CS103 Unit 2b —
Dynamic Memory Allocation

Memory that keeps on living!

DYNAMIC MEMORY ALLOCATION

—USC Vicrbi >
A Motivating task

//;) return an integer array of size n with values 1 to n i\\
// stored in it
ordered_array(int n) {
// Your code here

return 5
}
int main() {
// ... Call ordered array
// ... Use ordered_array
return 0;

\J /

i, TS("Viterbi

School of Engineering

Dynamic Memory Motivation (1)

 We want to allocate an array for student scores, but | don’t
know how many students exist until the user inputs it.

* What size should | use to declare my array?

— int scores[??]

* Doing the following is not supported by all C/C++ compilers and
considered bad practice (you may NOT do it in CS103/104):

int num;
cin >> num;

int scores[num]; // Instead, many compilers require the array size
// to be statically known

* Also, recall local variables die when a function returns

— What if we need that memory to KEEP LIVING even when our function
ends?

* Both problems are solved with dynamically-allocated (i.e. at
run-time) memory

P USCViterbi 22
f Dynamic Memory Motivation (2)*

* There is ONE primary reason to use dynamic
memory allocation and ONE secondary reason

* Primary reason:

— If we want to allocate memory in a function and
have it STAY ALIVE even AFTER that function ends
(i.e. we want to manually control when memory is
allocated and DEALLOCATED)

* Secondary reason

— If we don't know how much memory we'll need
until run-time (i.e. a variable size array)

— 15 Viterhi 2>
Dynamic Memory Analogy

* Dynamic Memory is "On-Demand Memory"
* Analogy: Public storage rentals

— Need extra space, just ask for some storage (using a 'new' statement)
and indicate how much you need

— The system will allocate that memory
(if it is available) from the heap and
return the storage room number (i.e.
address of / pointer to the memory)
it allocated so you can access it

— Use the pointer to access the
storage/memory until you are
done with it

.

— Need to return it when done (using a 'delete’ statement) or else no
one else will ever be able to re-use it

USC Viterbi

School of Engineering

Dynamic Memory & the Heap

Code usually sits at low addresses
Global variables somewhere after code
System stack (memory for each function instance
that is alive)

— Local variables

— Return link (where to return)

— etc.
Heap: Area of memory that can be allocated and
de-allocated in chunks during program execution
(i.e. dynamically at run-time) based on the needs
of the program
Heap and stack grow toward each other...

— In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

OXFFFFFFF =
; 4GB-1
0X80000000

Heap

Global Data

0x18000000

Memory (RAM) Layout of Program

0x10000000

Code

ox0

i, TS("Viterbi

School of Engineering

C (Pre-C++) Dynamic Allocation

 void* malloc(int num _bytes) function in stdlib.h

— Allocates the number of bytes requested and returns a pointer to the block of
memory

« free(void * ptr) function

— Given the pointer to the (starting location of the) block of memory, free returns it to the
system for re-use by subsequent malloc calls

This slide is for completeness. We will
only use the C++ methods on the next
slide in this class!

USC Viterbi

School of Engineering

C++ new operator

OxFFffffff =
_ 4GB-1
* new allocates memory from heap
— Replaced C'smalloc() function 980000000
— new should be followed with the type of the
variable (and, if allocating an array, the size)
dptr
e double *dptr = new double; 0x18097520
// allocates 1 double -
. . scores
 int *scores = new int[n]; 0x18004200 f
// allocates n-integer array D 13097520

— new T or new T[n] returns a pointer of type T*\

* ifyou ask foranew int, yougetan int *inreturn 0x18000000

« if you ask for a new array (new int[n]), you still get

an int *inreturn] Global Data
0Xx10000000
Hard and Fast Rule of Dynamic Allocation:) _
If you dynamically allocate a single type T or even a
T array you will ALWAYS get back a pointer of type T*
L new T; // yields a type T* 0xe

new T[n]; // yields a type T*)

USC Viterbi

School of Engineering

C++ delete operator

OxXFFFFFFFF =

- 4GB-1
* delete returns memory to heap

— Replaces C's free() function 0x80000000

— Followed by the pointer to the data you want
to de-allocate

dptr
 delete dptr; 0x18097520
— use delete [] forarrays -
scores
* delete [] scores; 0x18004200

