I Uscviterbi
School of Engineering

CS103 Unit 2a —
Pointers and
Pass by Reference

USCViterbi €

School of Engine

Unit 2 — Pointers and Memory

 The course is broken into 6 units (spirals), each consisting of:

/’Pf\o
“t X @ 0

Lectures Labs Homework(s) Project(s)
(Tools + Practice + (Formative programming (Cumulative
small group Help) problems) programming problems)

g
9 0

C++ Language Pointers and Memory Objects 1
Syntax

Managing Data Objects 2 Recursion

I Uscviterbi
School of Engineering

INTRODUCTION TO POINTERS

i, TS("Viterbi

School of Engineering

Recall: Pass-by-Reference Pros/Cons

e Scenario: You write a paper and include a lot of LARGE images. You need
to send it to your teammates. You can

— As a Google doc and simply e-mail the URL or

— Attach the document/file in the e-mail or
 What are the pros of each approach?
* Google Doc

— Less info to send (send link, not all data)

— Reference to original (i.e. if original changes, you'll see it)
* Email Attachment

— Can treat the copy as a scratch copy acndsmcod.hfy freely

General access

. Computer Science Courses
) Restricted ~ Ths document descibes th Inocuctory sequence o coures.

Only people with access can open with the link

S — {5 C Viterbi 2>
Use Pointers when...

* We need pass-by-reference (as opposed to pass-by-value), either
to:

— Change a variable (or variables) local to one function in some other
function

* Analogy: a Google-doc link with "Can Edit" permission

— Avoid making needless copies of data which wastes time
* Analogy: A Google-doc link with "Can View" permission (think large arrays)

* We need to perform dynamic memory allocation

 We need to access a specific location in the computer (i.e.
hardware devices) [Not covered in this class, but EE 109/CS 356]

— Useful for embedded systems and device programming

O

All of these will be explained in the following slides. |

i, TS("Viterbi

School of Engineering

Pointer Analogy

* Imagine a set of lockers or safe deposit boxes
each with a number (just like memory locations
have an address)

 There are some boxes with gold jewelry and
others that do not contain gold but simply hold a
piece of paper with another box number written
on it (i.e. a pointer to another box)

* Whatis stored in one box might be:

Each box has a number to identify it (i.e. an
- [BOX 7]: Gold (i.e. data / something valuable like an int, address) and a value inside of it. So do

variables in memory.
double, etc.)

— [Box 9]: The number of another box which contains gold 08 1 |2 15 3 |4 53
(i.e. box 9 holds a pointer-to some other data)

— [Box 16]: The number of another box which contains a 6 11 7 84 97 19 11
number of a box containing gold (i.e. box 16 holds a
pointer-to a pointer-to data) 12 131 14115 169 173
* The value of (i.e. what is in) one box might be the address of O

* By changing the number in a box (i.e. the value of a pointer), we can
have one location refer to many different locations, in succession.

(pointer-to) another box. ‘

i, TS("Viterbi

School of Engineering

Pointer Analogy

* But what if rather than gold or other
obviously valuable objects, the "valuable
objects" were simply slips of papers with
numbers.

— Would you be able to distinguish whether a box is
storing data or storing a pointer?

— And if it is storing a pointer, would you know
whether it is pointing at just 1 data element or an
array of data elements?

* No! Thisis why we need:

— Pointer types (e.g. int* or char*) to tell us that M 1274177 3| 4
what's in this variable is a pointer as well as what 12 113.114.115.1 16| 17
kind of data we'll find when we follow 6
(dereference) the pointer (e.g. int or char).

— To remember context on our own (as the
programmer)

- USCViterbi ,
Pointers

e Pointers are variables that store the address of some

other variable in memory
Address Memory Data

* More abstractly, pointers are references to other e

"things" which can be: 73a8 | 00000000

— data (i.e. ints, chars, doubles) or 73ac 99.0973b8

— other pointers /3b0 | 66000000

73b4 1 000073bc

 The concept of a pointer is very common and used in
. . 7 1
many places in everyday life 308
- 73bc
— Phone numbers or mailing addresses are references or
73c0 -2.25

“pointers” to your physical phone or location

— Excel workbook has cell names we can use to reference
the data (=A1 means get data in Al)

— URLs (www.usc.edu is a pointer to a physical HTML file on
some server) and can be used in any other page to "point
to" USC’s website

http://www.usc.edu/

Prerequisites: Data Sizes, Computer Memory

POINTER BASICS

— 5 iterbi >
Steps To Using Pointers

e Variable E

— You can't use pointers without something to
point to (create a variable of some type, T var)

