I — ISCViterbi o

School of Engineering

CSCl 104
Log Structured Merge Trees

CSCI 104 Teaching Team

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I — ISCViterbi -

School of Engineering

Series Summation Review

e letn=1+2+4+ .. +2x=YF 2! Whatisn?

—Nn= 2k+1_1

* What is log,(1) + log,(2) + log,(4) + log,(8)+...+ log,(2¥)

= O + 1 + 2 + 3-|-." + k = Z{C_O l Geometric series
= R
- O(kz) Zi:lC B c—1

=6(c")

Arithmetic series:

Z” - nn+ 1) — 6(n?)
i=1 2

* So then what if k = log(n) as in:
log,(1) + log,(2) + log,(4) + log,(8)+...+ log,(2'°&)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00001 USCVlterb1®
Merge Two Sorted Lists

* Consider the problem of merging
two n/2 size sorted lists into a new

0 1 2 3
combined sorted list 6 8| '['i"s‘;tss
 Can be done in O(n) 0123 Merged
Result
r1 r2 r1 r2 r1 r2 r1 r2 r1 r2
Voo Voo Voo Voo Voo
0 1 2 3 0 1 2 3 0o 1 2 3 0o 1 2 3 0o 1 2 3
6 8 6 8 6 8 6 8 6 8
w w w w w
v v v v v
01 2 3 01 2 3 01 2 3 01 2 3 01 2 3
[] 3 6 3 6 70

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

—()5 Viterbi
Merge Trees Overview

An array at list

* Consider a list of (pointers — wcsoniccanveor

size 2k or empty

to) arrays with the o v N2 s

NULL

A 4
A 4
A 4

»
>

A 4

following constraints Lo é Lo
— Each array is sorted though : . z
no ordering constraints - °° _
exist between arrays = ’ 9
— The array at list index k is == ’
of exactly size 2k or empty o Tese are /

(or key,value pairs
for a map)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

P (S C Viterbi
Merge Trees Size

An array at list

s DEflne location k can be of
. . ize 2k t
— nas the # of keys in the entire S'Ze‘/og]:y
structure — A e
— k as the size of the list (i.e. positions v v v v v
. . 5 2 ® 0 3
in the list) y 1 _
* Given list of size k, how many total ~CRNE
values, n, may be stored? Z1E- P =
: 14 ©
— letn=1+2+4+.. +2x1=Yyk 100 T :
Whatis n? 20 @
51
—9k
* n—2 -1 Note: These are

the keys for a set
(or key,value pairs
for a map)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I — ISCViterbi -,

School of Engineering

Merge Trees Find Operation

* To find an element (or check if it o array atist
. size 2k or empty
exists)

* lterate through the arrays in order

4
\ 4
=z
(=
=
—
4
4
4

(i.e. start with array at list position i i é i i
0, then the array at list position 1, g ; Z
etc.) o7 g
— In each array perform a binary search 1421 Z o
* If you reach the end of the list of ;g §
arrays without finding the value it 51

does not exist in the set/map Note: These are

the keys for a set
(or key,value pairs
for a map)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

] USCViterbi @
Find Runtime

An array at list

& What is the worst case runtime of ooatiam ey 8
fl N d 2 size 2k or empty

— When the item is not present which > »NULL—> > >
requires, a binary search is performedon « v v v v
each list : i A\ ? - _

* T(n) =log,(1) + log,(2) + ...+ log,(2*?) o g
o — _\Vk—-1: 12| 8 IS
=0+1+2+..+k-1=),; 51 nEENE
= O(kz) 18 8
20 n
* Butlet's put that in terms of the 51
number of elements in the structure Note: These are

the keys for a set
(or key,value pairs

(I‘e‘ n) for a map)
— Recall, n=2%-1, so k = log,(n+1)

* So find is O(log,(n)?)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I ()5 Viterbi
Improving Find's Runtime

* While we might be okay with [log(n)]?, how
might we improve the find runtime in the
general case?

— Hint: | would be willing to pay O(1) to know if a
key is not in a particular array without having to
perform find

* A Bloom filter could be maintained alongside
each array and allow us to skip performing a
binary search in an array

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00001 USCViterbi @
Insertion Algorithm

An array at list location k can be of
size 2k or empty

 Letjbe the smallestinteger such Limsett9 | /N\52

that array j is empty (first empty i el e I
slot in the list of arrays) I O :
 Aninsertion will cause 6

9|
— Location j's array to become filled 12| 8
— Locations 0 through j-1 to become Before insertion 1;
empty 20
0 1 2 3
© O
2 0
4 1
5 6
19 9| %
After insertion 12| 8
(9p]
14
18
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. 20

