
2d.1

CS103 Unit 2d –
Shallow and Deep Copy,

Allocating 2D arrays

2d.2

SHALLOW VS. DEEP COPY

2d.3

Dealing with Text Strings

• What’s the best way to store
many text strings that we will not
know until run time and that
could be short or long?

• Statically:
– Bad! Either wastes space or some

user will enter a string just a little
too long

#include <iostream>
using namespace std;

int main()
{
 // store 10 user names of up to
 // 40 chars
 char names[10][40];

}

names[0] “Tim”

names[1] “Christopher”

…

2d.4

Jagged 2D-Arrays

• What we want is just enough
storage for each text string

• This is known as a jagged
2D-array since each 1D array is
a different length

• To achieve this, we will need an
array of pointers
– Each pointer will point to an array

of different length

#include <iostream>
using namespace std;

int main()
{
 // store 10 user names
 char *names[10];

 for(int i=0; i < 10; i++){
 // read in and store each name
 // But HOW ??
 }
}

“Tim”

“Christopher”

"Jennifer"

names[0]

…

names[1]

2d.5

More Dealing with Text Strings

• Will this code work to store 10
names?

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char**
 char* names[10];

 for(int i=0; i < 10; i++){
 cin >> names[i];
 }

 // Do stuff with names

 return 0;
}

names[0] ???

…

names[1] ???

???

???

2d.6

More Dealing with Text Strings

• Will this code work to store 10
names?

• No!! You must allocate storage (i.e. an
actual array) before you have pointers
pointing to things (e.g. you can't just
move into the White House, OR… just
because I make up a URL like:
http://docs.google.com/uR45y781
doesn't mean there's a document
there)

– We need a real array to receive input!

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char**
 char* names[10];

 for(int i=0; i < 10; i++){
 cin >> names[i];
 }

 // Do stuff with names

 return 0;
}

names[0] ???

…

names[1] ???

???

???

?

?

http://docs.google.com/uR45y781

2d.7

More Dealing with Text Strings

• Let's allocate 1 real character
array to serve as our scratchpad
for receiving input names.

• We'll make it as BIG as ANY name
we might want to handle (say 40
characters)

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 // One "scratchpad" array to read in a name
 char temp_buf[40];

 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = temp_buf;
 }
 // Do stuff with names

 return 0;
}names[0] ???

…

“Tim” temp_buf

names[1] ???

???

???

0x1c0:

2d.8

More Dealing with Text Strings
• Now we can cin one name at a time

• But will this code work to store 10
unique names?

• This leads to many copies of the
pointer but only one array (aka
SHALLOW copies)

• Shallow copy = copies of a pointer
but not copies of the data

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 // One "scratchpad" array to read in a name
 char temp_buf[40];

 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = temp_buf;
 }
 // Do stuff with names

 return 0;
}names[0] 0x1c0

…

“Timothy” temp_buf

names[1] 0x1c0

???

???

0x1c0:

Assigning an array name just assigns a pointer and does
NOT make a copy of the array.

“Christopher”

2d.9

More Dealing with Text Strings

• What’s the best way to store text
strings for data that we will not
know until run time and that could
be short or long?

• Dynamically:

– Better memory usage

– Requires a bit more coding

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];
 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;

 int len = strlen(temp_buf); // find length
 // allocate just enough
 names[i] = new char[len + 1];

 // copy from scratchpad to new array
 strcpy(names[i], temp_buf);
 }
 // Do stuff with names

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

names[0] “Tim”

0x8a4

0x8a4

…

“Tim” temp_buf

strcpy()

names[1] ???

???

???

0x1c0:

i=0

2d.10

More Dealing with Text Strings

• Here, we perform a "DEEP COPY"
where we allocate a whole new
array and make a copy of the data,
not just the pointer

• A DEEP COPY takes more work and
usually requires:
– 1.) Allocating a new array

– 2.) Copying data from the old to the new

names[0] “Tim”

0x8a4

“Christopher”

0x980

0x8a4

names[1] 0x980

…

“Christopher” temp_buf

strcpy()
???

???

