Syllabus for EE 109L – Fall 2018

General Information

Lectures: Section 31395 (Weber): VHE 205, 9:30-10:50 TTh
Section 31009 (Redekopp): GFS 118, 11:00-12:20 TTh
Section 30776 (Weber): VHE 205, 12:30-1:50 TTh
Section 31291 (Annavaram): VHE 205, 2:00-3:20 TTh

Labs: Section 30745: VHE 205, 12:30-1:50 W
Section 31292: VHE 205, 2:00-3:20 W
Section 31396: VHE 205, 3:30-4:50 W
Section 30744: VHE 205, 12:30-1:50 F
Section 31007: VHE 205, 2:00-3:20 F

Quiz: Section 30997: 7:00-8:50 PM W

Instructors: Prof. Murali Annavaram
Email: annavara@usc.edu
Office: EEB 232
Office Phone: 213-740-3299
Office Hours: TBD M: 11-12, 1-2:30, Tu: 1-1:45, M: 10-12, W: 11-12, F: 2-3:30

Prof. Mark Redekopp
Email: redekopp@usc.edu
Office: EEB 222
Office Phone: 213-740-6006
Office Hours: M: 11-12, 1-2:30, Tu: 1-1:45, M: 10-12, W: 11-12, F: 2-3:30

Dr. Allan Weber
Email: weber@sipi.usc.edu
Office: EEB 410
Office Phone: 213-740-4147
Office Hours: Th: 3:30-4:30

Class web site: http://bytes.usc.edu/ee109

Overview and Objectives

This course introduces students to the fundamental concepts of computer systems and computer engineering using embedded systems as a vehicle. Concepts include information representations, embedded C language constructs, state machines, and fundamental circuit analysis. Specific embedded topics will include digital I/O, serial I/O protocols, analog-to-digital conversion and interrupt mechanisms. A lecture/lab course format will be employed to provide hands-on experience and active learning techniques. Upon completion of this course students will be able to:

1. Understand how digital systems represent information
2. Understand the execution model of a modern computer system
3. Design and implement combinational logic circuits
4. Design and implement sequential logic circuits and FSMs
5. Utilize a microcontroller to sense and activate digital signals
6. Utilize a microcontroller to perform analog-to-digital and digital-to-analog conversion
7. Use state machines as a system design tool
8. Write interrupt-driven and timer-driven programs
9. Design a non-trivial embedded project
Prerequisites and Corequisites

All students must either have taken or be concurrently taking a C/C++ programming course like EE 155, CSCI 103 or ITP 165, or be proficient in one of these programming languages before taking EE 109.

Course Material

Each student will be required to have an Arduino Uno (Rev. 3) microcontroller development board for use in doing the lab assignments. These will be available for purchase for $25 during one of the lab sessions or can be obtained from other sources. Students will be provided with a project box of tools and electronic components that will be used throughout the semester for lab exercises. The project boxes and all tools and components that have been borrowed must be returned at the end of the semester.

Format of Class

We will use a lecture/lab format to create a classroom environment where the instructor facilitates active student participation in their own learning process. Students are expected to set their own learning goals (i.e., be curious) and then actively pursue those goals both in and out of the classroom through personal study, programming, and in-class activities. Simply showing up to class is not enough; come to class ready to think, ask questions, and work with your fellow students. Small in-class and out-of-class activities (both individual and group-based) will be provided to help facilitate achievement of learning goals. Students are expected to bring their laptop and their project boxes to each lecture and lab so we can do hands-on experiments at any time.

Collaboration Web Site

The class will be using the Piazza collaboration web site to facilitate communication between students and between students and the instructors. All students will receive an email shortly after the start of semester with a link for enrolling in the class Piazza page. Students are encouraged to use Piazza for class-related communication with the instructors. Posting to the Piazza site is preferred over email for discussion topics since you have the option of allowing other members of the class to join in the conversation.

