CS103 Unit 1d — Arguments
Pass-by-Value and Pass-by-
Reference

PASS-BY-VALUE, LOCAL VARIABLES,
AND SCOPE

Motivating Question

* What will this code print?

void dec(int);

int main()

{
int y = 3;
dec(y);
cout << y << endl;

return 9;

}

void dec(int y)
{

}

y--;

e USCViterbi‘

School of Engine

Argument Passing (Pass-by-Value)

caller()

e Passing an argument to a function makes a copy of
the argument
— In fancy CS-lingo, we call this pass-by-value /

* Pass-by-value is like e-mailing an attached "

document @Arguments
— You still have the original on your PC ’
— The recipient has a copy which she can modify, but it will
not be reflected in your version \

 Communication is essentially one-way

— Caller communicates arguments to callee, but these are
copies.

— Any processing the callee does is not visible to the caller

— The only communication back to the caller is via a return
value.

e USCViterbi

Pass by Value (1)

e Fact: Function arguments/parameters act like
local variables to that function

— They are only in scope (only live) in the function {...}
(curly braces) and then get deallocated.

void dec(int);

* When arguments are passed a copy of the actual int main()
argument value (e.g. 3) is given to the function's { int y = 3;
input argument dec(y);
— So, the function is operating on a copy and that rf‘;gﬁp;}{’ << endl;
copy will die when the function ends! } ’
void dec(int y)
{
Y=-5

— }

e USCViterbi

Pass by Value (2)

void dec(int);
int main()

. 1,1 {
 Wait! But they have the same name, 'y int y = 3;
L .. dec(y);
— What's in a name...Each function is a separate cout << y << endl;
entity and so two 'y' variables exist (one in main return ©;
}

and one in decrement it) void dec(int y)

— The only way to communicate back to main is via | {

return } e
— Try to change the code appropriately
* Main Point: Each function is a completely 35
separate "sandbox" (i.e. is isolated from (0
other functions and their data) and copies int y = 3; decty)
y)s
of data are passed and returned between cout <<y << endl;
them return 0;
}
____dec(int y)
{
y--;

e USCViterbi

School of Engineering

Formals and Actuals (1)

Formal parameters, n1 and n2

— Placeholder names that will be used internally to the function

to refer to the values passed (Similar to how generic

placeholders/titles used in contracts like "CEQ" or "professor"

that will be assigned or replaced real value)

Actual parameters, x and y

— Actual values to be passed (i.e. the actual values to be
substituted for the placeholders ("Jeff Bezos", "Mark")

— A copyis made and given to function

-

Actuals — 6

“g/ﬂy

Formals n1

AA s

avg()

return val

##include <iostream>
using namespace std;

cout << "AVG is " << z << endl;
z = avg(x, 2);
cout << "AVG is " << z << endl;

return 0;

Each type is a "different" shape (int = triangle,
double = square, char = circle). Only a value of

that type can "fit" as a parameter..

USC Viterbi =
Formals and Actuals (2)

* Formal parameters, n1 and n2 Average
— Placeholder names used inside the function nl:| ,
* ACtuaI parameters #include <iostream> 2 In
using namespace std;

— Actual values, 6 and 9 passed to n1 and n2, on the first call
nl, in

/d;@ avg(in
double
A copy is made and given to function)
}
int main()
2 :
Z,

Actuals — ©
Formals — n1A AnZ 3.0 cout << "AVG is < z << endl;

‘ _ cout << "AVG is " << z << endl;

av return 0;
90) return val

n2)

— Actual values, x and 2 passed to n1 and n2, on the second
call

Each type is a "different" shape (int = triangle, char = square,
double = circle). Only a value of that type can "fit" as a parameter.

e USCV1terb1.

School of Engine

Pass-by-Value & Pass-by- Reference

 What are the pros and cons of emailing a

LARGE document by:

— Attaching it to the email

— Sending a link (URL) to the document on
some cloud service (etc. Google Docs)

* Pass-by-value is like emailing an
attachment
— A copy is made and sent

* Pass-by-reference means emailing a link
to the original

— No copy is made and any modifications by
the other party are seen by the originator

USC Vlterbl.

School of Engine

Arrays and Pass-by-Reference

caller() caller()

e Single (scalar) variables
are passed-by-value in
C/C++ /

— Copies are passed

Scalar

. 4 I
— Like email attachments arzlﬂrigt

%l
* Arrays are passed-by- \ o 14

reference

— Links (addresses) are
passed

— Like a link to a shared doc callee()

e USCViterbi

School of Engineering

Passing Arrays As Arguments

Syntax:

— Step 1: In the prototype and
function definition:

e Put empty square brackets [|
after the formal parameter name
ifitis an array
(e.g. int data[]) ..OR..

e Put an * between the type and
formal parameter name (e.g. int*
data)

 We'll prefer int data[] for now
but int* data is JUST AS VALID
and we'll learn more about it
when we cover pointers)

— Step 2: When you call the
function, just provide the name
of the array as the actual
parameter

