
2c.1

CS103 Unit 2c –
Pointers to Pointers,

Command line Arguments,

2c.2

Invalid Pointers
• Suppose I asked you to write a function to

return a pointer to the first negative
integer in an array
– int* firstNeg(int dat[], int len);

– What should you return if there is NO negative
integer?

• Another example from the <cstring> library
is strchr which returns a pointer to the first
occurrence of a character in a C-string.
– char *strchr(char *str, char c);

– What should be returned if the character does
not occur in the string?

• It would be nice if there was some
address/pointer value we could use to
signify "INVALID" or "Bad Address"

14

 8

 -3

 2

 -9

73a0

73a4

73a8

73ac

73b0

Address Memory Data
dat[0]

dat[1]

dat[2]

dat

dat[3]

dat[4]

int* return

14

 8

 5

 2

 11

73a0

73a4

73a8

73ac

73b0

Address Memory Data
dat[0]

dat[1]

dat[2]

dat

dat[3]

dat[4]

int* return
???

2c.3

NULL and nullptr

• Strange question: Is 3715 McClintock Ave. a valid street address?

• There's no way to really tell?!? Nothing about the address helps us know if it's valid or
not (i.e. if any thing lives at that address)
– Nothing about a memory address (e.g. 0x7fffecb0) would tell us whether good data resides there

• SO…C/C++ chose address 0 to mean INVALID POINTER and defined the keyword NULL
(in <cstdlib>) or now nullptr (in C++11) as address 0
– NULL or nullptr are literally replaced with 0

– To use nullptr compile with the C++11 version:

 $ g++ -std=c++11 –g –o test test.cpp

• You should NEVER dereference a null pointer (will likely cause a crash)!

• Use NULL or nullptr to:
– Initialize a pointer variable when you don't know what it should point to yet

– As a return value when a function can't return a pointer to "good" data

– So you can write

 int* p = nullptr;

 if(p){ /* will never get to this code */ }
 // or p = firstNeg(...); if(p != NULL) { /* use p */ }

• NULL and nullptr
are substitutes for
address 0

• They should be
used to indicate
"INVALID pointer"
(nothing good ever
lives at address 0)

• Similar to the null
character ('\0') but
this is the NULL
pointer

2c.4

REVISITING C-STRINGS (CHARACTER
ARRAYS)

2c.5

Constant Strings  const char*

#include <iostream>
#include <cstring>
using namespace std;

int main() {
 // What will be printed?
 cout << "Hello" << endl;
 cout << *"Bye" << endl;

 cout << *(("Bye")+1) << endl;
 cout << ("Bye")[1] << endl;
 cout << "Hello"+1 << endl;

 // Try this
 // strcat("Good", "bye");
 // reminder the prototype for strcmp() in C++ documentation is:
 // char * strcat (char * destination, const char * source);

 return 0;
}

2c.6

C-String Constants
• C-String constants are the things we type in

"…" and are stored somewhere in memory
(chosen by the compiler and behind the
scenes) as a const character array
– As if: const anonymous-str1[6] = "Hello";

– And: const anonymous-str2[5] = "Bye!";

• But when you write a string constant (e.g.
"Hello"), the computer will give back the
starting address where it chose to put the
anonymous array and it has the type: const
char*

– char* because an array is ALWAYS
known by its starting address in
memory

– const because you cannot/should not
change this array's contents

• When you pass a C-string constant to a
function, its parameter type should be
const char *

int main()
{
 // These are examples of C-String constants
 cout << "Hello" << endl;

 cout << "Bye!" << endl;
 ...

}

B y e ! \0

740 744

H e l l \0o

800 805

#include <cstring>
//cstring library includes
//void strcpy (char * dest, const char* src);
int main()
{
 char name[40];
 strcpy(name, "Tommy");
}

name = 240 279

T o m m \0y

300 305

300

300

240

C/C++ considers the type of a string
constant (e.g. "Hi") to be const char*

800

740

800 const char*

2c.7

Knowing vs. Owning an Address

1600 Pennsylvania Ave.

This Photo by Unknown Author is licensed under CC BY

• Scenario:

– I'm moving.