* Note: We use T as a placeholder for ANY type
* Pointer C i

— Declare a pointer variable or argument (declare a
variable of type T* pvar)

e Link

— Generate the pointer/link to the variable using &
operator (&var)

| @@ Copylink |

docs.google.com/al12f7:
 Dereference (Use) 'F

g . i i, i aE0= o- g = |
’om e o L

— Follow the link to view or edit the variable using | '
the * operator (*pvar)

i, TS("Viterbi

C++ Pointer Operators

e 2 operators used to manipulate pointers (i.e. addresses)
in C/C++: & (address-of op) and * (dereference op)
— &<variable> evaluates to the "address-of" <variable>
* Essentially, you get a pointer to a variable by writing &variable

— *<pointer> evaluates to the data pointed to by <pointer>
(data at the address given by <pointer>)

— & and * are inverse operations

« We say & returns the address/reference/link of some value while @
* dereferences the address and returns the value

e &variable => address/pointer

© Preview
B8 Unito_FirstDayOverview.pdf &%

— (-3-) Open with
%k . . = get a BB unit1a_CPP_Expr.pdf &%
* Tpointer => variable value link _ o Share
Unit1b_CPP_ProgramFlow_v2.pdf =%
o *(&variable) => variable -
* = follow

the link dOCS-google-cT/aum

e —— ()5 Viterbi ©>
Generating a Pointer

 When a variable is declared, memory is allocated for Address Memory Data
it. Its starting location in memory is its address. B 7328
— int x = 30; y=a'
char y = ; 73ac || 97 |eoo000
_ - ; :
variable] 2 M
— double z = 3.75; [&z 173bo
— int dat[2] = {103,42}; 73b4 3.75
. —_—-dat.O-
* To generate a pointer, use the & operator to get the 73b8 103
. ; e lat[1] Juef
address of a variable in C/C++ 23bc 2l 12
Tip: R ‘@x” as ‘addr fx’
(Tip: Read as ‘address of x’) 3¢0 | 621930
I U 73c4 | e400cc33
o |tk |
i [Individual addresses of |
- &z => L each byte J
|
- &dat[1] = {73acy73ady73ac){ 73at)
— dat => 73ac |97 0@'60 00
« Great, but what should we do with these pointers and rDatava'uei;ttZred in each]

where should we store them?

i, TS("Viterbi

School of Engineering

Pointer Variables and their Declaration

e Data variable declarations:

_ int x = 30; Address Mem(;ry Data
— chary = 'a'; [variable } 73a8 - 30
— double z = 3.75; 73ac |97 |oeo000
— int dat[2] = {103,42}; —{__z
* We can now declare pointer variables that don't store data 7309
but the addresses of data 73b4
* To declare a pointer, include a * after the type [e.g. int¥, (Cdat]73b8
which is read "pointer to (an) int(s)"]. That variable can then 73bc 42
store pointers to (addresses of) the given type (e.g. int) — -

730 || 00000000

Ox73a8
Ox73bo 73c4 ||0000/3a8

— 1int *ptrl = &x; // ptrl

— double* ptr2 = &z; // ptr2 = -, W
— 1int* ptr3 = &y; // Error! Type mismatch. 73c8 (| 00000000
q 73cc ||000073b0
-
Notes: _, 73d0 | 00000000
1. Pointers should ONLY store the addresses of variables of its
declared type (int* pointers should only point at ints, not chars) 73d4 | abababab

2. Best to immediately initialize a pointer with the address of some
variable, rather than leave it uninitialized.

3. Where the * is in the declaration (i.e. next to the type or variable
name) does not matter [e.g. int* ptrl ..or.. int *ptrl].

73d8 | abababab

i, TS("Viterbi

School of Engineering

Dereferencing Pointer Variables

e Data variable declarations:

s 3 . Address Memory Data
int x = 30;
= char y = "a’; [variable] 73a8 1 30
— double z = 3.75; 73ac |[97 |eooee0 |
— int dat[2] = {103,42}; 730 = double z ™ —
 We can declare pointer variables that store addresses of other -
variables 73b4 || 375 2.5

— int *ptrl = &x; // ptrl Ox73a8 __dat]73b8 103 *

— double* ptr2 = &z; // ptr2 73bc 42 35

We. can access the data] wfjose.address is stored in a pointer 23¢0 00000000 /

variable by dereferencing it using the * operator. *ptr can be

read as, "get/set the data at the address stored in ptr") 73c4 9
— dat[1] = *ptrl + 5; // dat[1] = 35 73c8 || 00000000

use / u

73cc ||000073b0O
dereference

73d0 | 00OV

— *ptr2 = *ptr2 - 1.25; // z = 2.5

* |t may be confusing but notice the * appears both in the 73d4 | abababab

declaration and in the dereference expression. Context is 73d8 | abababab
important to distinguish. More on the next slide...