// Prototype
int init(int data[], int max_size);

int main()
{
int vals[100];
int len = init(vals, 100);
// some code to process the input
// in the vals array
for(int i=0; i < len; i++) {
cout << vals[i] << endl;

}

return 9;

}

int init(int data[], int max_size)
{
int i=0, num;
cin >> num;
while(i < max_size && num != -1) {
data[i] = num;
i++;
cin >> num;

}

return i;

}

- _________0_000__] USCViterbi
Pass-by- Value / Reference

School of Engineering

(’#1nclude <iostream>
#tinclude <cmath>
using namespace std;

// Function prototypes

int initScalarInt();

void initArrayOfInts(int x[], int len);

void printVals(int x1, int x2[], int x2len);

int initScalarInt()
{

}

return 42;

// Set all array elements to 42
void initArrayOfInts(int x[], int len)
{
for(int i=0; i < len; i++){
x[1i] = 42;
}

{

}

{

(,;/ Function definitions <‘\

int main()

void printVals(int x1, int x2[], int x2len)

int x1;
int x2[5];

// Print initial values
cout << "Before setting"
printVals(x1, x2, 5);

<< endl;

// Set values
x1 = initScalarInt();
initArrayOfInts(x2, 5);

// Print values after they should have been set
cout << "After setting" << endl;
printVals(x1l, x2, 5);

return 9;

cout << "X1: " << x1 << endl;
cout << "X2: ";
for(int i=0; i < x2len; i++) {

cout << x2[i] <« ;

}

cout << endl;

Passing arrays to other functions

ARRAYS AS ARGUMENTS AND
ACCESSING ELEMENTS IN MEMORY

e USCViterbi

School of Engineering

But Why Are Arrays Pass-by-Reference?

// Function that

e |f we used pass-by-value, then we'd have int sun(int d~+¥"

to make a copy of a potentially HUGE e G e, i S
amount of data (what if the array had a {

ray
], int size)\

int total = 0;

million elements) for(int i=0; i < size; i++){
] . total += data[i];
* To avoid copying vast amounts of data, we }
. return total;
pass a link)
int main()
{
; int vals[1e0];
mam() /* some code to 742042¥ize vals */

int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

A

m
sum(} return val

e USCViterbi

School of Engineering

So What Is Actually Passed?

// Function that
. int sum(int dr*
 The "link" that is passed is just the starting 7420

int sum(int data[], int size)

address of (pointer to) the array in memory {

ray
], int size)\

(e'g' 7420) ;gﬁ(zﬁiaL;;@i < size; i++){
* Once the function has the start address } total += data[i];

and the type, it will produce its own index return total;

values and be able to access the array in)

the caller's memory ?”t e

int vals[100];
/* some code to 7420+2Y1ze vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

main()

7420 7516
[0] [99]

(2 e [7]

vals

O access an element in an array,
we need 3 pieces of info:

1. Start address of the array
A 2. Index/offset
sum() 3. Type of elements in the
return val array (really the size of that

N Y

e USCV1terb1‘

School of Engine

Arrays And Pass-by-Reference

* Arrays are passed-by-reference

void init(int data[], int size);

— Links (addresses) are passed B
. int main() vals: | 1|21
* These links are actually memory { S T I e el Bl
addresses where the array starts. int vals[1@];
. . init(vals, 10);
» Using these addresses, any function cout << vals[2] << endl;
can go to those locations and modify // prints -1
return 0;
the data (array) from another }
function
void init(int nums[], int size)
— Thus, changes to the array by a { // nums is really a link to vals
. . . for(int i=0; i < size; i++){
function are visible upon return to nums[i] = -1;
the Caller } // changing vals[i]
— In this example, nums and vals }

refer to the same array

e USCXFE?EI‘bl
Strange Question

e The first house on the on the block
of a street has address 7420.

* How many houses are on the block?

* Look at the memory to the right. An
array starts at address 7420. How

many elements are in that array? QU it by tr e s o

* Having the start address doesn't Address Memory Data
allow us to know how big the array 7412 | al84beef 07818821
iS. Carray) 7420 | 5621930c e400cc33

7428 | al84beef 07818821

e \We must also traCk/ pass the size! 7436 | 5621930c e400cc33

https://ggwash.org/view/67904/why-dc-has-so-many-rowhouses-and-how-theyre-different-from-townhouses
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

e USCViterbi

School of Engineering

Arrays in C/C++ vs. Other Languages

.) . // Function that takes an array
* Notice that if sum() only has the start address it int sum(int data[], int size);

would not know how big the array is int sum(int data[], int size)

* Unlike Java or other languages where you can 1 ¢ total - o
. in otal = 0;
call some function or access some property to for(int 1=0; i < size; i++){
give the size of an array, C/C++ require you to } total += data[i];
track the size yourself in a separate variable AT SRS
and pass it as a secondary argument }
int main()
{
. int vals[1e0];
mam() /* some code to initialize vals */
int mysum = sum(vals, 100);
00 cout << mysum << endl;
7&50 1;;? \\\\\\\\\\\\) // prints sum of all numbers
00 return 0;
(2]..[?] :)
vals