I — ISCViterbi

Insertion Algorithm

e Starting at array O, iteratively merge the previously
merged array with the next, stopping when an empty
location is encountered

* Insert stopping at location k requires 1+2+4+...+2%14+2k =
2k+1-1 = O(2%*1) merge steps

insert(19)
0 1 2 0 1 2 0 1 2 0 3
> »NULL—> > »NULL—> = =N 4’?
91 4 v v v v v v

5 2 0 ® 2 0 0 0

- — 4 1 5|4 1 2|1 1
Merge 6 19 6 4116 2 o
9 _Y_) 9 5|9 4|
Merge 19 5 %

List O is full s? mergle two List 1 is full so merge two _Y_} 6

arrays of size arrays of size 2 Merge 9

8 19

© 2022 by Mark Redekopp. 1%3 content is protected and may not be shared, lﬂ.oaded, or distributed.

I — ISCViterbi o

Insert Examples

0 1 2 0 1 2
insert(4) o ¥ ... PINULL—> insert(8) . ¥ ... FPINULL—
Cost=1/ ¢ Cost=1/ ¢ ¢
Stop @ 0 4 Stop@ 0 8 2

4
0 1 2 5
insert(2) > L. »NULL— 19
Cost=3/ ¢ ¢
Stop @ 1 ® 2 0 1 -
4 insert(7) F*NULL—
Cost=3/ v v
0 1 2 Stop @ 1 7 2
insert(5) > »NULL— 8 4
Cost=1/ ¢ ¢ é 5
Stop @ 0 S 2 19
4
0] 5 0 1 2
insert(19) > »NULL—> insert(12) .. * ... —»NULL—>
— T Cost=1/ v v v
Stop @ 2 é é 2 Stop @ 0 12 7 2
P 8 4
= 5
= 19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I — ISCViterbi 2

School of Engineering

Insertion Runtime: First Look

0 1 2
o insert(4) .. ™ ... NULL—
Best case? T
— First list is empty and allows direct insertion in -
O(1) 0 1 2
* Worst case? insert(2) .. > sINULLF—>
v
— All list entries (arrays) are full so we have to é >
merge at each location 4
— In this case we will end with an array of size n=2k 0 1 2
in position k insert(5) ; > ; PINULL—>
— Also recall merging two sorted arrays of size m/2 5 5 é
is ©(m) 4
— So the total cost of all the merges is . 1 ,
1+2+4+8+..+2k=0(2%1) = O(n) nsert(19) | [1/ 1-Nol—
« But if the worst case occurs how soon can it é é i
occur again? 2
— It seems the costs vary from one insert to the next 5
19

— This is a good place to use amortized analysis

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

P (/5 Viterbi
Total Cost for N insertions

 Reminder: Insert stopping at location k requires
142+4+.. 425142k = 2k+1.1 = O(2k*1) merge steps
e Total cost of n=16 insertions:
— Stop at: 0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4
— Cost: 21422421423+214224214244214224214234 21422421425
o =21*n/2 +22*n/4 + 23*n/8 + 24*n/16 + 2°*1
* =n+n+ n+n+2*n
* =n*log,(n) + 2n
 Amortized cost = Total cost / n operations
— logy(n) + 2 = O(log,(n))

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I — ISCViterbi

School of Engineering

Amortized Analysis of Insert

0 1 2
+ We have said when you end (place an array) in ;"sfrt(f/) T L R
.- oSt =
position k you have to do O(2*1) work for all the Stop @ 0 4 é é
merges
0 2
* How often do we end in position k insert(2) N e RV
— The 0Ot position will be free with probability % Cost=2/ v
(p=05) Stop @ 1 2
4
— We will stop at the 1%t position with probability %
(p=0.25) 0 1 2
— We will stop at the 2" position with probability 1/8 insert(5) SE g BN gl
Cost=1/ v v
(p=0.125) Stop @ 0 5 2
— We will stop at the k™ position with probability 4
1/2k+1 - 2-(k+1)
° k+1 ; HF -(k+1) 0 1 2
So we pay O(2*1) with probability 2 nsert(19) R O

* Suppose we have n itemsin the structure (i.e. max Cost=4/ 1
k is log,n) what is the expected cost of inserting a Str@2
new element

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I — ISCViterbi @D,

Summary

e Variants of log structured merge trees have found popular usage in
industry

— Starting array size might be fairly large (size of memory of a single server)
— Large arrays (from merging) are stored on disk
* Pros:
— Ease of implementation
— Sequential access of arrays helps lower its constant factors
* QOperations:
— Find = log?(n)
— Insert = Amortized log(n)
— Remove = often not considered/supported
 More reading:
— http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