0x1c0:

i=1

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];
 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;

 int len = strlen(temp_buf); // find length
 names[i] = new char[len + 1]; // allocate
 strcpy(names[i], temp_buf); // copy
 }
 // Do stuff with names

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

D
E

E
P

 C
O

P
Y

2d.11

Make Sure There is Room

• If we want to change a name,
what do we have to do?

• Can we just cin to the array?

• No! Because what if the new name is
longer than the array allocated for the
old name…we'd write off the end of
the array and corrupt memory

names[0] “Tim”

0x8a4

“Christopher”

0x980

0x8a4

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = new char[strlen(temp_buf)+1];
 strcpy(names[i], temp_buf);

 }

 // What if I want to change names[0]

 cin >> names[0]; // user enters “Allison”

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

“Allison”

2d.12

Shallow Copy vs. Deep Copy

• Ok, let's use our scratchpad again.

• Can we just use the assignment
operator, ‘=‘?

“Allison”temp_buf:

0x1c0:

names[0] “Tim”

0x8a4

“Christopher”

0x980

0x8a4

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = new char[strlen(temp_buf)+1];
 strcpy(names[i], temp_buf);

 }

 // What if I want to change names[0] & [1]

 cin >> temp_buf; // user enters “Allison”
 names[0] = temp_buf;
 cin >> temp_buf; // user enters “Jennifer”
 names[1] = temp_buf;

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

2d.13

Assignment = Shallow Copy

• Ok, let's use our scratchpad again.

• Can we just use the assignment
operator, ‘=‘?

• What happens when we do
names[0] = temp_buf;

“Allison”temp_buf:

0x1c0:

names[0] “Tim”

0x8a4

“Christopher”

0x980

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = new char[strlen(temp_buf)+1];
 strcpy(names[i], temp_buf);

 }

 // What if I want to change names[0] & [1]

 cin >> temp_buf; // user enters “Allison”
 names[0] = temp_buf;
 cin >> temp_buf; // user enters “Jennifer”
 names[1] = temp_buf;

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

?

2d.14

Shallow Copy

• A SHALLOW copy is made
– Shallow copy = copy of pointers to

data rather than copy of actual data

• Pointers are references… assigning a
pointer doesn’t make a copy of what
its pointing at but only makes a copy
of the pointer (a.k.a. “shallow copy”)

“Allison”temp_buf:

0x1c0:

names[0] “Tim”

0x8a4

“Christopher”

0x980

0x1c0

names[1] 0x980

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = new char[strlen(temp_buf)+1];
 strcpy(names[i], temp_buf);

 }

 // What if I want to change names[0] & [1]

 cin >> temp_buf; // user enters “Allison”
 names[0] = temp_buf;
 cin >> temp_buf; // user enters “Jennifer”
 names[1] = temp_buf;

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

?

temp_buf evaluates to address of array.
So names[0] = temp_buf simply copies address
of array into names[0]…It does not make a copy

of the array

Memoy Leak!

2d.15

Take Care To Avoid Leaks
• Clean up any old data your pointer

references before changing it

“Jennifer”temp_buf:

0x1c0:

names[0] “Tim”

0x8a4

“Christopher”

0x980

0x1c0

names[1] 0x1c0

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = new char[strlen(temp_buf)+1];
 strcpy(names[i], temp_buf);

 }

 // What if I want to change names[0] & [1]

 cin >> temp_buf; // user enters “Allison”
 names[0] = temp_buf;
 cin >> temp_buf; // user enters “Jennifer”
 names[1] = temp_buf;

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

?

Same problem with assignment of temp_buf to
names[1]. Now we have two things pointing at

one array and we have lost track of memory
allocated for Timothy and Christopher…memory leak!

Memory Leak!

Memory Leak!

2d.16

Only delete Dynamically Allocated Memory

• When we get to the point of
deleting our dynamic memory, we
will no longer be pointing at the
dynamically allocated arrays!

• Deleting memory that was not
allocated with new may crash the
program.

“Jennifer”temp_buf:

0x1c0:

names[0] “Tim”

0x8a4

“Christopher”

0x980

0x1c0

names[1] 0x1c0

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = new char[strlen(temp_buf)+1];
 strcpy(names[i], temp_buf);

 }

 // What if I want to change names[0] & [1]

 cin >> temp_buf; // user enters “Allison”
 names[0] = temp_buf;
 cin >> temp_buf; // user enters “Jennifer”
 names[1] = temp_buf;

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

?

