
2b.1

CS103 Unit 2b –
Dynamic Memory Allocation

2b.2

DYNAMIC MEMORY ALLOCATION

Memory that keeps on living!

2b.3

A Motivating task

// return an integer array of size n with values 1 to n
// stored in it
_____ ordered_array(int n) {
 // Your code here

 return ;
}

int main() {
 // ... Call ordered_array
 // ... Use ordered_array
 return 0;
}

2b.4

Dynamic Memory Motivation (1)
• We want to allocate an array for student scores, but I don’t

know how many students exist until the user inputs it.

• What size should I use to declare my array?
– int scores[??]

• Doing the following is not supported by all C/C++ compilers and
considered bad practice (you may NOT do it in CS103/104):
int num;

cin >> num;

int scores[num]; // Instead, many compilers require the array size
 // to be statically known

• Also, recall local variables die when a function returns
– What if we need that memory to KEEP LIVING even when our function

ends?

• Both problems are solved with dynamically-allocated (i.e. at
run-time) memory

2b.5

Dynamic Memory Motivation (2)

• There is ONE primary reason to use dynamic
memory allocation and ONE secondary reason

• Primary reason:

– If we want to allocate memory in a function and
have it STAY ALIVE even AFTER that function ends
(i.e. we want to manually control when memory is
allocated and DEALLOCATED)

• Secondary reason

– If we don't know how much memory we'll need
until run-time (i.e. a variable size array)

2b.6

Dynamic Memory Analogy

• Dynamic Memory is "On-Demand Memory"

• Analogy: Public storage rentals
– Need extra space, just ask for some storage (using a 'new' statement)

and indicate how much you need

– The system will allocate that memory
(if it is available) from the heap and
return the storage room number (i.e.
address of / pointer to the memory)
it allocated so you can access it

– Use the pointer to access the
 storage/memory until you are
done with it

– Need to return it when done (using a 'delete' statement) or else no
one else will ever be able to re-use it

2b.7

Dynamic Memory & the Heap

• Code usually sits at low addresses

• Global variables somewhere after code

• System stack (memory for each function instance
that is alive)

– Local variables

– Return link (where to return)

– etc.

• Heap: Area of memory that can be allocated and
de-allocated in chunks during program execution
(i.e. dynamically at run-time) based on the needs
of the program

• Heap and stack grow toward each other…

– In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

0x0

0xffffffff =
4GB-1

M
e
m

o
ry

 (
R

A
M

)
L
a
y
o
u
t

o
f

P
ro

g
ra

m

0x80000000

0x10000000

Code

-

Global Data

-

Heap

-

Stack

-

0x18000000

2b.8

C (Pre-C++) Dynamic Allocation

• void* malloc(int num_bytes) function in stdlib.h

– Allocates the number of bytes requested and returns a pointer to the block of
memory

• free(void * ptr) function
– Given the pointer to the (starting location of the) block of memory, free returns it to the

system for re-use by subsequent malloc calls

This slide is for completeness. We will
only use the C++ methods on the next

slide in this class!

2b.9

C++ new operator

• new allocates memory from heap

– Replaced C's malloc() function

– new should be followed with the type of the
variable (and, if allocating an array, the size)

• double *dptr = new double;
 // allocates 1 double

• int *scores = new int[n];
 // allocates n-integer array

– new T or new T[n] returns a pointer of type T*

• if you ask for a new int, you get an int * in return

• if you ask for a new array (new int[n]), you still get
an int * in return]

Hard and Fast Rule of Dynamic Allocation:

If you dynamically allocate a single type T or even a
T array you will ALWAYS get back a pointer of type T*
 new T; // yields a type T*

 new T[n]; // yields a type T*

0x0

0xffffffff =
4GB-1

0x80000000

0x10000000

Code

-

Global Data

-

Heap

-

Stack

-

0x18000000

0.0

? ? ? ? ? ?
0x18004200

0x18097520

0x18004200

0x18097520

dptr

scores

2b.10

C++ delete operator

• delete returns memory to heap

– Replaces C's free() function

– Followed by the pointer to the data you want
to de-allocate

• delete dptr;

