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Invalid Pointers
• Suppose I asked you to write a function to 

return a pointer to the first negative
integer in an array
– int* firstNeg(int dat[], int len);

– What should you return if there is NO negative 
integer?

• Another example from the <cstring> library 
is strchr which returns a pointer to the first 
occurrence of a character in a C-string. 
– char *strchr(char *str, char c);

– What should be returned if the character does 
not occur in the string?

• It would be nice if there was some 
address/pointer value we could use to 
signify "INVALID" or "Bad Address"
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NULL and nullptr

• Strange question:  Is 3715 McClintock Ave. a valid street address?

• There's no way to really tell?!? Nothing about the address helps us know if it's valid or 
not (i.e. if any thing lives at that address)
– Nothing about a memory address (e.g. 0x7fffecb0) would tell us whether good data resides there  

• SO…C/C++ chose address 0 to mean INVALID POINTER and defined the keyword NULL 
(in <cstdlib>) or now nullptr (in C++11) as address 0
– NULL or nullptr are literally replaced with 0

– To use nullptr compile with the C++11 version:

    $ g++ -std=c++11 –g –o test test.cpp

• You should NEVER dereference a null pointer (will likely cause a crash)!

• Use NULL or nullptr to:
– Initialize a pointer variable when you don't know what it should point to yet

– As a return value when a function can't return a pointer to "good" data

– So you can write

 int* p = nullptr;

 if( p ){ /* will never get to this code */ }
    // or p = firstNeg(...);  if(p != NULL) { /* use p */ }

• NULL and nullptr 
are substitutes for 
address 0

• They should be 
used to indicate 
"INVALID pointer" 
(nothing good ever 
lives at address 0)

• Similar to the null 
character ('\0') but 
this is the NULL 
pointer
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REVISITING C-STRINGS (CHARACTER 
ARRAYS)



2c.5

Constant Strings  const char*

#include <iostream>
#include <cstring>
using namespace std;

int main() {
   // What will be printed?
 cout << "Hello" << endl;
 cout << *"Bye" << endl;

 cout << *(("Bye")+1) << endl;
 cout << ("Bye")[1] << endl;
 cout << "Hello"+1 << endl;

 
 // Try this
 // strcat("Good", "bye");
 // reminder the prototype for strcmp() in C++ documentation is:
 // char * strcat ( char * destination, const char * source );

 return 0;
}
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C-String Constants
• C-String constants are the things we type in 

"…" and are stored somewhere in memory 
(chosen by the compiler and behind the 
scenes) as a const character array
– As if:  const anonymous-str1[6] = "Hello"; 

– And: const anonymous-str2[5] = "Bye!"; 

• But when you write a string constant (e.g. 
"Hello"), the computer will give back the 
starting address where it chose to put the 
anonymous array and it has the type: const 
char* 

– char* because an array is ALWAYS 
known by its starting address in 
memory

– const because you cannot/should not 
change this array's contents

• When you pass  a C-string constant to a 
function, its parameter type should be 
const char *

int main()
{
  // These are examples of C-String constants
  cout << "Hello" << endl;

  cout << "Bye!" << endl;
  ...

}

B y e ! \0
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#include <cstring>
//cstring library includes
//void strcpy (char * dest, const char* src);
int main()
{
  char name[40];
  strcpy(name, "Tommy");
}

name = 240              279
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C/C++ considers the type of a string 
constant (e.g. "Hi") to be const char*
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Knowing vs. Owning an Address

1600 Pennsylvania Ave. 

This Photo by Unknown Author is licensed under CC BY

• Scenario:

– I'm moving.

– The movers ask: "What's the address of 
your new place where we should put all 
this stuff?"

– I answer, "1600 Pennsylvania Ave."

• What will happen when they go to that 
address and try to put my stuff there?

• Knowing an address and OWNING the 
property at that address are VERY 
DIFFERENT.

– When we give a pointer, we need to 
ensure we own the memory that pointer 
corresponds to

https://www.bendigoexchange.com.au/about-hiring-professional-movers/
https://creativecommons.org/licenses/by/3.0/
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Array / Pointer Relationship

• Owning a home vs. Street address
– A house  is known by its address

• A house definitely has an address

– But an address doesn't necessary correspond to a 
house

• I could make up an address where no house exists or an 
address of a house  that does exist but  that I don't own 

• char[] (char array/C-string) vs. 
char* (pointer)
– A character array (i.e. C-String) like char name[6] is 

known by it starting address (i.e. a char*)
• Array implies a valid pointer (e.g. name)

– A char* (pointer) does NOT necessarily correspond to 
a character array (C-String)
• Pointer does not imply an underlying array

This Photo by Unknown Author is licensed 
under CC BY-NC

T o m m y \0
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char*

char name[6]="Tommy";

name

char* p1 = name;

p2 ????char*

char* p2;

https://ggwash.org/view/67904/why-dc-has-so-many-rowhouses-and-how-theyre-different-from-townhouses
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
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char* vs. char Array – Common Error

• Examine the code to the right

• Will we be able to copy the strings 
in each statement?

