
MARS (MIPS Assembler/Simulator) Tutorial

1. Download MARS
1.1) Download MARS from:

http://courses.missouristate.edu/KenVollmar/MARS/download.htm .

1.2) Start the MARS simulator by double clicking on the .jar file. MARS requires

Java J2SE 1.4.2 (or later) SDK installed on your computer

(http://java.sun.com/javase/downloads/index.jsp)

1.3) MARS is a full featured MIPS assembly IDE, with a built-in editor where you

can enter your assembly programs and assemble them along with a simulator that

will run your MIPS assembly programs and allow you to debug them.

2. Input the Tutorial program
2.1) Open the MARS program and click from the file menu choose “File…New”. A

black document will open which you can enter your assembly code into. Click

“File…Save As” and save the file as “tutorial01.asm”.

2.2) Enter the code as shown below into the editor and save the file.

#---

Program File: tutorial01.asm

Written by: Nate Houk

Date Created: 1/22/08

Description: Tutorial program to introduce MARS simulator

including: breakpoints, single-stepping,

and register and memory windows.

#---

#-----------------------

Declare some constants

#-----------------------

 .data

string1: .asciiz "Welcome to EE 109\n"

string2: .asciiz "Assembly language is fun!\n"

string3: .asciiz "\nLoop #"

#------------------

Main program body

#------------------

.text

main:

li $v0, 4

la $a0, string1

syscall

la $a0, string2

syscall

li $t0, 1

loop:

li $v0, 4

la $a0, string3

syscall

li $v0, 1

move $a0, $t0

syscall

addi $t0, $t0, 1

bne $t0, 4, loop

#-----

Halt

#-----

li $v0, 10

syscall

http://courses.missouristate.edu/KenVollmar/MARS/download.htm

Figure 1 – MARS Editor

2.3) From the menu, choose “Run…Assemble”. The “Mars Messages” window at the

bottom of the screen will indicate if any errors occurred. No errors should occur.

Figure 2 – MARS Simulator after Successful Assembly

3. Simulate the tutorial program
3.1) From the menu, choose “Run…Go” to execute the program. The program will

execute displaying two lines of text and three iterations of a loop to the Run /IO

window.

Figure 3 - MARS Simulator

3.2) The buttons at the top of the window can be used as shortcuts for the run menu.

Use the “Reset” button to reset the program, and then try tracing through the

program by clicking the step button.

3.3) You can adjust the speed the program runs by moving the slider to the right of

the buttons. If you have an infinite loop in your program, it may be necessary to

adjust (slow down) the speed of the simulator to prevent the MARS program

from crashing.

Run the program. If a breakpoint has been set the

program will stop at the next breakpoint.

Trace (Step) Into. Executes a single instruction. If the

instruction is a procedure call (jal) the simulator will

stop at the first instruction of the procedure.

Backstep. Undo the last step taken in the code.

Table 1 - Simulator Toolbar Commands

4. Using the Debugging Tools
4.1) When a program does not work as expected you will need to use the debugging

tools provided with the simulator.

4.2) One of the primary tools used to debug a program is setting a breakpoint. You

can break before execution of an instruction by clicking on the checkbox

associated with each instruction on the far left of the execute window. Set a

breakpoint at the instruction: addi $t0,$t0,1

Figure 3 - MARS Breakpoints

4.3) Run the program until the breakpoint by clicking “Run”. At this point in the

program only the first loop iteration has been printed. (You will need to click

back to the Run/IO window to see the output.)

4.4) Now use the “Trace Into” button to step through the loop that prints out the next

line of text one character at a time. Step through the instructions until “Loop #2”

is printed to the output window. Stop and find the value of the registers “t0” and

Pause the currently running program. Press the run

button to continue execution.

Stop the currently running program. You will need to

reset the simulator to execute the program again after

stopping it.

Reset. Resets the simulator, reinitializing the registers,

program counter, and memory.

Adjusts the speed that the simulator runs at.

“pc” at that point? Has the line of code that the program counter points to

executed yet?

4.5) The simulator also allows you to view the memory contents. The memory

window appears in the middle of the screen and is titled “Data Segment”.

Remove the earlier breakpoint and add a breakpoint to line 33, “syscall”. Click

the run button so that the program executes up until the new breakpoint. We are

now in the code right before “Loop #” is about to be printed for the third

iteration. Notice that the $a0 register is now a pointer to the address where the

“Loop #” text is stored. What is the memory location the register is pointing to?

4.6) Now look in the data segment area, and find the address $a0 points to. This is the

memory section where the characters of the text “Loop #” is stored. Using an

ASCII table find the address where the ‘p’ in “Loop” is located?

4.7) Exercise: Can you find where the word “Welcome” is stored in the memory?

Figure 4 - Memory Window

American Standard Code for Information Interchange (ASCII)

 0b6b5b4

b3b2b1b0 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

0x0 NUL DLE SP 0 @ P ` p

0x1 SOH DC1 ! 1 A Q a q

0x2 STX DC2 “ 2 B R b r

0x3 ETX DC3 # 3 C S c s

0x4 EOT DC4 $ 4 D T d t

0x5 ENQ NAK % 5 E U e u

0x6 ACK SYN & 6 F V f v

0x7 BEL ETB ‘ 7 G W g w

0x8 BS CAN (8 H X h x

0x9 HT EM) 9 I Y i y

0xA LF SUB * : J Z j z

0xB VT ESC + ; K [k {

0xC FF FS ‘ < L \ l |

0xD CR GS - = M] m }

0xE SO RS . > N ^ n ~

0xF SI US / ? O - o DEL