When we try to “delete” or free the memory pointed
to by names[i], it will now try to return memory it

didn’t even allocate (i.e. temp_buf) and cause
the program to crash!

2d.17

Deep Copies

• If we want to change the name, what
do we have to do?

• Must allocate new storage and copy
original data into new memory (a.k.a.
deep copy)
– Deep copy = allocate new memory AND then copy

the original data (1 by 1) to the new memory

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char *names[10];

 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = new char[strlen(temp_buf)+1];
 strcpy(names[i], temp_buf);

 }

 // What if I want to change names[0] & [1]

 cin >> temp_buf; // user enters “Allison”
 delete [] names[0];
 names[0] = new char[strlen(temp_buf)+1];
 strcpy(names[0], temp_buf);
 cin >> temp_buf; // user enters “Jennifer”
 delete [] names[1];
 names[1] = new char[strlen(temp_buf)+1];
 strcpy(names[1], temp_buf);
 ...

names[0] “Tim”

0x8a4

“Christopher”

0x980

0xbf0

names[1] 0xd4c

“Allison”

“Jennifer”

0xbf0

0xd4c

D
E

E
P

 C
O

P
Y

2d.18

2D ARRAY ALLOCATION

2d.19

Arrays of pointers

• We often want to have
several arrays to store data
– Store each student's grades

• Those arrays may be related
(i.e. scores of students in a
class)

• Yes, a 2D array would
probably have been better in
this case (int scores[4][5]),
but suppose we already had a
bunch of these 1D arrays.
How can I access them easily?

int s1[5] = {0,0,0,0,0};
int s2[5] = {0,0,0,0,0};
int s3[5] = {0,0,0,0,0};
int s4[5] = {0,0,0,0,0};

int main(int argc, char *argv[])
{
 int avg = 0;

 for(i=0;i < 5;i++) { avg += stu1scores[i]; }
 for(i=0;i < 5;i++) { avg += stu2scores[i]; }
 for(i=0;i < 5;i++) { avg += stu3scores[i]; }
 for(i=0;i < 5;i++) { avg += stu4scores[i]; }
 avg /= 4*5;

}

Painful

0

s1 = 240

0 000

0

s2 = 300

0 000

0

s3 = 480

0 000

0

s4 = 800

0 000

2d.20

Arrays of pointers

• We can make an array of
pointers where each entry
points at an array of
integers (of a student's
scores)

• This effectively forms a 2D
array.

• Fact: An array of pointers is
how a 2D array is often
represented.

int s1[5] = {0,0,0,0,0};
int s2[5] = {0,0,0,0,0};
int s3[5] = {0,0,0,0,0};
int s4[5] = {0,0,0,0,0};
int main(int argc, char *argv[])
{
 int avg = 0;
 int *scores[4] = {s1, s2, s3, s4};
 for(int i=0; i < 4; i++){
 for(int k=0; k < 5; k++){
 avg += scores[i][k];
 }
 }
 avg /= 4*5;
}

Better

0

s1 = 240

0 000

0

s2 = 300

0 000

0

s3 = 480

0 000

0

s4 = 800

0 000

240

300

480

800

0

1

2

3

scores = 500

2d.21

Arrays of pointers

• What if the number of
students and the number of
scores for each student are
NOT KNOWN until the
program runs.

• Are the options shown to
the right legal in C++?

• I need dynamic allocation!

int main(int argc, char *argv[])
{
 int numStu, numScores;
 cin >> numStu >> numScores;

 // Is this okay to do in C++?
 int scores[numStu][numScores];

 // Or is this okay to do in C++?
 int s1[numScores] = {0,0,0,0,0};
 int s2[numScores] = {0,0,0,0,0};
 // And I don't even know how many of
 // these to allocate
 ...
}

2d.22

Allocating a 2D Array Structure

• Fact: Sadly, C/C++ does NOT
easily support dynamic
allocation of 2D-, 3D-, etc.
arrays of variable size.