• Could you just make up an address 
and go move into that apartment?
– No! You must allocate/rent space first 

before you can go to an address and 
fill it in

• Always ensure a char* POINTS at 
an array that you've allocated 
before you use the pointer

#include <iostream>
using namespace std;

int main()
{
  char str1[40] = "hello world";
  char* str2[40];
  char* str3 = str2;
  char* str4;

  // Try to copy
  strcpy(str2, str1); // Does this work?
  strcpy(str3, str1); // Does this work?
  strcpy(str4, str1); // Does this work?     
  ...
}

str1
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char*

str2

str3char*

char*

str4 ??char*
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char* vs. char Array – Common Error

• Examine the code to the right

• Will we be able to read in the 
three strings?

• Could you just make up an address 
and go move into that apartment?
– No! You must allocate/rent space first 

before you can go to an address and 
fill it in

• Always ensure a char* POINTS at 
an array that you've allocated 
before you use the pointer

#include <iostream>
using namespace std;

int main()
{
  char* str1;
  char str2[40];
  char* str3 = str2;

  // Try to read in strings
  cin >> str1;  // Does this work?
  cin >> str2;  // Does this work?
  cin >> str3;  // Does this work?
  ...
}

str1 ??

73d0

char*

str2

str3char*

char*
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C-Stings  char*

• Moving forward, when you see type char* you should 
automatically think: C-String [i.e. a character array 
terminated with a null character] 
– BUT, that char* must point to an ACTUAL character array.

• They should be synonymous in your head because…
– 99% of the time, a char* will be used to point at a C-string

– 1% of the time a char* will be pointing at a single character or 
array of characters that is not terminated with a null (which the 
documentation should describe)

• Many C/C++ library functions will ASSUME that a char* 
points at a C-string and treat it differently than other 
pointers (like int* or double*)
– cin/cout are the best example

B l \0i l

name1 = 73d0
char*

char name1[] = "Bill";



2c.12

Expectations!

• All of the cstring library functions EXPECT that the char* you 
provide points to a NULL-terminated character array

– int strlen(const char *dest)

– int strcmp(const char *str1, const char *str2);

– char *strcpy(char *dest, const char *src);

– char *strcat(char *dest, const char *src);

– char *strchr(const char *str, char c);
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POINTERS TO POINTERS

Prerequisites:  Pointer Basics
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Pointer Analogy

• We can have multiple levels of pointers 
(indirection)

• Using C/C++ pointer terminology:
– *9 = gold in box 7    (9 => 7)

– **16 = gold in box 7  (16 => 9 => 7)

– ***5 = gold in box 7  (5 => 16 => 9 => 7)

• What is stored in one box might be:
– [Box 9]: a pointer-to to data

– [Box 16]: a pointer-to to a pointer-to data

– [Box 5]: a pointer-to to a pointer-to to a pointer-to data

0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11

8 15 16

711

1 9 3

34

Each box has a number to identify it (i.e. an 
address) and a value inside of it. So do 

variables in memory.
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Pointer Analogy

• How would you differentiate whether the 
number in the box was data, a pointer,  
or a pointer-to-a-pointer?
– You can’t really.  Context (i.e. type) is needed

• This is why we have to declare something 
as a pointer and give a type as well:
– int* p; // pointer to an integer one hop (one 

level of indirection) away

– double **q; // pointer to a double two hops 
(two levels of indirection) away

0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11

8 15 3

711

1 9 3

34

7 9 15

186

12 4

It does not matter if you place the ** next to the type or variable 
name. The following are the same.
  double** q;  
  double **q;
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Understand the Operations of Pointers to 
Pointers

• Pointers can point to other 
pointers

– Essentially a chain of "links"

• Sample sequence
– int k, dat[3] = {5, 7, 9};

– int *pi,

– int **ppi;

– pi = dat;

– ppi = &pi;

– k = *pi;            // k=__

– k = (**ppi) + 1;    // k=__

– k = *(*ppi + 1);    // k=__
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Recall:
• * with a type to the left is declaring a 

pointer (e.g. int *pi)
• * with NO type to the left is dereferencing 

the pointer  (e.g k = *pi)

This code does nothing useful and is just for illustration.



