
EE 109 Unit E – Pulse Width Modulation

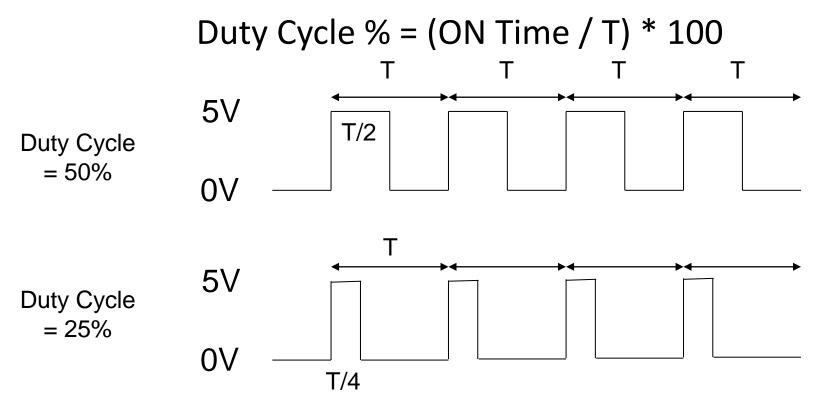
Power

- Recall (or learn) that Power is a measure of:
 - Energy per unit time
- In an electronic circuit, P = I * V
 - Power = Current & Voltage (each may be varying w/ time)
- A circuit that draws a constant 2 mA of current at a constant 5V would consume 10 mW
- Since voltage and current may change rapidly, it is often helpful to calculate the average power

$$P = \frac{1}{T} \int_0^T P(t) dt$$

• Just sum the total power and divide by the total time

Average Power = (1*5*.8)/2 = 2W

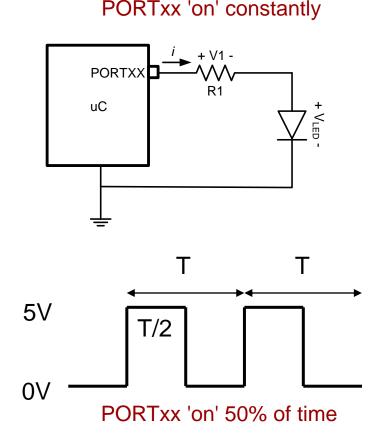

School of Engineering

E.2

Duty Cycle

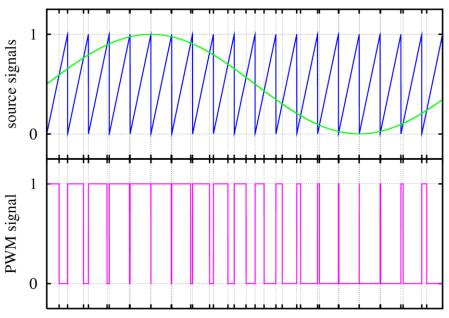
E.3

- A pulse is just a short window of time when a signal is 'on'
- We could repeat the pulse at some regular period, T
- We define the duty cycle as


Power & Duty Cycle

5V

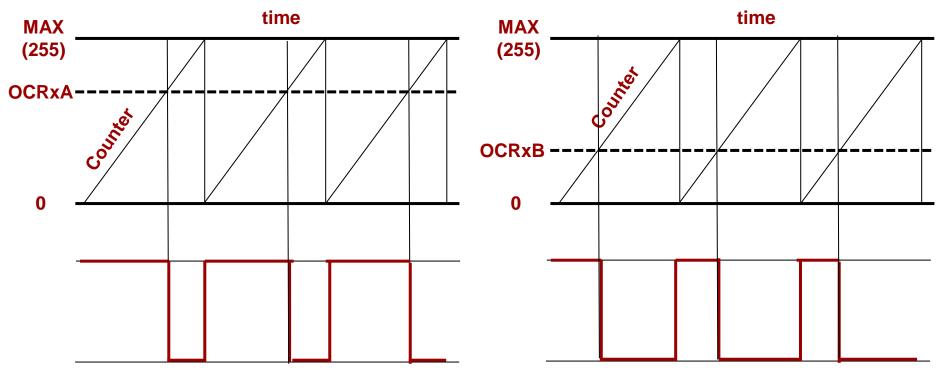
0V


- When we light up an LED we often just turn a PORTxx output 'on' and leave it 'on'
 - This supplies the maximum power possible to the LED
- We could pulse the output at some duty cycle (say 50%) at a fast rate
 - Fast so that the human eye can't detect it flashing
 - Average power would be ½ the original always 'on' power
 - Result would be a 'dimmer' LED glow

