
1d.1

CS103 Unit 1d – Arguments
Pass-by-Value and Pass-by-

Reference

1d.2

PASS-BY-VALUE, LOCAL VARIABLES,
AND SCOPE

1d.3

Motivating Question

• What will this code print?

void dec(int);

int main()
{
int y = 3;
dec(y);
cout << y << endl;
return 0;

}

void dec(int y)
{

y--;
}

1d.4

Argument Passing (Pass-by-Value)

• Passing an argument to a function makes a copy of
the argument
– In fancy CS-lingo, we call this pass-by-value

• Pass-by-value is like e-mailing an attached
document
– You still have the original on your PC

– The recipient has a copy which she can modify, but it will
not be reflected in your version

• Communication is essentially one-way
– Caller communicates arguments to callee, but these are

copies.

– Any processing the callee does is not visible to the caller

– The only communication back to the caller is via a return
value.

Arguments

Return

value

callee()

caller()

1d.5

Pass by Value (1)

• Fact: Function arguments/parameters act like
local variables to that function

– They are only in scope (only live) in the function {…}
(curly braces) and then get deallocated.

• When arguments are passed a copy of the actual
argument value (e.g. 3) is given to the function's
input argument

– So, the function is operating on a copy and that
copy will die when the function ends!

y

y

dec()

3

y

3

2

void dec(int);
int main()
{

int y = 3;
dec(y);
cout << y << endl;
return 0;

}
void dec(int y)
{

y--;
}

1d.6

Pass by Value (2)

• Wait! But they have the same name, 'y'
– What's in a name…Each function is a separate

entity and so two 'y' variables exist (one in main
and one in decrement it)

– The only way to communicate back to main is via
return

– Try to change the code appropriately

• Main Point: Each function is a completely
separate "sandbox" (i.e. is isolated from
other functions and their data) and copies
of data are passed and returned between
them

____ dec(int);
int main()
{

int y = 3;
____________ dec(y);
cout << y << endl;
return 0;

}
___ dec(int y)
{

y--;

}

void dec(int);
int main()
{

int y = 3;
dec(y);
cout << y << endl;
return 0;

}
void dec(int y)
{

y--;
}

1d.7

Formals and Actuals (1)
• Formal parameters, n1 and n2

– Placeholder names that will be used internally to the function
to refer to the values passed (Similar to how generic
placeholders/titles used in contracts like "CEO" or "professor"
that will be assigned or replaced real value)

• Actual parameters, x and y
– Actual values to be passed (i.e. the actual values to be

substituted for the placeholders ("Jeff Bezos", "Mark")

– A copy is made and given to function

#include <iostream>
using namespace std;

double avg(int n1, int n2)
{

double sum = n1 + n2;
return sum/2.0;

}

int main()

{

int x=6, y = 9; double z;

z = avg(x,y);

cout << "AVG is " << z << endl;

z = avg(x, 2);

cout << "AVG is " << z << endl;

return 0;

}

96

n2n1

avg()
return val

7.5Formals

Actuals

Each type is a "different" shape (int = triangle,

double = square, char = circle). Only a value of

that type can "fit" as a parameter..

x
y

copy copy

96

1d.8

Formals and Actuals (2)
• Formal parameters, n1 and n2

– Placeholder names used inside the function

• Actual parameters
– Actual values, 6 and 9 passed to n1 and n2, on the first call

– Actual values, x and 2 passed to n1 and n2, on the second
call

– A copy is made and given to function

#include <iostream>
using namespace std;

double avg(int n1, int n2)
{

double sum = n1 + n2;
return sum/2.0;

}

int main()

{

int x=6, y = 9; double z;

z = avg(x,y);

cout << "AVG is " << z << endl;

z = avg(x, 2);

cout << "AVG is " << z << endl;

return 0;

}

26

n2n1

avg()
return val

3.0
Formals

Actuals

Each type is a "different" shape (int = triangle, char = square,

double = circle). Only a value of that type can "fit" as a parameter.

x 26
copy copy

1d.9

Pass-by-Value & Pass-by-Reference

• What are the pros and cons of emailing a
LARGE document by:
– Attaching it to the email

– Sending a link (URL) to the document on
some cloud service (etc. Google Docs)

• Pass-by-value is like emailing an
attachment
– A copy is made and sent

• Pass-by-reference means emailing a link
to the original
– No copy is made and any modifications by

the other party are seen by the originator

1d.10

Arrays and Pass-by-Reference

• Single (scalar) variables
are passed-by-value in
C/C++
– Copies are passed

– Like email attachments

• Arrays are passed-by-
reference
– Links (addresses) are

passed

– Like a link to a shared doc

Argument

callee()

caller()

Array

Scalar

(single)

argument

Return

value

callee()

caller()

1d.11

Passing Arrays As Arguments

• Syntax:
– Step 1: In the prototype and

function definition:
• Put empty square brackets []

after the formal parameter name
if it is an array
(e.g. int data[]) ..OR..