2c.17

Check Yourself
• Consider these declarations:

– int k, dat[3] = {5, 7, 9};

– int *pi = x, **ppi = &pi;

• Tip: As a sanity check when you write 
code, ensure the types match on 
either side of an operator or an 
assignment 
(e.g. x = y; // are x and y 
// types compatible/the same)

• Indicate the formal type that 
each expression evaluates to 
(i.e. int, int *, int **)

Expression Type

&pi

dat

&k

pi

*pi

pi + 2

(*ppi) + 1

&ppi

To figure out the type of data a pointer expression will yield…
• Each * in the expression cancels a * from the variable type. 
• Each & in the expression adds a * to the variable type.

Orig. Type Expr Yields

pi = int* *pi int

ppi = int** **ppi int

ppi = int** *ppi int*

k = int &k int*

pi = int* &pi int**

• In declarations, the type (e.g. int) distributes 
when you declare multiple variables, but the *s 
do NOT!     (@!**-ing C/C++ ☺)
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Understanding Types With & or *
(Skip for time)

& operator (Address-of)
• Applying & to a variable of type T yields: a 

type T* result 

• That is to say: & adds a * to the resulting type

– int x;

– double z;

– int *ptr1    = &x; 

              //  &      =>

– double* ptr2 = &z; 

              //  &      =>

– int **ptr3 = &ptr1;

              //  &      =>

* Operator (Dereference)
• Apply * to a variable of type T* yields a 

type T result (every * in the expression 
cancels a * from the type of variable)

–    int a = *ptr1;  

//       *     =>

–    *ptr2 = 1.25;

// *     =>

–    *ptr3 = ptr1;

// *     =>

–    **ptr3 = 5;

// **    =>

int*

int

double

int int*

double*double

int* int**

int

double* double

int** int

int** int*
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ARRAYS OF POINTERS



2c.20

Recall: One or Many
• Strange question: 

– Is 3240 McClintock Ave. the address of a 
single-family house or a large dormitory 
with many suites?

– We can't know.

• In the same way, C/C++ does not 
differentiate whether a pointer 
points to a single variable or an array 
(i.e. it doesn't have additional syntax)
– It can only be determined based on how 

the function uses the pointer

• But for now (and in many contexts), a 
pointer will be pointing to an array!

void f1(int* p)
{  // does p point to one int
   // or an array of ints?

}

// f1 sets the array pointed to
//  by p to all zeros
void f1(int* p)
{  
  for(int i=0; i < 10; i++) 
   { p[i] = 0; }
}

// f1 decrements the integer
//  pointed to by p
void f1(int* p)
{  
  *p -= 1;
}

Pointer to an array

Pointer to a single variable
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Big Idea (T*  T[])

• In many cases (though not all), a pointer is synonymous with or 
implies an array (since the name of an array yields a pointer to it)

– A char*  char[]
• name is a char* 

– An int*  int[]
• dat is an int*

• So what would an array of T* (e.g. T* mat[]) be?

– An __________ of ___________  = ______ array

A n i k a \0

name=73d8
char*

char name[6] = "Anika"; 

3 5 4 2

dat=7420
int*

int dat[4] = {3,5,8,2}; 
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Multidimensional Arrays

• Thus far, arrays can be thought of 
1-dimensional (linear) sequences
– only indexed with 1 value (coordinate)

– char dat[6] = {1,2,3,4,5,6};

• We often want to view our data as 
2D, 3D or higher dimensional data
– Matrix data

– Images (2D or 3D)

– Index w/ 2 coordinates 
(row,col)

Image taken f rom the photo "Robin Jef fers at Ton 

House" (1927) by Edward Weston 

0 0 0 0

64 64 64 0

128 192 192 0

192 192 128 64Individual 

Pixels
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Row Index
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04

05

06

fe

7419 

7420 
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7423

7424

7425

7426

Address Mem.

dat
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Multidimension Array Declaration

• 2D: Declare by providing size along both dimensions 
(normally rows first then columns) and access
with 2 indices
– Declaration:  int matrix[2][3];

– Access elements with appropriate indices 

• my_matrix[0][1] evaluates to 3,      my_matrix [1][2] evals to 2

• 3D: Declare and access data with 3 indices
– Declaration:  unsigned char image[2][4][3];

– Access elements with appropriate indices 

• image[0][3][1] evals to 51 

5 3 1

6 4 2

Col. 0 Col. 1 Col. 2 

Row 0

Row 1

35 3 44 16

6 14 72 91

35 3 44 51

72 61 53 84

7 32 44 23

10 59 18 88

Plane 0

Plane 1

Plane 2

Row 0

Col. 

