CS103 Unit 2d —
Shallow and Deep Copy,
Allocating 2D arrays

I Uscviterbi
School of Engineering

SHALLOW VS. DEEP COPY

i, TS("Viterbi

Dealing with Text Strings

#tinclude <iostream>

 What’s the best way to store using namespace std;
many text strings that we will not | ; . ..
know until run time and that {
// store 10 user names of up to
could be short or long? // 40 chars
. char names[10][40];
e Statically:
— Bad! Either wastes space or some
user will enter a string just a little }
too long

names[0] | “Tim”
names[1] | “Christopher”

i, TS("Viterbi

Jagged 2D-Arrays

#tinclude <iostream>

 What we want is just enough using namespace std;
storage for each text string

int main()

{

// store 10 user names

* Thisis known as a jagged

2D-array since each 1D array is e SEEE| 5
a different length for(int i=0; i < 10; i++){
. . . // read in and store each name
* To achieve this, we will need an // But HOW ??
: }
array of pointers }

— Each pointer will point to an array
of different length

names|[0] > “Tim”

names[1] ———>{ “Christopher”

[~——{ "Jennifer"

i, TS("Viterbi

School of Engineering

More Dealing with Text Strings

s T lude <ioet
* Will this code work to store 10 Kooy i g
names? using namespace std;

int main()

{

// store 10 user names
// names type is still char**
char* names[10];

for(int i=0; i < 10; i++){
cin >> names[i];

}
// Do stuff with names

names[0] ?2?? return 9;
names[1] 277 }

222

222

i, TS("Viterbi

School of Engineering

More Dealing with Text Strings

#include <iostream>

* Will this code work to store 10 #include <cotringy
names? using namespace std;

* No!l You must allocate storage (i.e.an | jn¢ main()
actual array) before you have pointers {

pointing to things (e.g. you can't just // store 1@ user names

// names type is still char**

move into the White House, OR... just char* names[10];
because | make up a URL like: for(int i=0; i < 10; i++){
http://docs.google.com/uR45y781 } cin >> “ames[i]ix
doesn't mean there's a document

// Do stuff with names
there)

— We need a real array to receive input!

names[0] 22? ! return 0;
names[1] ?2?7? —\> }
222 ?

???

http://docs.google.com/uR45y781

i, TS("Viterbi

School of Engineering

More Dealing with Text Strings

#include <iostream>
#include <cstring>

e Let's allocate 1 real character

array to serve as our scratchpad ISHAE REMREPEEE SE0
for receiving input names. int main()
. {
 We'll make it as BIG as ANY name // store 1@ user names
. // names type is still char **
we might want to handle (say 40 char* names[10];
characters) ,
// One "scratchpad" array to read in a name
char temp_buf[40];
for(int i=0; i < 10; i++){
0x1c0: cin >> temp_buf;
temp_buf | “Tim” names[i] = temp_buf;
a }
// Do stuff with names
return 0;
names[0] ?7?? }
names|[1] ???
?2??
?2??

i, TS("Viterbi

School of Engineering

More Dealing with Text Strings

* Now we can cin one name at a time

#include <iostream>
#include <cstring>
using namespace std;

e But will this code work to store 10
unique names?

int main()

* This leads to many copies of the {
. // store 10 user names
pointer but only one array (aka // names type is still char **
SHALLOW copies) ST GEMCS L2

// One "scratchpad" array to read in a name

* Shallow copy = copies of a pointer char temp. buf[40];

but not copies of the data
for(int i=0; i < 10; i++){
0x1c0: cin >> temp_buf;
“Christopher” | names[i] = temp_buf;

}

// Do stuff with names

return 0;

names[0] 0x1c0 }
names[1] 0x1c0

?2??

?2??

Assigning an array name just assigns a pointer and does
NOT make a copy of the array.

i, TS("Viterbi

School of Engineering

More Dealing with Text Strings

 What’s the best way to store text
strings for data that we will not
know until run time and that could
be short or long?
* Dynamically:
— Better memory usage
— Requires a bit more coding

0x1c0:
temp_buf | “Tim” |
strcpy() i=0
0x8a4

names[0] 0x8a4
names|[1] ???

