CS103 Unit 2¢c —
Pointers to Pointers,
Command line Arguments,

S — {5 C Viterbi =
Invalid Pointers

* Suppose | asked you to write a function to

return a pointer to the first negative Address Memory Data
—__dato])|

integer in an array (dat)73a0 14

—{(_dat(1])
— int* firstNeg(int dat[], int len); 73a4]

— What should you return if there is NO negative ESIETY 7328 G

integer? 73ac b] el
. . 73b0 -
* Another example from the <cstring> library
is strchr which returns a pointer to the first
Address Memory Data

occurrence of a character in a C-string. —=(dato]]
(Cdat J73a0 14
8

!N!

O

— char *strchr(char *str, char c); —(dat[1]
73a4

— What should be returned if the character does g —mZS-

not occur in the string? 2 —mz-
ac

* |t would be nice if there was some ae

address/pointer value we could use to L.
signify "INVALID" or "Bad Address"

=

i, TS("Viterbi (23

e Strange question: Is 3715 McClintock Ave. a valid street address?

 There's no way to really tell?!? Nothing about the address helps us know if it's valid or
not (i.e. if any thing lives at that address)
— Nothing about a memory address (e.g. Ox7fffecb®) would tell us whether good data resides there

* SO...C/C++ chose address 0 to mean INVALID POINTER and defined the keyword NULL
(in <cstdlib>) or now nullptr (in C++11) as address 0
— NULL or nullptr are literally replaced with 0

— Touse nullptr compile with the C++11 version: / NULL and nuIIptrO
$ g++ -std=c++11 -g -0 test test.cpp are substitutes for
* You should NEVER dereference a null pointer (will likely cause a crash)! LY
e UseNULL ornullptr to: * Theyshould be
used to indicate
— Initialize a pointer variable when you don't know what it should point to yet "INVALID pointer"
— As areturn value when a function can't return a pointer to "good" data (nothing good ever
— So you can write lives at address 0)
int* p = nullptr; * Similar to the null
if(p){ /* will never get to this code */ } UELE L)L
this is the NULL

// or p = firstNeg(...); if(p != NULL) { /* use p */ }_ pointer J

REVISITING C-STRINGS (CHARACTER
ARRAYS)

i, TS("Viterbi €D

School of Engineering

Constant Strings <> const char*

ﬁinclude <iostream> \

#include <cstring>
using namespace std;

int main() {
// What will be printed?
cout << "Hello" << endl;
cout << *"Bye" << endl;

cout << *(("Bye")+1) << endl;
cout << ("Bye")[1] << endl;
cout << "Hello"+1 << endl;

// Try this

// strcat("Good", "bye");

// reminder the prototype for strcmp() in C++ documentation is:
// char * strcat (char * destination, const char * source);

return 0;

USC Viterbi

School of Engineering

C-String Constants

C-String constants are the things we type in
".." and are stored somewhere in memory
(chosen by the compiler and behind the
scenes) as a const character array

— Asif: const anonymous-strl[6] = "Hello";

— And: const anonymous-str2[5] = "Bye!";
But when you write a string constant (e.g.
"Hello"), the computer will give back the
starting address where it chose to put the
anonymous array and it has the type: const
char*

— char* because an array is ALWAYS
known by its starting address in

int main()

{

// These are examples of C-String constants
cout << "Hello" << endl;
800

cout/<<

“oo 740
} \

"Bye!l™ << endl;

744
\0

\0
805

["
Hie|l|l|o Blyle|!
#include <cstring>

800
//cstring library includes 300
//void strcpy (char * dest, const char* src);
int main()

memory { char name[40];
— const because you cannot/should not } Stmpy(na;::’ Tonay s
change this array's contents
When you pass a C-string constant to
C/C++ considers the type of a string name = 240 279 300 305

constant (e.g. "Hi") to be const char*

\o

USC Viterbi &7

School of Engineering

Knowing vs. Owning an Address

 Scenario:
— I'm moving.
— The movers ask: "What's the address of

your new place where we should put all
this stuff?"

— lanswer, "1600 Pennsylvania Ave."