E.4

PWM

- Modulation refers to changing a value based on some signal (i.e. changing one signal based on another)
- Pulse width modulation refers to modifying the width of a pulse based on another signal
- It can be used to transform one signal into another
 - Example below of sine wave represented as pulses w/ different widths
- Or it can just be used to alter average power as in the last activity


E.5

Implementing PWM

- Can use delays or timers to make your own pulse signals
- Most microcontrollers have hardware to automatically generate PWM signals based on the contents of some control registers
- Many microcontrollers use the Timers to also serve as PWM signals
 - Recall the timer module gave us a counter that would increment until it hit some 'modulus' (MAX) count which would cause it to restart and also generate an interrupt

Using Timers for PWM

- For PWM we can use that counter to just count 0 to some MAX count making the:
 - PWM output = '1' while the count < threshold (OCRxx) and</p>
 - PWM output = '0' when the count >= threshold (OCRxx)

PWM Output 2

E.7

PWM Control Registers

School of Engineering

- The Arduino has 3 timers that can be used for PWM:
 - Two 8-bit times: Timer/Counter0 and Timer/Counter2
 - One 16-bit time: Timer/Counter1
- Refer to the timer register definitions on the next slides
 - Set WGM0[2:0] bits for Fast PWM mode as opposed to CTC
- Timer/Counter 0 and 2 can produce two PWM outputs on Arduino pins D5, D6, each with its own threshold value. Timer/Counter so you need to pick which one you want to use
 - Bits COM0A[1:0] and threshold register OCR0A control PWM output on PD6
 - Bits COM0B[1:0] and threshold register OCR0B control PWM output on PD5
 - Bits COM2A[1:0] and threshold register OCR2A control PWM output on PB3
 - Bits COM2B[1:0] and threshold register OCR2B control PWM output on PD3

See datasheet, textbook or other documentation for further explanation

8-bit PWM Control Registers

- Set WGM bits for PWM mode [usually Fast PWM mode] as opposed to CTC
- Pick COMxy[1:0] for desired waveform
 - X = 0 or 2 (for timer 0 or 2)
 - Y = A or B
- Still need to pick a prescaler to slow down the clock
- Set OCRxA or OCRxB to the desired threshold which will effectively control the duty cycle of the PWM output

CSx [2:0]	Prescaler	COMxy[1], COMxy[0]	Output Compare pin (assume WGMx2=0)
010	Clk / 8	00	Don't use Pin
011	Clk / 64	01	Don't use Pin
100	Clk / 256	10	Set Pin on CTR=0x00, Clear pin on match=OCR?
101	Clk / 1024	11	Clear Pin on CTR=0x00, Set pin on match=OCR?

COM0 A1	COM0 A0	COM0 B1	COM0 B0	-	-	WGM 01	WGM 00

TCCR0A Reg. (TCCR2A) Timer/Counter0 Control Register

FOC 0A	FOC 0B	-	-	WGM 02	CS02	CS01	CS00
-----------	-----------	---	---	-----------	------	------	------

TCCR0B Reg. (TCCR2B) Timer/Counter0 Control Register

WGMx1 <i>,</i> WGMx0	WGMx2=0	WGMx2=1
00	Normal (Counter)	Unused
01	Phase Correct PWM	Phase Correct PWM (Top=OCR0A)
10	CTC (Timer)	Unused
11	Fast PWM (Top=255, Thresh=OCRx)	Fast PWM (Top=OCR0A, Thresh = OCRB)