selection (bits 3-0)

• Use values 0000 to 0101 to select pins A0 to A5

7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX3 MUX2 MUX1 MUX0 ADMUX

30

ADC Register Review
• ADCSRA – ADC Control and Status Register A

– ADPS - Prescalar selection (bits 2-0)

• Selects the clock divisor used in the prescaler

– ADEN – ADC Enable (bit 7)

• Set to 1 to turn on the ADC (must do)

– ADSC – ADC Start Conversion (bit 6) [More on this in a few slides]

• Set to 1 to start a conversion

• When goes to a zero, conversion is complete

– Other bits for generating interrupts (to be discussed in future labs)

7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

31

ADC SAMPLING PROCESS

Perform each time you want to take a new sample

32

ADC Input Selection
• The ADC has six input

channels/pins that can be
connected to the one built-in
converter

• Only one channel can be
converted at any one time
(i.e. is internally muxed)

• Channel selection controlled
by bits in a register

• ADC Sample Step 0: Set MUX
bits in ADMUX register to
desired channel number
– If we want channel A3, set mux

bits to 0011 ADMUX Register

REF

S1

REF

S0

AD

LAR

MUX

3

MUX

2

MUX

1

MUX

0

Use Pin A0 = 0 0 0 0

Use Pin A1 = 0 0 0 1

 ….

Use Pin A5 = 0 1 0 1

33

Selecting a Channel

• ADC Sampling Step 0: Copy the 4-bit channel
argument to the ADMUX register

ADMUX Register
REF

S1

REF

S0

AD

LAR

MUX

3

MUX

2

MUX

1

MUX

0

Copy channel into MUX bits0

channel argument

? ? ? 0 0 1 1
unsigned char adc_sample(char channel)
{
 // Step 0: copy channel bits into ADMUX

 // Step 1: Start a sample

 // Step 2: Wait for ADC to indicate
 // the sample is ready

 // Step 3: Retrieve and return the sample
}

?

34

Starting a Sample

• The ADC does not continuously sample

• We must tell it when to take a sample by setting
the 'start' bit (ADSC)

• ADC Sampling Step 1: Set the ADSC bit in the
ADCSRA register

• Some time will elapse while the ADC takes the
sample. During this time the ADSC bit will
remain at 1

• When the ADC is done it will AUTOMATICALLY
clear the ADSC bit to 0

• ADC Sampling Step 2

– Need to continuously check whether the ADSC bit
has turned back to 0 (i.e. loop *while* the ADSC
is still a 1)

ADCSRA Register

ADEN ADSC AD

ATE

ADIE AD

PS2

AD

PS1

AD

PS0

ADIF

1 = Start/(ed)

0 = Done

ADCSRA |= ___________;1

ADEN ADSC

1
AD

ATE

ADIE AD

PS2

AD

PS1

AD

PS0

ADIF

ADEN ADSC

1
AD

ATE

ADIE AD

PS2

AD

PS1

AD

PS0

ADIF

while((ADCSRA & ___) != 0)
{}

2
3

…

ADEN ADSC

0
AD

ATE

ADIE AD

PS2

AD

PS1

AD

PS0

ADIF

t

ADMUX Register
REF

S1

REF

S0

AD

LAR

MUX

3

MUX

2

MUX

1

MUX

0

Copy channel into MUX bits0

35

Retrieving a Sample

• [From last slide] Need to continuously check
whether the ADSC bit has turned back to 0
(i.e. loop *while* the ADSC is still a 1)

– Once the loop finishes we know the sample is
ready!

• ADC Sampling Step 3: Read (retrieve) the 8-
bit sample result from the ADCH register

– Just read the value from ADCH
(i.e. unsigned char result = ADCH;) and
then use that value in your application

• You can repeat the process as many times as
you like

– Set the start (ADSC) bit

– Loop until the start (ADSC) bit goes to 0

– Retrieve the sample from ADCH

ADEN ADSC

1
AD

ATE

ADIE AD

PS2

AD

PS1

AD

PS0

ADIF

while((ADCSRA & ___) != 0)
{}

2
3
…

ADEN ADSC

0
AD

ATE

ADIE AD

PS2

AD

PS1

AD

PS0

ADIF

t

ADCH Register

3 2 1 07 6 5 4

8-bit ADC Sample

unsigned char result = ADCH;

36

Named Bit Constants

• In <avr/io.h> there are constants defined for each
bit name and position
– REFS1 = 7, REFS0 = 6, ADLAR = 5, …

– ADEN = 7, ADSC = 6, …

• Using these we can write shift expressions with more
clarity

– ADCSRA |= (1 << ADSC);

– ADMUX &= ~(1 << ADLAR)

REFS0REFS1 unusedADLAR MUX2MUX3 MUX0MUX1
ADMUX

67 45 23 01

ADSCADEN ADIFADATE ADPS2ADIE ADPS0ADPS1
ADCSRA

67 45 23 01

37

ADC SOURCES

38

Potentiometers: Generating Analog Signals

• A potentiometer acts as a slider or knob that can be
set to the desired level or position