A

m
sum(} return val

Understanding how functions utilize the stack area of computer memory

PASSING ARGUMENTS: A DEEPER
LOOK

Memory Organization

e 32-bit address range (0x0 to Oxffffffff)

— Note Ox indicates a hexadecimal number

* Code usually sits at lower addresses
* Global variables/data somewhere after code

* Heap: Area of memory that can be allocated
and de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

— More in a few lectures

e Stack (our focus): Memory for all information

related to each running instance of a function
— Arguments to the function
— Local variables
— Return link (where in the code to return)

Memory (RAM)
Layout of Program

OxXFFFFFFFF

Mapped 1/0O

0xC0000000
Stack
llli!!%lll
|

Heap

Global
Data 0x10000000

0x00000000

e USCViterbi

Mapping of Info to Memory

School of Engineering

/iéinclude <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int timesCalled = 6;‘\// global variable

N
int factorial(int n) \\
{ N

return 0;

int f=1; ™ = o ~
. . . L] — |
for(int i = 1; i <= n; 1+-IU' = _—— ©xCc00e0Bee
T Tl R A e e K & Stack
-
s PR
timesCalled++; —_ -
return f; - DS
- - ~
} - -
.) - - N\
int main() { =~ -
. - -
int n; =~ -
cin >> n; - - 0x10000000
int res™= factorial(n);
cout << res << " " << timesCalled << endl;

N

Memory (RAM)
Layout of Program

- OXFFFFFFFF

Mapped I/O

Ox0e0ce0e0e

. USC ViterbiC22
Understanding the Stack and Pass-by="3<

Value

Each program allocates an area of memory
known as the system stack where all data
related to the function is stored including: z”t main()

— Local variables int y = 3;

ec(y);
cout\¢< y << endl;

// Prototype
void dec(int);

— Arguments to the function
— Return link (where to return) to the calling
code
Each time a function is called, the computer
allocates memory for that function on the
top of the stack and creates a link for where
to return

When a function returns/ends, that memory Stack Area of RAM
is deallocated (destroying all arguments and 2

, , 0xbf0 y
local variables) and control is returned to the dec s Retu
function now on top Oxb 00400ca0 | ™
0xbf8 3 y
main Retu
21 oxbfc | 00400120 I_ﬁfk

. USC ViterbiCe2
Understanding the Stack and Pass-by="3<

Value

Each program allocates an area of memory
known as the system stack where all data
related to the function is stored including:

// Prototype
void dec(int);

int main()

{
— Local variables int y = 3;
— Arguments to the function ZO:tde(§)5< endl;
— Return link (where to return) to the calling < return 0;
code \}
Each time a function is called, the computer int dec(int y)
allocates memory for that function on the ¢ g
top of the stack and creates a link for where return y;
to return ’
When a function returns/ends that memory
is deallocated (destroying all arguments and Stack Area of RAM
local variables) and control is returned to the 5
. o~
function now on top dec | 0xPpf0 %)
tu
Oxbf(004000can _ren [2
2 |“M
0xbfe\] y
main Retu
Oxbfc | 00400120 I_fnk

Each program allocates an area of memory known as
the system stack where all data related to the
function is stored including:

— Local variables

— Arguments to the function
— Return link (where to return) to the calling code

Another Example

Stack Area of RAM

; 0xbeO 6 n1
avg Oxbe4 9 n2
Oxbe8 15 su
Rk,
Oxbec | 00400ca0 m
0xbf0 6 X
main Obe4 Q y
oxbfg | 10 75 .
24 Retu
Oxbfc | 00400120 m

link

#include <iostream>
using namespace std;

double avg(int nl1, int n2); // Prototype

int main()

{
int x=6, y = 9; double z;
z = avg(x,y);
cout << "AVG is " << z << endl;
z = avg(x, 2);
cout << "AVG is " << z << endl;
return 0;

}

double avg(int ni1, int n2)
{

double sum = nl + n2;
return sum/2.0;

}

USC Viterbi(22

School of Engineering *

The scope of local variables and arguments are only
for the lifetime of the function in which they live

One function cannot access the local variables of
another

0xbe8 B
cout Retu
Oxbec | 00400e38 mn

link

print | 0xbed 7.5 av
A Ret
Y Oxbec | 00400d54 m
link

OxbeO 6 n1

avg Oxbe4 9 n2
0xbe8 75 su

Rk

Oxbec | 00400ca0 mn

link

0xbf0 6 x

main Obe4 Q y
oxbfg | 1.0 75 2

24

Retu

Oxbfc | 00400120 m

link

USC Viterbil2>
Scope and Stack Example

School of Engineering *

#include <iostream>
using namespace std;

double avg(int n1, int n2); // Prototype
void printAv(double x);

int main()

{

// Prototype

int x=6, y = 9; double z;

N
]

avg(x,y);

z = avg(x, 2);

return 0;

}

double avg(int ni1, int n2)

{

double sum = (nl + n2)/2.9;

printAv(sum);
return sum;

}

void printAv(double av)

{

cout << "Average 1is

}

<< av << endl;

e USCViterbi

School of Engineering

A Quick Tangent: Array Element Addresses

Consider a train with many copies of the same car

— The "O™" car starts at point A on the number line

— Each car is 5 meters long
Write an arithmetic expression for where the i-th car is
located. (At what meter on the number line does it start?)