• BUT, it does support
dynamic allocation of:
– 1D arrays AND

– 1D arrays of pointers

• By putting those two
together we can get a
variable-size 2D Array

int main(int argc, char *argv[])
{
 int numStu, numScores;
 cin >> numStu >> numScores;
 // 2D array dynamic allocation is not supported
 int** scores = new int[numStu][numScores]; //BAD

 // Allocate a 1D array of (row) pointers
 int** scores = new int*[numStu];
 for(int i=0; i < numStu; i++){
 scores[i] = new int[numScores];
 }
 ...
}

Dynamic Allocation of variable-sized 2D arrays

0

s1 = 240

0 000

0

x2 = 300

0 000

0

s3 = 480

0 000

0

s4 = 800

0 000

240

300

480

800

0

1

2

3

scores = 500

2d.23

Deallocating 2D Array Structure

• Be sure to deallocate all the
memory

• The structure used to
deallocate memory should
be a MIRROR of the code
used to allocate with new

int main(int argc, char *argv[])
{
 int numStu, numScores;
 cin >> numStu >> numScores;

 // Allocate a 2D structure (array of pointers)
 // then each row separately
 int** scores = new int*[numStu];
 for(int i=0; i < numStu; i++){
 scores[i] = new int[numScores];
 }
 // Deallocate 2D array structure
 for(int i=0; i < numStu; i++){
 delete [] scores[i];
 }
 delete [] scores;
}

0

s1 = 240

0 000

0

x2 = 300

0 000

0

s3 = 480

0 000

0

s4 = 800

0 000

240

300

480

800

0

1

2

3

scores = 500

2d.24

2D Allocation: Repeated Example
• Dynamically allocating 2D arrays in C/C++ doesn't

really work
– Instead conceive of 2D array as an "array of arrays" which

boils down to a pointer to a pointer

• To allocate an N row x M column array
dynamically we :
– Allocate an array of N pointers

– Allocate each row of M columns separately and have
each of the N pointers point to a different row

int main()
{
 int n, m;
 cin >> n >> m;
 int **t = new int*[n];
 for(int i=0; i < n; i++){
 t[i] = new int[m];
 for(int j = 0; j < m; j++){
 t[i][j] = 0;
 }
 }
 // Access t[r][c] as desired

 // deallocate arrays
 for(int i=0; i < n; i++){
 delete t[i];
 }
 delete [] t;
}

1a0

0 7 2

2c0

1b4

1

1 16 31 20

0 1 2 3

0

1

2

410

8 14 5 0

Each entry

is int *

Thus t is

int **

t

t[2] = 0x1b4

t[2][1] = 0

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

Allocated

on line 05

Each allocated

on an iteration

of line 07

int main()
{
 int n, m;
 cin >> n >> m;
 int *t = new int[n][m];
 // DOESN'T WORK!!
 ...
}

0 7 2 1

1 16 31 20

8 14 5 0

1a0

2c0

1b4

410

01
02
03
04
05
06
07
08

2d.25

Exercise

• In-class-exercises
– nxmboard

2d.26

IF TIME

2d.27

cin/cout & char*s
• cin/cout determine everything they do

based on the type of data passed

• cin/cout have a unique relationship
with char*s

• When cout is given a variable or
expression of any type, it will print the
value stored in that exact variable

– Exception: When cout is given a char* it
will assume it is pointing at a C-string, go to
that address, and loop through each
character, printing them out

• When cin is given a variable it will store
the input data in that exact variable

– Exception: When cin is given a char* it
will assume it is pointing at a C-string, go to
that address, and place the typed
characters in that memory

#include <iostream>
using namespace std;
int main()
{
 int x = 5, dat[10] = {0}; // dat is an int*
 char word[10] = "Hello";
 char *name = word;

 cout << x << endl; // 5
 cout << dat << endl; // 400
cout << word << endl; // Hello
cout << name << endl; // Hello

 cout << name[0] << endl; // H
 cout << (void*) name << endl; // 440

 cin >> dat; // Doesn't work, use a loop
cin >> name; // Store many chars

 // starting at 440
 return 0;
}

H e l l \0o

word=440

name 440

x 5 0 0 0 0 0 0

dat=400396

448

2d.28

C-String Library Vulnerabilities

• What could go wrong with these
library functions?
– Consider the code below.

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 char str1[8];
 int x = 1;
 strcpy(str1, "abcdefghij");

 strcat(str1, "!");

 cout << str3 << endl;

 return 0;
}

? ? ? ?