?2?77?

?2?77?

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
// store 10 user names
// names type is still char **
char* names[10];
char temp_buf[40];
for(int i=0; i < 10; i++){
cin >> temp_buf;

int len = strlen(temp_buf);
// allocate just enough
names[i] = new char[len + 1];

// find length

// copy from scratchpad to new array
strcpy(names[i], temp_buf);

}
// Do stuff with names

for(int i=0; i < 10; i++){
delete [] names[i];

}

return 0;

i, TS("Viterbi

School of Engineering

More Dealing with Text Strings

#include <iost
« Here, we perform a "DEEP COPY" et IS

where we allocate a whole new ISHAE REMREPEEE SE0

array and make a copy of the data, | int main()

) . {

nOtJUSt the pomter // store 10 user names

« A DEEP COPY takes more work and Jy WEIES PG A5 Sl el
_ char* names[10];
usually requires: char temp_buf[40];

for(int i=0; i < 10; i++){

— 1.) Allocating a new array SN S5 e Bk >
— 2.) Copying data from the old to the new A
int len = strlen(temp_buf); // find 1ength8
0x1c0: names[i] = new char[len + 1]; // allocate a
temp_buf | “Christopher” | , strcpy(names[i], temp_buf); // copy T
L
. 1 // Do stuff with names 0
=
0x3a4 for(int i=0; i < 10; i++){
names|[0] 0x8a4 “Tim” delete [] names[i];
}
strepy() return 0;

names[1] 0x980
277 0x980
277 “Christopher” | }

i, TS("Viterbi

School of Engineering

names|[0]
names[1]

Make Sure There is Room

If we want to change a name,
what do we have to do?

Can we just cin to the array?

No! Because what if the new name is
longer than the array allocated for the
old name...we'd write off the end of
the array and corrupt memory

0x8a4 “Tim” | _'
0x980 “Allison”
\ 0x980
“Christopher”

#include <iostream>
#include <cstring>
using namespace std;

int main()

{

// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];

for(int i=0; i < 10; i++){
cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

}
// What if I want to change names[0]

cin >> names[@]; // user enters “Allison”

for(int i=0; i < 10; i++){
delete [] names[i];

}

return 0;

i, TS("Viterbi

School of Engineering

Shallow Copy vs. Deep Copy

#include <iostream>

e Ok, let's use our scratchpad again. | #inciude <cstring>

using namespace std;

* (Can we just use the assignment

operator, ‘=? int main()

{
// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

0x1c0: cin >> temp_buf;
temp_buf: | “Allison” names[i] = new char[strlen(temp_buf)+1];
N strcpy(names[i], temp_buf);
0x8a4 }
names|[0] 0x8a4 “Tim” // What if I want to change names[0] & [1]
names[1] 0x980 cin >> temp_buf; // user enters “Allison”
0x980 names[0@] = temp_buf;
cin >> temp_buf; // user enters “Jennifer”

“Christopher” names[1] = temp_buf;

for(int i=0; i < 10; i++){
delete [] names[i];

}

return 0;

i, TS("Viterbi

School of Engineering

Assignment = Shallow Copy

#include <iostream>

e Ok, let's use our scratchpad again. | #inciude <cstring>

using namespace std;

* (Can we just use the assignment

operator, ‘=? int main()
{
 What happens when we do // store 1@ user names
. // names type is still char **
names[@] = temp_buf, char* names[10];

char temp_buf[40];
for(int i=0; i < 10; i++){

0x1cO0: cin >> temp_buf;
temp_buf: | “Allison” names[i] = new char[strlen(temp_buf)+1];
B ‘:, strcpy(names[i], temp_buf);
= 0x8a4 }
names[0] “Tim” // What if I want to change names[0] & [1]
names|[1] 0x980 cin >> temp_buf; // user enters “Allison”
0x980 names[0] = temp_buf;
- - - cin >> temp_buf; // user enters “Jennifer”
Christopher names[1] = temp_buf;

for(int i=0; i < 10; i++){
delete [] names[i];