– use delete [] for arrays

• delete [] scores;

0x0

0xffffffff =
4GB-1

0x80000000

0x10000000

Code

-

Global Data

-

Heap

-

Stack

-

0x18000000

0.0

? ? ? ? ? ?
0x18004200

0x18097520

0x18004200

0x18097520

dptr

scores

2b.11

Example of Variable Size Array with
Dynamic Allocation

• Recall the two reasons to use dynamic allocation:
– Secondary reason: Variable size array [seen in this example]

– Primary reason: Allocate memory that should not go out of
scope at the end of the function [seen in next example]

Memory

20bc4

20bc8

…

…

20bc0 00

00

00

00

00

…

…

…

Code

Globals

0

…

Heap

fffffffc

int[0]

new

allocates:

int[num-1]

int[1]

int[2]

…

int main(int argc, char *argv[])
{
 int num;
 cout << "How many students?" << endl;
 cin >> num;
 int *scores = new int[num];

 // can now access scores[0..num-1]
 for(int i=0; i < num; i++){
 cin >> scores[i];
 }
 // Do more with scores

 // free up scores
 delete [] scores;
 return 0;
}

Stack

…

20bc0 int* scores

2b.12

Example of Variable Size Array with
Dynamic Allocation

Memory

20bc4

20bc8

…

…

20bc0 00

00

00

00

00

…

…

…

Code

Globals

0

…

Heap

fffffffc

int[0]

new

allocates:

int[num-1]

int[1]

int[2]

…

int* getArray(int n)
{
 int *dat = new int[n]; // or int dat[n];
 // can now access scores[0..n-1]
 for(int i=0; i < n; i++){
 cin >> dat[i];
 }
 return dat;
}
int main(int argc, char *argv[])
{
 int num, sum = 0;
 cout << "How many students?" << endl;
 cin >> num;
 int* scores = getArray(num);

 for(int i=0; i < num; i++) // use the array
 { sum += scores[i]; }
 delete [] scores; // free up scores
 return 0;
}

Stack

…

20bc0 int* dat

20bc0 int* scores

getArray()

…
main()

2b.13

Fill in the Blanks

• ________ data = new int;

• ________ data = new char;

• ________ data = new char[100];

• ________ data = new double[20];

• ________ data = new string;

• ________ data = new char*[10];

2b.14

Fill in the Blanks

• ________ data = new int;
– int*

• ________ data = new char;
– char*

• ________ data = new char[100];
– char*

• ________ data = new double[20];
– double*

• ________ data = new string;
– string*

• ________ data = new char*[10];
– char**

2b.15

Correct Usage of Pointers
• Commonly functions will take some inputs and

produce some outputs

– We'll use a simple area' function for now even though
we can easily compute this without a function

– We could use the return value but let's practice with
pointers and say mul() must return void

• Can use a pointer to have a function modify the
variable of another

// Computes the area of a rectangle
int area1(int w, int h);
void area2(int w, int h, int* a);

int main()
{
 int wid = 8, ht = 5, a;

area2(wid,len,&a);
 cout << "Ans. is " << a << endl;
 return 0;
}

int area1(int w, int h)
{
 return w * h;
}

void area2(int w, int h, int* a)
{
 *a = w * h;
}

Stack Area of RAM

8 wid0x7bf0

main 5 ht0x7bf4

-73249515 a0x7bf8

00400120
Return

link
0x7bfc

area 5 h0x7be4

0x7bf8 out0x7be8

004000ca0
Return

link
0x7bec

8 w0x7be0

40

2b.16

Pointer Mistake
• Never return a pointer to a local

variable

// Computes rectangle area,
// prints it, & returns it
int* area3(int, int);

int main()
{
 int wid = 8, len = 5, *a;
 a = area3(wid,len);
 cout << *a << endl;
 return 0;
}

int* area3(int w, int l)
{
 int ans;
 ans = w * l;
 return &ans;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