• Put an * between the type and
formal parameter name (e.g. int*
data)

• We'll prefer int data[] for now
but int* data is JUST AS VALID
and we'll learn more about it
when we cover pointers)

– Step 2: When you call the
function, just provide the name
of the array as the actual
parameter

// Prototype
int init(int data[], int max_size);

int main()
{

int vals[100];
int len = init(vals, 100);
// some code to process the input
// in the vals array
for(int i=0; i < len; i++) {

cout << vals[i] << endl;
}
return 0;

}

int init(int data[], int max_size)
{

int i=0, num;
cin >> num;
while(i < max_size && num != -1) {

data[i] = num;
i++;
cin >> num;

}
return i;

}

1d.12

Pass-by-Value / Reference
#include <iostream>
#include <cmath>
using namespace std;

// Function prototypes
int initScalarInt();
void initArrayOfInts(int x[], int len);
void printVals(int x1, int x2[], int x2len);

int initScalarInt()
{

return 42;
}

// Set all array elements to 42
void initArrayOfInts(int x[], int len)
{

for(int i=0; i < len; i++){
x[i] = 42;

}
}

// Function definitions
int main()
{

int x1;
int x2[5];

// Print initial values
cout << "Before setting" << endl;
printVals(x1, x2, 5);

// Set values
x1 = initScalarInt();
initArrayOfInts(x2, 5);

// Print values after they should have been set
cout << "After setting" << endl;
printVals(x1, x2, 5);

return 0;
}

void printVals(int x1, int x2[], int x2len)
{

cout << "X1: " << x1 << endl;
cout << "X2: ";
for(int i=0; i < x2len; i++) {

cout << x2[i] << " ";
}
cout << endl;

}

1d.13

ARRAYS AS ARGUMENTS AND
ACCESSING ELEMENTS IN MEMORY

Passing arrays to other functions

1d.14

main()

But Why Are Arrays Pass-by-Reference?

• If we used pass-by-value, then we'd have
to make a copy of a potentially HUGE
amount of data (what if the array had a
million elements)

• To avoid copying vast amounts of data, we
pass a link

vals data

sum()

7420

[0]

? … ?

7516

[99]
7420

[0]

? … ?

7516

[99]

// Function that takes an array
int sum(int data[], int size);

int sum(int data[], int size)
{
int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

int main()
{
int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

return val

7420

7420

1d.15

So What Is Actually Passed?

• The "link" that is passed is just the starting
address of (pointer to) the array in memory
(e.g. 7420).

• Once the function has the start address
and the type, it will produce its own index
values and be able to access the array in
the caller's memory

vals

data

sum()

7420

[0]

? … ?

7516

[99]

// Function that takes an array
int sum(int data[], int size);

int sum(int data[], int size)
{
int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

int main()
{
int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

return val

7420

main()
7420

7420

To access an element in an array,

we need 3 pieces of info:

1. Start address of the array

2. Index/offset

3. Type of elements in the

array (really the size of that

type)

1d.16

Arrays And Pass-by-Reference

• Arrays are passed-by-reference

– Links (addresses) are passed
• These links are actually memory

addresses where the array starts.

• Using these addresses, any function
can go to those locations and modify
the data (array) from another
function

– Thus, changes to the array by a
function are visible upon return to
the caller

– In this example, nums and vals
refer to the same array

void init(int data[], int size);

int main()
{

int vals[10];
init(vals, 10);
cout << vals[2] << endl;

// prints -1
return 0;

}

void init(int nums[], int size)
{ // nums is really a link to vals

for(int i=0; i < size; i++){
nums[i] = -1;
// changing vals[i]

}
}

Index: [0] [1] [2] … [9]

vals: ? ? ? ? ?

Index: [0] [1] [2] … [9]

vals: -1 -1 -1 -1 -1

1d.17

Strange Question

• The first house on the on the block
of a street has address 7420.

• How many houses are on the block?

• Look at the memory to the right. An
array starts at address 7420. How
many elements are in that array?

• Having the start address doesn't
allow us to know how big the array
is.

• We must also track / pass the size!

This Photo by Unknown Author is licensed under CC BY-NC

a184beef 07818821

5621930c e400cc33

a184beef 07818821

5621930c e400cc33

...

7412

7420

7428

7436

...

Address Memory Data

array

https://ggwash.org/view/67904/why-dc-has-so-many-rowhouses-and-how-theyre-different-from-townhouses
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

1d.18

Arrays in C/C++ vs. Other Languages

• Notice that if sum() only has the start address it
would not know how big the array is

• Unlike Java or other languages where you can
call some function or access some property to
give the size of an array, C/C++ require you to
track the size yourself in a separate variable
and pass it as a secondary argument

vals

data

sum()

7420

[0]

? … ?