i, TS("Viterbi

School of Engineering

Cutting through the Syntax

e * after a type = declare/allocate a pointer variable
* *inan expression/assignment = dereference

Declaring a pointer De-referencing a pointer

char *p \/

X = *p + 1

int* ptr V

*ptr = 5

WK

(*ptr)++
char* pl[10]; \/

Helpful tip to understand syntax: We declare a pointer as:
« int *ptr because when we dereference it as *ptr, we get an int
« char *p is a declaration of a pointer and thus, *p yields a char

i, TS("Viterbi

School of Engineering

Assigning to Pointer Variables

e Data variable declarations:

s 3 . Address Memory Data
int x = 30;
— char y = 'a'; 73a8 30
— . y=lal
- double z = 3.75; 73ac [[97 |eoeo0e
— int dat[2] = {103,42}; o —{ double z ™
. 73b0
* Declaring pointer variables and setting them with addresses (using &): <
— int *ptrl - &; // ptrl - Ox73a8 7304 AN
— double* ptr2 = &z; // ptr2 = 0x73be (Cdat J73b8 rotr2
* Dereferencing pointer variables (using *) to get data pointed to: 73
— dat[1] = *ptrl + 5; // dat[1] = 35 e
— *ptr2 = *ptr2 - 1.25; // z = 2.5 3ea
C
* We can change what variable the pointer references by assigning a new)
address to it and dereference the pointer as many times as we like 7381100000000 | |
— ptrl = &dat[1]; 73cc 6
1 - % % . — inta
int a ptrl % 10; // a = 5 after exec. 2340 [ooa0000s
— ptrl = dat; // why is & not needed?
— *ptrl += 1; // dat[e] = 104 73d4 | abababab

i, TS("Viterbi

School of Engineering

Skill: Drawing Data Diagrams

* Though painful, it is helpful to draw out relevant data diagrams, especially
when pointers are involved
— Draw a table with a column for each variable (or just a box for each variable)

— Label the column header with the variable name and a made-up address. Use
whatever number is easiest for your address: @100, @500, etc.)

— Annotate the variable values as you evaluate each line of code

* DS Malik Textbook: Chapter 13, Question 6 x@600 | | y@700 |
int x, y; [variable }
int *p = &x; 1€ 39
X = 35; y = 46;
p = q;
*p = 78; [use/dereference]

cout << x << << y << endl;
cout << *p << " " << *g << endl;

i, TS("Viterbi

School of Engineering

Skill: Drawing Data Diagrams (Sol)

* Though painful, it is helpful to draw out relevant data diagrams, especially
when pointers are involved
— Draw a table with a column for each variable (or just a box for each variable)

— Label the column header with the variable name and a made-up address. Use
whatever number is easiest for your address: @100, @500, etc.)

— Annotate the variable values as you evaluate each line of code

* DS Malik Textbook: Chapter 13, Question 6 x@600 | | y@700 |
int x, y; [variable } ?? ?7?
int* p = &x;
e e
X = 35; y = 46; 35 46
P =40, 700
*p = 78; [use/dereference] 78

<< y << endl; 35 78
<< *g << endl; 78 78

cout << Xx <<
cout << *p <<

—— ()5 Viterbi ©>
Pointer Summary

e To summarize:

int main(int argc, char *argv[])
— We can declare pointer variables to store {
addresses (not data) using the syntax T* int x = 103; .
where T is some type (e.g. int *p) i:irzy: 42? :
— We can get the address of some variable
using the & operator (e.g. &x, &y) int* p = &x;
* Most often, this would then be assigned to a char *q = &;
pointer variable (e.g. p = &x) *p = 42;
— We can dereference a pointer (i.e. follow a cout << *p << endl;
pointer) to get the data from the address it b = &z
stores by using the * operator
(e.g. cout << *p << endl) cout << *p << endl;
— We can change the address the pointer et G
stores to have it reference some other }
variable (e.g.p = &z)
e But why do we need them?

— Can't we just access x, y, and z directly?

Prerequisites: Pointer Basics

PASS BY REFERENCE

i, TS("Viterbi

School of Engineering

Recall: Pass-by-Value

// Prototype

e Each function has its own memory on the the . AN
void dec(int);

system stack where all data related to the

function is stored including: int main()

{
— Local variables int y = 3;
. dec(y);
— Arguments to the function coutk<< y << endl; // prints

— Return link (where to return) to the calling
code
 When parameters are passed, a copy is made
of the argument from the caller's area of the
stack to a new location in the callee's area of
the stack (aka pass-by-value)

— This prevents one function from modifying the

variables of another Stack Area of RAM

* But what if we want a function to modify the qec | 0X7bf0 2 y
data from another? eturn
0x7bf4 | 00400ca0 | "G
* We can use pointers!!! (aka pass-by- Ox7bf8 3 v
main
reference) 0x7bfc | ooaoorz0 | Rewr

i, TS("Viterbi

School of Engineering

Pass-by-(Pointer) Reference

We can now pass a pointer to a local
variable from the caller function as an
argument to the callee function.

