
1e.1

CS103 Unit 1e –
Algorithms and Runtime;

Compilation and Debugging

1e.2

ALGORITHMS AND RUNTIME

1e.3

Algorithms

• Algorithms are at the heart of computer
systems, both in hardware (HW) and
software (SW)
– They are fundamental to Computer Science

and Computer Engineering

• Informal definition
– An algorithm is a precise way to accomplish

a task or solve a problem

• A more formal definition:
– An ordered set of unambiguous,

executable steps that defines a terminating
process (see inset)

• Examples: What is the algorithm for
– Brushing your teeth?

– Calculating your GPA?

• Ordered: the steps of an
algorithm have a particular
order, not just any order

• Unambiguous: each step is
completely clear as to what
is to be done

• Executable: Each step can
actually be performed

• Terminating Process:
Algorithm will stop,
eventually. (Sometimes this
requirement is relaxed)

1e.4

Algorithm Representation

• An algorithm focuses on how to solve a problem
regardless of the language or specific implementation.

– An algorithm is not a program NOR a programming
language

• Just as a story may be represented as a book, movie,
or spoken by a story-teller, an algorithm may be
represented in many ways

– Flow chart

– Pseudocode (English-like syntax using primitives that most
programming languages would have)

– A specific program implementation in a given programming
language like C++

1e.5

Pseudocode Primitives

• Assignment:
name ← expression

– name is a descriptive name/variable and expression
describes the value to be associated with name

• Select one of two possible choices (conditionals):
if (condition) then (activity) else (activity)

if (condition) then (activity)

• Repeated execution of statements (loops):
while (condition) do (activity)

repeat (activity) until (condition)

foreach name in (set / collection) do (activity)

1e.6

Algorithm Example 1

• List/print all factors of a natural number, n
– How would you check if a number is a factor of n?

– What is the range of possible factors?

i ← 1

while(i <= n) do

 if (remainder of n/i is zero) then

 List i as a factor of n

 i ← i+1

• An improvement
i ← 1

while(i <= ________) do

 if (remainder of n/i is zero) then

 List i and _____ as a factor of n

 i ← i+1

1e.7

Algorithm Time Complexity

• We often judge algorithms by how long they take to run for a
given input size, n

• Algorithms often have different run-times based on the input
size [e.g. n = # of elements in a list to search or sort]
– Different input patterns can lead to best- and worst-case times

– Average-case times can be helpful

– But we usually use worst case times for comparison purposes

• We also want to be able to compare the time an algorithm
takes in a way that is independent of the computer running it
(i.e. the same algorithm might run a lot faster on a server than
your phone due to the hardware)

1e.8

Calculating Runtime

• Given an input to an
algorithm of size n, we start
by deriving an expression (in
terms of n) for the steps of
work an algorithm performs,
usually for its WORST CASE
run time

• Just walk the code and count
up "steps" of work
– It is fine if what what we call a

"step" of work is a bit imprecise
when we apply big-O notation.

i ← 1
while(i <= n) do
 if (n mod i == 0) then
 List i as a factor of n
 i ← i+1

1e.9

Applying Big-O Notation
• From the expression, we find

the corresponding big-O
expression for that runtime by
assuming n is LARGE
(approaching infinity) and,
thus, we:

– Only keep the dominant term in
the expression

– Discard constant coefficients. The
result is the big-O (worst-case or
upper-bound) run-time

• Example:

– If an algorithm with input size
of n runs in 3n2 + 10n + 1000
steps, we say that it runs in
O(n2) because if n is large 3n2

will dominate the other terms

i ← 1

while(i <= n) do

 if (remainder of n/i is zero) then

 List i as a factor of n

 i ← i+1

1

1*n

2*n

5n+1

1*n

1*n

O(5n+1) = O(n)

Big-O notation lets us express the amount of
work an algorithm performs (or what we define
as a "step" of work) in a way that doesn't
require exact precision but helps us compare
the efficiency of different algorithms.

1e.10

Algorithm Example 1

• List/print all factors of a natural number, n
– What is a factor?