40 ans0xbe0

Heap Area of RAM

2b.17

Pointer Mistake
• Never return a pointer to a local variable

• Pointer will now point to dead memory and
the value it was pointing at will be soon
corrupted/overwritten

• We call this a dangling pointer (i.e. a pointer to
bad or dead memory)

// Computes rectangle area,
// prints it, & returns it
int* area(int, int);
void print(int);

int main()
{
 int wid = 8, len = 5, *a;
 a = area(wid,len);
 cout << *a << endl;
}

int* area(int w, int l)
{
 int ans;
 ans = w * l;
 return &ans;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0xbe0 a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

2b.18

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function (though pointer to it may)

• You must keep at least 1 pointer to a dynamic
memory allocation at all times until it is
deleted

// Computes rectangle area,
// prints it, & returns it
int* area3(int, int);

int main()
{
 int wid = 8, len = 5, *a;
 a = area3(wid,len);
 cout << *a << endl; // 40
 delete a;
 return 0;
}

int* area3(int w, int l)
{
 int* ans = new int;
 *ans = w * l;
 return ans;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0x93c a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c
area3 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0x93c ans0xbe0

delete

2b.19

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function (though pointer to it may)

• You should remember to delete the memory
you allocated

// Computes rectangle area,
// prints it, & returns it
int* area3(int, int);

int main()
{
 int wid = 8, len = 5, *a;
 a = area3(wid,len);
 cout << *a << endl; // 40

 // delete a;
 return 0;
}

int* area3(int w, int l)
{
 int* ans = new int;
 *ans = w * l;
 return ans;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

0x93c a0xbf8

00400120
Return

link
0xbfc

Heap Area of RAM

400x93c

Memoy Leak!

2b.20

Dynamic Allocation
• Dynamic Allocation

– Lives on the heap

• Doesn't have a name, only pointer/address to it

– Lives until you 'delete' it

• Doesn't die at end of function (though pointer to it may)

• This code fails to save a pointer to the new int once
area() finishes

// Computes rectangle area,
// prints it, & returns it
int* area3(int, int);

int main()
{
 int wid = 8, len = 5, *a;
 area3(wid,len);
 cout << *a << endl; // crash
 return 0;
}

int* area3(int w, int l)
{
 int* ans = new int;
 *ans = w * l;
 return ans;
}

Stack Area of RAM

8 wid0xbf0

main 5 len0xbf4

-73249515 a0xbf8

00400120
Return

link
0xbfc

area 8 w0xbe4

5 l0xbe8

004000ca0
Return

link
0xbec

0x93c ans0xbe0

Heap Area of RAM

400x93c

This Photo by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-SA

MEMORY LEAK

No one saved a pointer to

this data

CRASH

http://en.wikipedia.org/wiki/File:RedX.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://commons.wikimedia.org/wiki/file:not_allowed.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

2b.21

Exercises

	Slide 1: CS103 Unit 2b – Dynamic Memory Allocation
	Slide 2: Dynamic Memory Allocation
	Slide 3: A Motivating task
	Slide 4: Dynamic Memory Motivation (1)
	Slide 5: Dynamic Memory Motivation (2)
	Slide 6: Dynamic Memory Analogy
	Slide 7: Dynamic Memory & the Heap
	Slide 8: C (Pre-C++) Dynamic Allocation
	Slide 9: C++ new operator
	Slide 10: C++ delete operator
	Slide 11: Example of Variable Size Array with Dynamic Allocation
	Slide 12: Example of Variable Size Array with Dynamic Allocation
	Slide 13: Fill in the Blanks
	Slide 14: Fill in the Blanks
	Slide 15: Correct Usage of Pointers
	Slide 16: Pointer Mistake
	Slide 17: Pointer Mistake
	Slide 18: Dynamic Allocation
	Slide 19: Dynamic Allocation
	Slide 20: Dynamic Allocation
	Slide 21: Exercises