* What will happen when they go to that
address and try to put my stuff there?

 Knowing an address and OWNING the
property at that address are VERY
DIFFERENT.

— When we give a pointer, we need to
ensure we own the memory that pointer
corresponds to

This Photo by Unknown Author is licensed under CC BY

1600 Pennsylvania Ave.

https://www.bendigoexchange.com.au/about-hiring-professional-movers/
https://creativecommons.org/licenses/by/3.0/

i, TS("Viterbi

School of Engineering

Array / Pointer Relationship

* Owning a home vs. Street address
— A house is known by its address
* A house definitely has an address

— But an address doesn't necessary correspond to a
house

* | could make up an address where no house exists or an
address of a house that does exist but that | don't own

This Photo by Unknown Author is licensed
under CC BY-NC

 char[] (chararray/C-string) vs. char name[6]="Tommy";
. 73d8
char* (pointer) () name [olalnly [\
— A character array (i.e. C-String) like char name[6] is char* p1 = name;
known by it starting address (i.e. a char¥) p1 73d8

e Array implies a valid pointer (e.g. name)

— A char* (pointer) does NOT necessarily correspond to
a character array (C-String) char* p2;
* Pointer does not imply an underlying array p2 2222

https://ggwash.org/view/67904/why-dc-has-so-many-rowhouses-and-how-theyre-different-from-townhouses
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

i, TS("Viterbi

School of Engineering

char* vs. char Array — Common Error

##tinclude <iostream>

e Examine the code to the right using namespace std;
* Will we be able to copy the strings | int main()
- {
In eaCh Statement? char strl[40] = "hello world";

char* str2[40];
char* str3 = str2;
char* str4;

* Could you just make up an address

. p) // Try to copy
and go move into that apartment: S e SR Y N

— No! You must allocate/rent space first | strcpy(str3, strl); // Does this work?
strcpy(str4, strl); // Does this work?
before you can go to an address and

fill it in y

* Always ensure a char* POINTS at L=t
' 7400

an array that you've allocated S

before you use the pointer

str3 stra [72

i, TS("Viterbi

School of Engineering

char* vs. char Array — Common Error

#tinclude <iostream>

e Examine the code to the right using namespace std;

 Will we be able to read in the int main()
three strings? ¢

char* stri;
char str2[40];

char* str3 = str2;

* COUId you jUSt make Uup an address // Try to read in strings
and go move into that apartment? cin >> strl; // Does this work?

cin >> str2; // Does this work?

— No! You must allocate/rent space first cin >> str3; // Does this work?
before you can go to an address and } e
fill it in
« Always ensure a char® POINTS at ~ [eer)sers L 22
an array that you've allocated 73de

str2

before you use the pointer

str3

C-Stings < char*

 Moving forward, when you see type char* you should
automatically think: C-String [i.e. a character array
terminated with a null character]
— BUT, that char* must point to an ACTUAL character array.

* They should be synonymous in your head because...
— 99% of the time, a char™* will be used to point at a C-string

— 1% of the time a char™ will be pointing at a single character or
array of characters that is not terminated with a null (which the
documentation should describe)

 Many C/C++ library functions will ASSUME that a char*®
points at a C-string and treat it differently than other

pointers (like int* or double*)

char namel[] = "Bill";

— cin/cout are the best example namel = 73d@

5

i

1

1

\o

i, TS("Viterbi

School of Engineering

Expectations!

* All of the cstring library functions EXPECT that the char* you
provide points to a NULL-terminated character array

— int strlen(const char *dest)

— 1int strcmp(const char *strl, const char *str2);
— char *strcpy(char *dest, const char *src);

— char *strcat(char *dest, const char *src);

— char *strchr(const char *str, char c);

Prerequisites: Pointer Basics

POINTERS TO POINTERS

i, TS("Viterbi

School of Engineering

* We can have multiple levels of pointers
(indirection)

* Using C/C++ pointer terminology:
— *9 = gold in box 7 (9 => 7)
— **16 = gold in box 7 (16 => 9 => 7)
— **%*5 = gold in box 7 (5 => 16 => 9 => 7)