– What is the range of possible factors?

i ← 1

while(i <= n) do

 if (remainder of n/i is zero) then

 List i as a factor of n

 i ← i+1

• An improvement
i ← 1

while(i <= sqrt(n)) do

 if (remainder of n/i is zero) then

 List i and n/i as a factor of n

 i ← i+1

O(n)

O(𝒏)

1e.11

Algorithm Example 2a

• Searching an ordered list (array) for a
specific value, k, and return its index or -1 if
it is not in the list

• Sequential Search
– Start at first item, check if it is equal to k, repeat

for second, third, fourth item, etc.

i ← 0

while (i < length(List)) do

 if (List[i] equal to k) then

 return i

 else i ← i+1

return -1

2 3 4 6 9 10 13 15 19List

index 1 2 3 4 5 6 7 80

k = 12

1e.12

Algorithm Example 2b

• Sequential search does not take advantage
of the ordered nature of the list
– Would work the same (equally well) on an

ordered or unordered list

• Binary Search
– Take advantage of ordered list by comparing k

with middle element and based on the result,
rule out all numbers greater or smaller, repeat
with middle element of remaining list, etc.

2 3 4 6 9 10 13 15 19List

index

6 < 9

k = 6

Start in middle

2 3 4 6 9 10 13 15 19List

index

6 > 4

6 9 10 13 15 19List

index

6 = 6

2 3 4

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80

1e.13

Algorithm Example 2b

• Binary Search

– Compare k with middle element of list and if not equal,
rule out ½ of the list and repeat on the other half

– Implementation:

• Define range of searchable elements = [start, end)
(i.e. start is inclusive, end is exclusive)

start ← 0; end ← length(List);

while (start != end) do

 i ← (start + end) /2;

 if (k == List[i]) then return i;

 else if (k > List[i]) then

 start ← i+1;

 else

 end ← i;

 return -1;

2 3 4 6 9 11 13 15 19List

index

2 3 4 6 9 11 13 15 19List

index

i

k = 11

endstart

i endstart

2 3 4 6 9 11 13 15 19List

index

endstart i

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80

1 2 3 4 5 6 7 80

2 3 4 6 9 11 15 19List

index

endstart

i

1 2 3 4 5 6 7 80

13

9

9

9

9

1e.14

Complexity of Search Algorithms

• Sequential Search: List of length n
– Worst case: Search through entire list

– Time complexity = an + k
• a is some constant for number of operations we

perform in the loop as we iterate

• k is some constant representing startup/finish
work (outside the loop)

– Sequential Search = O(n)

• Binary Search: List of length n
– Worst case: Continually divide list in two

until we reach sublist of size 1

– Time = a*log2n + k = O(log2n)

• As n gets large, binary search is far
more efficient than sequential search

Dividing by 2 for

k-times yields:

n / 2k = 1

k = log2n

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

N

R
u
n
-t

im
e

1e.15

Sorting

• If we have an unordered list, sequential
search becomes our only choice

• If we will perform a lot of searches, it may
be beneficial to sort the list, then use
binary search

• Many sorting algorithms of differing
complexity (i.e. faster or slower)

• Bubble Sort (simple though not terribly
efficient)
– On each pass through thru the list, pick up the

maximum element and place it at the end of
the list. Then repeat using a list of size n-1 (i.e.
w/o the newly placed maximum value)

7 3 8 6 5 1List

index

Original

1 2 3 4 50

3 7 6 5 1 8List

index

After Pass 1

1 2 3 4 50

3 6 5 1 7 8List

index

After Pass 2

1 2 3 4 50

3 5 1 6 7 8List

index

After Pass 3

1 2 3 4 50

3 1 5 6 7 8List

index

After Pass 4

1 2 3 4 50

1 3 5 6 7 8List

index

After Pass 5

1 2 3 4 50

1e.16

Bubble Sort Algorithm

7 3 8 6 5 1

j i

Pass 1

3 7 8 6 5 1

j i

3 7 8 6 5 1

j i

3 7 6 8 5 1

j i

3 7 6 5 8 1

j

3 7 6 5 1 8

swap

no swap

swap

swap

swap

j i

Pass 2

3 7 6 5 1 8

j i

3 6 7 5 1 8

j i

3 6 5 7 1 8

3 6 5 1 7 8

j

no swap

swap

swap

swap

3 7 6 5 1 8

i

Pass n-2

3 1 5 6 7 8

1 3 5 6 7 8 swap

…

void bsort(int dat[], int len)
{
 int i ;
 for(i=len-1; i > 0; i--){
 for(j=0; j < i; j++){
 if(dat[j] > dat[j+1]) {
 swap(dat[j], dat[j+1])
 } } }
}

i

i

j

O(𝒏𝟐)

1e.17

Complexity of Sort Algorithms

• Bubble Sort
– 2 Nested Loops

– Execute outer loop n-1 times

– For each outer loop iteration,
inner loop runs i times.