The pointer argument lives on the stack
of the callee function but can be used (by
dereferencing it) to access the local
variable from the caller and modify its
data.

When the callee finishes and returns, the
pointer argument dies, but the caller will
now see the updated value of its local
variable.

Can you follow the syntax of the code to
the right?

// Prototype
void dec(int);

int main() // caller
{
int y = 3;
dec(&y);
cout << y << endl; // prints 2
return 0;

}

void dec(int* ptr) // callee
{

*ptr = *ptr - 1; // or (*ptr)--;
¥

Stack Area of RAM

doc W— 7bf8 ptr
= 0x7bf4 | 00400ca0 | Ret™
— link
2
_I OX7Thfe> o y
main
0x7bfc | 00400120 | Reur

i, TS("Viterbi

School of Engineering

Swap Two Variables — (PB-Value Blank)

: : . #include <iostream>
* Classic example of issues with local using namespace std;

variables: void swap2(int x, int y);

— Write a function to swap two variables e RS0

* Pass-by-value doesn’t work .
_ _ int x=5,y=7;
— Copy is made of x,y from main and passed swap2(x,Vy);
to x,y of sawpit cout << " x=" << X;
. . cout << " y=" << y << endl;
— Swap is performed on the copies }
void swap2(int x, int y)
Stack Area of RAM {
int temp = x;
Can you make X = y;
a memory y = temp;
diagram of swap2 }
what is on the
stack for
swap2()?
0x7bf0 5 X
main 0x7bf4 7 y
0x7bf8 | 00400120 Return
link

i, TS("Viterbi

School of Engineering

Swap Two Variables — (PB-Value)

#include <iostream>
using namespace std;

e Classic example of issues with local

variables: void swap2(int x, int y);
— Write a function to swap two variables e e
* Pass-by-value doesn’t work {
_) int x=5,y=7;
— Copy is made of x,y from main and passed swap2(x,Vy);
to x,y of sawpit cout << " x=" << x;
. . cout << " y=" << y << endl;
— Swap is performed on the copies }
void swap2(int x, int y)
Stack Area of RAM {
int temp = x;
0x7be0 5 temp X =Y,
y = temp;
swap2 0x7be4 5 7 X }
0x7be8 7 y

0x7bec | 004000ca0 | "ot

0x7bf0 = N
main 0x7bf4 7 y

0x7bf8 | 00400120 Return
link

i, TS("Viterbi

School of Engineering

Swap Two Variables — (PB-Ref Blank)

#include <iostream>
using namespace std;

e Classic example of issues with local

variables: void swap2(int* x, int* y);
— Write a function to swap two variables e e
* Pass-by-reference (pointers) does work { . vt ver
: . : 1Nt X=5,y=/;
— Addresses of the actual x,y variables in main swap2(&x, &y);
are passed cout << " x=" << X;

) cout <« =" << << endl;
— Use those address to change those physical } Y Y

memory locations void swap2(int* x, int* y)
Stack Area of RAM {
int temp = *x;
0x7be0 5 temp *X = *y;
"y *y = temp;
Canyoufillin |gwap2| 0x7be4 X }
the values for x
. 0x7be8 y
andyin
swap2()? 0x7bec | 004000ca0 | 5"
0x7bf0 5 X
main 0x7bf4 7 y
0x7bf8 | 00400120 Return
link

i, TS("Viterbi

School of Engineering

Swap Two Variables — (PB-Ref)

#include <iostream>
using namespace std;

e Classic example of issues with local

variables: void swap2(int* x, int* y);
— Write a function to swap two variables e e
* Pass-by-reference (pointers) does work { . vt ver
: . : 1Nt X=5,y=/;
— Addresses of the actual x,y variables in main swap2(&x, &y);
are passed cout << " x=" << X;

) cout <« =" << << endl;
— Use those address to change those physical } Y Y

memory locations void swap2(int* px, int* py)
Stack Area of RAM {
int temp = *px;
0x7bel 5 temp *pX = *py;
*py = temp;
0x7bf0 px }
0x7bf4 py

Return
004000ca0 | "o

Py

Ox7bfdw 5 7 | X
main | 0X 7 ° y
0x7bf8 | 00400120 Return
link

i, TS("Viterbi

Correct Usage of Pointers

. . . // Computes the product of inl & in2
* Commonly functions will take some inputs and int muil(int inl? It i)

produce some outputs void mul2(int inl, int in2, int* out);

