CS103 Unit 1e —
Algorithms and Runtime;
Compilation and Debugging

I Uscviterbi
School of Engineering

ALGORITHMS AND RUNTIME

- 00000000 USCViterbi ‘
Algorithms

e Algorithms are at the heart of computer
systems, both in hardware (HW) and
software (SW)

— They are fundamental to Computer Science
and Computer Engineering

* Informal definition
— An algorithm is a precise way to accomplish (. Ordered the steps of an)

a task or solve a problem algorithm have a particular
» A more formal definition: order, not just any order
 Unambiguous each step is
— An ordered set of unambiguous, completely clear as to what
executable steps that defines a terminating is to be done
process (see inset) * Executable Each step can
) . actually be performed
— Brushing your teeth? Algorithm will stop,

eventually. (Sometimes this
_ requirement is relaxed))

— Calculating your GPA?

Algorithm Representation

* An algorithm focuses on how to solve a problem
regardless of the language or specific implementation.
— An algorithm is not a program NOR a programming
language
e Just as a story may be represented as a book, movie,

or spoken by a story-teller, an algorithm may be
represented in many ways

— Flow chart

— Pseudocode (English-like syntax using primitives that most
programming languages would have)

— A specific program implementation in a given programming
language like C++

Pseudocode Primitives

* Assignment:
name < expression

— name is a descriptive name/variable and expression
describes the value to be associated with name

» Select one of two possible choices (conditionals):
if (condition) then (activity) else (activity)
if (condition) then (activity)
* Repeated execution of statements (loops):
while (condition) do (activity)
repeat (activity) until (condition)
foreach name in (set / collection) do (activity)

i, TS("Viterbi

Algorithm Example 1

 List/print all factors of a natural number, n
— How would you check if a number is a factor of n?
— What is the range of possible factors?
1«1
while(i <= n) do
if (remainder of n/i is zero) then
List i as a factor of n
i« i+l

* Animprovement

i« 1
while(i <=) do
if (remainder of n/i is zero) then
List i and as a factor of n

i« i+1

Algorithm Time Complexity

* We often judge algorithms by how long they take to run for a
given input size, n

* Algorithms often have different run-times based on the input
size [e.g. n = # of elements in a list to search or sort]
— Different input patterns can lead to best- and worst-case times
— Average-case times can be helpful
— But we usually use worst case times for comparison purposes

* We also want to be able to compare the time an algorithm
takes in a way that is independent of the computer running it
(i.e. the same algorithm might run a lot faster on a server than
your phone due to the hardware)

Calculating Runtime

Given an input to an
algorithm of size n, we start
by deriving an expression (in
terms of n) for the steps of
work an algorithm performs,
usually for its WORST CASE

run time

Just walk the code and count
up "steps" of work

— ltis fine if what what we call a
"step" of work is a bit imprecise
when we apply big-O notation.

i«1
while(1 <= n
if (n mod i

) do
== @) then

List 1 as a factor of n

i« i+l

i, TS("Viterbi

* From the expression, we find
the corresponding big-O
expression for that runtime by

assuming n is LARGE i 1 1
(approaching infinity) and, while(i<=n) do 1*n
thus, we: if (remainder of n/i is zero) then | 2*
— Only keep the dominant term in List i as a factor of n 1*n
the expression | — i+1 1*n
— Discard constant coefficients. The
result is the big-O (worst-case or 5n+1
upper-bound) run-time
* Example: O(5n+1) = O(n)
— If an algorithm with input size
of n runs in 3n” + 10n + 1000 Big-O notation lets us express the amount of
steps, we say that it runs in work an algorithm performs (or what we define
O(n?) because if n is large 3n? as a "step" of work) in a way that doesn't
will dominate the other terms require exact precision but helps us compare
Lthe efficiency of different algorithms.