? ? ? ?

00000001

73a4

73a8

73ac

73b0

Address Memory Data

[0] [1] [2] [3]

[4] [5] [6] [7]

x

a b c d

e f g h

i j \0 01

73a4

73a8

73ac

73b0

Address Memory Data

[0] [1] [2] [3]

[4] [5] [6] [7]

x

a b c d

e f g h

i j ! \0

73a4

73a8

73ac

73b0

Address Memory Data

[0] [1] [2] [3]

[4] [5] [6] [7]

x

str

2d.29

Safe C-String Library

• The <cstring> library was updated in subsequent versions of C++ to
provide safer alternatives to avoid array buffer overflows with many functions
now having a counterpart with n in the name representing a maximum length
to read or write.

– int strlen(const char *dest)

– int strncmp(const char *str1, const char *str2, size_t num);
• Return 0 if equal, >0 if first non-equal char in str1 is alphanumerically larger, <0 otherwise

• Compares a maximum of n characters (which should match the length of the shortest input)

– char *strncpy(char *dest, const char *src, size_t num);
• Maximum of num characters copied

– char *strncat(char *dest, const char *src, size_t num);
• Maximum of num characters concatenated plus a NULL

• See the documentation (https://cplusplus.com/reference/cstring/)

https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/

2d.30

A Stack View

• Here is a memory/stack view of the
command line arguments, and the
argc, argv arguments passed to main()

 0.5

 4

 3

 73d0

 73d8

 73da

0041 f0a8

 . / p r

 o g 1\0

 4\0 0 .

 5\0 ? ?

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

73dc

Address

Memory Data

argv

argv[1]

argv[2]

char**
char*

char*

char*

OS

main

d0

#include <iostream>
#include <csdtlib>
using namespace std;

int main(int argc, char *argv[])
{
 if(argc < 3) {
 cout << "Not enough inputs" << endl;
 return 1;
 }
 int seed = strtol(argv[1]);
 double threshold = strtod(argv[2]);
 // use seed and threshold
 // ...
}

$./prog1 4 0.5

argc

seed

thresh

argv[0]

Return link

d8 da

2d.31

BACKUP

2d.32

Why Pointers To Arrays

This Photo by Unknown Author is licensed under CC BY-ND

410 411 412 413

• 4 friends got sequential hotel rooms.

• Alice hates that her room number is 413 and would like to be
"next" to her friend Gina.

• She asks Tim to swap rooms. Tim doesn't care but DOESN'T want
to move all his stuff.

• Kyle has an idea to "satisfy" both. Can you guess his approach?

Gina AliceTimKyle

https://iristina.blogspot.com/2010/08/denver-co-airport-dia-holiday-inn.html
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/

	Slide 1: CS103 Unit 2d – Shallow and Deep Copy, Allocating 2D arrays
	Slide 2: Shallow Vs. Deep Copy
	Slide 3: Dealing with Text Strings
	Slide 4: Jagged 2D-Arrays
	Slide 5: More Dealing with Text Strings
	Slide 6: More Dealing with Text Strings
	Slide 7: More Dealing with Text Strings
	Slide 8: More Dealing with Text Strings
	Slide 9: More Dealing with Text Strings
	Slide 10: More Dealing with Text Strings
	Slide 11: Make Sure There is Room
	Slide 12: Shallow Copy vs. Deep Copy
	Slide 13: Assignment = Shallow Copy
	Slide 14: Shallow Copy
	Slide 15: Take Care To Avoid Leaks
	Slide 16: Only delete Dynamically Allocated Memory
	Slide 17: Deep Copies
	Slide 18: 2D Array Allocation
	Slide 19: Arrays of pointers
	Slide 20: Arrays of pointers
	Slide 21: Arrays of pointers
	Slide 22: Allocating a 2D Array Structure
	Slide 23: Deallocating 2D Array Structure
	Slide 24: 2D Allocation: Repeated Example
	Slide 25: Exercise
	Slide 26: If Time
	Slide 27: cin/cout & char*s
	Slide 28: C-String Library Vulnerabilities
	Slide 29: Safe C-String Library
	Slide 30: A Stack View
	Slide 31: Backup
	Slide 32: Why Pointers To Arrays