7516

[99]

// Function that takes an array
int sum(int data[], int size);

int sum(int data[], int size)
{
int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

int main()
{
int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

return val

7420

main()

100

100

size

1d.19

PASSING ARGUMENTS: A DEEPER
LOOK

Understanding how functions utilize the stack area of computer memory

1d.20

Memory Organization

• 32-bit address range (0x0 to 0xffffffff)
– Note 0x indicates a hexadecimal number

• Code usually sits at lower addresses

• Global variables/data somewhere after code

• Heap: Area of memory that can be allocated
and de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program
– More in a few lectures

• Stack (our focus): Memory for all information
related to each running instance of a function
– Arguments to the function

– Local variables

– Return link (where in the code to return)

Code
0x00000000

0xffffffff

Mapped I/O

-

Memory (RAM)

Layout of Program

-

Global

Data

-

Heap

-

Stack

-

0xc0000000

0x10000000

1d.21

Mapping of Info to Memory

Memory (RAM)

Layout of Program

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int timesCalled = 0; // global variable

int factorial(int n)
{

int f = 1;
for(int i = 1; i <= n; i++) {

f *= i;
}
timesCalled++;
return f;

}
int main() {

int n;
cin >> n;
int res = factorial(n);
cout << res << " " << timesCalled << endl;
return 0;

}

1d.22

Understanding the Stack and Pass-by-
Value

• Each program allocates an area of memory
known as the system stack where all data
related to the function is stored including:

– Local variables

– Arguments to the function

– Return link (where to return) to the calling
code

• Each time a function is called, the computer
allocates memory for that function on the
top of the stack and creates a link for where
to return

• When a function returns/ends, that memory
is deallocated (destroying all arguments and
local variables) and control is returned to the
function now on top

// Prototype
void dec(int);

int main()
{

int y = 3;
dec(y);
cout << y << endl;
return 0;

}

void dec(int y)
{

y--;
}

Stack Area of RAM

main
3 y0xbf8

00400120
Retu

rn

link

0xbfc

dec
3 y0xbf0

00400ca0
Retu

rn

link

0xbf4

2

1d.23

Understanding the Stack and Pass-by-
Value

• Each program allocates an area of memory
known as the system stack where all data
related to the function is stored including:

– Local variables

– Arguments to the function

– Return link (where to return) to the calling
code

• Each time a function is called, the computer
allocates memory for that function on the
top of the stack and creates a link for where
to return

• When a function returns/ends that memory
is deallocated (destroying all arguments and
local variables) and control is returned to the
function now on top

// Prototype
void dec(int);

int main()
{

int y = 3;
y = dec(y);
cout << y << endl;
return 0;

}

int dec(int y)
{

y--;
return y;

}

Stack Area of RAM

main
3 y0xbf8

00400120
Retu

rn

link

0xbfc

dec
3 y0xbf0

004000ca0
Retu

rn

link

0xbf4

2

2

2

1d.24

avg 2 n20xbe4

8.0
su

m
0xbe8

00400cb8
Retu

rn

link

0xbec

6 n10xbe0

cout 0xbe4

… …0xbe8

00400cb0
Retu

rn

link

0xbec

Another Example
• Each program allocates an area of memory known as

the system stack where all data related to the
function is stored including:

– Local variables

– Arguments to the function

– Return link (where to return) to the calling code

#include <iostream>
using namespace std;

double avg(int n1, int n2); // Prototype

int main()
{

int x=6, y = 9; double z;

z = avg(x,y);
cout << "AVG is " << z << endl;

z = avg(x, 2);
cout << "AVG is " << z << endl;
return 0;

}

double avg(int n1, int n2)
{

double sum = n1 + n2;
return sum/2.0;

}

Stack Area of RAM

6 x0xbf0

main 9 y0xbf4

-1.0598e-

54
z0xbf8

00400120
Retu

rn

link

0xbfc

avg 9 n20xbe4

15
su

m
0xbe8

00400ca0
Retu

rn

link

0xbec

6 n10xbe0

7.5

1d.25

Scope and Stack Example
• The scope of local variables and arguments are only

for the lifetime of the function in which they live

• One function cannot access the local variables of
another

#include <iostream>
using namespace std;

double avg(int n1, int n2); // Prototype
void printAv(double x); // Prototype

int main()
{

int x=6, y = 9; double z;

z = avg(x,y);

z = avg(x, 2);

return 0;
}

double avg(int n1, int n2)
{

double sum = (n1 + n2)/2.0;
printAv(sum);
return sum;

}

void printAv(double av)
{

cout << "Average is " << av << endl;
}

6 x0xbf0

main 9 y0xbf4

-1.0598e-

54
z0xbf8

00400120
Retu

rn

link

0xbfc

avg 9 n20xbe4

7.5
su

m
0xbe8

00400ca0
Retu

rn

link

0xbec

6 n10xbe0

7.5

print

Av

7.5 av0xbe8

00400d54
Retu

rn

link

0xbec

cout
… …0xbe8

00400e38
Retu

rn

link

0xbec

1d.26

A Quick Tangent: Array Element Addresses
• Consider a train with many copies of the same car

– The "0th" car starts at point A on the number line

– Each car is 5 meters long

• Write an arithmetic expression for where the i-th car is
located. (At what meter on the number line does it start?)

• Suppose an array of integers starts at memory address A,
write an expression for where the i-th integer starts?

• Suppose an array of doubles starts at memory address A,
write an expression for where the i-th double starts?

A

0th car 1st car 2nd car

A+5 A+10

Formula for address of i-th

element:

1d.27

Formula for Addressing Array
Elements

• Assume a 5-element int array

– int x[5] = {8,5,3,9,6};

• Fun Fact 3 (after Unit 0's Fact 1 & 2): Using the
name of an array by itself (e.g. x) w/o square
brackets, evaluates to the starting address in
memory of the array (i.e. address of 0th entry).