}

return 0;

i, TS("Viterbi

Shallow Copy

#include <iostream>

* ASHALLOW copy is made #include <cstring>

. sing namespace std;
— Shallow copy = copy of pointers to Aotz >

data rather than copy of actual data , :
int main()

* Pointers are references... assigning a {
// store 10 user names

M 7
pointer doesn’t make a copy of what 7 iR e s sl dher
its pointing at but only makes a copy char* names[10];
of the pointer (a.k.a. “shallow copy”) char temp_buf[40];
for(int i=0; i < 10; i++){
0x1c0: cin >> temp_buf;

temp_buf; > “Allison” names[i] = new char[strlen(temp_buf)+11;
strcpy(names[i], temp_buf);
Memoy Leak! } ,\
0x8a4 - OQ
names[0] 0x1c0 “Tim” // What if I want to change name (@)
names[1] 0x980 cin >> temp_buf; // user ent 0$ on”
\ 0x980 n;.ames[e] = temp_buf; \/V .
- - > cin >> temp_buf; // use ?. Jennifer”
Christopher names[1] = temp_buf; %‘2‘
for(int i=0; i < 10; i++)
temp_buf evaluates to address of array. delete [] names[i];
So names[0] = temp_buf simply copies address }
of array into names[0]...It does not make a copy return 0;
of the array }

i, TS("Viterbi

Take Care To Avoid Leaks

* Clean up any old data your pointer #include <iostreamms
references before changing it #include <cstring>

using namespace std;

int main()

{
// store 10 user names
// names type is still char **
char* names[10];

char temp_buf[40];

for(int i=0; i < 10; i++){

0x1cO0: cin >> temp_buf;

« Jennifer” names[i] = new char[strlen(temp_buf)+1];
strcpy(names[i], temp_buf);

0x8a4 }
“Tim” // What if I want to change names[0] & [1]

temp_buf:

Memory Leak!

names|[0]

names[1] 0x1¢c0 cin >> temp_buf; // user enters “Allison”
0x980 Memory Leak! names[@] = temp_buf;
— - cin >> temp_buf; // user enters “Jennifer”
Christopher names[1] = temp_buf;
for(int i=0; i < 10; i++){
Same problem with assignment of temp_buf to delete [] names[i];
names[1]. Now we have two things pointing at }
one array and we have lost track of memory return 0;
allocated for Timothy and Christopher...memory leak! }

i, TS("Viterbi

School of Engineering

Only delete Dynamically Allocated Memory

 When we get to the point of

#include <iostream>

deleting our dynamic memory, we HIIELES ESERILE>
] o using namespace std;
will no longer be pointing at the
dynamically allocated arrays! int main()
* Deleting memory that was not // store 1@ user names
. // names type is still char **
allocated with new may crash the char* names[10];
program. char temp_buf[40];
for(int i=0; i < 10; i++){
0x1cO0: cin >> temp_buf;
temp_buf: «Jennifer” names[i] = new char[strlen(temp_buf)+1];
B strcpy(names[i], temp_buf);
0x8a4 }
names[0] “Tim” // What if I want to change names[0] & [1]
names[1] 0x1c0 cin >> temp_buf; // user enters “Allison”

0x980 names[@] = temp_buf;
cin >> temp_buf; // user enters “Jennifer”

“Christopher” names[1] = temp_buf;
for(int i=0; i < 10; i++){
When we try to “delete” or free the memory pointed delete [] names[i];
to by namesi], it will now try to return memory it }
didn’t even allocate (i.e. temp_buf) and cause return 0;
the program to crash! }

- 00000000 USCViterbi .
Deep Copies

#include <iostream>

* If we want to change the name, what | #inciude <cstring>
do we have to do? using namespace std;