— We'll use a simple 'multiply' function for now even

though we can easily compute this without a function int main()
{

— We could use the return value but let's practice with int wid = 8, len = 5, a;
pointers and say mul() must return void mul2(wid,len, _)
. . . cout << "Ans. is " << a << endl;
* (Can use a pointer to have a function modify the return ©;
variable of another }

Stack Area of RAM
int mull(int inl, int in2)

0x7be0 8 in1 { return inl * in2;
mul | 0x7be4 5 in2 }
0x7be8 0x7bf8 out void mul2(int in1, int in2,)
Ox7bec | 004000ca0 | "5 { = inl * in2;
0x7bf0 8 wid }
main | 0x7bf4 5 len

ox7bf8 [gaal 2% |

0x7bfc | 00400120 | Revr

i, TS("Viterbi

Correct Usage of Pointers

. . . // Computes the product of inl & in2
* Commonly functions will take some inputs and int muil(int inl? It i)

produce some outputs void mul2(int inl, int in2, int* out);

— We'll use a simple 'multiply' function for now even

though we can easily compute this without a function int main()
{

— We could use the return value but let's practice with int wid = 8, len = 5, a;
pointers and say mul() must return void mul2(wid,len,&a);
. . . cout << "Ans. is " << a << endl;
* (Can use a pointer to have a function modify the return ©;
variable of another }

Stack Area of RAM
int mull(int inl, int in2)

_ {
0x7be0 8 in1 return inl * in2;
mul | 0x7be4 5 in2 }
0x7be8 0x7bf8 out void mul2(int inl, int in2, int* out)
{
Ox7bec | 004000ca0 | "™ *out = inl * in2;
}
0x7bf0 8 wid
main 0x7bf4 [len

ox7bf8 [gaal 2% |

0x7bfc | 00400120 | Revr

e — 5 iterbi %2>
Pass-by-Reference Template

* To modify a type T variable named var:
— Set the function to take a T* varptr
— Pass &var in the caller function to create and send a pointer to the function.

— In the calling function, dereference the pointer and assign:
*varptr = value

// here T = int*
void f2(int dat[], int len, int** pptr)
{

int maxidx = 0;

// loop to find the index of max

// here T = double *pptr = &dat[maxidx];
void fl(double* pvar) }
{ *pvar = 3.9; } 700 720
int main() {
int main() { int dat[10] = { .. };
double var; int* ptr; 800
f1(&var); f2(dat, 10, &ptr);
cout << var << endl; cout << "Max: " << *ptr << endl;
return 0; return 9;
} }

B {JSC Viterbi 2
Misuse of Pointers

* Make sure you don't return a pointer to a ﬁtiogggxilz‘ﬁtp;ﬁ‘iucgnfig_& in2
dead variable

* You might get lucky and find that old value int main()

. . {

still there, but likely you won't int wid = 8, len = 5;

int *a = badmull(wid,len);

cout << "Ans. is " << *a << endl;
return 0;

Stack Area of RAM }

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)

0x7be0 40 out :
badmul1 | 0x7be4 8 in1 int out = inl * in2;
return &out;
0x7be8 5 in2 }

0x7bec | 004000ca0 | "ot

0x7bf0 8 wid
main 0x7bf4 [len
0x7bf8 ;B&0x7beo .

0x7bfc | 00400120 | Revr

Prerequisites: Pointer Basics, Data Sizes

POINTER ARITHMETIC AND ARRAYS

Review Questions

* The size of an 'int' is how many bytes?

* The size of a 'double' is how many bytes?

* T/F: The elements of an array are stored contiguously
In memory

* In an array of integers, if dat[0] lived at address
0x200, dat[1] would live at...?

i, TS("Viterbi

School of Engineering

Big Idea: Array Names < Pointers

* Bigidea: Array names and pointers are interchangeable

— An array name is a pointer and a pointer can be used as an array name!

 Why? Because an array name by itself evaluates to:

— An array name is simply a pointer to the 0% element of that data type (i.e.

an int*).
* Given the declaration int dat[10], datis an (type)
* Given the declaration char str[6],strisa (type)

— A pointer (i.e. int* ptr;) can be used as an array name once you point it
to some location (see example below)

int dat[5] = {10,11,12,13,14};

*dat = 1; // array name as ptr: same as dat[0] = 1;

int *p = dat; // array name as ptr: same as int* p = &dat[9]
p[1] = p[2]-8; // ptr as array name: same as dat[1l]=dat[2]-8

* This is possible through pointer arithmetic.

B {JSC Viterbi 2>
Pointer Arithmetic

* Logical Progression: Pointers are variables storing addresses => addresses
are just numbers => we can perform arithmetic on numbers => we should
be able to perform arithmetic on pointers!

 We can perform addition or subtraction on pointer variables (i.e.
addresses) just like any other variable. This is known as pointer arithmetic.