Algorithm Example 1

List/print all factors of a natural number, n
— What is a factor?
— What is the range of possible factors?
i «1
while(i <= n) do
if (remainder of n/i is zero) then
List i as a factor of n
i« i+l
An improvement
i« 1
while(i <= sgrt(n)) do
if (remainder of n/i is zero) then
List 1 and n/i as a factor of n
i« i+l

O(n)

O(vn)

Algorithm Example 2a

Searching an ordered list (array) for a
specific value, k, and return its index or -1 if
it is not in the list

Sequential Search k=12
— Start at first item, check if it is equal to k, repeat Lict [2T3TaTeTe Tiol13[1575
for second, third, fourth item, etc. index 0 1 2 3 456 7 8

1«0
while (i < length(List)) do
if (List[i] equal to k) then
return i
else i « i+l
return -1

i, TS("Viterbi

Algorithm Example 2b

* Sequential search does not take advantage

of the ordered nature of the list k=6
— Would work the same (equally well) on an List
ordered or unordered list index 0 1 2 3 456 7 8

T Start in middle

* Binary Search

— Take advantage of ordered list by comparing k
with middle element and based on the result, ist [PIENEIEN @ [1o[13[15[19
rule out all numbers greater or smaller, repeat index 0 1 2 3 4 5 6 7 8
with middle element of remaining list, etc. T

6>4

6<9

List [2] 3] 4] 9 [10]13[15]19
index 0 1 2 3 456 7 8

!

6=6

e — ()5 Viterbi (>
Algorithm Example 2b

e Binary Search k =11
— Compare k with middle element of list and if not equal, List

rule out % of the list and repeat on the other half index ? 123 ; 567 8;
— Implementation: start i end
* Define range of searchable elements = [start, end)
(i.e. start is inclusive, end is exclusive) List [2]3]4] 6] o FEEEREEE]
index 0 1 2 3 456 7 8 9
. t r /
start « 0; end « length(List); start i end
while (start != end) do I
. List |[2[3|4|6]9 1519
i« (start + end) /2; index 0 1 2 3 4567 8 9
if (k == List[i]) then return i; TT 1
else if (k > List[i]) then start j end

start « i+1;

List |2]3(4]|6
else 3

index 0 1 2

5
end « i; A\'\
return -1; start\end

i, TS("Viterbi

School of Engineering

Complexity of Search Algorithms

e Sequential Search: List of length n Dividing by 2 for

— Worst case: Search through entire list k-times yields:
. . n/2k =1
— Time complexity = an + k
e aissome constant for number of operations we
perform in the loop as we iterate
» kis some constant representing startup/finish
work (outside the loop)
— Sequential Search = O(n) k =log,n
* Binary Search: List of length n il
— Worst case: Continually divide list in two
until we reach sublist of size 1 f
— Time = a*log,n + k = O(log,n)
* As n gets large, binary search is far
more efficient than sequential search ;

r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50
N

- 01 USCViterbi ,
Sorting

* If we have an unordered list, sequential List [7[3]8]6]5]1
search becomes our only choice ndex 0 (1)riziflal4 ®
* If we will perform a lot of searches, it may List 3[7 e [s[1 1
be beneficial to sort the list, then use index 0 12 3 4 5

After Pass 1

binary search

List [3|6|5|1 lWAR:]
* Many sorting algorithms of differing index 0 1 2 3 45

lexit (fast |) After Pass 2
compliexity (l.e. raster or siower
List [3] 5] 1 [CHEAEN

* Bubble Sort (simple though not terribly index 0 1 23 4 5
After Pass 3

efficient)
List [3] 1 |EICHEAED
— On each pass through thru the list, pick up the index 0 1 2 3 4 5
maximum element and place it at the end of After Pass 4
the list. Then repeat using a list of size n-1 (i.e. List
w/o the newly placed maximum value) index 0 1 2 3 4 5

After Pass 5

i, TS("Viterbi

B u b b | e SO rt A I go rit h - School of Engincering

void bsort(int dat[], int len)

{
int 1 ; O(nZ)
for(i=len-1; i > 0; i--){
for(j=0; j < i; j++){
if(dat[j] > dat[j+1]) {
swap(dat[j], dat[j+1])

Py o}

Pass 1 Pass 2 Pass n-2

7[3[8]6][5]1 3[7]e6]5[1 [} JEl5 6 7 8

J i J i j i

3{7(8|6|5|1]| swap 37651nnoswap 1 3 5 6 7 8 FWElY
- i -

3(7|8|(6[5|1| noswap 3(6|7|5 1nswap
j i j i

3[7[6][8][5]1] swap 3]6[5[7][1) swap
j i joi

3{7(6|5|8|1]| swap 3/6(5|1WAE:N swap

i
3/7(6|5]|1 swap

i, TS("Viterbi

School of Engineering

Complexity of Sort Algorithms

e Bubble Sort

— 2 Nested Loops
— Execute outer loop n-1 times
— For each outer loop iteration,

inner loop runs i times. 400
. . . . N
— Time complexity is proportional /- N
to: N*log2(N)