– Time complexity is proportional
to:
n-1 + n-2 + n-3 + … + 1 =
(n2 + n)/2 = O(n2)

• Other sort algorithms can run
in O(n*log2n)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

N

R
u
n
-t

im
e

N

N2

N*log2(N)

1e.18

Importance of Time Complexity

N O(1) O(log2n) O(n) O(n*log2n) O(n2) O(2n)

2 1 1 2 2 4 4

20 1 4.3 20 86.4 400 1,048,576

200 1 7.6 200 1,528.8 40,000 1.60694E+60

2000 1 11.0 2000 21,931.6 4,000,000 #NUM!

• It makes the difference between efficient, possible, and impossible

• Many important problems currently can only be solved with exponential run-time
algorithms (e.g. O(2n) time) [No known polynomial-time algorithm exists]

• Usually algorithms are only practical if they run in polynomial time

1e.19

COMPILATION

1e.20

Using the Command Line

• While GUIs are nice, we often have more control
when using the command line interface (i.e. the
terminal)

• Linux (the OS used by Codio and in CS 103, 104,
etc.) has a rich set of command line utilities

– Mac & Windows do too, though Windows uses different
names for the utilities

• By typing commands, we can
– Navigate the file system (like you would with Explorer

or Finder)

– Start programs (vs. double-clicking an icon),

– Copy, move, delete, rename files and folders

• Documentation often uses the symbols: $ or >
as a placeholder for the command prompt

– Don't type it

– If you see: $./test, you should just type ./test

Terminal Icon

Linux Terminal View

Codio Terminal View

1e.21

Compilers

• Several free and commercial compilers are
available

– g++

– clang++

– XCode

– MS Visual Studio

• Several have "integrated" editors, debuggers
and other tools and thus are called IDE's
(Integrated Development Environments)

1e.22

Compilation & Execution Process

204

MHV2200BT

Executable Binary

Image ("test")

1110 0010 0101 1001
0110 1011 0000 1100
0100 1101 0111 1111
1010 1100 0010 1011
0001 0110 0011 1000

C++ file(s) (test.cpp)
Compiler

#include <iostream>
using namespace std;
int main()
{
 int x = 42;
 cout << "Hello" << endl;
 cout << "x=" << x;
 return 0;
}

g++
Load &

Execute

2 Compile & fix compiler

errors
1 Edit & write

code
3 Load & run the

executable program

C++ Standard &

Other Libraries

$ g++ –g –Wall test.cpp –o test $ g++ –g –Wall test.cpp –o test
$./test

Compiler options/flags:
-g = Enable Debugging
-Wall =Show all warnings
-o <name> = Specify Output
executable program name

Options

(aka Flags)

Input file(s)

(source)

Output

executable

name

Command

prompt

(don't type)

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

1e.23

Compiling with g++
• Most basic usage

– g++ cpp_filenames

– Creates an executable using default name
a.out

• Common Options

– -o => Specifies output executable name
(other than default a.out)

– -g => Include info needed by debuggers like
gdb, kdbg, etc.

– -Wall => show all warnings

• Most common usage form:

– $ g++ –g –Wall test.cpp –o test

• Run the program by preceding the executable
name with ./ (specifies local directory)

– Use whatever executable name you gave to
g++ via the -o option

$ g++ test.cpp
implicitly makes output
program name: a.out
$./a.out

$ g++ –g –Wall test.cpp –o test
$./test

1e.24

Dealing with Compile Errors

• Compiler errors are a good kind of error (or at least better
than runtime errors)
– The compiler GIVES you a line number and error message to help you

– Runtime errors usually just produce the wrong output or crash, leaving
no clues as to why

Tips for solving compiler errors
• Find the line number, look at your code on that line, and read the error

message carefully
• Do an Internet search of key words from the error message (leave out

any specific names in the error message) to see if there is an explanation
online

• Deal with the FIRST error by scrolling to the top of the error messages
• If there is too much output, use I/O redirection (more to come)

(e.g. $ g++ -g prog.cpp -o ./prog >& errors.txt and then view errors.txt)

1e.25

An Example

1e.26

MULTIFILE COMPILATION

1e.27

Splitting over Multiple .cpp Files

• Most real-world software applications
have their source code split over
multiple files

• The code to the right is split over two
files
– main() in one file which declares an array

– A function, sum(), in another file which
sums the array

• We need both files to create a full
program.