Lab Assignments

There will be approximately ten lab assignments. Lab assignments are larger, more comprehensive, assignments that should challenge you to integrate hardware and software concepts. Some may involve designing and building circuits, other may be software exercises using a simulator. Labs are assigned during the Wednesday and Friday lab sessions and are due one week later on the following Wednesday or Friday. By the due date you must demonstrate its functionality to one of the instructors or teaching assistants. The teaching assistants hold office hours in the VHE 205 classroom and are available to help you with the assignment whenever they are there. A schedule of TA hours is posted on the class web site and in the classroom. If you wait to demonstrate your assignment until your scheduled lab section on the due date, you can only demonstrate the lab assignment. Assistance with the assignment will not be given in the lab section on the due date. Material that must be turned in (write-ups and/or program source code) must be submitted online by midnight Friday of the week the assignment is due.

Lab assignments are to be completed individually unless otherwise noted (a few group assignments may be scattered throughout the semester.) Students are expected to write their own software
for all assignments. Copying (and then modification) of any portion of code from Internet sources or fellow
students is prohibited unless cleared with the instructor. See the Statement on Academic Conduct (Page 5.)

Homeworks

There will be a few written homeworks throughout the semester. Assignments will be made available on the
course web site and are due one week after it is made available unless indicated otherwise by the instructor.
The instructor will decide if the homeworks are to be submitted via Blackboard or hard-copy.

Show how you solved the problem on all non-trivial problems. Homework should be done in a neat and
orderly fashion that is easy for the grader to understand. The grader is not obligated to spend time trying to
decipher your handwriting or search for your answers. Solutions to the homework problems will be available
on the class web site within a couple of days after the due date.

Exams

There will be a midterm and final exam. The date of the midterm is shown on the attached schedule but may
be moved to a different date. The midterm will be held during the Quiz section (Wednesdays, 7:00 to 8:50
PM). The final exam will be held on the date and time specified by the University for our class (Saturday,
December 8th, 2:00-4:00 p.m.).

The exams may also be moved to a different classroom. Always check with the instructor as the listed
exam date approaches to confirm the date and time. The exam dates will be announced in class and on the
web site. You are responsible for finding out when and where the exams will be held. Makeup exams will
be given if you have a valid excuse (e.g. serious illness or accident, urgent trip, but proof will be required).

Project

During the last three or four weeks of the semester students will work on a project selected by the instructor.
The project will incorporate several of the hardware and software concepts covered in the preceding weeks.
The deadline for having the project evaluated by the instructors is Friday, November 30th. All source
code must be submitted by 11:59 PM, Wednesday, December 5th.

Projects will be evaluated not just on whether or not it works, but to a large extent on the quality of
the hardware and software incorporated in it. A project that appears to have been designed and built by a
professional engineer will get higher marks than one that looks like it was thrown together over a weekend
with little concern for professional standards.

Grades

The following point structure will be used in determining the grade for the course. Final grade will be based
upon the total points received, the highest total in the class, and the average of the class.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>10%</td>
</tr>
<tr>
<td>Labs</td>
<td>30%</td>
</tr>
<tr>
<td>Project</td>
<td>10%</td>
</tr>
<tr>
<td>Quiz</td>
<td>5%</td>
</tr>
<tr>
<td>Midterm</td>
<td>20%</td>
</tr>
<tr>
<td>Final</td>
<td>25%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