* Important Difference: The number added/subtracted is implicitly scaled
(multiplied) by the size of the type pointed to, ensuring the resulting
address points to a valid data item

m [dat+1] [dat+2] [dat+3]

73309 7334 73a8 73ac 73b0o 73b4
int dat[6], dat[0] JF——{ dat[1] 1 dat[2] }I—— dat[3] 71— dat[4d] }FT—{ dat[5]
103 170 104 270 350 360
int* ptr = &dat[2]; T T T T T
73a8

B {JSC Viterbi 2>
Pointer Arithmetic

e Pointer arithmetic implicit scales the added value based

on the type of pointer
— For an int*, adding +2 really adds +2 * sizeof(int) = +2*4 = 8 so that
the pointer will point 2 integers away
— For adouble*, adding +2 really adds +2 * sizeof(double) = +2*8 =16 so
that the pointer will point 2 doubles away

(ga+1] (epar2) (epar3)

7320 73a8 73b0 73b8 73c0O 73c8
gpal0] 1 gpa[l] }1— gpal2] }——_ gpal8] }T1—{_ sgpal4] T gpal5]
double gpa[6]; 3.5 2.9 3.7 3.9 2.6 3.2

T T 73b0 T T T
2] (2]

double* p2 = gpa+2

p2 += <offset>;

B {JSC Viterbi 2
Pointer Arithmetic

e Pointer arithmetic implicit scales the added value based
on the type of pointer

— For a char*, adding +2 really adds +2 * sizeof(char) =+2*1 =2 so that
the pointer will point 2 chars away

m [ltr+1] [ltr+2] [ltr+3]

7320 73al 73a2 73a3 7334 73a5

gpal0] 1 sgpa[l] J}1— sgpal2] }——_ sgpal3] }1—{_ sgpal4] T gpal5]
char 1ltr[6]; @ b ¢ d € f
char* p3 = 1tr+2 T T 73a2 T T T

>3 (2
p3 += <offset>; m

i, TS("Viterbi

School of Engineering

Pointer Arithmetic Examples

 The number added/subtracted to the pointer is implicitly
scaled (multiplied) by the size of the type pointed to,

Address Memory Data

ensuring the resulting address points to a valid data item = datlo] =]
(Cdat J73a0 103 |«
int dat[] = {103, 5, 1} 30
int len=0; 7328
double gpa[3] = {3.7, 3.5, 3.1}; 73ac_—m0
int *ptr‘l = dat; (gpa) 73b0
*ptrl = 104; 73b4 3.7"\
ptrl = ptrl + 2; // addr. inc. by ___ (2*sizeof(int)) 73b8 e
(*ptr'l)++; // increment the dereferenced value 73bc 3.5
ptrl--; // addr. dec. by _ (1*sizeof(int)) 73¢c0
double *ptr2 = gpa; 73c4 3.1
— I
ptr2 += 2; // ptr2 addr. + _ (2*sizeof dbl) 73c8 /4
*ptr2++ = 4.0; // set dereferenced value to 4.0 then 73cc 7330 | |*ptr2
// increment addr. by _ (1*sizeof(double)) 73do e
// *ptr2 = 2.9; What if?? 23d4 23b8

i, TS("Viterbi

School of Engineering

Pointer Arithmetic Examples

 The number added/subtracted to the pointer is implicitly
scaled (multiplied) by the size of the type pointed to,

Address Memory Data

ensuring the resulting address points to a valid data item
Cdat)73a0 |[103 104 |«
int dat[] = {103, 5, 1} 30
int len=0; 73a8
double gpa[3] = {3.7, 3.5, 3.1}; 73ac 0
int *ptr‘l = dat; (gpa) 73b0
*ptrl = 104; 73b4 3.7
ptrl = ptrl + 2; // addr. inc. by 2*4 (2*sizeof(int)) 73b8 ik
(*ptr'l)++; // increment the dereferenced value 73bc 3.5
ptrl--; // addr. dec. by 1*4 (1*sizeof(int)) 73¢0
double *ptr2 = gpa; 73c4 ||3-2 4.0 [)
— e
ptr2 += 2; // ptr2 addr. + 2*8 (2*sizeof dbl) 73c8 || 7338)
*ptr2++ = 4.0; // set dereferenced value to 4.0 then 73cc (7338 73a4| | ptr2
// increment addr. by 1*8 (1*sizeof(double)) 73do e — //

// *ptr2 = 2.9; What if?? 73da | 23ce 73c¢8

i, TS("Viterbi

School of Engineering

Pointer Arithmetic and Array Indexing

Pointer arithmetic and array indexing are really the same!
Array syntax: data[i]
Says get the value of the i-th integer in the data array