#include <iostream>
using namespace std;
 // no prototype for sum()
bool done = false;
int main()
{
 int array[3] = {4,5,6};
 // how does compiler know if
 // this is a valid func. call
 int val = sum(array, 3);
 cout << val << endl;
 return 0;
}

extern bool done;
int sum(int a[], int n)
{
 int s = 0;
 for(int i = 0; i < n; i++) {
 s += a[i];
 }
 done = true;
 return s;
}

split-main.cpp

split-sum.cpp

1e.28

Splitting over Multiple .cpp Files

• Fact 1: The compiler only compiles one file at a
time.

• We want functions defined in one file to be able
to be called in another

– How does the compiler know if the function exists?

– It doesn't… it only checks when the linker runs (last
step in compilation)

– When translating a single file, it uses/requires a
function prototype to verify & know the types of the
argument(s) and return value

• Without a prototype, a compile-error is
generated

#include <iostream>
using namespace std;
 // no prototype for sum()
bool done = false;
int main()
{
 int array[3] = {4,5,6};
 // how does compiler know if
 // this is a valid func. call
 int val = sum(array, 3);
 cout << val << endl;
 return 0;
}

extern bool done;
int sum(int a[], int n)
{
 int s = 0;
 for(int i = 0; i < n; i++) {
 s += a[i];
 }
 done = true;
 return s;
}

split-main.cpp

split-sum.cpp

$ g++ -g -Wall split-main.cpp
split-main.cpp: In function ‘int main()’:
split-main.cpp:8:13: error: ‘sum’ was not declared
in this scope

8 | int val = sum(array, 3);
| ^~~

1e.29

Compiling Multiple .cpp Files

• The compiler uses the prototype to check if
the right number and type of arguments are
being passed and what the return type is.

– Compiler "trusts" that if there is a matching
prototype, then somewhere and sometime later it
will find the definition of that function in some
other file (if not in this one)

• Fact 2: ALL source code files must be
supplied in the compiler command for it to
link and create an executable

– If your source code is broken into 100 files, you
need to compile all 100 together

#include <iostream>
using namespace std;
int sum(int a[], int n);
bool done = false;
int main()
{
 int array[3] = {4,5,6};
 // compiler checks arg. types
 // and usage of return value
 // against the prototype
 int val = sum(array, 3);
 cout << val << endl;
 return 0;
}

extern bool done;
int sum(int a[], int n) {
 int s = 0;
 for(int i = 0; i < n; i++) {
 s += a[i];
 }
 return s;
}

split-main.cpp

split-sum.cpp

$ g++ -g split-main.cpp split-sum.cpp –o split
$./split
15

1e.30

Undefined References

• Forgetting to list a source code file
on the command line results in an
"undefined reference" error!
– These are quite common in CS 103

and CS 104 so please know their
cause and what to look for to fix them

• We must provide ALL .cpp (or
later, .o) files that have relevant
code for our application.

$ g++ -g split-main.cpp –o split
/tmp/ccDyvjR3.o: In function `main':
split-main.cpp:(.text+0x39): undefined
reference to `sum(int*, int)'
collect2: error: ld returned 1 exit status

Whenever you see an "undefined
reference", you’ve either:
a) (80% of the time) Forgot to list a

source file on the g++ command line
• Verify all files are listed
a) (20% of the time) Have a typo in the

prototype or function definition
• Prototyped int sum(char[], int)
• But defined int sum(int[], int)

$ g++ -g split-sum.cpp –o split
/usr/lib/gcc/x86_64-linux-
gnu/9/../../../x86_64-linux-gnu/Scrt1.o: In
function `_start':
(.text+0x20): undefined reference to `main'
collect2: error: ld returned 1 exit status

1e.31

Header Files

• Suppose split-sum.cpp defined multiple
functions (i.e. more than just sum())

• Further suppose other applications would
like to use those functions.

• Rather than each application retyping the
prototypes, place them in a header (.h) file
and #include it into each source (.cpp)
file that uses it

• Header files will also be used to define
classes (objects) in the future…stay tuned!