– Use your screwdriver to twist the potentiometer

• A potentiometer is like a variable series resistor (i.e.
voltage divider)

39

LCD Shield Buttons

• The LCD shield has 5 buttons

• However, they do not produce 5
individual signals like you are used
to from previous labs

• They are configured in such a way
such that they sum together to
produce a single analog voltage
which the shield connects to the
A0 input of the Arduino

• If the voltage is in certain range we
can infer that a particular button is
being pressed

5 Button Inputs
=> 1 analog

voltage

Uno

A0

40

LCD Shield Buttons

• You can use the Arduino's A-to-D
converter to sense when a button is
pressed

• Each button produces a certain
voltage when pressed and the default
value of 5V when no button is pressed

• The table to the right shows the
nominal voltages and 8-bit ADC result
– Note these are nominal and could be

different so it would be best to just split
the range evenly (e.g. to know the 'Up'
button is pressed check if the 8-bit ADC
results is between 26 and 77)

Button Volts
(V)

Avg.
8-bit
Value

Right 0 V 0

Up 1.0 V 52

Down 2.0 V 104

Left

Select

None

41

DEMULTIPLEXERS AND DECODERS

42

Recalling Our Circuit

or

Including

LCD

buttons

43

Demuxes = Decoders

• A demultiplexer does the opposite job as a mux:
passes the 1 input to the selected output

• It turns out a demux is EQUIVALENT to a decoder

1 x 4

Demux

D0

S1 S0

D1

D2

D3

D

0

1

2

3

Y

4 x 1
Mux

S1
S0

2-to-4

Decoder

Y0

E

Y1

Y2

Y3

A

B

44

NEGATIVE (ACTIVE-LO) LOGIC

45

Negative (Active-Lo) Logic
• Recall it is up to us humans to assign MEANING to the TWO voltage levels

our digital circuits produce and process

– Thus, far we’ve (unknowingly) used the positive logic convention where:
1 means true and 0 means false

– In negative logic,
0 means true and 1 means false

volts

time

1=true/on

0=false/off

volts

time

1=false/off

0=true/on

Negative Logic (Active-Lo)

Convention

Positive Logic (Active-Hi)

Convention

(Value/Meaning) (Value/Meaning)

46

Why Active-low

• Some digital circuits are better at “sinking”
(draining/sucking) electric current than
“sourcing” (producing) current

Active-hi output Active-low output

LED is on when

gate outputs '1'

LED is on when

gate outputs '0'

47

Converting Between Active-hi and low

• Active-hi convention

– 1 = on/true/active

– 0 = off/false/inactive

• Active-low convention

– 0 = on/true/active

– 1 = off/false/inactive

• As shown above, what if I had an active-high output
and wanted to connect it to an active-low input?

• To convert between conventions

– _______________

Active-high

(Produces '1' when

we want to turn the

LED on)

Active-low

(Needs '0' to turn

the LED on)

???

48

Enables

1

0

0

0

0

0

Y

X

D0

D1

D2

D3
E

Enable

0

When E=0,

inputs is

ignored

1

0

0

1

0

0

Y

X

D0

D1

D2

D3
E

Enable

1

Since E=1,

outputs will

function normally

Since E=0,

all outputs = 0

When E=1,

inputs will cause the

appropriate output to

go active

49

Decoder w/ Active Low Enable and Outputs

A

B

/D0

/D1

/D2

/D3
/E

Enable

Inputs and outputs that

have a "true/false" or

"yes/no" meaning (e.g.

enable or decoder outputs)

are often candidates to be

active-low.

Bubbles and signals

starting with a slash '/'

indicate an active-low input

or output…not an

inverter…the inverters are

actually in the logic diagram

on the next pages…

50

Active-Lo Outputs

When E=inactive (inactive means 0), Outputs turn off (off means 1)

When E=active (active means 1), Selected outputs turn on (on means 0)

51

Active-Lo Enable

When E=inactive (inactive means 1), Outputs turn off (off means 1)

When E=active (active means 0), Selected outputs turn on (on means 0)

52

COMPONENTS USED

53

A

B

/D0

/D1

/D2

/D3
/E

Enable

Decoder (Demux) Component

S1 (MSB)

S0 (LSB)

74LS139 Decoder/DeMux

Component

2-to-4 decoder

acting as a demux

Components As

Presented in Lecture

54

Counter and Shift Register Components

D Q D Q

CLK

D QD_IN

Clock

CLK CLK

D Q

CLK

Q3

Shift Register w/ FF’s

Q0 Q1 Q2

74LS164 Shift

Register Component

Component As

Presented in Lecture

55

TASKS

56

Laying Out your Circuit Board

• You have the 74HCT00 (NAND gates) and 74HCT04 (inverters)
in your kit. All others can be collected when you come to lab.