– The movers ask: "What's the address of
your new place where we should put all
this stuff?"

– I answer, "1600 Pennsylvania Ave."

• What will happen when they go to that
address and try to put my stuff there?

• Knowing an address and OWNING the
property at that address are VERY
DIFFERENT.

– When we give a pointer, we need to
ensure we own the memory that pointer
corresponds to

https://www.bendigoexchange.com.au/about-hiring-professional-movers/
https://creativecommons.org/licenses/by/3.0/

2c.8

Array / Pointer Relationship

• Owning a home vs. Street address
– A house is known by its address

• A house definitely has an address

– But an address doesn't necessary correspond to a
house

• I could make up an address where no house exists or an
address of a house that does exist but that I don't own

• char[] (char array/C-string) vs.
char* (pointer)
– A character array (i.e. C-String) like char name[6] is

known by it starting address (i.e. a char*)
• Array implies a valid pointer (e.g. name)

– A char* (pointer) does NOT necessarily correspond to
a character array (C-String)
• Pointer does not imply an underlying array

This Photo by Unknown Author is licensed
under CC BY-NC

T o m m y \0

p1

73d8

73d8char*

char*

char name[6]="Tommy";

name

char* p1 = name;

p2 ????char*

char* p2;

https://ggwash.org/view/67904/why-dc-has-so-many-rowhouses-and-how-theyre-different-from-townhouses
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

2c.9

char* vs. char Array – Common Error

• Examine the code to the right

• Will we be able to copy the strings
in each statement?

• Could you just make up an address
and go move into that apartment?
– No! You must allocate/rent space first

before you can go to an address and
fill it in

• Always ensure a char* POINTS at
an array that you've allocated
before you use the pointer

#include <iostream>
using namespace std;

int main()
{
 char str1[40] = "hello world";
 char* str2[40];
 char* str3 = str2;
 char* str4;

 // Try to copy
 strcpy(str2, str1); // Does this work?
 strcpy(str3, str1); // Does this work?
 strcpy(str4, str1); // Does this work?
 ...
}

str1

7400

char*

str2

str3char*

char*

str4 ??char*

73d0

2c.10

char* vs. char Array – Common Error

• Examine the code to the right

• Will we be able to read in the
three strings?

• Could you just make up an address
and go move into that apartment?
– No! You must allocate/rent space first

before you can go to an address and
fill it in

• Always ensure a char* POINTS at
an array that you've allocated
before you use the pointer

#include <iostream>
using namespace std;

int main()
{
 char* str1;
 char str2[40];
 char* str3 = str2;

 // Try to read in strings
 cin >> str1; // Does this work?
 cin >> str2; // Does this work?
 cin >> str3; // Does this work?
 ...
}

str1 ??

73d0

char*

str2

str3char*

char*

2c.11

C-Stings  char*

• Moving forward, when you see type char* you should
automatically think: C-String [i.e. a character array
terminated with a null character]
– BUT, that char* must point to an ACTUAL character array.

• They should be synonymous in your head because…
– 99% of the time, a char* will be used to point at a C-string

– 1% of the time a char* will be pointing at a single character or
array of characters that is not terminated with a null (which the
documentation should describe)

• Many C/C++ library functions will ASSUME that a char*
points at a C-string and treat it differently than other
pointers (like int* or double*)
– cin/cout are the best example

B l \0i l

name1 = 73d0
char*

char name1[] = "Bill";

2c.12

Expectations!

• All of the cstring library functions EXPECT that the char* you
provide points to a NULL-terminated character array

– int strlen(const char *dest)

– int strcmp(const char *str1, const char *str2);

– char *strcpy(char *dest, const char *src);

– char *strcat(char *dest, const char *src);

– char *strchr(const char *str, char c);

2c.13

POINTERS TO POINTERS

Prerequisites: Pointer Basics

2c.14

Pointer Analogy

• We can have multiple levels of pointers
(indirection)

• Using C/C++ pointer terminology:
– *9 = gold in box 7 (9 => 7)

– **16 = gold in box 7 (16 => 9 => 7)

– ***5 = gold in box 7 (5 => 16 => 9 => 7)

• What is stored in one box might be:
– [Box 9]: a pointer-to to data

– [Box 16]: a pointer-to to a pointer-to data

– [Box 5]: a pointer-to to a pointer-to to a pointer-to data

0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11

8 15 16

711

1 9 3

34

Each box has a number to identify it (i.e. an
address) and a value inside of it. So do

variables in memory.