0x18000000

Global Data

0x10000000

o0x0

N (JSC Viterbi @
Example of Variable Size Array with ==

Dynamic Allocation

int main(int argc, char *argv[]) 0 Code
{
int num; Globals
cout << "How many students?" << endl;
cin >> num; — new
int *scores = new int[num]; Heap allocates:
int[0]
// can now access scores[0..num-1] int[1]
for(int i=0; i < num; i++){ int[2]
cin >> scores[i];
} intfnum-1]
// Do more with scores
int* scores

// free up scores
delete [] scores;
return 0;

e Recall the two reasons to use dynamic allocation:
— Secondary reason: Variable size array [seen in this example]

Memory

— Primary reason: Allocate memory that should not go out of
scope at the end of the function [seen in next example]

N (JSC Viterbi @2
Example of Variable Size Array with ==

Dynamic Allocation

int* getArray(int n) 0 Code

{
int *dat = new int[n]; // or int dat[n]; Globals
// can now access scores[0..n-1]
for(int i=0; i < n; i++){ — new

cin >> dat[i]; allocates:
} int[0]
return dat; int[1]

} int[2]

. . "

?nt main(int argc, char *argv[]) int[num-1]
int num, sum = O;
cout << "How many students?" << endl; int” dat
cin >> num;
int* scores = getArray(num); it seores
for(int i=0; i < num; i++) // use the array

{ sum += scores[i]; } fffitfic
delete [] scores; // free up scores Memory
return 0;

}

Fill in the Blanks

. data
. data
. data
. data
. data
. data

new

new

new

new

new

new

int;

char;

char[100];
double[20];

string;

char*[10];

— char*

— char*

— double*

— string*

— char**

Fill in the Blanks

data

data

data

data

data

data

new

new

new

new

new

new

int;

char;
char[100];
double[20];
string;

char*[10];

i, TS("Viterbi

Correct Usage of Pointers

. . . // Computes the area of a rectangle
« Commonly functions will take some inputs and int apgal(int W ey 2
J J

produce some outputs void area2(int w, int h, int* a);

— We'll use a simple area' function for now even though
we can easily compute this without a function

int main()
— We could use the return value but let's practice with | ¢

pointers and say mul() must return void int wid = 8, ht = 5, a;
area2(wid,len,&a);

* (Can use a pointer to have a function modify the . :
cout << "Ans. 1is << a << endl;

variable of another

Stack Area of RAM) FEREUF 85
Ox7bed 8 w int areal(int w, int h)
area 0x7be4 5 h {
X .
0x7be8 | ox7bf8 out return w * h;

}

0x7bec | 004000ca0 | "ot

void area2(int w, int h, int* a)
0x7bf0 8 wid {

main | 0x7bf4 5 ht *a = w * h;

}

ox7bf8 [gaal 2% |

0x7bfc | 00400120 | Revr

B {JSC Vierbi ©
Pointer Mistake

// Computes rectangle area,

* Never return a pointer to a local // prints it, & returns it

int* area3(int, int);

variable
int main()
{
int wid = 8, len = 5, *a;
a = area3(wid,len);
cout << *a << endl;
return 0;
}
Stack Area of RAM Heap Area of RAM
int* area3(int w, int 1)
0xbe0 {
- ans int ans;
area | Oxbed 8 w ans = w * 1;
Oxbes 5 | } return &ans;x
Oxbec | 004000ca0 | "5
0xbf0 8 wid
main | Oxbf4 5 len
0xbf8 | -73249515 a

Oxbfc | 00400120 | Fetur

B — S Viterbi
Pointer Mistake

* Never return a pointer to a local variable /) CEIPUEES [FEEEEME!E EFes,
// prints it, & returns it
e Pointer will now point to dead memory and int* area(int, int);

the value it was pointing at will be soon void print(int);

corrupted/overwritten int main()

{
* We call this a dangling pointer (i.e. a pointer to int wid = 8, len = 5, *a;
bad dead a = area(wid,len);
ad or dead memory) cout << *a << endl;
}
Stack Area of RAM Heap Area of RAM
int* area(int w, int 1)
{
int ans;
ans = w * 1;
return &ans; X
}
0xbf0 8 wid
main | 0xbf4 5 len
0xbf8 0xbe0 a
Oxbfc | 00400120 | "SH™