Suppose an array of integers starts at memory address A,
write an expression for where the i-th integer starts?

Suppose an array of doubles starts at memory address A,
write an expression for where the i-th double starts?

O

0th car

Formula for address of i-th
element:

7
\

~
J

1st car 2 car

USC Viterbil¢2)

Formula for Addressing Array =

Elements

Assume a 5-element int array

— int x[5] = {8,5,3,9,6};
Fun Fact 3 (after Unit 0's Fact 1 & 2): Using the
name of an array by itself (e.g. x) w/o square
brackets, evaluates to the starting address in
memory of the array (i.e. address of 0" entry).

When you access x[2], the CPU uses x (to know
the starting address) and adds the product of the
index, 2, times the size of the data type (i.e. int =4
bytes)

— X[2] =>int. @ address 7400 + 2*4 = 7408

— x[3] =>int. @ address 7400 + 3*4 = 7412

— x[1] @ start address of array + i * (size of int)

Recall: C/C++ does NOT perform bounds checking to
stop you from attempting to access an element
beyond the end of the array

— x[6] =>int. @ address 7400 + 6*4 = 7424
(Garbage!!)

Address Memory Data
—__ x[0] == x[1]]
(x)7400 8 5
= X[2] == X[3]
7408 3 9

x[4

7416 6 | cdcdabab
7424 | al184beef | feedface

[need ::

3 pieces of info:

1. Start address of the array

2. Index/offset

3. Type of elements in the array

\ (really the size of that type)
Formula: start_addr + i*data_size
Fun Fact 3: If you use the name of an

/a?ray (e.g. x) w/o square brackets it will

evaluate to the starting address in
memory of the array (i.e. address of 0t

entry)

Fun Fact 3b: Fun Fact 3 usually appears
\as one of the first few questions on the
midterm.

e USCV1terb1‘

School of Engine

Array Elements vs. Array Names

* |In C/C++ using an array name
without any index evaluates to
the starting address of the
array

 Example:

— vals[0] yields data
— vals yields an address

Index: [0] [1] [2]

(3]

(4]

vals @ 7 4 9
int main() (0x7420)

{
int vals[5] = {7,4,9,2,3};

cout << vals[@] << endl;
// prints 7
cout << vals << endl;
// prints
return 0;

}

e USCViterbi

Recall: Passing Arrays

// Function that
. int sum(int dr*
 The "link" that is passed is just the starting 7420

int sum(int data[], int size)

address of (pointer to) the array in memory {

ray
], int size)\

(e'g' 7420) ;gﬁ(zﬁiaL;;@i < size; i++){
* Once the function has the start address } total += data[i];

and the type, it will produce its own index return total;

values and be able to access the array in)

the caller's memory ?”t e

int vals[100];
/* some code to 7420+2Y1ze vals */
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

main()

7420 7816
[0] [99]

(2 e [7]

vals

O access an element in an array,
we need 3 pieces of info:

1. Start address of the array
A 2. Index/offset
sum() 3. Type of elements in the
return val array (really the size of that

N Y

School of Engineering *

USCViterbi
Stack View of Passing Arrays

* The function receives the starting address of the array which it
can use along with the type (e.g. int) and index to access the
appropriate values from main's stack area of memory.

void init(int data[], int size);
int sum(int data[], int size);
7400 [— . int main()
99,100 : {
init | 7404 7420 dat int vals[100], mysum = 0;
7407/ 100 SZZ init(vals, 100);
R&tu = o
Z44 mysum = sum(vals, 100);
|| 7420447 | 00480a94 "r:k cout << mysum << endl;
! mys
741\ 0 MZi return 0;
7420 22| 5 S q }
7424 22| 5 3%1 void init(int data[], int size)
{
2?15 \7]a'| for(int i=0; i < size; i++){
main | 7816 ?2?2| 5 s[9 datali] = 5;
Ry }
7820 | 00400120 Al Y
link

USC Viterbi

Stack View of Passing Arrays

* The function receives the starting address of the array which it
can use along with the type (e.g. int) and index to access the
appropriate values from main's stack area of memory.

void init(int data[], int size);
7396 o e i int sum(int data[], int size);
1 500 | tot
o
7400 0 Cﬂt N int main()
sum | 7404 7420 {
740?/ S?Z int vals[100], mysum = O;
100
Rﬂu ini .
741 init(vals, 100);
|| 7420+4%i I 00480294 Iirr?k mySJl;m; sum(vaii, 12?);
cou mysum endl;
741\ 0 mys
L uai
7420 | 5 1 §q } return 9;
I .
7424 1 5 : 3%1 int sum(int data[], int size)
i {
. S I \7]a'| int total = 0;
wan] 7816 |51 | a0 I T S
7820 | 00400120 oy }
link return total;
}

e USCViterbi

W h y E m pty B ra C kets School of Engineering

 Why don't we just supply the array size in the formal argument?