300

1

n-1+n-2+n-3+..+1=
(n? +n)/2 =0(n?)

e Other sort algorithms can run
in O(n*log,n)

1

250

]

200

Run-time

150 -

100 -

50 ™ //

i, TS("Viterbi

School of Engineering

Importance of Time Complexity

* |t makes the difference between efficient, possible, and impossible

 Many important problems currently can only be solved with exponential run-time
algorithms (e.g. O(2") time) [No known polynomial-time algorithm exists]

e Usually algorithms are only practical if they run in polynomial time

R T A R
1

1 4.3 20 86.4 400 1,048,576
1 7.6 200 1,528.8 40,000 1.60694E+60

1 11.0 2000 21,931.6 4,000,000 #NUM!

COMPILATION

e — ()5 Viterbi (=
Using the Command Line

* While GUIs are nice, we often have more control
when using the command line interface (i.e. the

terminal) l >—
e Linux (the OS used by Codio and in CS 103, 104, J
etc.) has a rich set of command line utilities Terminal Icon
— Mac & Windows do too, though Windows uses different o~ rermia
names for the utilities studentgs tudentvm:~$ [

* By typing commands, we can

— Navigate the file system (like you would with Explorer Linux Terminal View
or Finder)

elcome to Ubuntu 18.04.4 LTS (GNU/Linux 5.4.0-1059-aws x86_64)

— Start programs (vs. double-clicking an icon),

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com

— Copy, move, delete, rename files and folders * Support: https: //ubuntu. con/advantage

*

* Documentation often uses the symbols: $ or > FEEEERROIENAAE

*

* https://docs.codio.com/develop/develop/ide/boxes/overview
as a placeholder for the command prompt :
* Your Codio Box domain is: frameindigo-ozonecapital.codio.io
1 H *
- Don t type It Last login: Tue Jul 21 14:43:02 2020 from 192.168.10.226

codio@frameindigo—ozonecapital:~/workspace$ I

— Ifyousee:$./test, you should just type ./test
Codio Terminal View

Compilers

e Several free and commercial compilers are
available
— g++
— clang++
— XCode
— MS Visual Studio

* Several have "integrated" editors, debuggers
and other tools and thus are called IDE's
(Integrated Development Environments)

USC Viterbi

School of Engineering

Compilation & Execution Process

C++ Standard &

Other Libraries

#tinclude <iostream>

using namespace std; @

int main() 1110 0010 0101 1001
{ 0110 1011 0000 1100

int x = 42; 0100 1101 0111 1111
cout << "Hello" << endl; gt++ 1010 1100 0010 1011
cout << "x=" << Xx; 0001 0110 0011 1000
return 0; 7
} Executable Binary

Compiler " "
C++ file(s) (test.cpp) Image (“test”)

Compiler options/flags: Options Input file(s) Output
-g = Enable Debugging (aka Flags) (source) executable

-Wall =Show all warnings name

>_
-0 <name> = Specify Output ‘ ‘ I -

executable program name $ g++ -g -Wall test.cpp -o test $ g++ -g -Wall test.cpp -o teStJ
‘I $./test

Command
prompt
Edit & write | (don'ttype) Compile & fix compiler Load & run the
code errors executable program

Q 1)

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

- 00000000 USCViterbi .
Compiling with g++

* Most basic usage
— g++ cpp filenames $ g++ test.cpp
) # implicitly makes output
— Creates an executable using default name # program name: a.out
a.out $./a.out

* Common Options

— -0 =>Specifies output executable name
(other than default a.out)

— -g =>Include info needed by debuggers like
gdb, kdbg, etc.