3 

Col. 

2 

Col. 

1

Col. 

0

Row 1
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Limitations of Multidimensional 
Arrays

• Just like 1D arrays, multidimensional arrays must be declared 
of a FIXED, constant size and NOT a variable size
– Legal Declaration:  int matrix[2][3];

– Legal Declaration:  unsigned char image[2][4][3];

– Illegal Declaration:  int matrix[n][m];

– Illegal Declaration : unsigned char image[NX][NY][NZ];

• Also, C++ new CANNOT even dynamically allocate a 2- or 3-D 
array (for reasons we'll explain in a future unit)
– Does NOT work:  new matrix[n][m];

– Does NOT work : new unsigned char[NX][NY][NZ];

• But there is a way!  Arrays of pointers.

– Use many 1D-arrays and an array of pointers
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Pointers-To-Pointers  2D Arrays

• If 1D array is known by its starting address (i.e. a T* pointer)…
– e.g.  int scores1[5];  // scores1 is an int*

– Suppose we had a few more integer arrays (scores2, scores3, etc.)

• …Then an ARRAY of pointers could be thought of as:
an ARRAY of ARRAYS (i.e. 2D array)

– e.g. int* mat[4];

• What would mat be? 
– An array's type is a pointer 

(T[]  T*), so apply 
substitution:
T = int*, thus…

• mat is an int**

0

scores1 = 240

0 000

0

scores2 = 300

0 000

0

scores3 = 480

0 000

0

scores4 = 800

0 000

mat[0]

mat[1]

mat[2]

240

300

480

mat[3] 800

100

108

116

124

mat = 100
int*

int*

int*

int*

int**

int*

int*

int*

int*

Essentially 
a 2D array
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Arrays of pointers

• We often want to have several arrays of related data

– Store several text strings (names of contestants)

– We could declare each array separately but then we 
couldn't use a loop to process them

int main(int argc, char *argv[])
{
  char name1[8] = "Bill";
  char name2[8] = "Anika";
  char name3[8] = "Josue";
  char name4[8] = "Mei";

  // I would like to print out each name
  cout << name1 << endl;
  cout << name2 << endl;
  ...
}

Painful!
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Pointers-To-Pointers  2D Arrays

• Since a char* is the type for a 1D 
character array (C-String), an array of 
char* (e.g. char* []) is like an array of 
arrays…

• …which is a 2D array

int main()
{
  char name1[8] = "Bill";  // name1 is a char*
  char name2[8] = "Anika";
  char name3[8] = "Josue";
  char name4[8] = "Mei";

  char* names[4] = {name1, name2, name3, name4};
  for(int i = 0; i < 4; i++){
    cout << names[i] << endl;
    // what type would 'names' be?
  }
  return 0;
}

A n i k a \0

M e i \0

names[0]

names[1]

names[2]

73d8
73d0

73d8

73e0
73e0

73e8

B l

name1=73d0

\0i l

names[3] 73e8 J o s u e \0

char*

char*

char*

char*

char**

5480

5488

5490

5498

names = 5480

(e.g. char* names[4]) 

char*

char*

char*

char*

type for a 1D 
char array

An array of…1

2

Essentially 
a 2D array
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Arrays of Pointers

• In essence, we want an array of arrays but 
in C/C++, this is usually accomplished as an 
array of pointers (to the individual arrays)

• What type is 'names'?
– The address of the 0-th char* in the array

– The address of a char* is really just a char**

B i l l
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Address Memory Data

name3

name1

name2

name4

[0] [1] [2] [3]

[4] [5] [6] [7]

names
names[0]

names[1]

names[2]

names[3]

char**
char*

char*

char*

char*

int main() {
  char name1[8] = "Bill";  // name1 is a char*
  char name2[8] = "Anika";
  char name3[8] = "Josue";
  char name4[8] = "Mei";

  char* names[4] = {name1, name2, name3, name4};
  for(int i = 0; i < 4; i++){
    cout << names[i] << endl;
    // what type would 'names' be?
  }
  return 0;
}
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Arrays of constant C-Strings