#include <iostream>
#include "split-sum.h"
using namespace std;
bool done = false;
int main()
{
 int array[3] = {4,5,6};
 int val = sum(array, 3);
 cout << val << endl;
 return 0;
}

#include <iostream>
#include "split-sum.h"
using namespace std;
int main() {
 int vals[5];
 // ...
 cout << sum(vals, 3) << endl;

split-main.cpp

other-app.cpp

// prototype only
int sum(int a[], int n);

split-sum.h

extern bool done;
int sum(int a[], int n) {
 // implementation
} split-sum.cpp

1e.32

Header File Dos and Don'ts

• NEVER compile .h files in a g++ command

– Simply compile the .cpp files and the #include'd header
files will be compiled as part of those

• DO #include header files in each source (.cpp) file
that uses those functions (or, later, C++ classes)

• DO recompile any .cpp files that #include the header
file WHEN the header file changes.

$ g++ -g split-sum.h split-main.cpp split-sum.cpp –o split

$ g++ -g split-main.cpp split-sum.cpp –o split
$ g++ -g other-app.cpp split-sum.cpp –o other-app

1e.33

BASIC DEBUGGING

1e.34

Bugs

• The original "bug"

1e.35

Step 1: Test Cases & Expected
Outputs

• Do a few examples on paper and work
out what the correct (expected) outputs
should be (both intermediate results
and final results)

– You cannot effectively debug without an
expectation of the right output so you know
when the program is working

– Example: For binary search, take the input
array and target value and show how start
and end will update on each iteration

1e.36

Step 2: Hand-Tracing

• Use one of your input
scenarios that is not
working and trace the
execution of your code by
hand

– Make a table of variables
and walk the code line by
line

– Compare to the expected
values from Step 1

#include <iostream>
using namespace std;

int bsearch(int list[], int len, int tgt)
{
 int start = 0, end = len;
 while(start != end) {
 int mid = (start + end) / 2;
 if(tgt == list[mid]) {
 return mid;
 }
 else if(tgt > list[mid]) {
 start = mid;
 }
 else {
 end = mid;
 }
 }
 return -1;
}

start end mid

2 3 4 6 9 11 13 15 19list

index

mid

len=9, tgt = 12

endstart

1 2 3 4 5 6 7 80 9

1e.37

Step 3: Print Statements / Narration

• Let the computer "trace" for you by using print
statements

• Now that you know what to expect, the most
common and easy way is to find the error is to
add print statements that will "narrate" where
you are and what the variable values are

• Be a detective by narrowing down where the
error is
– Put a print statement in each 'for', 'while', 'if' or 'else'

block…this will make sure you are getting to the
expected areas of your code

– Then print variable values so you can see what data
your program is producing

1e.38

Example of Print Statements

int bsearch(int list[], int len, int tgt)
{
 int start = 0, end = len;
 while(start != end) {
 int mid = (start + end) / 2;
 cout << "mid " << mid << endl;
 if(tgt == list[mid]) {
 return mid;
 }
 else if(tgt > list[mid]) {
 start = mid;
 }
 else {
 end = mid;
 }
 }
 return -1;
}

int bsearch(int list[], int len, int tgt)
{
 cout << "Starting bsearch: len=" << len
 << " and target=" << tgt << endl;
 int start = 0, end = len;
 while(start != end) {
 cout << "New iter: start=" << start
 << " and end=" << end << endl;
 int mid = (start + end) / 2;
 cout << "\tChecking mid=" << mid << endl;
 cout << "\tdata=" << list[mid] << endl;
 if(tgt == list[mid]) {
 cout << "Found!" << endl;
 return mid;
 }
 else if(tgt > list[mid]) {
 cout << "\tLarger half" << endl;
 start = mid;
 }
 else {
 cout << "\tSmaller half" << endl;
 end = mid;
 }
 }
 return -1;
}

With novice print statements

With (quality) print statements!

1e.39

Which Debug Output is Most Helpful?

$./bsearch
Starting bsearch: len=9 and target=12
New iter: start=0 and end=9
 Checking mid=4
 data=9
 Larger half
New iter: start=4 and end=9
 Checking mid=6
 data=13
 Smaller half
New iter: start=4 and end=6
 Checking mid=5
 data=11
 Larger half
New iter: start=5 and end=6
 Checking mid=5
 data=11
 Larger half
New iter: start=5 and end=6
 Checking mid=5
 data=11
 Larger half
...