— -Wall =>show all warnings

$ g++ -g -Wall test.cpp -o test

$./test

* Most common usage form:
— $ g++ -g -Wall test.cpp -o test [J

* Run the program by preceding the executable
name with ./ (specifies local directory)

— Use whatever executable name you gave to
g++ via the -0 option

i, TS("Viterbi

School of Engineering

Dealing with Compile Errors

 Compiler errors are a good kind of error (or at least better
than runtime errors)
— The compiler GIVES you a line number and error message to help you

— Runtime errors usually just produce the wrong output or crash, leaving
no clues as to why

— O
Tips for solving compiler errors

* Find the line number, look at your code on that line, and read the error
message carefully

* Do an Internet search of key words from the error message (leave out
any specific names in the error message) to see if there is an explanation
online

e Deal with the FIRST error by scrolling to the top of the error messages
* |f there is too much output, use I/0 redirection (more to come)
(e.g.$ g++ -g prog.cpp -o ./prog >& errors.txt and then view errors.txt))

USC Viterbi

School of Engineering

An Example

#include <iostream:

main{ }{
a, b, c;

* ptr;
cout << bc: redekoppf@@bytes:~/cs103/lecture/03-compile$ g++ -Wall errors.cpp
* errors.cpp: In function fint main()’:
*[Jt:P = d, errors.cpp:6:5: ‘cout’ was not declared in this scope; did you mean ‘std::cout’?
6 | << bc;

In file included from errors.cpp:l:
Jusr/include/c++/9/iostream:61:18: note: ‘std::cout’ declared here
61 | extern ostream cout; /// Linked to standard output

errors.cpp:6:13: ‘be’ was not declared in this scope; did you mean ‘e’?
6 | cout <<
I
I

return "@%;

errors.cpp:7:6: ‘void*’ is not a pointer-to-object type
7 | »

errors.cpp:8:12: invalid conversion from ‘const char*’ to ‘int’ |
8 | return

errors.cpp:4:12: warning: unused variable ‘b’ [-Wunused-variable]
4 int a, b, c;
errors.cpp:4:15: warning: unused variable ‘¢’ [-Wunused-variable]
4 | int a, b, c;
["

MULTIFILE COMPILATION

i, TS("Viterbi

School of Engineering

Splitting over Multiple .cpp Files

#include <iostream>
using namespace std;

* Most real-world software applications

have their source code split over // no prototype for sum()
. . bool done = false;
multiple files int main()
L : {
* The code to the right is split over two int array[3] = {4,5,6};
f.l // how does compiler know if
lnHes // this is a valid func. call

int val = sum(array, 3);

— main() in one file which declares an array cout << val << endl:

— A function, sum(), in another file which return 0;
sums the array) split-main.cpp
* We need both files to create a full extern bool done;
int sum(int a[], int n)
program. {
int s = 0;

for(int 1 = 0; i < n; i++) {
s += a[i];

done = true;
return s;

} split-sum.cpp

i, TS("Viterbi

School of Engineering

Splitting over Multiple .cpp Files

* Fact 1: The compiler only compiles one file at a
time.

 We want functions defined in one file to be able
to be called in another
— How does the compiler know if the function exists?

— It doesn't... it only checks when the linker runs (last
step in compilation)

— When translating a single file, it uses/requires a
function prototype to verify & know the types of the
argument(s) and return value

e Without a prototype, a compile-error is
generated

//; g++ -g -Wall split-main.cpp | \
split-main.cpp: In function ‘int main()’:
split-main.cpp:8:13: error: ‘sum’ was not declared
in this scope

8 | int val = sum(array, 3);

#include <iostream>
using namespace std;
// no prototype for sum()
bool done = false;
int main()
{
int array[3] = {4,5,6};
// how does compiler know if
// this is a valid func. call
int val = sum(array, 3);
cout << val << endl;
return 0;

t split-main.cpp

I Nevns

- _/

extern bool done;
int sum(int a[], int n)
{
int s = 0;
for(int 1 = 0; i < n; i++) {
s += a[i];

}
done = true;
return s;
} split-sum.cpp

i, TS("Viterbi

Compiling Multiple .cpp F|Ies7//\\(

 The compiler uses the prototype to check if DTy ——
the right number and type of arguments are using namespace std;
. . int sum(int a[], int n);
being passed and what the return type is. ool G o Fellee:
— Compiler "trusts" that if there is a matching int main()
prototype, then somewhere and sometime later it {

int array[3] = {4,5,6};
// compiler checks arg. types
// and usage of return value

will find the definition of that function in some
other file (if not in this one)