2c.15

Pointer Analogy

• How would you differentiate whether the
number in the box was data, a pointer,
or a pointer-to-a-pointer?
– You can’t really. Context (i.e. type) is needed

• This is why we have to declare something
as a pointer and give a type as well:
– int* p; // pointer to an integer one hop (one

level of indirection) away

– double **q; // pointer to a double two hops
(two levels of indirection) away

0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11

8 15 3

711

1 9 3

34

7 9 15

186

12 4

It does not matter if you place the ** next to the type or variable
name. The following are the same.
 double** q;
 double **q;

2c.16

Understand the Operations of Pointers to
Pointers

• Pointers can point to other
pointers

– Essentially a chain of "links"

• Sample sequence
– int k, dat[3] = {5, 7, 9};

– int *pi,

– int **ppi;

– pi = dat;

– ppi = π

– k = *pi; // k=__

– k = (**ppi) + 1; // k=__

– k = *(*ppi + 1); // k=__

 5

 7

 9

 73a4

 73b0

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

Address Memory Data

&pi

*pi

dat

dat[0]

dat[1]

dat[2]

k

&ppi

int* pi

int** ppi *ppi

Recall:
• * with a type to the left is declaring a

pointer (e.g. int *pi)
• * with NO type to the left is dereferencing

the pointer (e.g k = *pi)

This code does nothing useful and is just for illustration.

2c.17

Check Yourself
• Consider these declarations:

– int k, dat[3] = {5, 7, 9};

– int *pi = x, **ppi = π

• Tip: As a sanity check when you write
code, ensure the types match on
either side of an operator or an
assignment
(e.g. x = y; // are x and y
// types compatible/the same)

• Indicate the formal type that
each expression evaluates to
(i.e. int, int *, int **)

Expression Type

&pi

dat

&k

pi

*pi

pi + 2

(*ppi) + 1

&ppi

To figure out the type of data a pointer expression will yield…
• Each * in the expression cancels a * from the variable type.
• Each & in the expression adds a * to the variable type.

Orig. Type Expr Yields

pi = int* *pi int

ppi = int** **ppi int

ppi = int** *ppi int*

k = int &k int*

pi = int* &pi int**

• In declarations, the type (e.g. int) distributes
when you declare multiple variables, but the *s
do NOT! (@!**-ing C/C++ ☺)

2c.18

Understanding Types With & or *
(Skip for time)

& operator (Address-of)
• Applying & to a variable of type T yields: a

type T* result

• That is to say: & adds a * to the resulting type

– int x;

– double z;

– int *ptr1 = &x;

 // & =>

– double* ptr2 = &z;

 // & =>

– int **ptr3 = &ptr1;

 // & =>

* Operator (Dereference)
• Apply * to a variable of type T* yields a

type T result (every * in the expression
cancels a * from the type of variable)

– int a = *ptr1;

// * =>

– *ptr2 = 1.25;

// * =>

– *ptr3 = ptr1;

// * =>

– **ptr3 = 5;

// ** =>

int*

int

double

int int*

double*double

int* int**

int

double* double

int** int

int** int*

2c.19

ARRAYS OF POINTERS

2c.20

Recall: One or Many
• Strange question:

– Is 3240 McClintock Ave. the address of a
single-family house or a large dormitory
with many suites?

– We can't know.

• In the same way, C/C++ does not
differentiate whether a pointer
points to a single variable or an array
(i.e. it doesn't have additional syntax)
– It can only be determined based on how

the function uses the pointer

• But for now (and in many contexts), a
pointer will be pointing to an array!

void f1(int* p)
{ // does p point to one int
 // or an array of ints?