Each box has a number to identify it (i.e. an

° : : H . address) and a value inside of it. So do
What is stored in one box might be: riablos inmemory
— [Box 9]: a pointer-to to data
— [Box 16]: a pointer-to to a pointer-to data 0 8 1 2 15 3 |4 |95 16
— [Box 5]: a pointer-to to a pointer-to to a pointer-to data 6 y 7 84 97 19 11

12 (13,114 | 15 | 164 17,

i, TS("Viterbi

School of Engineering

Pointer Analogy

 How would you differentiate whether the
number in the box was data, a pointer,
or a pointer-to-a-pointer?
— You can’t really. Context (i.e. type) is needed
* This is why we have to declare something

as a pointer and give a type as well:

— int* p; // pointer to an integer one hop (one
level of indirection) away

— double **q; // pointer to a double two hops 6 1718 19_110! 11

(two levels of indirection) away T2 T 3 4
126 13, 14,] 15, 164 17,

It does not matter if you place the ** next to the type or variable
name. The following are the same.

double** q;
double **q;

(]S (" Viterbi ¢
Understand the Operations of Pointersto™

Pointers
Address Memory Data
* Point int to oth —
ointers can point to otner 7320
pointers —a73as | s N
73a8 7 *pi
— Essentially a chain of "links" 3ac
[&pi /
e Sample sequence 7309 4
. . 73b4 73a4 | \
- int k,.dat[3] = {5, 7, 9}; i —m—;pm
— 1int *pi, 73bc 73b0
— int **ppi; 73cel |
— p' = dat; 73c4
_ ppl &p1:
— - X - — ecall:
k p L / / k I I} ’I"I with a type to the left is declaring a
— = X % 1 . = ointer (e.g. int *pi
k B (ppl) + 1’ // k__ . Ewitth N(Ofypettopt)heIeftisdereferencing
— k = *(*ppi + 1); // k=_ the pointer (e.g k = *pi)

This code does nothing useful and is just for illustration.

e — (5C Viterbi &
Check Yourself

To figure out the type of data a pointer expression will yield...

* Consider these declarations: * Each * in the expression cancels a * from the variable type.
— int k, dat[3] _ {5, 7, 9}; * Each & in the expression adds a * to the variable type.
— int *pi = x, **ppi = π Orig. Type Expr Yields
pi = int* *pi int
* |In declarations, the type (e.g. int) distributes ppi = int** **ppi int
when you declare multiple variables, but the *s
do NOT! (@!**-ing C/C++ ©) ppi = int** *ppi int*
: . . k = int &k int*
* Tip: As a sanity check when you write — : .
pi = int* &pi int**
code, ensure the types match on

either side of an operator or an _ Bpresson | Tye
&pi

assignment

(e.g.x =y, // are x and y dat

// types compatible/the same) &k
pi
*pi

* Indicate the formal type that
each expression evaluates to

M ° . . * ° 1
(I.E. int, int *, int **) (*ppi) +
&ppi

pi + 2

N USC Viterbi

Understanding Types With & or *
(Skip for time)

& operator (Address-of) * Operator (Dereference)
* Applying & to a variable of type T yields: a * Apply * to a variable of type T* yields a
type T* result type T result (every * in the expression
* Thatis to say: & adds a * to the resulting type cancels a * from the type of variable)
— int x; int — int a = *ptril;
— double z; (double) // * G => (int)
— int *ptrl = &X; — *ptr2 = 1.25;
/7 &Cn) => (S //) =>(double]
— double* ptr2 = &z;

([doubld B *ptr3 = ptri;
// & => double*
ouble // E S => —

— int **ptr3 = &ptri;
- **ptr3 = 5;

) -
// **=>

I Uscviterbi
School of Engineering

ARRAYS OF POINTERS

P USCViterbi <2
Recall: One or Many

void fl(int* p)

o Strange question: { // does p point to one int
: f ints?
— 1s 3240 McClintock Ave. the address of a 07 CIF EIT EIRfe G e
single-family house or a large dormitory }

with many suites?
— We can't know.