EE 109L, Rev. 8/16/18
<table>
<thead>
<tr>
<th>Week</th>
<th>Tuesday</th>
<th>Lab</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 8/20 - 8/24</td>
<td>Orientation, embedded systems, computer organization</td>
<td>Linux tutorial, software installation</td>
<td>Basic circuit analysis (voltage, current, Ohm’s law)</td>
</tr>
<tr>
<td>2 8/27 - 8/31</td>
<td>Circuits (LED, switches), digital circuits, transistors</td>
<td>Exploration of KVL/KCL/Ohm’s laws</td>
<td>Digital logic, combinational and sequential circuits</td>
</tr>
<tr>
<td>3 9/3 - 9/7</td>
<td>Number systems, binary, hexadecimal, character codes</td>
<td>Oscilloscopes, combinational gate network, delays</td>
<td>Single variable Boolean algebra, microcontroller 1 (bitwise operations)</td>
</tr>
<tr>
<td>4 9/10 - 9/14</td>
<td>Microcontroller 2 (digital I/O)</td>
<td>Digital I/O lab with Arduinos</td>
<td>Microcontroller 3 (advanced bit fiddling), state machines</td>
</tr>
<tr>
<td>5 9/17 - 9/21</td>
<td>LCDs and parallel interfaces</td>
<td>LCDs</td>
<td>Combinational logic design 1 (decoders and muxes)</td>
</tr>
<tr>
<td>6 9/24 - 9/28</td>
<td>Combinational logic design 2 (minterms, canonical sums)</td>
<td>State machines</td>
<td>Quiz</td>
</tr>
<tr>
<td>7 10/1 - 10/5</td>
<td>Combinational logic design 4 (Karnaugh maps)</td>
<td>ADCs</td>
<td>Combinational logic design 5 (K-maps and memories)</td>
</tr>
<tr>
<td>8 10/8 - 10/12</td>
<td>Binary systems (signed), arithmetic</td>
<td>Midterm</td>
<td>Combinational logic design 6 (adders)</td>
</tr>
<tr>
<td>9 10/15 - 10/19</td>
<td>Interrupts</td>
<td>Interrupts</td>
<td>Sequential logic 1 (latches, FFs and registers)</td>
</tr>
<tr>
<td>10 10/22 - 10/26</td>
<td>Sequential logic 2 (presets/clears, counters)</td>
<td>Timers</td>
<td>Hardware state machines 1</td>
</tr>
<tr>
<td>11 10/29 - 11/2</td>
<td>Hardware state machines 2</td>
<td>Serial communications</td>
<td>Computer organization 1 (ALUs, registers, instruction cycle)</td>
</tr>
<tr>
<td>12 11/5 - 11/9</td>
<td>Computer organization 2 (instruction sets, assembly language)</td>
<td>Project</td>
<td>Performance (caching, pipelining)</td>
</tr>
<tr>
<td>13 11/12 - 11/16</td>
<td>Memory, FPGAs</td>
<td>Project</td>
<td>Interfacing (voltage and current capabilities)</td>
</tr>
<tr>
<td>14 11/19 - 11/23</td>
<td>Embedded failures</td>
<td>Holiday</td>
<td>Holiday</td>
</tr>
<tr>
<td>15 11/26 - 11/30</td>
<td>Hardware accelerators</td>
<td>Project</td>
<td>Review (Project due on Friday)</td>
</tr>
</tbody>
</table>
Policies

Withdrawals

Last day to withdraw from the course without a mark of W is October 5, 2018. Last day to withdraw from the course with a mark of W is November 9, 2018. An incomplete grade can only be assigned if there is a verifiable cause after the 12th week of the semester that prevented you from completing either the final exam or the class project and is acceptable to the instructor, the department and the University.

Academic Conduct

Plagiarism - presenting someone else's ideas as your own, either verbatim or recast in your own words - is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards (https://policy.usc.edu/student/scampus/). Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct (http://policy.usc.edu/scientific-misconduct/).

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity (http://equity.usc.edu) or to the Department of Public Safety (http://dps.usc.edu). This is important for the safety whole USC community. Another member of the university community - such as a friend, classmate, advisor, or faculty member - can help initiate the report, or can initiate the report on behalf of another person. Relationship and Sexual Violence Prevention and Services (https://engemannshc.usc.edu/rsvp/) provides 24/7 confidential support, and the sexual assault resource center webpage (sarc@usc.edu) describes reporting options and other resources.

Support Systems

A number of USC’s schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute (http://ali.usc.edu/), which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs (http://dsp.usc.edu/) provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information (http://emergency.usc.edu/) will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.