— Now we can only process arrays of size 100. We'd like our functions to be more
general and handle any size array

— C/C++ doesn't do bounds checking anyway, so what good would writing 100 be?

int sum(int data[1@@],| int size);
7396 | Ot i
; int sum{int data[1@@],| int size)
7400 o500 ;’; ~ (
7404 t int total = 0;
sum 7420 a for(int i=0; i < size; i++){
740 100 Slz total += data[i];
Rgu }
741 00480a94 m return total;
link
}
741d\¥| 500 |¥ m;is
M q q
2420 5 §q Ent main()
7424 5 5%1 ii\t vals[100]; o
/* some code to initialize vals */
5 VAl int mysum = sum(vals, 100);
) 7816 cout << mysum << endl;
main 5 s[9 // prints sum of all numbers
7820 | 00400120 iy } return @;
link

e USCViterbi

School of Engineering

(Lack of) Array Bounds Checking&

e C++ does NOT bounds check the index used to access an element

— It will simply treat all of memory as part of the array (i.e. larger positive indices go
past the end of the array while negative offsets are before the array start)

— Thus, allowing you to read and write data you shouldn't (including variables from
your own function or another function since local variables live on the stack)

— This issue is a common exploit by hackers (more in future courses like CS 356)

int f1()

{ 7416 | 0.1, 2.3 4 i
int dat[4], x=0; 7420 9 dat \
for(int i=0; i <= 4; i++){ 7424 4 g%k
cin >> dat[i]; // 9, 4, 3, 7, 1000 7428 ; Lk
}

// using i=4 overwrites 'x' 1 7432 7 &%k
cout << x << endl; 1000 | [3] I:
// 1000 would print, not @. 7436 X
cout << dat[x] << endl; Retu
// likely segmentation fault 7440 00400120 i

return 9;
} 7444 2 var
Ret
PréV | 7448 | 00c80a94 ~
| link v

Array Summary

e Arrays must be declared with a FIXED size (cannot use a variable
for its length)
— GOOD: int data[50];
— BAD: int data[n];

» After declaring an array, C/C++ only "remembers" the starting
address of the array and the type of data it holds (to know the
data size)

— Which is all it needs to know to access any element using the formula:
start_addr + i*data_size

 C/C++do NO bounds checking

— Will simply apply the formula above to WHATEVER index you provide or
calculate

— Most common source of a program crash (and also security vulnerabilities).
If your program crashes in CS 103, suspect a bad array access

Using arrays as a lookup table

LOOKUP TABLES

Motivation and Approaches

Problem Statement: Given an input,
X, convert it to an output using some
function, f(x)

Possible approaches

— Use an arithmetic relationship, when the
relationship can be easily generalized

— Break it into cases with if statements
when there are a reasonable number of
cases

What if there is little pattern or many
cases?

Consider use of an array as a
"look-up table"

f(x):

X:

f(x):

0

5

1

2

[f(x) = if

f(x)=__, otherwise]

X:

f(x):

0

3

4

5

4

2

5

3

e USCViterbi

Arrays as Look-Up Tables

* Look-up Table Idea: Store pre-computed results in an array and
then "look-up" the desired result using the input as the array index

e (Can extend this to process many inputs (an array of inputs)

— Suppose an instructor with 8 students gives a quiz worth 10 points and we
use the customary (>90% = A, 80% =B, 70% = C, 60% = D, <60% = F) and we
want to map the points to the letter grade. How would you do it?

X: O(1]|2 |3 4|05

int main() {

f(x): int scores[8] = {9,7,10,9,8,4,6,8};
) 4 1 0 2 > 3 char grades[11] =

int main() {'F',"F','"F','"F','"F', "F','D', 'C', "B, "A", "A' };
{ for(int i=0; i < 8; i++){
int myf[] = {4, 1, 0, 2, 5, 3}; // output the letter grade for each score
int x; cout << "Score: " << scores[i] << " =>"
cin >> x;
cout << myf[x] << endl; << "Grade: " <<
return 0; << endl;
} }

return 0;

Problem from Previous Slide } Grade Mapping Problem

C-STRINGS, COUT, AND CIN

e USCViterbi

School of Engineering

Character Arrays and Strings (1)

* Recall that in C/C++ string constants (the
text in between " ") are just character
arrays

— Each character consumes 1 element in
the array

— Ends with the null character (e.g. 0
decimal or '\0' ASCII)

* This approach of using an array of
char's to store a string is referred to
as a C-String because there was no
string type in C (i.e. before C++)

Addr: 520 521 522 523 524 525 526
Index: ~ [0] [1] [2] 3] [4] [5] [6]

strZ: lcl lsl 1t l1l lol l3l |\0|

Computer Memory

#include <string>
using namespace std;
int main()
{
char stril[3] = {'C', 'S', '\0'};
// For char arrays easier to use ""
char str2[7] = "CS 103"
/* Initializes the array to "CS 103"*/

// prints "CS"
// prints "CS 103"

cout << strl << endl;
cout << str2 << endl;

str2[5] = '4';

cout << str2 << endl; // prints "CS 104"

cin >> str2; // get a new string from
// the user (suppose user
// types "hello"

cout << str2;

}

Program Output:

CS III

CS 103
CS 104
hello

e USCViterbi

School of Engineering

Character Arrays and Loops

How many things can a computer do at
a time?
To printout a string/character array,

we'd have to print one character at a
time!