}

// f1 sets the array pointed to
// by p to all zeros
void f1(int* p)
{
 for(int i=0; i < 10; i++)
 { p[i] = 0; }
}

// f1 decrements the integer
// pointed to by p
void f1(int* p)
{
 *p -= 1;
}

Pointer to an array

Pointer to a single variable

2c.21

Big Idea (T*  T[])

• In many cases (though not all), a pointer is synonymous with or
implies an array (since the name of an array yields a pointer to it)

– A char*  char[]
• name is a char*

– An int*  int[]
• dat is an int*

• So what would an array of T* (e.g. T* mat[]) be?

– An __________ of ___________ = ______ array

A n i k a \0

name=73d8
char*

char name[6] = "Anika";

3 5 4 2

dat=7420
int*

int dat[4] = {3,5,8,2};

2c.22

Multidimensional Arrays

• Thus far, arrays can be thought of
1-dimensional (linear) sequences
– only indexed with 1 value (coordinate)

– char dat[6] = {1,2,3,4,5,6};

• We often want to view our data as
2D, 3D or higher dimensional data
– Matrix data

– Images (2D or 3D)

– Index w/ 2 coordinates
(row,col)

Image taken f rom the photo "Robin Jef fers at Ton

House" (1927) by Edward Weston

0 0 0 0

64 64 64 0

128 192 192 0

192 192 128 64Individual

Pixels

Column Index

Row Index

ab

01

02

03

04

05

06

fe

7419

7420

7421

7422

7423

7424

7425

7426

Address Mem.

dat

2c.23

Multidimension Array Declaration

• 2D: Declare by providing size along both dimensions
(normally rows first then columns) and access
with 2 indices
– Declaration: int matrix[2][3];

– Access elements with appropriate indices

• my_matrix[0][1] evaluates to 3, my_matrix [1][2] evals to 2

• 3D: Declare and access data with 3 indices
– Declaration: unsigned char image[2][4][3];

– Access elements with appropriate indices

• image[0][3][1] evals to 51

5 3 1

6 4 2

Col. 0 Col. 1 Col. 2

Row 0

Row 1

35 3 44 16

6 14 72 91

35 3 44 51

72 61 53 84

7 32 44 23

10 59 18 88

Plane 0

Plane 1

Plane 2

Row 0

Col.

3

Col.

2

Col.

1

Col.

0

Row 1

2c.24

Limitations of Multidimensional
Arrays

• Just like 1D arrays, multidimensional arrays must be declared
of a FIXED, constant size and NOT a variable size
– Legal Declaration: int matrix[2][3];

– Legal Declaration: unsigned char image[2][4][3];

– Illegal Declaration: int matrix[n][m];

– Illegal Declaration : unsigned char image[NX][NY][NZ];

• Also, C++ new CANNOT even dynamically allocate a 2- or 3-D
array (for reasons we'll explain in a future unit)
– Does NOT work: new matrix[n][m];

– Does NOT work : new unsigned char[NX][NY][NZ];

• But there is a way! Arrays of pointers.

– Use many 1D-arrays and an array of pointers

2c.25

Pointers-To-Pointers  2D Arrays

• If 1D array is known by its starting address (i.e. a T* pointer)…
– e.g. int scores1[5]; // scores1 is an int*

– Suppose we had a few more integer arrays (scores2, scores3, etc.)

• …Then an ARRAY of pointers could be thought of as:
an ARRAY of ARRAYS (i.e. 2D array)

– e.g. int* mat[4];

• What would mat be?
– An array's type is a pointer

(T[]  T*), so apply
substitution:
T = int*, thus…

• mat is an int**

0

scores1 = 240

0 000

0

scores2 = 300

0 000

0

scores3 = 480

0 000

0

scores4 = 800

0 000

mat[0]

mat[1]

mat[2]

240

300

480

mat[3] 800

100

108

116

124

mat = 100
int*

int*

int*

int*

int**

int*

int*

int*

int*

Essentially
a 2D array

2c.26

Arrays of pointers

• We often want to have several arrays of related data

– Store several text strings (names of contestants)

– We could declare each array separately but then we
couldn't use a loop to process them

int main(int argc, char *argv[])
{
 char name1[8] = "Bill";
 char name2[8] = "Anika";
 char name3[8] = "Josue";
 char name4[8] = "Mei";

 // I would like to print out each name
 cout << name1 << endl;
 cout << name2 << endl;
 ...
}

Painful!