• When you access x[2], the CPU uses x (to know
the starting address) and adds the product of the
index, 2, times the size of the data type (i.e. int = 4
bytes)

– x[2] => int. @ address 7400 + 2*4 = 7408

– x[3] => int. @ address 7400 + 3*4 = 7412

– x[i] @ start address of array + i * (size of int)

• Recall: C/C++ does NOT perform bounds checking to
stop you from attempting to access an element
beyond the end of the array

– x[6] => int. @ address 7400 + 6*4 = 7424
(Garbage!!)

8 5

3 9

6 cdcdabab

a184beef feedface

7400

7408

7416

7424

Address Memory Data

x[1]x[0]

x[2]

x
x[3]

x[4]

To access an element in an array, we

need

3 pieces of info:

1. Start address of the array

2. Index/offset

3. Type of elements in the array

(really the size of that type)

Formula: start_addr + i*data_size
Fun Fact 3: If you use the name of an

array (e.g. x) w/o square brackets it will

evaluate to the starting address in

memory of the array (i.e. address of 0th

entry)

Fun Fact 3b: Fun Fact 3 usually appears

as one of the first few questions on the

midterm.

1d.28

Array Elements vs. Array Names

• In C/C++ using an array name
without any index evaluates to
the starting address of the
array

• Example:
– vals[0] yields data

– vals yields an address

int main()
{

int vals[5] = {7,4,9,2,3};

cout << vals[0] << endl;
// prints 7

cout << vals << endl;
// prints ___________

return 0;
}

Index: [0] [1] [2] [3] [4]

vals @
(0x7420)

7 4 9 2 3

1d.29

Recall: Passing Arrays

• The "link" that is passed is just the starting
address of (pointer to) the array in memory
(e.g. 7420).

• Once the function has the start address
and the type, it will produce its own index
values and be able to access the array in
the caller's memory

vals

data

sum()

7420

[0]

? … ?

7816

[99]

// Function that takes an array
int sum(int data[], int size);

int sum(int data[], int size)
{
int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

int main()
{
int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

return val

7420

main()
7420

7420

To access an element in an array,

we need 3 pieces of info:

1. Start address of the array

2. Index/offset

3. Type of elements in the

array (really the size of that

type)

1d.30

Stack View of Passing Arrays

• The function receives the starting address of the array which it
can use along with the type (e.g. int) and index to access the
appropriate values from main's stack area of memory.

void init(int data[], int size);
int sum(int data[], int size);
int main()
{

int vals[100], mysum = 0;

init(vals, 100);
mysum = sum(vals, 100);
cout << mysum << endl;

return 0;
}

void init(int data[], int size)
{

for(int i=0; i < size; i++){
data[i] = 5;

}
}

init

00480a94
Retu

rn

link

7412

100
siz

e
7408

7420
dat

a
7404

7400 0, 1, …,

99,100
i

?? ……

main ??

val

s[9

9]

7816

00400120
Retu

rn

link

7820

??

val

s[0

]
??

val

s[1

]

7424

0
mys

um
7416

7420

7420+4*i

5

5

5

5

1d.31

Stack View of Passing Arrays

• The function receives the starting address of the array which it
can use along with the type (e.g. int) and index to access the
appropriate values from main's stack area of memory.

void init(int data[], int size);
int sum(int data[], int size);

int main()
{

int vals[100], mysum = 0;

init(vals, 100);
mysum = sum(vals, 100);
cout << mysum << endl;

return 0;
}
int sum(int data[], int size)
{

int total = 0;
for(int i=0; i < size; i++){

total += data[i];
}
return total;

}

sum

00480a94
Retu

rn

link

7412

100
siz

e
7408

7420
dat

a
7404

0
tot

al
7400

0, 1, …,

99,100
i7396

500

5 ……

main 5

val

s[9

9]

7816

00400120
Retu

rn

link

7820

5

val

s[0

]
5

val

s[1

]

7424

0
mys

um
7416

7420

50

0

7420+4*i

1d.32

Why Empty Brackets

• Why don't we just supply the array size in the formal argument?
– Now we can only process arrays of size 100. We'd like our functions to be more

general and handle any size array

– C/C++ doesn't do bounds checking anyway, so what good would writing 100 be?

int sum(int data[100], int size);

int sum(int data[100], int size)
{
int total = 0;
for(int i=0; i < size; i++){
total += data[i];

}
return total;

}

int main()
{

int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

}

sum

00480a94
Retu

rn

link

7412

100
siz

e
7408

7420
dat

a
7404

0
tot

al
7400

0, 1, …,

99,100
i7396

500

5 ……

main 5

val

s[9

9]

7816

00400120
Retu

rn

link

7820

5

val

s[0

]
5

val

s[1

]

7424

??
mys

um
7416

7420

500

1d.33

(Lack of) Array Bounds Checking

• C++ does NOT bounds check the index used to access an element
– It will simply treat all of memory as part of the array (i.e. larger positive indices go

past the end of the array while negative offsets are before the array start)