But C/C++ treats character arrays
specially. cout has a loop inside its
code to print strings/character arrays.

Though not shown, cin also has a loop
inside to input a string.

We say cout and cin have a special
relationship with character arrays.

Addr: 520 521 522 523 524 525 526
Index: ~ [0] [1] [2] 3] [4] [5] [6]

strl: lcl lsl 1t l1l lol l3l |\0|

Computer Memory

#include <string>
using namespace std;
int main()
{
char strl[7] = "CS 103"
/* Initializes the array to "CS 102"*/

// Usually in C/C++ we must use a loop to do
// many operations
for(int i=0; str[i] != "\@'; i++) {

cout << str[i];

}

cout << endl;

// but cout has its own loop so you don't
// have to write the loop above but just

// what you see below.

cout << strl << endl; // prints "CS 102"

Program Output:

CS 103 "

CS 103

T = I T USC ViterbiC4D
cout's Special Relationship with Character

Arrays

To print out all elements of any array

type OTHER than a character array (i.e.

int, double, bool, etc.) you must
write your OWN loop (i.e. because
computers can only do 1 thing at a
time)

But for character arrays, you can just
give cout the name of the array and it
will use its own INTERNAL loop to print

out all characters for you

— So, internally it is actually looping over the
characters so you don't have to

— It just assumes when you give it a character
array that you WANT it to print out all the
characters in the array

Thus, we say cout treats character
arrays specially

Index: [01 11 [21 [31 1[4 —

data: 9 7 9 9 5

int main()
{
int data[5] {9, 7, 8, 9, 5};
char stri[] "Many chars";
// right way to print int array contents
for(int i=0; 1 < 5; i++){
cout << data[i] << " ";

} Index: [0] [1] [9] [10]
cout << endl;

strl: '™M' | 'a' | .. s \0

// doesn't work for an int, double
// or any other type of array
cout << data << endl;

// cout treats char. arrays specially
cout << strl << endl;

Program Output:

97895 III
Ox7fffcedo

Many chars

— USCViterbi
cin's Special Relationship with Charactéer—

Arrays

. int main()
 To getinput for all elements of an {

array type OTHER than character int data[5]; //5 garbage values to start

. . char stri1[8];//8 garbage values to start
arrays (i.e. int, double, etc.) you - =[@3 sarmee

must write your OWN loop // doesn't work for an int, double
) // or any other type of array
e But for character arrays, you can just e s> detEn Jf menn EveEn esipie

give cin the name of the array and

. . . right way to get int array contents
it will use its own INTERNAL loop to // rig y OB /

for(int i=0; i < 5; i++){

receive all characters the user types cin >> data[i];
and store them sequentially in the }
array // cin treats char. arrays specially
— So, internally it is actually looping over cin >> stri;
the characters so you don't have to }
520 521 522 523 524 525 526 527 528
— It just assumes when you give it a [0 M [21 [31 [4 [51 [6] [71 sum
character array that you WANT it to get a str1: | ?2 | 2|12 |?2]|2|?2]|1?2]7?

full string (stopping at the next space)
e cintreats character arrays specially

user types: | C5103

520 521 522 523 524 525 526 527 528
o1 M1 (2] (3] [4 [S] [6] [7] sum

stri: [C|S|[1[0]3[\W0]|?]|7?

e USCViterbi

School of Engineering

A Problem with cin and Character Arrays

What if the user types in TOO much
(more characters than our array has
room to store)?

cin will not stop! It will keep
storing the characters the user
types, overwriting whatever data
and variables came after the array

Warning: cin does not CHECK that
the string typed by the user will fit in
the array; instead it simply

overwrites memory leading to
undefined (bad) behavior!

C++ strings fix this issue, allocating
more space based on what is typed.

int main()

{

char stri[4];

int sum = 0;

// What if user types in "CS102"
cin >> stril;

cout << sum << endl;

// won't see O because sum was modified
// when cin received the string that was
// too long!

string s2;
cin >> s2;
// works regardless of user input length

520 521 522 523 524
[0 M1 [2] [3] sum
stri: [2 [222

CS1e3

user types:

520 521 522 523 524
L I O B o
str1: C S ' '

- USCViterbi
Exercises

* Cipher: Using an array as a Look-Up Table

— Let’s create a cipher code to encrypt text
— abcdefghijklmnopgrstuvwxyz =>
ghijklmaefnzygbcdrstuopvwx
— char orig_string[] = “helloworld”;
— char new_string[11];
— After encryption:
* new_string = "akzzbpbrzj"
— Define another array
e char cipher[27] = "ghijklmaefnzygbcdrstuopvwx";

 How could we use the original character to index (“look-up” a value in)
the cipher array

I []S Viterhi(94S
Input Buffer Overflow

[Only if Time]