B i l l

\0 ? ? ?

 A n i k

 a\0 ? ?

 J o s u

 e \0 ? ?

 M e i\0

 ? ? ? ?

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

Address Memory Data

name3

name1

name2

name4

[0] [1] [2] [3]

[4] [5] [6] [7]

char*

char*

char*

char*

2c.27

Pointers-To-Pointers  2D Arrays

• Since a char* is the type for a 1D
character array (C-String), an array of
char* (e.g. char* []) is like an array of
arrays…

• …which is a 2D array

int main()
{
 char name1[8] = "Bill"; // name1 is a char*
 char name2[8] = "Anika";
 char name3[8] = "Josue";
 char name4[8] = "Mei";

 char* names[4] = {name1, name2, name3, name4};
 for(int i = 0; i < 4; i++){
 cout << names[i] << endl;
 // what type would 'names' be?
 }
 return 0;
}

A n i k a \0

M e i \0

names[0]

names[1]

names[2]

73d8
73d0

73d8

73e0
73e0

73e8

B l

name1=73d0

\0i l

names[3] 73e8 J o s u e \0

char*

char*

char*

char*

char**

5480

5488

5490

5498

names = 5480

(e.g. char* names[4])

char*

char*

char*

char*

type for a 1D
char array

An array of…1

2

Essentially
a 2D array

2c.28

Arrays of Pointers

• In essence, we want an array of arrays but
in C/C++, this is usually accomplished as an
array of pointers (to the individual arrays)

• What type is 'names'?
– The address of the 0-th char* in the array

– The address of a char* is really just a char**

B i l l

\0 ? ? ?

 A n i k

 a\0 ? ?

 J o s u

 e \0 ? ?

 M e i\0

 ? ? ? ?

 73a0

 73a8

 73b0

 73b8

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

73dc

Address Memory Data

name3

name1

name2

name4

[0] [1] [2] [3]

[4] [5] [6] [7]

names
names[0]

names[1]

names[2]

names[3]

char**
char*

char*

char*

char*

int main() {
 char name1[8] = "Bill"; // name1 is a char*
 char name2[8] = "Anika";
 char name3[8] = "Josue";
 char name4[8] = "Mei";

 char* names[4] = {name1, name2, name3, name4};
 for(int i = 0; i < 4; i++){
 cout << names[i] << endl;
 // what type would 'names' be?
 }
 return 0;
}

2c.29

Arrays of constant C-Strings

• We can have arrays of pointers just like we
have arrays of other data types

• An array of pointers is most commonly
used to create an array of arrays (or 2D
array) where each pointer points at
separate array.

int main(int argc, char *argv[])
{
 const char *names[4] =
 { "Bill", "Anika", "Josue", "Mei" };

 for(i=0; i < 4; i++){
 cout << names[i] << endl;
 }

}

B i l l

\0 A n i

 k a\0 J

 o s u e

\0 M e i

\0 ? ? ?

 ...

 73a0

 73a5

 73ab

 73b1

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

73dc

Address Memory Data

names
names[0]

names[1]

names[2]

names[3]

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 aa ab

ac ad ae af

b0 b1 b2 b3

b4

char**
char*

char*

char*

char*

2c.30

Intro to Command Line Arguments

• Currently, what method do we
use to get input?
– cin

• Method 1: cin
– But this requires human interaction

each time the program is run

– But to support scripts (automation)
and for other reasons, another
method is commonly used

• Method 2: command line
arguments
– Data is input on the command line

when we launch the application

int main()
{
 int seed;
 double threshold;
 // keyboard input
 cout << "Enter an int and double: ";
 cout << endl;
 cin >> seed >> threshold;