• We can have arrays of pointers just like we 
have arrays of other data types

• An array of pointers is most commonly 
used to create an array of arrays (or 2D 
array) where each pointer points at 
separate array. 

int main(int argc, char *argv[])
{
  const char *names[4] = 
     { "Bill", "Anika", "Josue", "Mei" };

  for(i=0; i < 4; i++){
    cout << names[i] << endl;
  } 

}
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Intro to Command Line Arguments

• Currently, what method do we 
use to get input?
– cin

• Method 1: cin 
– But this requires human interaction 

each time the program is run

– But to support scripts (automation) 
and for other reasons, another 
method is commonly used

• Method 2: command line 
arguments 
– Data is input on the command line 

when we launch the application

int main()
{
  int seed;
  double threshold;
  // keyboard input
  cout << "Enter an int and double: ";
  cout << endl;
  cin >> seed >> threshold;

} $ ./prog1 
Enter an int and double: 
42 0.5

int main(int argc, char *argv[])
{
  if(argc < 3) {
    cout << "Not enough inputs" << endl;
    return 1;
  }
  int seed = atoi(argv[1]);
  double threshold = atof(argv[2]);  
  
}

$ ./prog1 42 0.5
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Command Line Arguments

• Now we can understand the arguments 
passed to the main function 
[i.e. main(int argc, char *argv[]) ]

• At the command prompt we can give inputs 
to our program rather than making querying 
the user interactively:

– $ ./prog1  42  0.5

– $ g++ -g app.cpp -o app

• OS processes the command line string, 
breaking it at whitespaces, and copying it into 
individual strings packaged into an array 
(argv) of pointers to those strings
– Each entry is a pointer to a string (char *)

• argc indicates the length of the argv array

• 0th entry (argv[0]) is always the string 
containing the program executable name

p r o g 1 4 0 . 5

p r o g 1 \0

4

0 . 5

2

\0

argv[0]

argv[1]

argv[2]

Command line string:

73d0
73d0

73d8

73db
73d8

73db

OS terminal command line

./prog1 Executable

int main(int argc, char *argv[])

argc = 3 argv = 73b0

argv=73b0

$ ./prog1 42 0.5

\02

\0

. /

. /
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Using Command Line Arguments

• Step 1: Update main()'s signature to:
  int main(int argc, char* argv[]) or
 int main(int argc, char** argv)

• Step 2: Check argc to ensure the user 
provides enough arguments when 
they start the program

– Remember, the program name is one 
of the arguments

• Step 3: Use library functions to 
convert strings to ints or doubles as 
needed for numeric inputs

– atoi() or strtol() for ints

– atof() or strtod() for doubles

– All are in <cstdlib>

– No need to convert text arguments

#include <iostream>
#include <csdtlib>
using namespace std;
//could also be => char **argv
int main(int argc, char *argv[])
{
  if(argc < 3) {
    cout << "Not enough inputs" << endl;
    return 1;
  }
  int seed = atoi(argv[1]); // "42"=>42
  double threshold =
             atof(argv[2]); // "0.5"=>0.5
  // use seed and threshold
  // ...
}

$ ./prog1 42 0.5
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Converting C-Strings to Numeric Types

• Recall that text strings are 
represented as ASCII characters
– ASCII digits have codes like 48='0', 49='1', 

etc.

• <cstdlib> provides functions that 
take char* (character string) inputs 
and convert to int or double types.

– atoi() or strtol() for ints
• ASCII to Integer and String to Long Int

– atof() or strtod() for doubles
• ASCII to float and String to Double

• No need to convert text 
arguments

#include <iostream>
#include <csdtlib>
using namespace std;

int main(int argc, char *argv[])
{
  if(argc < 3) {
    cout << "Not enough inputs" << endl;
    return 1;
  }
  int seed = strtol(argv[1]); // "42"=>42
  double threshold =
           strtod(argv[2]); // "0.5"=>0.5
  // use seed and threshold
  // ...
}

$ ./prog1 42 0.5

strtol() and strtod() are newer and 
preferred to atoi() and atof() with extra 
features and error handling

52 50

73d8=argv[1]

73da=argv[2]

48 46 53 00"0.5"

"42"

These cannot be used 
as numeric types and 
must be converted.

argv[1] argv[2]argv[0]
00
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Exercises