// fl1 decrements the integer
* Inthe same way, C/C++ does not // pointed to by p
. . : id f1(int*
differentiate whether a pointer (o TN)
points to a single variable or an array } =L

(i.e. it doesn't have additional syntax) Pointer to a single variable

— It can only be determined based on how [, ¢1 cets the array pointed to
the function uses the pointer // by p to all zeros
void fl(int* p)
{
) for(int i=0; i < 10; i++)
* But for now (and in many contexts), a { pli] = ©; }
pointer will be pointing to an array! J

Pointer to an array

Big Idea (T* < T][])

* In many cases (though not all), a pointer is synonymous with or
implies an array (since the name of an array yields a pointer to it)

— Achar* & char[]

char name[6] = "Anika";
* name 1is a char* (char*)
name=73d8
Aln|i|k|al|\©

— Anint* & int[]

e dat is an int*

(int*)
dat=7420

3

5

4

2

 So what would an array of T* (e.g. T* mat

— An of = array

int dat[4] = {3,5,8,2};

(1) be?

e — 5 iterbi
Multidimensional Arrays

Address Mem.

* Thus far, arrays can be thought of 7419 | ab
1-dimensional (linear) sequences 7420 | 01
— only indexed with 1 value (coordinate) Zzi Z
— char dat[6] = {1,2,3,4,5,6}; 2423 | 04

 We often want to view our data as 7424 | 05
2D, 3D or higher dimensional data 7425 | 06
— Matrix data 7426 | fe
— Images (2D or 3D)

— Index w/ 2 coordinates
(row,col)

Individual
Pixels

Row Index

> Image taken from the photo "Robin Jeffers at Ton
| House" (1927) by Edward Weston

i, TS("Viterbi

School of Engineering

Multidimension Array Declaration

e 2D: Declare by providing size along both dimensions

(normally rows first then columns) and access Col.0 Col.1 Col.2
with 2 indices Row0 | 5 3 1
— Declaration: int matrix[2][3]; Row 1 6 4 2

— Access elements with appropriate indices
e my matrix[0][1] evaluatesto3, my matrix [1][2] evalsto?2

e 3D: Declare and access data with 3 indices
— Declaration: unsigned char image[2][4][3];

— Access elements with appropriate indices Col. Col. Col. Col.

« image[©][3][1] evals to 51 0 1 2 _3 Plane0
Row 0 7 (32144 | 23 Plane 1

Row1 | 10 | 59 | 18 | 88 |51 [lane?

72 | 61|53 846
14772791

USC Viterbi @22
Imitations o Multia mensionar-

Arrays

e Just like 1D arrays, multidimensional arrays must be declared
of a FIXED, constant size and NOT a variable size
— Legal Declaration: int matrix[2][3];
— Legal Declaration: unsigned char image[2][4][3];
— lllegal Declaration: int matrix[n][m];
— lllegal Declaration : unsigned char image[NX] [NY] [NZ];

e Also, C++ new CANNOT even dynamically allocate a 2- or 3-D
array (for reasons we'll explain in a future unit)
— Does NOT work: new matrix[n][m];
— Does NOT work : new unsigned char[NX] [NY] [NZ];
* But there is a way! Arrays of pointers.

— Use many 1D-arrays and an array of pointers

i, TS("Viterbi

School of Engineering

Pointers-To-Pointers <~ 2D Arrays

If 1D array is known by its starting address (i.e. a T* pointer)...
— e.g. int scoresl[5]; // scoresl is an int*
— Suppose we had a few more integer arrays (scores2, scores3, etc.)
e .. Then an ARRAY of pointers could be thought of as:
an ARRAY of ARRAYS (i.e. 2D array)
— e.g. int* mat[4];

int**

Essentially
¢ What WOUId mat be? mat = 100 scores] =240 @ 2D array
' . . mat[0] 100
—_ 0|0|0|0|0
An array's type is a pointer mat[1] 108 —>
(T[] & T*), SO apply mat[2] 116 scores2 = 300
TIPS mat[3] 124 olo|o|o|o
substlicutlon. ~
T = 1nt*, thus... scores3 = 480