} $./prog1
Enter an int and double:
42 0.5

int main(int argc, char *argv[])
{
 if(argc < 3) {
 cout << "Not enough inputs" << endl;
 return 1;
 }
 int seed = atoi(argv[1]);
 double threshold = atof(argv[2]);

}

$./prog1 42 0.5

2c.31

Command Line Arguments

• Now we can understand the arguments
passed to the main function
[i.e. main(int argc, char *argv[])]

• At the command prompt we can give inputs
to our program rather than making querying
the user interactively:

– $./prog1 42 0.5

– $ g++ -g app.cpp -o app

• OS processes the command line string,
breaking it at whitespaces, and copying it into
individual strings packaged into an array
(argv) of pointers to those strings
– Each entry is a pointer to a string (char *)

• argc indicates the length of the argv array

• 0th entry (argv[0]) is always the string
containing the program executable name

p r o g 1 4 0 . 5

p r o g 1 \0

4

0 . 5

2

\0

argv[0]

argv[1]

argv[2]

Command line string:

73d0
73d0

73d8

73db
73d8

73db

OS terminal command line

./prog1 Executable

int main(int argc, char *argv[])

argc = 3 argv = 73b0

argv=73b0

$./prog1 42 0.5

\02

\0

. /

. /

2c.32

Using Command Line Arguments

• Step 1: Update main()'s signature to:
 int main(int argc, char* argv[]) or
 int main(int argc, char** argv)

• Step 2: Check argc to ensure the user
provides enough arguments when
they start the program

– Remember, the program name is one
of the arguments

• Step 3: Use library functions to
convert strings to ints or doubles as
needed for numeric inputs

– atoi() or strtol() for ints

– atof() or strtod() for doubles

– All are in <cstdlib>

– No need to convert text arguments

#include <iostream>
#include <csdtlib>
using namespace std;
//could also be => char **argv
int main(int argc, char *argv[])
{
 if(argc < 3) {
 cout << "Not enough inputs" << endl;
 return 1;
 }
 int seed = atoi(argv[1]); // "42"=>42
 double threshold =
 atof(argv[2]); // "0.5"=>0.5
 // use seed and threshold
 // ...
}

$./prog1 42 0.5

p r o g 1 \0

4

0 . 5

2

\0

argv[0]

argv[1]

argv[2]

73d0
73d0

73d8

73da
73d8

73daargc = 3

argv = 73b0

\0

2c.33

Converting C-Strings to Numeric Types

• Recall that text strings are
represented as ASCII characters
– ASCII digits have codes like 48='0', 49='1',

etc.

• <cstdlib> provides functions that
take char* (character string) inputs
and convert to int or double types.

– atoi() or strtol() for ints
• ASCII to Integer and String to Long Int

– atof() or strtod() for doubles
• ASCII to float and String to Double

• No need to convert text
arguments

#include <iostream>
#include <csdtlib>
using namespace std;

int main(int argc, char *argv[])
{
 if(argc < 3) {
 cout << "Not enough inputs" << endl;
 return 1;
 }
 int seed = strtol(argv[1]); // "42"=>42
 double threshold =
 strtod(argv[2]); // "0.5"=>0.5
 // use seed and threshold
 // ...
}

$./prog1 42 0.5

strtol() and strtod() are newer and
preferred to atoi() and atof() with extra
features and error handling

52 50

73d8=argv[1]

73da=argv[2]

48 46 53 00"0.5"

"42"

These cannot be used
as numeric types and
must be converted.

argv[1] argv[2]argv[0]
00

2c.34

Exercises

• Cmdargs_sum

• Cmdargs_smartsum

• Cmdargs_smartsum_str

• toi

http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum
http://cs103.usc.edu/websheets/#cmdargs_sum

2c.35

Why Pointers to Arrays? (1)
• Suppose we now wanted to alter the order of

the arrays

– Change order from "Bill", "Annika", etc. to
"Annika", "Bill", …

• We could move/swap the data itself, but this
could be inefficient (especially for larger arrays)

int main(int argc, char *argv[])
{
 char name1[8] = "Bill"; char name2[8] = "Anika";
 char name3[8] = "Josue"; char name4[8] = "Mei";

 char *names[4] = {name1, name2, name3, name4};

 char temp[8];
 strcpy(temp, names[0]);
 strcpy(names[0], names[1]);
 strcpy(names[1], temp);

 for(int i=0; i < 4; i++) {
 cout << names[i] << endl;
 }
}

A n i k

 a\0 ? ?