* Fact 2: ALL source code files must be // against thc(% prototyr))e
. . . . int val = sum(array, 3);
supplied in the compiler command for it to qoue < vl <& Emals
link and create an executable return 0;

— If your source code is broken into 100 files, you
need to compile all 100 together

split-main.cpp

extern bool done;
int sum(int a[], int n) {

iill int s = 9;

$ g++ -g split-main.cpp split-sum.cpp -o split | ' for(int i = 0; 1 < n; i++) {
$./split s += a[i];
15 }

return s;

} split-sum.cpp

N (5 Vierbi (¢
Undefined References

* Forgetting to list a source code file {' 5
.

on the command line resultsinan (. _
Whenever you see an "undefined

"undefined reference" error! e e R
— These are quite common in CS 103 a) (80% of the time) Forgot to list a
and CS 104 so please know their source file on the g++ command line

e Verify all files are listed
. a) (20% of the time) Have a typo in the
* We must provide ALL .cpp (or prototype or function definition

later, . 0) files that have relevant * Prototyped int sum(char[], int)

. . But defined int int[], int
code for our application. S Rt LR

»_ >
\ N

cause and what to look for to fix them

a4 4
$ g++ -g split-main.cpp -o split $ g++ -g split-sum.cpp -o split

/tmp/ccDyvijR3.0: In function "main': /usr/lib/gcc/x86_64-1linux-
split-main.cpp:(.text+0x39): undefined gnu/9/../../../x86_64-1linux-gnu/Scrtl.o: In
reference to “sum(int*, int)' function ~ _start':

collect2: error: 1ld returned 1 exit status (.text+0x20): undefined reference to "main’

collect2: error: 1ld returned 1 exit status
_ _J \ _J

S — (5C Viterbi 2
Header Files A

W

* Suppose split-sum.cpp defined multiple
functions (i.e. more than just sum())

* Further suppose other applications would #include <iostreams
like to use those functions. #include “"split-sum.h"
o] using namespace std;
e Rather than each application retyping the bool done = false;
prototypes, place them in a header (.h) file ?”t main()
and #include itinto each source (.cpp) int array[3] = {4,5,6};
file that uses it int val = sum(array, 3);
; . ; cout << val << endl;
* Header files will also be used to define return 0;
classes (objects) in the future...stay tuned! } split-main.cpp
// prototype only #include <iostream>
int sum(int a[], int n); #include "split-sum.h”
split-sum.h using namespace std;
int main() {
extern bool done; int vals[5];
int sum(int a[], int n) { /] ...
// implementation cout << sum(vals, 3) << endl;
} split-sum.cpp other-app.cpp

Header File Dos and Don'ts

* NEVER compile .h files in a g++ command
— Simply compile the .cpp files and the #include'd header
files will be compiled as part of those

* DO #include header files in each source (.cpp) file
that uses those functions (or, later, C++ classes)

* DO recompile any .cpp files that #include the header
file WHEN the header file changes.

$ g++ -g split-sum.h split-main.cpp split-sum.cpp -o split‘ }

$ g++ -g split-main.cpp split-sum.cpp -o split }

$ g++ -g other-app.cpp split-sum.cpp -o other-app

BASIC DEBUGGING

i, TS("Viterbi

School of Engineering

* The original "bug"

9/4

0600 Ondkomn shaqdcd {/.:.-,,, 9.087 3y7 015
JJ00 ' :.b-“q} ~ an‘}om / 9.087 §¥YC V95 covu
13 wg (035 MP -pme W,M) 7 EY ?‘l_,a.ci(g
03y PRO > 2. 1304206y

: Caons b 3.130672ems ey
IS (- »~ 033 MWVJ xer Jesd
{m R T SOR Poe 2

Started | Goglils
(/90 A ls,; ne | Sine chesk
- \ v 1 .l \L . QP ?t" (Tlc)