0|0|0|0|0

scores4 = 800

e mat is an int** Lelolele|e

e ()5 Viterbi &>
Arrays of pointers

* We often want to have several arrays of related data
— Store several text strings (names of contestants)

— We could declare each array separately but then we

couldn't use a loop to process them Address Memory Data

[ORIPILEN
(char* Jiname1] 7330 || B 1 1 1
@D [5DED[D

73a4 ||[\@ ? ? ?
int main(int argc, char *argv[]) \

{ (char* Jname2]73a8 || A n i k

char namel[8] = "Bl%l i 73ac || a\e ? ?
char name2[8] = "Anika";
char name3[8] = "Josue"; (char* J(name3]73b@ || J 0 s u
char name4[8] = "Mei"; 73b4 || e \0 ? ?
// I would like to print out each name (char* Jname4) 73p8 || M e i\0@
cout << namel << endl; 23bcll 2 2 2 »
cout << name2 << endl;
73cO
} 73c4

Painful!

i, TS("Viterbi

School of Engineering

Pointers-To-Pointers <~ 2D Arrays

0 An array of..

* Since a char* is the type for a 1D type for a 1b
character array (C-String), an array of O chor array
char* (e.g. char* [])is like an array of

e.g. char* names[4
arrays... (€9 [4])

e ..whichisa2D array

int main()

{ Essentially
char namel[8] "Bill"; // namel is a char* a 2D array
char name2[8]

::ﬁnika :: 3 name1=73de(char*]
osue"; X

"Mei" mnames _ Bfi[{l|1l(|\o
names[0@] 5480
names[1] 5488
names[2] 5490
names[3] 5498

char name3[8]
char name4[8]

Alnli|k|a|\©

char* names[4] = {namel, name2, name3, name4};
for(int 1 = 0; 1 < 4; i++){

cout << names[i] << endl;

// what type would 'names' be?
}

return 0;

Jlofs|ul|e[\O

B S C Viterbi &
Arrays of Pointers

Address Memory Data

73a0 (| Bill

* In essence, we want an El§g) of arrays but N \eloelo

. a PP o

in C/C++, thls is usually a.cco.n?pllshed as an S e
=[dz) of pointers (to the individual arrays) 73ac || ave 2 2>

 What type is 'names'? 73b6 || J o s u \

— The address of the 0-th char* in the array 73b4ife e ??
. . (named) 73b8 || M e i\0
— The address of a char* is really just a et

73bc || ? ? ? ?
names|[0]

i

int main() { 73c0
char namel[8] = "Bill"; // namel is a char* char**] T
char name2[8] = "Anika"; 73c4 7320
char name3[8] = "Josue";
char name4[8] = "Mei"; 73c8 char* | /

73cc 73a8
char* names[4] = {namel, name2, name3, name4}; I——
Tor(int 1 = 0; 1 < 4; 1++)] 73do
cout << names[i] << endl;
// what type would 'names' be? 73d4 73b0
return 9;

} 73dc 73b8

i, TS("Viterbi

School of Engineering

Arrays of constant C-Strings

Address Memory Data

. . . 7330 || Bi11
* We can have arrays of pointers just like we 71a
d n 1
have arrays of other data types -
. . | GoeaEeEnH \
* An array of pointers is most commonly 73ac|[o s u e
used to create an array of arrays (or 2D 7300 [\o M e i
array) where each pointer points at el | N
73b8
separate array.
73bc
names|[0]
WFuEE /3CO .
int main(int argc, char *argv[]) ¢ char*

{ 73c4 7320
const char *names[4] = 73c8 names[l]
{ "Bill", "Anika", "Josue", "Mei" }; ¢ char”]

73cc 73a5
for(i=0; i < 4; i++){ 2340 names[2]
cout << names[i] << endl; e /
} 73d4 73ab
73dc 73b1l

USC Viterbi

School of Engineering

Intro to Command Line Arguments

int main()