 B i l l

\0 ? ? ?

 J o s u

 e \0 ? ?

 M e i\0

 ? ? ? ?

 73a0

 73a8

 ...

 B i l l

\0 ? ? ?

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

73dc

Address Memory Data

name3

name1

name2

name4

[0] [1] [2] [3]

[4] [5]

names
names[0]

names[1]

temp

B i l l

\0 ? ? ?

A n i k

 a\0 ? ?

2c.36

Why Pointers to Arrays? (2)
• Or we could simply rearrange pointers which

would be independent of the size of the array or
object pointed to, and thus be quite fast.

int main(int argc, char *argv[])
{
 char name1[8] = "Bill"; char name2[8] = "Anika";
 char name3[8] = "Josue"; char name4[8] = "Mei";

 char *names[4] = {name1, name2, name3, name4};
 char* temp = names[0];
 names[0] = names[1];
 names[1] = temp;

 for(int i=0; i < 4; i++) {
 cout << names[i] << endl;
 }
}

B i l l

\0 ? ? ?

 A n i k

 a\0 ? ?

 J o s u

 e \0 ? ?

 M e i\0

 ? ? ? ?

 73a0

 73a8

 73a8

 73a0

 ...

 73a0

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

73dc

Address Memory Data

name3

name1

name2

name4

[0] [1] [2] [3]

[4] [5] [6] [7]

names
names[0]

names[1]

temp

2c.37

IF TIME

2c.38

cin/cout & char*s
• cin/cout determine everything they do

based on the type of data passed

• cin/cout have a unique relationship
with char*s

• When cout is given a variable or
expression of any type, it will print the
value stored in that exact variable

– Exception: When cout is given a char* it
will assume it is pointing at a C-string, go to
that address, and loop through each
character, printing them out

• When cin is given a variable it will store
the input data in that exact variable

– Exception: When cin is given a char* it
will assume it is pointing at a C-string, go to
that address, and place the typed
characters in that memory

#include <iostream>
using namespace std;
int main()
{
 int x = 5, dat[10] = {0}; // dat is an int*
 char word[10] = "Hello";
 char *name = word;

 cout << x << endl; // 5
 cout << dat << endl; // 400
cout << word << endl; // Hello
cout << name << endl; // Hello

 cout << name[0] << endl; // H
 cout << (void*) name << endl; // 440

 cin >> dat; // Doesn't work, use a loop
cin >> name; // Store many chars

 // starting at 440
 return 0;
}

H e l l \0o

word=440

name 440

x 5 0 0 0 0 0 0

dat=400396

448

2c.39

C-String Library Vulnerabilities

• What could go wrong with these
library functions?
– Consider the code below.

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 char str1[8];
 int x = 1;
 strcpy(str1, "abcdefghij");

 strcat(str1, "!");

 cout << str3 << endl;

 return 0;
}

? ? ? ?

? ? ? ?

00000001

73a4

73a8

73ac

73b0

Address Memory Data

[0] [1] [2] [3]

[4] [5] [6] [7]

x

a b c d

e f g h

i j \0 01

73a4

73a8

73ac

73b0

Address Memory Data

[0] [1] [2] [3]

[4] [5] [6] [7]

x

a b c d

e f g h

i j ! \0

73a4

73a8

73ac

73b0

Address Memory Data

[0] [1] [2] [3]

[4] [5] [6] [7]

x

str

2c.40

Safe C-String Library

• The <cstring> library was updated in subsequent versions of C++ to
provide safer alternatives to avoid array buffer overflows with many functions
now having a counterpart with n in the name representing a maximum length
to read or write.