- 00000000 USCVlterbl
Dynamic Allocation

* Dynamic Allocation // Computes rectangle area,
// prints it, & returns it
int* area3(int, int);

— Lives on the heap
* Doesn't have a name, only pointer/address to it
— Lives until you 'delete’ it int main()

* Doesn't die at end of function (though pointer to it may) {
int wid = 8, len = 5, *a;

* You must keep at least 1 pointer to a dynamic a = area3(wid,len);
memory allocation at all times until it is cout << *a << endl; // 40
delete a;
deleted return 9
Stack Area of RAM Heap Area of RAM } ’
/:x/beu_ 0x93c ans ‘i{nt* area3(int w, int 1)
Oxbe8 5 I *ans = w * 1;
Oxbec | 004000ca0 RT::IIn } return ans;
0xbf0 8 wid delete
main [(\0xbf4 5 len
0x 0x93c a

Oxbfc | 00400120 | Fetur

i, TS("Viterbi

Dynamic Allocation

* Dynamic Allocation // Computes rectangle area,
// prints it, & returns it
int* area3(int, int);

— Lives on the heap
* Doesn't have a name, only pointer/address to it
— Lives until you 'delete’ it int main()

* Doesn't die at end of function (though pointer to it may) {
int wid = 8, len = 5, *a;

* You should remember to delete the memory a = area3(wid,len);
you allocated cout << *a << endl; // 40
// delete a;
Stack Area of RAM Heap Area of RAM y RSN (@5
int* area3(int w, int 1)
{
0x93c 40 int* ans = new int;

*ans = w * 1;
return ans;

}
0xbf0 8 wid Memoy Leak!
main | 0xbf4 5 len
0xbf8 0x93c a
Oxbfc | oo400120 | Revm

- 00000000 USCVlterb1
Dynamic Allocation

// Computes rectangle area,

* Dynamic Allocation // prints it, & returns it
int* area3(int, int);

— Lives on the heap

* Doesn't have a name, only pointer/address to it int main()
— Lives until you 'delete' it {

. L _ .
* Doesn't die at end of function (though pointer to it may) LT e g, La op “EL

area3(wid,len);
 This code fails to save a pointer to the new int once cout << *a << endl; // crash

area() finishes return ;
}
Stack Area of RAM Heap Area of RAM
int* area3(int w, int 1)
OxbeO {
0x93c ans int* ans = new int;
Oxbe4 * — * 1.
area 8 w ans = w 1
0x93c 40 O
Oxbe8 5 I return ans;
}
Oxbec | 004000ca0 | "5
MEMORY LEAK
0xbf0 8 wid No one saved a pointer to
main | 0xbf4 5 len this data
0xbf8 | -73249515 a
L CRASH
Oxbfc | 00400120 | FS"

This Photo by Unknown Author is licensed under CC BY-SA

http://en.wikipedia.org/wiki/File:RedX.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://commons.wikimedia.org/wiki/file:not_allowed.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Exercises

	Slide 1: CS103 Unit 2b – Dynamic Memory Allocation
	Slide 2: Dynamic Memory Allocation
	Slide 3: A Motivating task
	Slide 4: Dynamic Memory Motivation (1)
	Slide 5: Dynamic Memory Motivation (2)
	Slide 6: Dynamic Memory Analogy
	Slide 7: Dynamic Memory & the Heap
	Slide 8: C (Pre-C++) Dynamic Allocation
	Slide 9: C++ new operator
	Slide 10: C++ delete operator
	Slide 11: Example of Variable Size Array with Dynamic Allocation
	Slide 12: Example of Variable Size Array with Dynamic Allocation
	Slide 13: Fill in the Blanks
	Slide 14: Fill in the Blanks
	Slide 15: Correct Usage of Pointers
	Slide 16: Pointer Mistake
	Slide 17: Pointer Mistake
	Slide 18: Dynamic Allocation
	Slide 19: Dynamic Allocation
	Slide 20: Dynamic Allocation
	Slide 21: Exercises