– Thus, allowing you to read and write data you shouldn't (including variables from
your own function or another function since local variables live on the stack)

– This issue is a common exploit by hackers (more in future courses like CS 356)

int f1()
{

int dat[4], x=0;

for(int i=0; i <= 4; i++){
cin >> dat[i]; // 9, 4, 3, 7, 1000

}
// using i=4 overwrites 'x'
cout << x << endl;

// 1000 would print, not 0.
cout << dat[x] << endl;

// likely segmentation fault
return 0;

}

3
dat

[2]
7428

f1 7
dat

[3]
7432

0 x7436

00400120
Retu

rn

link

7440

1000

9
dat

[0]
7420

4
dat

[1]
7424

0, 1, 2, 3, 4 i7416

prev
00c80a94

Retu

rn

link

7448

2 var7444

dat[10

00]

1d.34

Array Summary

• Arrays must be declared with a FIXED size (cannot use a variable
for its length)
– GOOD: int data[50];

– BAD: int data[n];

• After declaring an array, C/C++ only "remembers" the starting
address of the array and the type of data it holds (to know the
data size)
– Which is all it needs to know to access any element using the formula:

start_addr + i*data_size

• C/C++ do NO bounds checking
– Will simply apply the formula above to WHATEVER index you provide or

calculate

– Most common source of a program crash (and also security vulnerabilities).
If your program crashes in CS 103, suspect a bad array access

1d.35

LOOKUP TABLES
Using arrays as a lookup table

1d.36

Motivation and Approaches

• Problem Statement: Given an input,
x, convert it to an output using some
function, f(x)

• Possible approaches
– Use an arithmetic relationship, when the

relationship can be easily generalized

– Break it into cases with if statements
when there are a reasonable number of
cases

• What if there is little pattern or many
cases?

• Consider use of an array as a
"look-up table"

f(•)x
f(

x)

x: 0 1 2 3 4

f(x): 1 3 5 7 9

x: 0 1 2 3 4 5

f(x): 1 1 1 2 2 2

f(x) = ______

f(x) = __, if _______

f(x) = __, otherwise

x: 0 1 2 3 4 5

f(x): 4 1 0 2 5 3

f(x) = _____

1d.37

Arrays as Look-Up Tables

• Look-up Table Idea: Store pre-computed results in an array and
then "look-up" the desired result using the input as the array index

• Can extend this to process many inputs (an array of inputs)
– Suppose an instructor with 8 students gives a quiz worth 10 points and we

use the customary (>90% = A, 80% = B, 70% = C, 60% = D, <60% = F) and we
want to map the points to the letter grade. How would you do it?

int main()
{

int myf[] = {4, 1, 0, 2, 5, 3};
int x;
cin >> x;
cout << myf[x] << endl;
return 0;

}

int main() {
int scores[8] = {9,7,10,9,8,4,6,8};
char grades[11] =

{'F','F','F','F','F','F','D','C','B','A','A'};
for(int i=0; i < 8; i++){
// output the letter grade for each score
cout << "Score: " << scores[i] << " => "

<< "Grade: " << ____________________
<< endl;

}
return 0;

}

x: 0 1 2 3 4 5

f(x): 4 1 0 2 5 3

Problem from Previous Slide Grade Mapping Problem

1d.38

C-STRINGS, COUT, AND CIN

1d.39

Character Arrays and Strings (1)

• Recall that in C/C++ string constants (the
text in between " ") are just character
arrays

– Each character consumes 1 element in
the array

– Ends with the null character (e.g. 0
decimal or '\0' ASCII)

• This approach of using an array of
char's to store a string is referred to
as a C-String because there was no
string type in C (i.e. before C++)

#include <string>
using namespace std;
int main()
{
char str1[3] = {'C', 'S', '\0'};
// For char arrays easier to use ""
char str2[7] = "CS 103"
/* Initializes the array to "CS 103"*/

cout << str1 << endl; // prints "CS"
cout << str2 << endl; // prints "CS 103"

str2[5] = '4';
cout << str2 << endl; // prints "CS 104"

cin >> str2; // get a new string from
// the user (suppose user
// types "hello"

cout << str2;
}

Computer Memory

Addr:
Index:

520
[0]

521
[1]

522
[2]

523
[3]

524
[4]

525
[5]

526
[6]

str2: 'C' 'S' ' ' '1' '0' '3' '\0'

CS
CS 103
CS 104
hello

Program Output:

1d.40

Character Arrays and Loops
• How many things can a computer do at

a time?

• To printout a string/character array,
we'd have to print one character at a
time!

• But C/C++ treats character arrays
specially. cout has a loop inside its
code to print strings/character arrays.

• Though not shown, cin also has a loop
inside to input a string.

• We say cout and cin have a special
relationship with character arrays.