• Layout your chips as we show below to make your wiring task
easier and so our staff can help you more quickly via common
placement.

57

LED Control Circuit

• Wire the remaining
components

58

Software Task 1a
A

rd
u

in
o

PC3

PC5

PB4

Q0
Q1
Q2
Q3

Q4

• Sending bits to the shift register is similar to
your LCD interface

• Output 1 data bit at a time on PC3 (in the
correct order) and then generate your own
"clock" pulse on PC5 which will cause the
shift register to capture the data bit and shift
all the other outputs over by 1 location.

• Notice we can't change just 1 or 2 bits
without affecting others (since they all shift).
Thus, we must always send 4 bits, repeating
any bits we don't want to change.

DATA

(PC3)

CLK

(PC5)

Bit4/Q4 Bit3/Q3 Bit2/Q2 Bit1/Q1

0 1 1 0 X

Q0

0 1 1 0 X

X 0 1 1 X

Q1

X 0 1 X

Q2

X

X 0 X

Q3

X X

Bit0/Q0

0

Bit4/Q4

0

X

X

X

Bit3/Q3 Bit2/Q2 Bit1/Q1

1 1 0

Bit0/Q0

0 X

XQ4

59

Software Task 1b

• Actual button interface and display software are written

• You need only write the functions to serially send the 4 mux
and demux (decoder) select bits to the shift register

• You will write
– shift1bit(uint8_t bit);

• Sends the LSB of bit variable (as data on PC3) and generates a clock pulse on PC5

– void shift_load(uint8_t demux, uint8_t r, uint8_t g, uint8_t b);

• Call shift1bit() multiple times to send all the 5-bits;
The demux's select bits are assumed to be
in the lower 2 bits of the argument, while
each of r, g, and b have the desired value
in the LSB of the byte.

• Take care to decide the order to send
the 5 bits (refer to the schematic and look
at how the shift register outputs are wired)

DATA

(PC3)

CLK

(PC5)

Bit4/Q4 Bit3/Q3 Bit2/Q2 Bit1/Q1

0 1 1 0 X

Q0

0 1 1 0 X

X 0 1 1 X

Q1

X 0 1 X

Q2

X

X 0 X

Q3

X X

Bit0/Q0

0

Bit4/Q4

0

X

X

X

Bit3/Q3 Bit2/Q2 Bit1/Q1

1 1 0

Bit0/Q0

0 X

XQ4

	Slide 1: Hardware Datapath Components Lab
	Slide 2: Lab Overview
	Slide 3: RGB LED
	Slide 4: Analog Inputs
	Slide 5: Hardware/Software Lab
	Slide 6: Overall System Description
	Slide 7: Analog to Digital Conversion
	Slide 8: Electric Signals
	Slide 9: Electronic Information
	Slide 10: Signal Types
	Slide 11: Analog to Digital Conversion
	Slide 12: Sampling
	Slide 13: Quantization
	Slide 14: Digitization
	Slide 15: Error
	Slide 16: Sampling Rates and Quantization Levels
	Slide 17: Digital Sound
	Slide 18: ADC Module
	Slide 19: ADC Module
	Slide 20: Note
	Slide 21: ADC Registers
	Slide 22: ADC Initialization Process
	Slide 23: ADC Code Organization
	Slide 24: ADC Voltage Reference
	Slide 25: ADC Voltage Reference
	Slide 26: ADC Clock Generation
	Slide 27: Scale
	Slide 28: Enable the ADC
	Slide 29: ADC Register Review
	Slide 30: ADC Register Review
	Slide 31: ADC SAMPLING Process
	Slide 32: ADC Input Selection
	Slide 33: Selecting a Channel
	Slide 34: Starting a Sample
	Slide 35: Retrieving a Sample
	Slide 36: Named Bit Constants
	Slide 37: ADC Sources
	Slide 38: Potentiometers: Generating Analog Signals
	Slide 39: LCD Shield Buttons
	Slide 40: LCD Shield Buttons
	Slide 41: Demultiplexers and Decoders
	Slide 42: Recalling Our Circuit
	Slide 43: Demuxes = Decoders
	Slide 44: Negative (Active-Lo) Logic
	Slide 45: Negative (Active-Lo) Logic
	Slide 46: Why Active-low
	Slide 47: Converting Between Active-hi and low
	Slide 48: Enables
	Slide 49: Decoder w/ Active Low Enable and Outputs
	Slide 50: Active-Lo Outputs
	Slide 51: Active-Lo Enable
	Slide 52: Components Used
	Slide 53: Decoder (Demux) Component
	Slide 54: Counter and Shift Register Components
	Slide 55: Tasks
	Slide 56: Laying Out your Circuit Board
	Slide 57: LED Control Circuit
	Slide 58: Software Task 1a
	Slide 59: Software Task 1b