Currently, what method do we

{
use to get input? int seed;
double threshold;
— cin // keyboard input
. cout << "Enter an int and double: ";
Method 1: c1n cout << endl;

cin >> seed >»> threshold;

— But this requires human interaction - |
eaCh time the program is run } I in%éﬁr‘gﬁlint and double: Ji
— But to support scripts (automation) 29
and for other reasons, another int main(int argc, char *argv[])

{
if(argc < 3) {
cout << "Not enough inputs" << endl;

method is commonly used

Method 2: command line

return 1;
arguments }
o _ int seed = atoi(argv[1]);
— Data is input on the command line double threshold = atof(argv[2]);

when we launch the application

}4[=
$./progl 42 0.5 'J—‘——_

i, TS("Viterbi

School of Engineering

Command Line Arguments

* Now we can understand the arguments §
passed to the main function $./progl 42 0.5]
[i.e.main(int argc, char *argv[])] Command line string:

e At the command prompt we can give inputs A/PLEREE AR [0
to our program rather than making querying OS terminal command line
the user interactively:

_ ¢ ./progl 42 0.5 /prog1 Executable
- % g++ -g app.cpp -0 app int main(int argc, char *argv[])

« OS processes the command line string, argc=3 argv =73b0
breaking it at whitespaces, and copying it into argv=73b0 s
individual strings packaged into an array argvle] | 73de \— T TTTOTTRG
(argv) of pointers to those strings ::;‘I’[[;]] ;z:s \73d8

— Each entry is a pointer to a string (char *) al2|\e

* argc indicates the length of the argv array \73db

o(.|5(\0

* O™ entry (argv[@])is always the string
containing the program executable name

i, TS("Viterbi

School of Engineering

Using Command Line Arguments

Step 1: Update main()'s signature to:

int main(int argc, char* argv[]) or
int main(int argc, char** argv)

Step 2: Check argc to ensure the user

provides enough arguments when
they start the program

— Remember, the program name is one
of the arguments

Step 3: Use library functions to
convert strings to ints or doubles as
needed for numeric inputs

— atoi() or strtol() for ints

— atof() or strtod() for doubles

— Allarein<cstdlib>

— No need to convert text arguments

[$./progl 42 0.5 J
argv = 73be 73de
argv[o] 73de \p rlolgl1]\e
argv[1] 73d8
argv[2] 73da \73d8
4(2|\e
argc =3 73da
e|.[5[\0

#include <iostream>
#include <csdtlib>
using namespace std;
//could also be => char **argv
int main(int argc, char *argv[])
{
if(argc < 3) {
cout << "Not enough inputs" << endl;
return 1;
}
int seed = atoi(argv[1]); // "42"=>42
double threshold =
atof(argv[2]); // "0.5"=>0.5
// use seed and threshold
/] ...

i, TS("Viterbi

School of Engineering

Converting C-Strings to Numeric Types

These cannot be used
as numeric types and

e Recall that text strings are B (s be converted.

$./r'01 42 0.5 73d8=argv[1]
represented as ASCII characters argv[0] @ argv[1] argv(2]
ngom 52(50|00
— ASCII digits have codes like 48='0', 49="1",
etc.

e« <cstdlib> provides functions that
take char* (character string) inputs #include <iostream>

. #include <csdtlib>
and convert to int or double types. eSiE ETESEEEE S

73da=argv[2]
"9.5" 48|46(53|00

— atoi() or strtol() for ints

int main(int argc, char *argv
e ASCIl to Integer and String to Long Int (gc, gvl])

{
— atof() or strtod() for doubles if(argc < 3) {
* ASCII to float and String to Double cout << "Not enough inputs® << endl;
return 1;
* No need to convert text }
int seed = strtol(argv[1]); // "42"=>42
arguments double threshold =
(::) strtod(argv[2]); // "0.5"=>0.5
strtol() and strtod() are newer and // use seed and threshold
preferred to atoi() and atof() with extra /] ...
features and error handling h

Exercises

e Cmdargs sum

e Cmdargs smartsum

e Cmdargs smartsum str

* loi

http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum

i, TS("Viterbi

School of Engineering

Why Pointers to Arrays? (1)