#include <string>
using namespace std;
int main()
{
char str1[7] = "CS 103"
/* Initializes the array to "CS 102"*/

// Usually in C/C++ we must use a loop to do
// many operations
for(int i=0; str[i] != '\0'; i++) {

cout << str[i];
}
cout << endl;

// but cout has its own loop so you don't
// have to write the loop above but just
// what you see below.
cout << str1 << endl; // prints "CS 102"

}

Computer Memory

Addr:
Index:

520
[0]

521
[1]

522
[2]

523
[3]

524
[4]

525
[5]

526
[6]

str1: 'C' 'S' ' ' '1' '0' '3' '\0'

CS 103
CS 103

Program Output:

1d.41

cout's Special Relationship with Character
Arrays

• To print out all elements of any array
type OTHER than a character array (i.e.
int, double, bool, etc.) you must
write your OWN loop (i.e. because
computers can only do 1 thing at a
time)

• But for character arrays, you can just
give cout the name of the array and it
will use its own INTERNAL loop to print
out all characters for you
– So, internally it is actually looping over the

characters so you don't have to

– It just assumes when you give it a character
array that you WANT it to print out all the
characters in the array

• Thus, we say cout treats character
arrays specially

int main()
{

int data[5] = {9, 7, 8, 9, 5};
char str1[] = "Many chars";
// right way to print int array contents
for(int i=0; i < 5; i++){

cout << data[i] << " ";
}
cout << endl;

// doesn't work for an int, double
// or any other type of array
cout << data << endl;

// cout treats char. arrays specially
cout << str1 << endl;

}

9 7 8 9 5
0x7fffce40
Many chars

Program Output:

Index: [0] [1] [2] [3] [4]

data: 9 7 9 9 5

Index: [0] [1] … [9] [10]

str1: 'M' 'a' … s \0

1d.42

cin's Special Relationship with Character
Arrays

• To get input for all elements of an
array type OTHER than character
arrays (i.e. int, double, etc.) you
must write your OWN loop

• But for character arrays, you can just
give cin the name of the array and
it will use its own INTERNAL loop to
receive all characters the user types
and store them sequentially in the
array
– So, internally it is actually looping over

the characters so you don't have to

– It just assumes when you give it a
character array that you WANT it to get a
full string (stopping at the next space)

• cin treats character arrays specially

int main()
{

int data[5]; //5 garbage values to start
char str1[8];//8 garbage values to start
int sum = 0;
// doesn't work for an int, double
// or any other type of array
cin >> data; // won't even compile

// right way to get int array contents
for(int i=0; i < 5; i++){

cin >> data[i];
}

// cin treats char. arrays specially
cin >> str1;

}
520

[0]

?

521

[1]

? ? ?

522

[2]
523

[3]

0str1:

CS103user types:

528

sum

?

524

[4]

?

525

[5]

?

526

[6]

?

527

[7]

520

[0]

C

521

[1]

S 1 0

522

[2]
523

[3]

0str1:

528

sum

3

524

[4]

\0

525

[5]

?

526

[6]

?

527

[7]

1d.43

A Problem with cin and Character Arrays

• What if the user types in TOO much
(more characters than our array has
room to store)?

• cin will not stop! It will keep
storing the characters the user
types, overwriting whatever data
and variables came after the array

• Warning: cin does not CHECK that
the string typed by the user will fit in
the array; instead it simply
overwrites memory leading to
undefined (bad) behavior!

• C++ strings fix this issue, allocating
more space based on what is typed.

int main()
{

char str1[4];
int sum = 0;
// What if user types in "CS102"
cin >> str1;

cout << sum << endl;
// won't see 0 because sum was modified
// when cin received the string that was
// too long!

string s2;
cin >> s2;
// works regardless of user input length

}

520

[0]'

C

'

521

[1]'

S

'

'1

'

'0

'

'3

'

'\

0'

522

[2]
523

[3]

524

sum

…

520

[0]

?

521

[1]

? ? ?

522

[2]
523

[3]

0str1:

str1:

CS103user types:

524

sum

1d.44

Exercises

• Cipher: Using an array as a Look-Up Table
– Let’s create a cipher code to encrypt text

– abcdefghijklmnopqrstuvwxyz =>

ghijklmaefnzyqbcdrstuopvwx

– char orig_string[] = “helloworld”;

– char new_string[11];

– After encryption:

• new_string = "akzzbpbrzj"

– Define another array

• char cipher[27] = "ghijklmaefnzyqbcdrstuopvwx";

• How could we use the original character to index (“look-up” a value in)
the cipher array

1d.45

Input Buffer Overflow
[Only if Time]

• Depending on user input, this program will likely
crash.

#include <iostream>
#include <cctype>
using namespace std;
int main()
{

char str[8];
const int size = 8
int loc = 0;

// User types "abcdefgh0123456"
cin >> str;

// size may now be garbage (not 8)
for(int i=0; i < size; i++){
if(isupper(str[i]))

{ loc = i; break; }
}
// You'll be lucky to even get here
cout << loc << endl;
return 0;

}

ab ab ab ab ab ab ab ab

00 00 00 08 00 00 00 00

00 00 40 00 01 8a ec 24

7300

7308

Address Stack Data

str [0] [1] [2]

Find location of first capital letter in text

[3] [4] [5] [6] [7]

locsize

return link

main

61 62 63 64 65 66 67 68

30 31 32 33 34 35 36 00

00 00 40 00 01 8a ec 24

7300

7308

Address Stack Data

str [0] [1] [2] [3] [4] [5] [6] [7]

locsize

return link

main

Stack before execution of cin >> str.