@zkw‘*70 ?u\ n c..‘ F

\Mo’ﬂ)u\ rc\qs\

1Say

e :J;\bT Q:;l:*:‘ r.qs.»_ o-{ Bu«i Lein1 {o\ml.
e J—“‘A W

e — 5 Viterbi (2
Step 1: Test Cases & Expected

tgt = 12
Outputs
index 0 1 2 3 4 56 7 8
* Do a few examples on paper and work g y
out what the correct (expected) outputs
, , List [2[3[4 e ° EIEEEEER]
should be (both intermediate results meco T
and final results) stat i end
— You cannot effectively debug without an st [2[3]4]e] o Rt
expectation of the right output so you know Stath I Jnd

when the program is working

List [2] 3] 4] 6] o FE13[15[19]

— Example: For binary search, take the input weex 0 1232556 7 3
array and target value and show how start <ta e:\w,
and end will update on each iteration i

i
List [2]3]4]6]9]11]13[1519]
index 0 1 2 3 456 7 8

a

start end

Step 2: Hand-Tracing

len=9, tgt =12
* Use one of your input g rrepe TR
scenarios that is not start mid end
. ##tinclude <iostream>
working and trace the using namespace std;
execution Of your Code by ?nt bsearch(int list[], int len, int tgt)
int start = @, end = len;
hand vlu:ilZ(z:art 1= ::d) { -
int mid = (start d) / 2;
— Make a table of variables if(tgt == 1i:t'fm151§n{
return mid;
and walk the code line by }
. else if(tgt > list[mid]) {
line start = mid;
}
— Compar he ex else {
Compare to the expected e - o ——T—
values from Step 1 .
return -1;
}

i, TS("Viterbi

School of Engineering

Step 3: Print Statements / Narration

* Let the computer "trace" for you by using print
statements

* Now that you know what to expect, the most
common and easy way is to find the error is to
add print statements that will "narrate" where
you are and what the variable values are

* Be a detective by narrowing down where the
error is

— Put a print statement in each 'for’, 'while’, 'if' or 'else
block...this will make sure you are getting to the
expected areas of your code

— Then print variable values so you can see what data
your program is producing

i, TS("Viterbi

School of Engineering

Example of Print Statements

int bsearch(int list[], int len, int tgt)
{
int start = 9, end = len;
while(start != end) {
int mid = (start + end) / 2;
cout << "mid " << mid << endl;
if(tgt == list[mid]) {
return mid;
}
else if(tgt > list[mid]) {
start = mid;

}
else {

end = mid;
}

}

return -1;

With novice print statements

int bsearch(int list[], int len, int tgt)
{

cout << "Starting bsearch: len=" << len
<< " and target=" << tgt << endl;
int start = 9, end = len;
while(start != end) {
cout << "New iter: start=" << start
<< " and end=" << end << endl;
int mid = (start + end) / 2;
cout << "\tChecking mid=" << mid << endl;
cout << "\tdata=" << list[mid] << endl;
if(tgt == list[mid]) {
cout << "Found!" << endl;
return mid;
}
else if(tgt > list[mid]) {
cout << "\tLarger half" << endl;
start = mid;
}
else {
cout << "\tSmaller half" << endl;
end = mid;
}
}

return -1;

With (quality) print statements!

i, TS("Viterbi

School of Engineering

Which Debug Output is Most Helpful?
o= - /$./bsear‘ch \

index 0 1 2 3 4 56 7 8 $../bsear'ch‘—— Starting bsearch: len=9 and target=12
1 | ¢ mid 4 New iter: start=0 and end=9
start i end m%d 6 Checking mid=4
mid 5 data=9
' mid > Larger half
List [2]3]4 [e[FEEEEEEE])
index|0|1|2|3|4 56 7 8 m}d > New iter: start=4 and end=9
t mid 5 Checking mid=6
start i end m}d > data=13
mid 5 Smaller half
List [2]3] 4 [6] o EEEEN15]19] New iter: start=4 and end=6
index 0 1 2 3 4 56 7 8 Checking mid=5
t t data=11
start j end Larger half
New iter: start=5 and end=6
List [2]3] 4] 6] 9 FE[13[15[19] Checking mid=5
index 0 1 2 3 456 7 8 data=11
\ Larger half
start\end New iter: start=5 and end=6
i Checking mid=5
List [2]3]4]6]9][11]13]15]19] L) data=11
index 0 1 2 3 4 56 7 8 With novice Larger half
/\ print /

start end statements With (quality) print statements!