Address Memory Data
(o011 (P2 (€Y

* Suppose we now wanted to alter the order of 7330l An ik |lsls1
the arrays 73a§
— Change order from "Bill", "Annika", etc. to 733
"Annika", "Bill", .. .
* We could move/swap the data itself, but this 73b0
could be inefficient (especially for larger arrays) 73b
int main(int argc, char *argv[]) 73b
{ S) 73b
char namel[8] = "Bill"; char name2[8] = "Anika";
char name3[8] = "Josue"; char name4[8] = "Mei"; 73¢o
char *names[4] = {namel, name2, name3, name4}; 73cf
char temp[8]; 73cB
strcpy(temp, names[9]); "
strcpy(names[@0], names[1]); 73ct 73a8
strcpy(names[1], temp); 73dd
for(int i=0; i < 4; i++) { 73d .
cout << names[i] << endl; T I —
} 73d8\| B i 11
) o %
73dc (|\@ ? ? ?

i, TS("Viterbi

School of Engineering

Why Pointers to Arrays? (2)

Address Memory Data

 Or we could simply rearrange pointers which 2330 [R5V
would be independent of the size of the array or 7334 \Ué@“?@
object pointed to, and thus be quite fast. 2338l A n i K

‘

73ac || a\@ ? ?

73b6 Josu
73b4 |l e \O ? ?

int main(int argc, char *argv[]) 73b8 I M e i\O
{ > 2 2
char namel[8] = "Bill"; char name2[8] = "Anika"; 73bc _m_
char name3[8] = "Josue"; char name4[8] = "Mei"; 73¢c0 7330)
char *names[4] = {namel, name2, name3, name4}; 73c4 73a8
char* temp = names[0]; — e —
names[@] = names[1]; 73c8 7338)
names[1] = temp; 73cc 7330
for(int i=0; i < 4; i++) { 73d0o
cout << names[i] << endl;
} 73d4 ce
} — S
73d8
73dc 7320

IF TIME

—— ()5 \terbi
cin/cout & char*s

396 dat=400
* cin/cout determine everything they do x5S ojojojojofo
based on the type of data passed
 cin/cout have a unique relationship 448 word=440
with char*s name [440 He|1|1]o|\e

* When cout is given a variable or
. . . . #includ iost
expression of any type, it will print the e sl

value stored in that exact variable int main()

— Exception: When cout is given a char* it int x = 5, dat[10] = {@}; // dat is an int*
. o - . h d[10] = "Hello";
will assume it is pointing at a C-string, go to | o yerditel erte

char *name = word;
that address, and loop through each
cout << X << endl; // 5

character, printing them out cout << dat << endl; /7 200
. cout << word << endl; // Hello
* When cinis given a variable it will store cout << name << endls 7/ Hello

the input data in that exact variable cout << name[@] << endl; // H
cout << (void*) name << endl; // 440

— Exception: When cinis given a char* it
. - . . . cin >> dat; // Doesn't work, use a loop
will assume it is pointing at a C-string, 8010 | i 55 name; /7 Store many chars
that address, and place the typed // starting at 44e
. t 0;
characters in that memory) return

i, TS("Viterbi

School of Engineering

C-String Library Vulnerabilities

Address Memory Data

 What could go wrong with these 73a4
library functions? 73a8
— Consider the code below. 73ac
73b0
#include <iostream> Address Memory Data
#include <cstring>
using namespace std; 73a4
int main() 73a8
{
char stri[8]; 73ac
int x = 1;
strcpy(strl, "abcdefghij"); 73be

strcat(strl, "!");
’ ’ Address Memory Data

cout << str3 << endl;

73a4
return 0;

} 73a8

73ac

73b0

i, TS("Viterbi

School of Engineering

Safe C-String Library

e The<cstring> library was updated in subsequent versions of C++ to
provide safer alternatives to avoid array buffer overflows with many functions
now having a counterpart with n in the name representing a maximum length
to read or write.