$./bsearch
mid 4
mid 6
mid 5
mid 5
mid 5
mid 5
mid 5
mid 5
...

With novice
print

statements With (quality) print statements!

1e.40

Fixed Code

int bsearch(int list[], int len, int tgt)
{
 cout << "Starting bsearch: len=" << len
 << " and target=" << tgt << endl;
 int start = 0, end = len;
 while(start != end) {
 cout << "New iter: start=" << start
 << " and end=" << end << endl;
 int mid = (start + end) / 2;
 cout << "Checking mid=" << mid << endl;
 cout << " data=" << list[mid] << endl;
 if(tgt == list[mid]) {
 cout << "Found!" << endl;
 return mid;
 }
 else if(tgt > list[mid]) {
 cout << "Larger half" << endl;

start = mid+1;
 }
 else {
 cout << "Smaller half" << endl;
 end = mid;
 }
 }
 return -1;
}

Fixed Code

1e.41

Meta-Idea: Binary Search for Debugging

int main()
{

 cout << "L50 x:" << x << endl;

}

$ g++ -g prog.cpp –o prog
$./prog
L50 x:42
<Segmentation fault>

int main()
{

}

$ g++ -g prog.cpp –o prog
$./prog
<Segmentation fault>

int main()
{

 cout << "L50 x:" << x << endl;

 cout << "L60 x:" << x << endl;

}

$ g++ -g prog.cpp –o prog
$./prog
L50 x:42
<Segmentation fault>

Think of debugging as performing a "binary search"
for the bug/error. If the program crashes and you
aren't sure where, or a variable has an unexpected
value, add print statements at the mid-point and
see if things are still good there. If not, the error is
in the first half of the code. Otherwise, the error is
in the second half of the code. Repeat the process
on that half.

Error!

OK

OK

Error!

1e.42

More Tips

1. Don't write the entire program all at once

2. Write a small portion, compile and test it

– Write the code to get the input values, add some couts to
print out what you got from the user, and make sure it is
what you expect

– Write a single loop and test it before doing nested loops

3. Once one part works, add another part and test it

4. Comment out later portions of the code and verify
earlier parts work and then add your later code
back in little-by-little to find where it stops/starts
working

1e.43

Alternative to Step 3

• Use a debugger tool

– A program that allows you to see inside and slow
down your program so you can understand what it
is doing (vs. what you expect it to do).

– More in lab!

	Slide 1: CS103 Unit 1e – Algorithms and Runtime; Compilation and Debugging
	Slide 2: Algorithms and Runtime
	Slide 3: Algorithms
	Slide 4: Algorithm Representation
	Slide 5: Pseudocode Primitives
	Slide 6: Algorithm Example 1
	Slide 7: Algorithm Time Complexity
	Slide 8: Calculating Runtime
	Slide 9: Applying Big-O Notation
	Slide 10: Algorithm Example 1
	Slide 11: Algorithm Example 2a
	Slide 12: Algorithm Example 2b
	Slide 13: Algorithm Example 2b
	Slide 14: Complexity of Search Algorithms
	Slide 15: Sorting
	Slide 16: Bubble Sort Algorithm
	Slide 17: Complexity of Sort Algorithms
	Slide 18: Importance of Time Complexity
	Slide 19: Compilation
	Slide 20: Using the Command Line
	Slide 21: Compilers
	Slide 22: Compilation & Execution Process
	Slide 23: Compiling with g++
	Slide 24: Dealing with Compile Errors
	Slide 25: An Example
	Slide 26: MultiFile Compilation
	Slide 27: Splitting over Multiple .cpp Files
	Slide 28: Splitting over Multiple .cpp Files
	Slide 29: Compiling Multiple .cpp Files
	Slide 30: Undefined References
	Slide 31: Header Files
	Slide 32: Header File Dos and Don'ts
	Slide 33: BASIC Debugging
	Slide 34: Bugs
	Slide 35: Step 1: Test Cases & Expected Outputs
	Slide 36: Step 2: Hand-Tracing
	Slide 37: Step 3: Print Statements / Narration
	Slide 38: Example of Print Statements
	Slide 39: Which Debug Output is Most Helpful?
	Slide 40: Fixed Code
	Slide 41: Meta-Idea: Binary Search for Debugging
	Slide 42: More Tips
	Slide 43: Alternative to Step 3