• Cmdargs_sum

• Cmdargs_smartsum

• Cmdargs_smartsum_str

• toi

http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
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Why Pointers to Arrays? (1)
• Suppose we now wanted to alter the order of 

the arrays

– Change order from "Bill", "Annika", etc. to 
"Annika", "Bill", …

• We could move/swap the data itself, but this 
could be inefficient (especially for larger arrays)

int main(int argc, char *argv[]) 
{
  char name1[8] = "Bill";  char name2[8] = "Anika";
  char name3[8] = "Josue"; char name4[8] = "Mei";

  char *names[4] = {name1, name2, name3, name4};
  
  char temp[8];
  strcpy(temp, names[0]);
  strcpy(names[0], names[1]);
  strcpy(names[1], temp); 
  
  for(int i=0; i < 4; i++) {
     cout << names[i] << endl; 
  }
} 
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Why Pointers to Arrays? (2)
• Or we could simply rearrange pointers which 

would be independent of the size of the array or 
object pointed to, and thus be quite fast.

int main(int argc, char *argv[]) 
{
  char name1[8] = "Bill";  char name2[8] = "Anika";
  char name3[8] = "Josue"; char name4[8] = "Mei";

  char *names[4] = {name1, name2, name3, name4};
  char* temp = names[0];
  names[0] = names[1];
  names[1] = temp;

  for(int i=0; i < 4; i++) {
     cout << names[i] << endl; 
  } 
} 
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IF TIME
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cin/cout & char*s
• cin/cout determine everything they do 

based on the type of data passed

• cin/cout have a unique relationship 
with char*s

• When cout is given a variable or 
expression of any type, it will print the 
value stored in that exact variable

– Exception:  When cout is given a char* it 
will assume it is pointing at a C-string, go to 
that address, and loop through each 
character, printing them out

• When cin is given a variable it will store 
the input data in that exact variable

– Exception: When cin is given a char* it 
will assume it is pointing at a C-string, go to 
that address, and place the typed 
characters in that memory

#include <iostream>
using namespace std;
int main()
{
  int x = 5, dat[10] = {0}; // dat is an int*
  char word[10] = "Hello";
  char *name = word;
  
  cout << x << endl;       // 5 
  cout << dat << endl;     // 400  
cout << word << endl;    // Hello 
cout << name << endl;    // Hello 

  cout << name[0] << endl; // H 
  cout << (void*) name << endl;  // 440 

  cin >> dat;    // Doesn't work, use a loop 
cin >> name;   // Store many chars 

                 // starting at 440
  return 0;
}
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448
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C-String Library Vulnerabilities

• What could go wrong with these 
library functions?
– Consider the code below.

#include <iostream>
#include <cstring>
using namespace std;

int main() 
{
  char str1[8];
  int x = 1;
  strcpy(str1, "abcdefghij");

  strcat(str1, "!");

  cout << str3 << endl;

  return 0;
}
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Safe C-String Library

• The <cstring> library  was updated in subsequent versions of C++ to 
provide safer alternatives to avoid array buffer overflows with many functions 
now having a counterpart with n in the name representing a maximum length 
to read or write. 

– int strlen(const char *dest)

– int strncmp(const char *str1, const char *str2, size_t num);
• Return 0 if equal, >0 if first non-equal char in str1 is alphanumerically larger, <0 otherwise 

• Compares a maximum of n characters (which should match the length of the shortest input)

– char *strncpy(char *dest, const char *src, size_t num);
• Maximum of num characters copied

– char *strncat(char *dest, const char *src, size_t num);
• Maximum of num characters concatenated plus a NULL

• See the documentation (https://cplusplus.com/reference/cstring/ )

https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
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A Stack View

• Here is a memory/stack view of the 
command line arguments, and the 
argc, argv arguments passed to main()
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#include <iostream>
#include <csdtlib>
using namespace std;

int main(int argc, char *argv[])
{
  if(argc < 3) {
    cout << "Not enough inputs" << endl;
    return 1;
  }
  int seed = strtol(argv[1]);
  double threshold = strtod(argv[2]);  
  // use seed and threshold
  // ...
}

$ ./prog1 4 0.5

argc

seed

thresh

argv[0]
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d8 da
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BACKUP
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Why Pointers To Arrays

This Photo by Unknown Author is licensed under CC BY-ND

410 411 412 413

• 4 friends got sequential hotel rooms.

• Alice hates that her room number is 413 and would like to be 
"next" to her friend Gina.

• She asks Tim to swap rooms. Tim doesn't care but DOESN'T want 
to move all his stuff.

• Kyle has an idea to "satisfy" both. Can you guess his approach?

Gina AliceTimKyle

https://iristina.blogspot.com/2010/08/denver-co-airport-dia-holiday-inn.html
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/
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