* Depending on user input, this program will likely

crash.
Find location of first capital letter in text
$./progi -1 #include <iostream>
abcdefgh0123456 #include <cctype>
using namespace std;
) . int main()
Stack before execution of cin >> str. {
Address Stack Data char str[8];
const int size = 8
int loc = ©;

// User types "abcdefgh©123456"
cin >> str;

// size may now be garbage (not 8)
Stack after execution of cin >> str. for(int i=0; i < size; i++){

if(isupper(str[i]))
Address Stack Data

{ loc = i; break; }
}

// You'll be lucky to even get here
cout << loc << endl;
return 0;

main

NULL Terminated character arrays

C-STRINGS (CHARACTER ARRAYS)

- 00000000 USCViterbi
C-Strings

¢ Ir] (:: int main()
. . {

— Strlngs were not a first-class type char stri[] = "CS1@3 is ";
. . char str2[] = "fun";
(|.e. no Str'lng tYDE) char str3[15];

— strings were simply character cin >> str3; // user enters "CS103"
arrays (Char‘ []) terminated by // What is this actually comparing?

if(str3 == str2)

the nu" CharaCter { cout << "Match" << endl; }

(0 dec. ="\0" ASClII)
— These were known as C-Strings

str3 = strl;
str3 += str2;

cout << str3 << endl;

* No operations/operators other return ;
than typical array operations are
provided

— No comparison (== or I=)

— No assignment/copy (=) 800 809

— No append/concatenate (+) m o st e [e st e

e USCViterbi

School of Engineering

int main()
{

char stri[] = "CS103 is "; 800

char str2[] = "fun";

Char‘ s-tr\3[15]-; m lcl ISI |1| |0| |3|]] |i| |S|]] l\el

cin >> str3; // user enters "CS103" 320

// What is this actually comparing? m f'l'u']'nt|'\O'

if(str3 == str2)

{ cout << "Match" << endl; } 340

// Intuitively this makes sense but m hlalr|d|\o

// will not compile in C/C++. Using your

// knowledge of types and other info,

// what is this actually attempting to do.

str3 = stril;

str3 += str2;

cout << str3 << endl;

return 0;
}

>_
/" main.cpp:15:13: warning: comparison between two arrays is deprecated; -

if(str3 == str2) { cout << "Match" << endl; }
~~mn N main.cpp:15:13: warning: array comparison always evaluates to false

main.cpp:20:10: error: array type ‘char[15]' is not assignable
str3 = str2;

N

main.cpp:21:10: error: invalid operands to binary expression ('char[15]' and
‘char[7]")

str3 += str2;

\oome A e y,

e USCViterbi

School of Engineering

C (not C++) String Function/Library
(#include <cstring>)

* Alibrary of functions was provided to perform operations on
these character arrays representing strings (<cstring> in C++,
<string.h>in C)

— int strlen(char dest[]);

* Returns the length of the string (not counting the null character)

— int strcmp(char stri[], char str2[]);

* Return 0 if equal, >0 if strl is alphanumerically larger than str2, <0 if strl is less than str2

— char* strcpy(char dest[], char src[]);

* Copies the whole C-string from src to the dest array (overwriting what's in dest)
* Ignore the return type for now (think of it as a void function)

— char* strcat(char dest[], char src[]);

* Concatenates src to the end of dest
* Ignore the return type for now (think of it as a void function)

https://cplusplus.com/reference/cstring/

e USCViterbi

#include <iostream>
#include <cstring> 800

using namespace std;
ICI ISI l1l Iel I3I 1 1 Iil ISI 1 1 l\el

int main()
{ 820

char strl[] = "CS103 is "; str2
char str2[] = "fun"; har * 'l 'u' | 'n" |"\O'
cnar
char str3[15];
840 844
cin >> str3; // user enters "cool"
// What is this actually comparing?

if(@ == strcmp(stri,str3))
{ cout << "Match" << endl; }

// Intuitively this makes sense but

// will not compile in C/C++. Using your
// knowledge of types and other info,

// what is this actually attempting to do.
stp3—=——strl;

strcpy(str3, stril);

840 844

e et
strcat(str3, str2);

cout << str3 << endl;
return 0;

P {J5C Viterb{ "
Sample Implementations

e Exercises
— strlen
— strcpy

(Self study and ask questions)

SOLUTIONS AND MORE FUNCTION
EXAMPLES

P {J5C Viterb{
Pass by Value Solution

void dec(int);
int main()

 Wait! But they have the same name, 'y’ b y = 3;

_ s . . dec(y);
What's in a name...Each function is a separate cout << y << endl;

entity and so two 'y' variables exist (one in main return ©;

and one in decrement it) \};oid dec(int y)

— The only way to communicate back to main is via | {
return }

y-=-5

— Try to change the code appropriately

* Main Point: Each function is a completely [i,

separate "sandbox" (i.e. is isolated from i“t main()
other functions and their data) and copies v e
of data are passed and returned between cout <<y << endl;
them return 9;
}
int dec(int y)
{
y--;
return y;