– int strlen(const char *dest)

– int strncmp(const char *str1, const char *str2, size_t num);
• Return 0 if equal, >0 if first non-equal char in str1 is alphanumerically larger, <0 otherwise

• Compares a maximum of n characters (which should match the length of the shortest input)

– char *strncpy(char *dest, const char *src, size_t num);
• Maximum of num characters copied

– char *strncat(char *dest, const char *src, size_t num);
• Maximum of num characters concatenated plus a NULL

• See the documentation (https://cplusplus.com/reference/cstring/)

https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/
https://cplusplus.com/reference/cstring/

2c.41

A Stack View

• Here is a memory/stack view of the
command line arguments, and the
argc, argv arguments passed to main()

 0.5

 4

 3

 73d0

 73d8

 73da

0041 f0a8

 . / p r

 o g 1\0

 4\0 0 .

 5\0 ? ?

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

73dc

Address

Memory Data

argv

argv[1]

argv[2]

char**
char*

char*

char*

OS

main

d0

#include <iostream>
#include <csdtlib>
using namespace std;

int main(int argc, char *argv[])
{
 if(argc < 3) {
 cout << "Not enough inputs" << endl;
 return 1;
 }
 int seed = strtol(argv[1]);
 double threshold = strtod(argv[2]);
 // use seed and threshold
 // ...
}

$./prog1 4 0.5

argc

seed

thresh

argv[0]

Return link

d8 da

2c.42

BACKUP

2c.43

Why Pointers To Arrays

This Photo by Unknown Author is licensed under CC BY-ND

410 411 412 413

• 4 friends got sequential hotel rooms.

• Alice hates that her room number is 413 and would like to be
"next" to her friend Gina.

• She asks Tim to swap rooms. Tim doesn't care but DOESN'T want
to move all his stuff.

• Kyle has an idea to "satisfy" both. Can you guess his approach?

Gina AliceTimKyle

https://iristina.blogspot.com/2010/08/denver-co-airport-dia-holiday-inn.html
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/

	Slide 1: CS103 Unit 2c – Pointers to Pointers, Command line Arguments,
	Slide 2: Invalid Pointers
	Slide 3: NULL and nullptr
	Slide 4: Revisiting C-Strings (Character arrays)
	Slide 5: Constant Strings  const char*
	Slide 6: C-String Constants
	Slide 7: Knowing vs. Owning an Address
	Slide 8: Array / Pointer Relationship
	Slide 9: char* vs. char Array – Common Error
	Slide 10: char* vs. char Array – Common Error
	Slide 11: C-Stings  char*
	Slide 12: Expectations!
	Slide 13: PointeRS To POINTERS
	Slide 14: Pointer Analogy
	Slide 15: Pointer Analogy
	Slide 16: Understand the Operations of Pointers to Pointers
	Slide 17: Check Yourself
	Slide 18: Understanding Types With & or * (Skip for time)
	Slide 19: Arrays of Pointers
	Slide 20: Recall: One or Many
	Slide 21: Big Idea (T*  T[])
	Slide 22: Multidimensional Arrays
	Slide 23: Multidimension Array Declaration
	Slide 24: Limitations of Multidimensional Arrays
	Slide 25: Pointers-To-Pointers  2D Arrays
	Slide 26: Arrays of pointers
	Slide 27: Pointers-To-Pointers  2D Arrays
	Slide 28: Arrays of Pointers
	Slide 29: Arrays of constant C-Strings
	Slide 30: Intro to Command Line Arguments
	Slide 31: Command Line Arguments
	Slide 32: Using Command Line Arguments
	Slide 33: Converting C-Strings to Numeric Types
	Slide 34: Exercises
	Slide 35: Why Pointers to Arrays? (1)
	Slide 36: Why Pointers to Arrays? (2)
	Slide 37: If Time
	Slide 38: cin/cout & char*s
	Slide 39: C-String Library Vulnerabilities
	Slide 40: Safe C-String Library
	Slide 41: A Stack View
	Slide 42: Backup
	Slide 43: Why Pointers To Arrays