Pointer syntax vs. Array syntax: *(data + i) <=> data[i]

(data + i) compute the address of the i-th value in an array and * operator gets its value

We can use pointers and array names interchangeably (an array name is a pointer and a
pointer can be treated as an array name and [] applied)
int data[6] = {10, 11, 12, 13, 14, 15};

*(data + 4) = 50;
int* ptr = data;
ptr[1] = ptr[2] + ptr[3]; // treat ptr like array name (same as data[l]=data[2]+data[3])

// data
// treat data like a pointer and perform data[4] = 50;

73a0;

// ptr now points at 73a@ too

@) ()
73309 7334 73a8 73ac 73b0o 73b4
E data[0] F——{ data[l] 1 data[2] }—1—{ data[3] F—{ data[4] }—
ptr[0] ptr[1] ptr[2] ([ptr[3] ptr[4]

I

— data[5] ;:I
jfﬂ

‘ 7320

[ptr+1] [ptr+2] | ptr+4 I | ptr+5 I

- 00000000 USCVlterb1
Arrays vs Pointers

* All 3 methods below perform the same task of initializing the array
— Which do you prefer?

— Remember, your goal is to make your code readable (option 1) but you

should understand all 3.
73a0 73a4d 73a8 73ac 73b0 73b4

dat[0] J=r—{ dat[1] dat2] F——{ dat3] F——{ dat[4] F——{ dat[5]
103 170 104 270 350 360

1

Common Array Syntax

Explicit pointer arithmetic

"Walking" Pointer

int main()
{
int dat[10];
int *ptrl = dat;
// initialize the array
for(int i=0; i < 10; i++)
{
ptri[i] = o;
// equivalent to
// dat[i] = o;
}

// use the array

int main()
{
int dat[10];
int *ptr2 = dat;
// initialize the array
for(int i=0; i < 10; i++)

{
}

// use the array

*(ptr2+i) = 0;

int main()
{
int dat[10];
int *ptr3 = dat;
// initialize the array
for(int i=0; i < 10; i++)
{
*ptr3 = 0;
ptr3++;
}

// use the array

i, TS("Viterbi

School of Engineering

Recall: Passing Arrays as Arguments

* In function declaration / // Function that takes an array
int sum(int data[], int size);
prototype for the formal // or int sum(int* data, int size);
parameter use int sum(int data[], int si
. . // or int sum(int* daf=!’{§$};;;;;\\\\\
— type [] or type * to indicate an { 7420

int total = ©;
for(int i=0; i < size; i++){
total += data[i];

array is being passed

 When calling the function, }
. . return total;
simply provide the name of }
the array as the actual int main()
{
argument int vals[100]; h/
. /* some code to in: 7420 +7 vals */
— In C/C++ using an array name int mysum = sum(vals, 100);
without any index evaluates to O mbere
the starting address of the array , e o

(a pointer to the 0t element)

Recall: To access an element in an array, we need 3 pieces of info:
1. Start address of the array

2. Index/offset

3. Type of elements in the array (really the size of that type)

USC Viterbi &2

School of Engineering *

Stack View of Passing Arrays

* Main point: A pointer and an array name are interchangeable!

// Function that takes an array
int sum(int data[], int size);
// or int sum(int* data, int size);

int sum(int data[], int size)

7396 |04, 92.100 i // or int sum(int* data, int size)

7400 o390 [total~ 0 el
sum | 7404 7420 data for(int i=0; i < size; i++){
] total += data[i]; // *(data+i)
740 100 size }
ZAA1 00480294 Rcleit:l:n return total;
|_[*(7420+4%i) }
741\ 500 |E mysum int main()
7420 5 vals[0] .
int vals[100]; .
7424 5 vals[1] /* some code to AMIMT .0 vals */
5 int mysum = sum(vals, 100);
cout << mysum << endl;
main 7816 5 va|s[99] // prints sum of all numbers
return 9;
7820 | 00400120 | "¢" }

- 01 USC Viterbi ‘
One or Many

. void fl(int* p)
o Strange questlon: { // does p point to one int

- f ints?

— Is 3240 McClintock Ave. the address of a i CIR G EIEY] @17 Sl
single-family house or a large dormitory }
with many suites?

e We can't know.