i, TS("Viterbi

Fixed Code

int bsearch(int list[], int len, int tgt)
{
cout << "Starting bsearch: len=" << len
<< " and target=" << tgt << endl;
int start = 0, end = len;
while(start != end) {
cout << "New iter: start=" << start
<< " and end=" << end << endl;
int mid = (start + end) / 2;
cout << "Checking mid=" << mid << endl;
cout << " data=" << list[mid] << endl;
if(tgt == list[mid]) {
cout << "Found!"™ << endl;
return mid;

}
else if(tgt > list[mid]) {
cout << "Larger half" << endl;

start = mid+1;

}
else {
cout << "Smaller half" << endl;
end = mid;
}
}
return -1;

Fixed Code

i, TS("Viterbi

School of Engineering

Meta-ldea: Binary Search for Debugging

int main()

{ . n

.- “cje\

S ZA)

.

>_
$ g++ -g prog.cpp -o prog -

$./prog
<Segmentation fault>

f

Think of debugging as performing a "binary search"
for the bug/error. If the program crashes and you
aren't sure where, or a variable has an unexpected
value, add print statements at the mid-point and
see if things are still good there. If not, the error is
in the first half of the code. Otherwise, the error is
in the second half of the code. Repeat the process
\Pnthathaﬁ

(o

int main()

{
OK
cout << "L50 x:" << x << endl;
. Error!

}

e >_
$ g++ -g prog.cpp -0 prog -
$./prog
L50 x:42

. <Segmentation fault>

int main()
{
OK

cout << "L50 x:" << x << endl;
--- Error!
cout << "L6O x:" << x << endl;

}

< >_
$ g++ -g prog.cpp -o prog -

$./prog

L50 x:42

- <Segmentation fault>

More Tips | Q

1. Don't write the entire program all at once

2. Write a small portion, compile and test it

— Write the code to get the input values, add some couts to
print out what you got from the user, and make sure it is
what you expect

— Write a single loop and test it before doing nested loops
3. Once one part works, add another part and test it

4. Comment out later portions of the code and verify
earlier parts work and then add your later code
back in little-by-little to find where it stops/starts
working

Alternative to Step 3

* Use a debugger tool

— A program that allows you to see inside and slow
down your program so you can understand what it
is doing (vs. what you expect it to do).

— More in lab!

	Slide 1: CS103 Unit 1e – Algorithms and Runtime; Compilation and Debugging
	Slide 2: Algorithms and Runtime
	Slide 3: Algorithms
	Slide 4: Algorithm Representation
	Slide 5: Pseudocode Primitives
	Slide 6: Algorithm Example 1
	Slide 7: Algorithm Time Complexity
	Slide 8: Calculating Runtime
	Slide 9: Applying Big-O Notation
	Slide 10: Algorithm Example 1
	Slide 11: Algorithm Example 2a
	Slide 12: Algorithm Example 2b
	Slide 13: Algorithm Example 2b
	Slide 14: Complexity of Search Algorithms
	Slide 15: Sorting
	Slide 16: Bubble Sort Algorithm
	Slide 17: Complexity of Sort Algorithms
	Slide 18: Importance of Time Complexity
	Slide 19: Compilation
	Slide 20: Using the Command Line
	Slide 21: Compilers
	Slide 22: Compilation & Execution Process
	Slide 23: Compiling with g++
	Slide 24: Dealing with Compile Errors
	Slide 25: An Example
	Slide 26: MultiFile Compilation
	Slide 27: Splitting over Multiple .cpp Files
	Slide 28: Splitting over Multiple .cpp Files
	Slide 29: Compiling Multiple .cpp Files
	Slide 30: Undefined References
	Slide 31: Header Files
	Slide 32: Header File Dos and Don'ts
	Slide 33: BASIC Debugging
	Slide 34: Bugs
	Slide 35: Step 1: Test Cases & Expected Outputs
	Slide 36: Step 2: Hand-Tracing
	Slide 37: Step 3: Print Statements / Narration
	Slide 38: Example of Print Statements
	Slide 39: Which Debug Output is Most Helpful?
	Slide 40: Fixed Code
	Slide 41: Meta-Idea: Binary Search for Debugging
	Slide 42: More Tips
	Slide 43: Alternative to Step 3