}

S — {5 CViterbi >
Exercise Solution

* Consider a train with many copies of the same car
— The "O™" car starts at point A on the number line
— Each caris 5 meters long

* Write an expression of where the i-th car is located (at [A + 5% |

what meter does it start?) \ J

e Suppose a set of integers start at memory address A, (v
. : L A + 4%

write an expression for where the i-th integer starts? |)

e Suppose a set of doubles start at memory address A, [A + 8% R

write an expression for where the i-th double starts? . :)

oth car 1st car 2nd car

|
| | |
A A+5 A+10

>

e USCViterbi

* Formal parameters,aand b #include <iostream>

— Type of data the parameter expects PRI (ENEEES Sk
max(inZ a, int p) Formals

— Names that will be used internal to the function to refer to|
the values passed (e.g. generic placeholders/titles used in
contracts like "CEOQ" or "professor" that will be assigned or
replaced real value) ARSI/ €

* Actual parameters

— Actual values ("Jeff Bezos", "Mark") input to the function
by the caller

— A copy is made and given to function

X
Actuals — 6 Actuals
M " << z << endl;

z = ave(x, 2); Actuals
Formals — aAAb 6 cout << "Avms A« z << endl

‘ return O;
}

return val

cout <«

max()

Each type is a "different" shape (int = triangle, double = square,
char = circle). Only a value of that type can "fit" as a parameter.

- 00000000 USCViterbi
Scope Example

#include <iostream> Address

* Globals live as IOng as using namespace std; 0
the program is running | int x = 5;

* Variables declaredina | ™ "™"0 .

block { ... } live aslongas | inta, x =8,y =3; Globals
cout << "x = " << x << endl; X=5
the block has not for(int i=0; i < 10; i++){
completed = 2%+ 1
— {...}of afunction a += j;
. }
— {..}of aloop, if statement, 3 o aokl): Heap
etc cout << "a=" << a ;
* When variables share the s <& s &< &< arells
cout << "glob. X" << ::x << endl;
same name, the closest }
declaration will be used by
default int doit(int x)
{
X--;
return Xx; main:
} il (a=2, x=8,y=3)

Memory (RAM)

	Slide 1: CS103 Unit 1d – Arguments Pass-by-Value and Pass-by-Reference
	Slide 2: PASS-BY-VALUE, LOCAL VARIABLES, AND SCOPE
	Slide 3: Motivating Question
	Slide 4: Argument Passing (Pass-by-Value)
	Slide 5: Pass by Value (1)
	Slide 6: Pass by Value (2)
	Slide 7: Formals and Actuals (1)
	Slide 8: Formals and Actuals (2)
	Slide 9: Pass-by-Value & Pass-by-Reference
	Slide 10: Arrays and Pass-by-Reference
	Slide 11: Passing Arrays As Arguments
	Slide 12: Pass-by-Value / Reference
	Slide 13: ARRAYS AS ARGUMENTS AND ACCESSING ELEMENTS IN MEMORY
	Slide 14: But Why Are Arrays Pass-by-Reference?
	Slide 15: So What Is Actually Passed?
	Slide 16: Arrays And Pass-by-Reference
	Slide 17: Strange Question
	Slide 18: Arrays in C/C++ vs. Other Languages
	Slide 19: PASSING ARGUMENTS: A DEEPER LOOK
	Slide 20: Memory Organization
	Slide 21: Mapping of Info to Memory
	Slide 22: Understanding the Stack and Pass-by-Value
	Slide 23: Understanding the Stack and Pass-by-Value
	Slide 24: Another Example
	Slide 25: Scope and Stack Example
	Slide 26: A Quick Tangent: Array Element Addresses
	Slide 27: Formula for Addressing Array Elements
	Slide 28: Array Elements vs. Array Names
	Slide 29: Recall: Passing Arrays
	Slide 30: Stack View of Passing Arrays
	Slide 31: Stack View of Passing Arrays
	Slide 32: Why Empty Brackets
	Slide 33: (Lack of) Array Bounds Checking
	Slide 34: Array Summary
	Slide 35: LOOKUP TABLES
	Slide 36: Motivation and Approaches
	Slide 37: Arrays as Look-Up Tables
	Slide 38: C-STRINGS, COUT, AND CIN
	Slide 39: Character Arrays and Strings (1)
	Slide 40: Character Arrays and Loops
	Slide 41: cout's Special Relationship with Character Arrays
	Slide 42: cin's Special Relationship with Character Arrays
	Slide 43: A Problem with cin and Character Arrays
	Slide 44: Exercises
	Slide 45: Input Buffer Overflow [Only if Time]
	Slide 46: C-STRINGS (CHARACTER ARRAYS)
	Slide 47: C-Strings
	Slide 48: Errors
	Slide 49: C (not C++) String Function/Library (#include <cstring>)
	Slide 50: Use of the C-String Library
	Slide 51: Sample Implementations
	Slide 52: SOLUTIONS AND MORE FUNCTION EXAMPLES
	Slide 53: Pass by Value Solution
	Slide 54: Exercise Solution
	Slide 55: Parameter Passing (1)
	Slide 56: Scope Example