// f1 decrements the integer
* |nthe same way, C/C++ does not // pointed to by p
. . . void fl(int* p)
differentiate whether a pointer {
. . . % = 1,
points to a single variable or an array |, P
(le it doesn't have additional Syntax) Pointer to a single variable

— It can only be determined based on how // f1 sets the array pointed to

. . . // by p to all zeros
the function uses the pointer (does it void 1(int* p)

treat the pointer as being to an array OR {

to a single value) f?r(ip’; i=g; ; < 10; i++)
p[i] = o;

— Good commenting/documentation }
should describe this. Pointer to an array

P | USC Viterbi @+
const or non-const

int main() {

* The const modifier on a variable type const int size = 5;

. e // size cannot be modified
means it may not be modified or cize = 65 // Compile Error
changed after being initialized }

* Why would we want that? T TS
— Because YOU are your OWN WORST { L , _
] for(int i=0; i < size; i++)
ENEMY when programming! You make { p[i] = @; }
mistakes. The more we can enlist the }
compiler to help us catch mistakes, the Non-Const = "Can Edit"
better
— If our intention is for a variable not to void f1(const int* p, int size)
change, then declare it const. { Viewer -
* A const pointer means we can dereference for(int i=0; i < size; i++) {
the pointer to GET (view) the data but NOT cout << p[i] << endl;
)) p[i] = ©@; // compile error
use the pointer to CHANGE (edit) the data }
— Similar to "Can View" vs. "Can Edit" }

permission on a Google doc. Const = "Can View"

School of Engineer

USCViterbii
Const or Non-Const Example

« Which parameters of the |} Toismmmee— " “ne dotn, int stze)
. {
functions should be e oy 4 < ol Lo
marked as const? .
. int sum(int data[], int size)
) Does Slze need to be é/ or int sum(int* data, int size)
marked const? 6 WO S CF

for(int i=0; i < size; i++){

. total += data[i]; // *(data+i)
— Would it make sense to try }

return total;

to mark an email }
attachment as "view int main()
Only"? { int vals[100]; A intt
init(vals, 1ee); Anint
— No! Since it is already a o e nlvare, 100)
Copy Petﬁﬁnpgints sum of all numbers

i, TS("Viterbi

School of Engineering

C (not C++) String Function/Library
(#include <cstring>)

e Alibrary of functions was provided to perform operations on
these character arrays representing strings (<cstring> in C++,
<string.h>in C)

— int strlen(const char *dest) / int strlen(const char dest[])

— 1int strcmp(const char *strl, const char *str2);

* Return 0 if equal, >0 if first non-equal char in strl is alphanumerically larger, <0 otherwise
— char *strcpy(char *dest, const char *src);
— char *strcat(char *dest, const char *src);

* Concatenates src to the end of dest

— char *strchr(const char *str, char c);

* Finds first occurrence of character ‘c’ in str returning a pointer to that character or NULL if the
character is not found

https://cplusplus.com/reference/cstring/

	Slide 1: CS103 Unit 2a – Pointers and Pass by Reference
	Slide 2: Unit 2 – Pointers and Memory
	Slide 3: Introduction To Pointers
	Slide 4: Recall: Pass-by-Reference Pros/Cons
	Slide 5: Use Pointers when…
	Slide 6: Pointer Analogy
	Slide 7: Pointer Analogy
	Slide 8: Pointers
	Slide 9: Pointer Basics
	Slide 10: Steps To Using Pointers
	Slide 11: C++ Pointer Operators
	Slide 12: Generating a Pointer
	Slide 13: Pointer Variables and their Declaration
	Slide 14: Dereferencing Pointer Variables
	Slide 15: Cutting through the Syntax
	Slide 16: Assigning to Pointer Variables
	Slide 17: Skill: Drawing Data Diagrams
	Slide 18: Skill: Drawing Data Diagrams (Sol)
	Slide 19: Pointer Summary
	Slide 20: Pass By Reference
	Slide 21: Recall: Pass-by-Value
	Slide 22: Pass-by-(Pointer) Reference
	Slide 23: Swap Two Variables – (PB-Value Blank)
	Slide 24: Swap Two Variables – (PB-Value)
	Slide 25: Swap Two Variables – (PB-Ref Blank)
	Slide 26: Swap Two Variables – (PB-Ref)
	Slide 27: Correct Usage of Pointers
	Slide 28: Correct Usage of Pointers
	Slide 29: Pass-by-Reference Template
	Slide 30: Misuse of Pointers
	Slide 31: Pointer Arithmetic and Arrays
	Slide 32: Review Questions
	Slide 33: Big Idea: Array Names  Pointers
	Slide 34: Pointer Arithmetic
	Slide 35: Pointer Arithmetic
	Slide 36: Pointer Arithmetic
	Slide 37: Pointer Arithmetic Examples
	Slide 38: Pointer Arithmetic Examples
	Slide 39: Pointer Arithmetic and Array Indexing
	Slide 40: Arrays vs Pointers
	Slide 41: Recall: Passing Arrays as Arguments
	Slide 42: Stack View of Passing Arrays
	Slide 43: One or Many
	Slide 44: const or non-const
	Slide 45: Const or Non-Const Example
	Slide 46: C (not C++) String Function/Library (#include <cstring>)