* Must allocate new storage and copy int main()
original data into new memory (a.k.a. | S
deep COpy) // names type is still char **

char *names[10];
— Deep copy = allocate new memory AND then copy

har temp_buf[40];
the original data (1 by 1) to the new memory char ‘temp_buf[40]

for(int i=0; i < 10; i++){
cin >> temp_buf;
names[i] = new char[strlen(temp_buf)+1];

0x8a4 strcpy(names[i], temp_buf);
names[0] 0xbf0 “Tim” } E
names[1] Oxddc \ 0xbf0 // What if I want to change names[0] & [1] O
“Allison” cin >> temp_buf; // user enters “Allison” 0
0x980 delete [] names[0O];
P - names[@] = new char[strlen(temp_buf)+1]; n_
Christopher strcpy(names[@], temp_buf);
Oxd4c cin >> temp_buf; // user enters “Jennifer” I-u
) fer” delete [] names[1]; Lu
ennirer names[1] = new char[strlen(temp_buf)+1]; Q

strcpy(names[1], temp buf);

I Uscviterbi
School of Engineering

2D ARRAY ALLOCATION

- 00000000 USCVlterbl
Arrays of pointers

int s1[5] = {0,0,0,0,0};
int s2[5] = {0,0,0,0,0};
int s3[5] = {0,0,0,0,0};
 We often want to have int s4[5] = {0,0,0,0,0};
several arrays to store datg | " "intnt arec, char tareviD)
— Store each student's grades s
for(i=0;i < 5;i++) { avg += stulscores[i]; }
for(i=0;i < 5;i++) { avg += stu2scores[i]; }
* Those arrays may be relatEd For‘(i=0;i < 5;i++) { azg += stEBscor‘es[i]; }
(|e scores Of StUdentS in a for(i=0;i < 5;i++) { avg += studscores[i]; }
avg /= 4*5;
class) }
Painful
s1 =240
* Yes, a 2D array would olole]elo
probably have been better in s2 = 300
this case (int scores[4][5]), il Il il B
3 =480
but suppose we already had a T P
bunch of these 1D arrays. 4 800
How can | access them easily? oleloo]e

— ()5 Viterbi =
Arrays of pointers

int s1[5] = {0,0,0,0,0};
int s2[5] = {0,0,0,0,0};
int s3[5] = {0,0,0,0,0};
* We can make an array of int sa[s] = {0,0,0,0,0];

int main(int argc, char *argv[])

pointers where each entry |«

. int avg = 0;
p0|nts at an array Of int *scores[4] = {s1, s2, s3, s4};
. : for(int i=0; i < 4; i++){
integers (of a student's for(int k=0; k < 5; k++){
avg += scores[i][k];
scores) .
* This effectively formsa 2D |, *¢ /= *™
array. Better
s1 =240
scores = 500 0o(o|0]|0
. . . 0 240
 Fact: An array of pointers is + T300 RN
how a 2D array is often 2 | 480
d 3 800
represented. ToToTe
0|l0|0]|0

i, TS("Viterbi

Arrays of pointers

int main(int argc, char *argv[])

{
int numStu, numScores;
° What |f the number Of cin >> numStu >> numScores;
students and the number of | // 1s this okay to do in C++?

int scores[numStu][numScores];
scores for each student are

// Or is this okay to do in C++?

NOT KNOWN Unt” the int s1[numScores] = {0,0,0,0,0};
int s2[numScores] = {0,0,0,0,0};
program runs. // And I don't even know how many of

// these to allocate

* Are the options shown to
the right legal in C++7?

* | need dynamic allocation!

i, TS("Viterbi

School of Engineering

Allocating a 2D Array Structure

int main(int argc, char *argv[])

{

int numStu, numScores;

e Fact: Sadly’ C/C++ does NOT cin >> numStu >> numScores;