— int strlen(const char *dest)

— int strncmp(const char *strl, const char *str2, size t num);

* Return 0 if equal, >0 if first non-equal char in strl is alphanumerically larger, <0 otherwise
* Compares a maximum of n characters (which should match the length of the shortest input)

— char *strncpy(char *dest, const char *src, size t num);
* Maximum of num characters copied

— char *strncat(char *dest, const char *src, size t num);
* Maximum of num characters concatenated plus a NULL

* See the documentation (https://cplusplus.com/reference/cstring/)

https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/

i, TS("Viterbi

School of Engineering

A Stack View

Address
—{_thresh J—
. . 7320
* Here is a memory/stack view of the riea -
a .
command line arguments, and the Jans
. —{_agc
argc, argv arguments passed to main() 34
argv[0]
. 73b0 | .
l $./progl 4 0.5 T 73b do
Ji argv(1]
#include <iostream> 73b _char*
#include <csdtlib> main q
using namespace std; 73hc a@a; 8
it n(int . char *
?n main(int argc, char *argv[]) 3¢ 73da A
if(argc < 3) { 73cC et ind™
cout << "Not enough inputs" << endl; P
return 1: 73cc ||o0d1 foas

} os |73de|l . /pr
int seed = strtol(argv[l]); 23d4 /
double threshold = strtod(argv[2]);

// use seed and threshold 73d8 || 4\0 ©
Il oo 73dc || 5\0 ? ?

Slo

”e
Bl

. ()

BACKUP

Why Pointers To Arrays

* 4 friends got sequential hotel rooms.

* Alice hates that her room number is 413 and would like to be
"next" to her friend Gina.

e She asks Tim to swap rooms. Tim doesn't care but DOESN'T want
to move all his stuff.

* Kyle has an idea to "satisfy" both. Can you guess his approach?

n,~~ A
Q ©o© © o0 ~ ©0 -

This Photo by Unknown Author is licensed under CC BY-ND

https://iristina.blogspot.com/2010/08/denver-co-airport-dia-holiday-inn.html
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/

	Slide 1: CS103 Unit 2c – Pointers to Pointers, Command line Arguments,
	Slide 2: Invalid Pointers
	Slide 3: NULL and nullptr
	Slide 4: Revisiting C-Strings (Character arrays)
	Slide 5: Constant Strings  const char*
	Slide 6: C-String Constants
	Slide 7: Knowing vs. Owning an Address
	Slide 8: Array / Pointer Relationship
	Slide 9: char* vs. char Array – Common Error
	Slide 10: char* vs. char Array – Common Error
	Slide 11: C-Stings  char*
	Slide 12: Expectations!
	Slide 13: PointeRS To POINTERS
	Slide 14: Pointer Analogy
	Slide 15: Pointer Analogy
	Slide 16: Understand the Operations of Pointers to Pointers
	Slide 17: Check Yourself
	Slide 18: Understanding Types With & or * (Skip for time)
	Slide 19: Arrays of Pointers
	Slide 20: Recall: One or Many
	Slide 21: Big Idea (T*  T[])
	Slide 22: Multidimensional Arrays
	Slide 23: Multidimension Array Declaration
	Slide 24: Limitations of Multidimensional Arrays
	Slide 25: Pointers-To-Pointers  2D Arrays
	Slide 26: Arrays of pointers
	Slide 27: Pointers-To-Pointers  2D Arrays
	Slide 28: Arrays of Pointers
	Slide 29: Arrays of constant C-Strings
	Slide 30: Intro to Command Line Arguments
	Slide 31: Command Line Arguments
	Slide 32: Using Command Line Arguments
	Slide 33: Converting C-Strings to Numeric Types
	Slide 34: Exercises
	Slide 35: Why Pointers to Arrays? (1)
	Slide 36: Why Pointers to Arrays? (2)
	Slide 37: If Time
	Slide 38: cin/cout & char*s
	Slide 39: C-String Library Vulnerabilities
	Slide 40: Safe C-String Library
	Slide 41: A Stack View
	Slide 42: Backup
	Slide 43: Why Pointers To Arrays