Stack after execution of cin >> str.

$./prog1
abcdefgh0123456

1d.46

C-STRINGS (CHARACTER ARRAYS)
NULL Terminated character arrays

1d.47

C-Strings

• In C:
– strings were not a first-class type

(i.e. no string type)

– strings were simply character
arrays (char []) terminated by
the null character
(0 dec. = '\0' ASCII)

– These were known as C-Strings

• No operations/operators other
than typical array operations are
provided
– No comparison (== or !=)

– No assignment/copy (=)

– No append/concatenate (+)

int main()
{
char str1[] = "CS103 is ";
char str2[] = "fun";
char str3[15];

cin >> str3; // user enters "CS103"

// What is this actually comparing?
if(str3 == str2)
{ cout << "Match" << endl; }

str3 = str1;
str3 += str2;

cout << str3 << endl;
return 0;

}

'C' 'S' '1' '0' '3'str1 '\0'

800

' ' 'i' 's' ' '

809

1d.48

Errors
int main()
{
char str1[] = "CS103 is ";
char str2[] = "fun";
char str3[15];

cin >> str3; // user enters "CS103"

// What is this actually comparing?
if(str3 == str2)
{ cout << "Match" << endl; }

// Intuitively this makes sense but
// will not compile in C/C++. Using your
// knowledge of types and other info,
// what is this actually attempting to do.
str3 = str1;
str3 += str2;

cout << str3 << endl;
return 0;