// 2D array dynamic allocation is not supported

easily Support dynamic int** scores = new int[numStu][numScores]; //BAD
a”()cation Of 2D-’ 3D-’ etc. // Allocate a 1D array of (row) pointers
. . int** scores = new int*[numStu];
arrays of variable size. for(int i=0; i < numStu; i++){
scores[i] = new int[numScores];
}
| .
 BUT, it does support : : : :
, , Dynamic Allocation of variable-sized 2D arrays
dynamic allocation of:
s1 =240
— 1D arrays AND <cores = 500 ololelo
— 1D arrays of pointers :’ i‘;g
* By putting those two 2 | 480 °lelele
3| 800
together we can get a ToTaTe
variable-size 2D Array
0(o|o0]|0

i, TS("Viterbi

School of Engineering

Deallocating 2D Array Structure

int main(int argc, char *argv[])

{

int numStu, numScores;

* Be sure to deallocate all the | cin >> numstu >> nunscores;

memory // Allocate a 2D structure (array of pointers)
// then each row separately
int** scores = new int*[numStu];

* The structure used to o pacores e dne Inanst
deallocate memory should scores[i] = new int[numScores];
}
be a MIRROR of the code] e 2 ey SEede
used to allocate with new , detete [scoreslils

delete [] scores;

scores =500

240
300
480
800

- o

N

w

i, TS("Viterbi

School of Engineering

2D Allocation: Repeated Example

* Dynamically allocating 2D arrays in C/C++ doesn't
really work 1(16(31|20

— Instead conceive of 2D array as an "array of arrays" which -

i i 8(14| 5|0
boils down to a pointer to a pointer g; ;”t main()
* To allocate an N row x M column array 3 | int n, m;
. 04 cin >> n >> m;
dynamically we : 05 int *t = new int[n][m];
! 11
— Allocate an array of N pointers gg // DOESN'T WORK!!
— Allocate each row of M columns separately and have 08 | }

each of the N pointers point to a different row

01 | int main()

02 | {
03 int n, m;
04 cin >> n >> m;
05 int **t = new int*[n];
06 for(int i=0; i < n; i++){
0 1 2 3 Each a_lloca_ted 07 t[i] = new int[m];
Each entry 1a0 onan iteration 08 for(int j = 0; j < m; j++){
is int * 0721 of line 07 89 t[1][j] = o;
10 }
410 2¢0 11 }
t [a10 /v:) ;ag /v 1116 (31|20 1; // Access t[r][c] as desired
Cc
Thus tis 1b‘1 t[21 = 0x1b4 14 // deallocate arrays
int ** 2 i g '5\{ [2] 15 for(int i=0; i < n; i++){
—~ t[2][1]1=0 16 delete t[i];
Allocated 17 }
on line 05 18 delete [] t;

19 |}

In-class-exercises

— nxmboard

Exercise

IF TIME

——— ()5 \terbi 2
cin/cout & char*s

396 dat=400
* cin/cout determine everything they do x5S ojojojojofo
based on the type of data passed
 cin/cout have a unique relationship 448 word=440
with char*s name [440 He|1|1]o|\e

* When cout is given a variable or
. . . . #includ iost
expression of any type, it will print the e sl

value stored in that exact variable int main()

— Exception: When cout is given a char* it int x = 5, dat[10] = {@}; // dat is an int*
. o - . h d[10] = "Hello";
will assume it is pointing at a C-string, go to | o yerditel erte

char *name = word;
that address, and loop through each
cout << X << endl; // 5

character, printing them out cout << dat << endl; /7 200
. cout << word << endl; // Hello
* When cinis given a variable it will store cout << name << endls 7/ Hello

the input data in that exact variable cout << name[@] << endl; // H
cout << (void*) name << endl; // 440

— Exception: When cinis given a char* it
. - . . . cin >> dat; // Doesn't work, use a loop
will assume it is pointing at a C-string, 8010 | i 55 name; /7 Store many chars
that address, and place the typed // starting at 44e
. t 0;
characters in that memory) return

i, TS("Viterbi

School of Engineering

C-String Library Vulnerabilities

Address Memory Data

 What could go wrong with these 73a4
library functions? 73a8
— Consider the code below. 73ac
73b0
#include <iostream> Address Memory Data
#include <cstring>
using namespace std; 73a4
int main() 73a8
{
char stri[8]; 73ac
int x = 1;
strcpy(strl, "abcdefghij"); 73be

strcat(strl, "!");
’ ’ Address Memory Data

cout << str3 << endl;

73a4
return 0;

} 73a8

73ac

73b0

i, TS("Viterbi

School of Engineering

Safe C-String Library

e The<cstring> library was updated in subsequent versions of C++ to
provide safer alternatives to avoid array buffer overflows with many functions
now having a counterpart with n in the name representing a maximum length
to read or write.