}

main.cpp:15:13: warning: comparison between two arrays is deprecated;
if(str3 == str2) { cout << "Match" << endl; }
~~~~ ^ ~~~~ main.cpp:15:13: warning: array comparison always evaluates to false 

main.cpp:20:10: error: array type 'char[15]' is not assignable 
str3 = str2;
~~~~ ^ 
main.cpp:21:10: error: invalid operands to binary expression ('char[15]' and
'char[7]')
str3 += str2;
~~~~ ^ ~~~~

'C' 'S' '1' '0' '3'str1 '\0'

800

820

str3

840

h a r d \0

str2

' ' 'i' 's' ' '

'f' 'u' 'n' '\0'



1d.49

C (not C++) String Function/Library 
(#include <cstring>)

• A library of functions was provided to perform operations on 
these character arrays representing strings ( <cstring> in C++, 
<string.h> in C)

– int strlen(char dest[]);

• Returns the length of the string (not counting the null character)

– int strcmp(char str1[], char str2[]);

• Return 0 if equal, >0 if str1 is alphanumerically larger than str2, <0 if str1 is less than str2

– char* strcpy(char dest[], char src[]);

• Copies the whole C-string from src to the dest array (overwriting what's in dest)
• Ignore the return type for now (think of it as a void function)

– char* strcat(char dest[], char src[]);

• Concatenates src to the end of dest
• Ignore the return type for now (think of it as a void function)

https://cplusplus.com/reference/cstring/


1d.50

Use of the C-String Library
#include <iostream>
#include <cstring>
using namespace std;

int main() 
{
char str1[] = "CS103 is ";
char str2[] = "fun";
char str3[15];

cin >> str3;  // user enters "cool"

// What is this actually comparing?
if(str3 == str1)
if(0 == strcmp(str1,str3))
{ cout << "Match" << endl; }    

// Intuitively this makes sense but 
// will not compile in C/C++. Using your 
// knowledge of types and other info, 
// what is this actually attempting to do.
str3 = str1;   
strcpy(str3, str1); 

str3 += str2;    
strcat(str3, str2);

cout << str3 << endl;
return 0;

}

str3

(char *)

840

C S 1 0 3 s \0i

'C' 'S' '1' '0' '3'
str1

(char *)
'\0'

800

820

str3

(char *)

840

c o o l \0

str2

(char *)

' ' 'i' 's' ' '

'f' 'u' 'n' '\0'

str3

(char *)

840

C S 1 0 \03 s fi u n

844

844



1d.51

Sample Implementations

• Exercises

– strlen

– strcpy



1d.52

SOLUTIONS AND MORE FUNCTION 
EXAMPLES

(Self study and ask questions)



1d.53

Pass by Value Solution

• Wait!  But they have the same name, 'y'
– What's in a name…Each function is a separate 

entity and so two 'y' variables exist (one in main 
and one in decrement it)

– The only way to communicate back to main is via 
return

– Try to change the code appropriately

• Main Point:  Each function is a completely 
separate "sandbox" (i.e. is isolated from 
other functions and their data) and copies 
of data are passed and returned between 
them

int dec(int);
int main()
{

int y = 3;
y = dec(y);
cout << y << endl;
return 0;

}
int dec(int y)
{

y--;
return y;

}

void dec(int);
int main()
{

int y = 3;
dec(y);
cout << y << endl;
return 0;

}
void dec(int y)
{

y--;
}



1d.54

Exercise Solution
• Consider a train with many copies of the same car

– The "0th" car starts at point A on the number line

– Each car is 5 meters long

• Write an expression of where the i-th car is located (at 
what meter does it start?) 

• Suppose a set of integers start at memory address A, 
write an expression for where the i-th integer starts?

• Suppose a set of doubles start at memory address A, 
write an expression for where the i-th double starts?

A

0th car 1st car 2nd car

A + 5*i

A + 4*i

A + 8*i

A+5 A+10



1d.55

Parameter Passing (1)
• Formal parameters, a and b

– Type of data the parameter expects

– Names that will be used internal to the function to refer to 
the values passed (e.g. generic placeholders/titles used in 
contracts like "CEO" or "professor" that will be assigned or 
replaced real value)

• Actual parameters 
– Actual values ("Jeff Bezos", "Mark") input to the function 

by the caller

– A copy is made and given to function

#include <iostream>
using namespace std;

int max(int a, int b)
{ 

if(a > b)
return a;

else
return b;

}

int main()

{  

int x=6, z;

z = max(x,4);

cout << "AVG is " << z << endl;

z = avg(x, 2);

cout << "AVG is " << z << endl

return 0;

}

46

ba

max()
return val

6Formals

Actuals

Each type is a "different" shape (int = triangle, double = square, 

char = circle).  Only a value of that type can "fit" as a parameter.

x

Formals

Actuals

Actuals



1d.56

Memory (RAM)

…

main: 

(a, x=8,y=3)

Scope Example

• Globals live as long as
the program is running

• Variables declared in a 
block { … } live as long as
the block has not 
completed
– { … } of a function

– { … } of a loop, if statement, 
etc.

• When variables share the 
same name, the closest 
declaration will be used by 
default

…

Code

Globals

x = 5

0

…

Heap

fffffffc

Address#include <iostream>
using namespace std;

int x = 5;

int main()
{

int a, x = 8, y = 3;
cout << "x = " << x << endl;
for(int i=0; i < 10; i++){
int j = 1;
j = 2*i + 1;
a += j;

}
a = doit(y);
cout << "a=" << a ;
cout << "y=" << y << endl;
cout << "glob. X" << ::x << endl;

}

int doit(int x)
{

x--;
return x;

}

…

main: 

( (  i, j  ) )

(a=, x=8,y=3)

…

main: 

(a=121, x=8,y=3)

doit: 

(x= 3=>2)

…

main: 

(a=2, x=8,y=3)


	Slide 1: CS103 Unit 1d – Arguments Pass-by-Value and Pass-by-Reference
	Slide 2: PASS-BY-VALUE, LOCAL VARIABLES, AND SCOPE
	Slide 3: Motivating Question
	Slide 4: Argument Passing (Pass-by-Value)
	Slide 5: Pass by Value (1)
	Slide 6: Pass by Value (2)
	Slide 7: Formals and Actuals (1)
	Slide 8: Formals and Actuals (2)
	Slide 9: Pass-by-Value & Pass-by-Reference
	Slide 10: Arrays and Pass-by-Reference
	Slide 11: Passing Arrays As Arguments
	Slide 12: Pass-by-Value / Reference
	Slide 13: ARRAYS AS ARGUMENTS AND ACCESSING ELEMENTS IN MEMORY
	Slide 14: But Why Are Arrays Pass-by-Reference?
	Slide 15: So What Is Actually Passed?
	Slide 16: Arrays And Pass-by-Reference
	Slide 17: Strange Question
	Slide 18: Arrays in C/C++ vs. Other Languages
	Slide 19: PASSING ARGUMENTS: A DEEPER LOOK
	Slide 20: Memory Organization
	Slide 21: Mapping of Info to Memory
	Slide 22: Understanding the Stack and Pass-by-Value
	Slide 23: Understanding the Stack and Pass-by-Value
	Slide 24: Another Example
	Slide 25: Scope and Stack Example
	Slide 26: A Quick Tangent: Array Element Addresses
	Slide 27: Formula for Addressing Array Elements
	Slide 28: Array Elements vs. Array Names
	Slide 29: Recall: Passing Arrays
	Slide 30: Stack View of Passing Arrays
	Slide 31: Stack View of Passing Arrays
	Slide 32: Why Empty Brackets
	Slide 33: (Lack of) Array Bounds Checking
	Slide 34: Array Summary
	Slide 35: LOOKUP TABLES
	Slide 36: Motivation and Approaches
	Slide 37: Arrays as Look-Up Tables
	Slide 38: C-STRINGS, COUT, AND CIN
	Slide 39: Character Arrays and Strings (1)
	Slide 40: Character Arrays and Loops
	Slide 41: cout's Special Relationship with Character Arrays
	Slide 42: cin's Special Relationship with Character Arrays
	Slide 43: A Problem with cin and Character Arrays
	Slide 44: Exercises
	Slide 45: Input Buffer Overflow  [Only if Time]
	Slide 46: C-STRINGS (CHARACTER ARRAYS)
	Slide 47: C-Strings
	Slide 48: Errors
	Slide 49: C (not C++) String Function/Library (#include <cstring>)
	Slide 50: Use of the C-String Library
	Slide 51: Sample Implementations
	Slide 52: SOLUTIONS AND MORE FUNCTION EXAMPLES
	Slide 53: Pass by Value Solution
	Slide 54: Exercise Solution
	Slide 55: Parameter Passing (1)
	Slide 56: Scope Example