— int strlen(const char *dest)

— int strncmp(const char *strl, const char *str2, size t num);

* Return 0 if equal, >0 if first non-equal char in strl is alphanumerically larger, <0 otherwise
* Compares a maximum of n characters (which should match the length of the shortest input)

— char *strncpy(char *dest, const char *src, size t num);
* Maximum of num characters copied

— char *strncat(char *dest, const char *src, size t num);
* Maximum of num characters concatenated plus a NULL

* See the documentation (https://cplusplus.com/reference/cstring/)

https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/

i, TS("Viterbi

School of Engineering

A Stack View

Address
—{_thresh J—
. . 7320
* Here is a memory/stack view of the riea -
a .
command line arguments, and the Jans
. —{_agc
argc, argv arguments passed to main() 34
argv[0]
. 73b0 | .
l $./progl 4 0.5 T 73b do
Ji argv(1]
#include <iostream> 73b _char*
#include <csdtlib> main q
using namespace std; 73hc a@a; 8
it n(int . char *
?n main(int argc, char *argv[]) 3¢ 73da A
if(argc < 3) { 73cC et ind™
cout << "Not enough inputs" << endl; P
return 1: 73cc ||o0d1 foas

} os |73de|l . /pr
int seed = strtol(argv[l]); 23d4 /
double threshold = strtod(argv[2]);

// use seed and threshold 73d8 || 4\0 ©
Il oo 73dc || 5\0 ? ?

Slo

”e
Bl

. ()

BACKUP

Why Pointers To Arrays

* 4 friends got sequential hotel rooms.

* Alice hates that her room number is 413 and would like to be
"next" to her friend Gina.

e She asks Tim to swap rooms. Tim doesn't care but DOESN'T want
to move all his stuff.

* Kyle has an idea to "satisfy" both. Can you guess his approach?

n,~~ A
Q ©o© © o0 ~ ©0 -

This Photo by Unknown Author is licensed under CC BY-ND

https://iristina.blogspot.com/2010/08/denver-co-airport-dia-holiday-inn.html
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/

	Slide 1: CS103 Unit 2d – Shallow and Deep Copy, Allocating 2D arrays
	Slide 2: Shallow Vs. Deep Copy
	Slide 3: Dealing with Text Strings
	Slide 4: Jagged 2D-Arrays
	Slide 5: More Dealing with Text Strings
	Slide 6: More Dealing with Text Strings
	Slide 7: More Dealing with Text Strings
	Slide 8: More Dealing with Text Strings
	Slide 9: More Dealing with Text Strings
	Slide 10: More Dealing with Text Strings
	Slide 11: Make Sure There is Room
	Slide 12: Shallow Copy vs. Deep Copy
	Slide 13: Assignment = Shallow Copy
	Slide 14: Shallow Copy
	Slide 15: Take Care To Avoid Leaks
	Slide 16: Only delete Dynamically Allocated Memory
	Slide 17: Deep Copies
	Slide 18: 2D Array Allocation
	Slide 19: Arrays of pointers
	Slide 20: Arrays of pointers
	Slide 21: Arrays of pointers
	Slide 22: Allocating a 2D Array Structure
	Slide 23: Deallocating 2D Array Structure
	Slide 24: 2D Allocation: Repeated Example
	Slide 25: Exercise
	Slide 26: If Time
	Slide 27: cin/cout & char*s
	Slide 28: C-String Library Vulnerabilities
	Slide 29: Safe C-String Library
	Slide 30: A Stack View
	Slide 31: Backup
	Slide 32: Why Pointers To Arrays

