
1c.1

CS103 Unit 1c – Arrays and
Functions

1c.2

ARRAY BASICS

1c.3

Motivating Example
• Suppose I need to store the

grades for all students so I can
then compute statistics, sort
them, print them, etc.

• I would need to store them in
variables that I could access and
use
– This is easy if I have 3 or 4 students

– This is painful if I have many
students

• Enter arrays
– Collection of many variables

referenced by one name

– Individual elements can be
accessed with an integer index

int main()
{

int score1, score2, score3;
cin >> score1 >> score2 >> score3;

// output scores in sorted order
if(score1 < score2 &&

score1 < score3)
{ /* score 1 is smallest */ }

/* more */
}

int main()
{

int score1, score2, score3,
score4, score5, score6,
score7, score8, score9,
score10, score11, score12,
score13, score14, score15,
/* ... */
score149, score150;

cin >> score1 >> score2 >> score3
>> score4 >> score5 >> score6
/* ... */

1c.4

Computer Memory

Array Basics

• An array is a fixed size, named
collection of ordered variables of
the same type that are accessed
with an index and stored
contiguously in memory
– Fixed size: Cannot grow or shrink

– Named collection: One name to
refer to all variables in the array

– Ordered / Accessed with an index:
Individual element (variable) is
accessed with its position/index
(using [] brackets)

– Same Type: Variables in one array
must all be the same type (one array
can't store doubles and ints)

Addr:
Index:

520
[0]

524
[1]

528
[2]

1116
[149]

scores: 96 84 93 … 90

int main()
{

int scores[150];
// allocates 150 integers
// with garbage values

// Initialize the array
for(int i=0; i < 150; i++){

cin >> scores[i];
// or scores[i] = 0;

}
}

1c.5

Index vs. Value

• The expression in the square
brackets is an index

• Using array[index] yields the
data/value in the array at that
index

• An index can be ANY EXPRESSION,
even the value from an array or
the return value from a function

• For an array declared to be size n,
only indices 0 to n-1 are legal

int main()
{
int scores[20];
/* ... fill in the data ... */

int i = 1;
int x = scores[2*i + 1]; // x=8
int y = scores[scores[1]]; // y=9
int z = scores[max(4,2)]; // z=6
return 0;

}

scores[2*i+1]

Computer Memory

Addr:
Index:

520
[0]

524
[1]

528
[2]

532
[3]

536
[4]

scores:
(values)

9 0 7 8 6 …

index

Value/data

1c.6

Array Intro (1)
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;

int main() {
// What are the initial values of the array?
int data1[5];
cout << "Data1: ";
for(int i=0; i < 5; i++) { cout << data1[i] << " "; }
cout << endl;

// What size will be inferred for this array
int data2[] = {103, 104, 170, 201, 270};
cout << "Data2: ";
for(int i=0; i < 5; i++) { cout << data2[i] << " "; }
cout << endl;

// What happens if you try to initialize elements in the array
// but provide too few?
int data3[5] = {103, 104, 105};
cout << "Data3: ";
for(int i=0; i < 5; i++) { cout << data3[i] << " "; }
cout << endl;

// ...
return 0;

}

1c.7

Array Intro (2)
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;

int main() {
// ...
// Try to access out of bounds
cout << "Out of bounds (5th element) " << data2[5] << endl;
// Try to access out of bounds
cout << "Out of bounds (-2nd element) " << data2[-2] << endl;
// Try to access out of bounds
// cout << "Out of bounds (millionth index) " << data2[1000000] << endl;

// Try to uncomment and compile this.
/*
int n;
cin >> n;
int data4[n];

for(int i=0; i < n; i++){
cin >> data4[i];

}

cout << "Data4: ";
for(int i=0; i < n; i++) { cout << data4[i] << " "; }
cout << endl;
*/
return 0;

}

1c.8

Allocating and Accessing Arrays

• Arrays allow you to allocate a large number of variables
in a single step…but you can still only access one
element at a time
– Recall: Computers can see and work with 1 data value at a time

• Step 1: Allocate the array for a SPECIFIC, FIXED size
– Specifies the type, a name for the collection, and how many

should be allocated

– Values will be garbage, if not initialized

• Step 2: Use the individual array elements as if they
were normal variables but remember to use the square
bracket indexing syntax (e.g. data[0])
– Loops provide a nice way to process all items one at a time!

char word[3] = "hi";
word[0] ='a';

int data[20];
data[0] = 103;
data[1] = -1;
data[2] = data[0]+1;

Just as a dormitory is known by

one name ("McCarthy") but has

many dorm rooms, each with a

number to identify them

("McCarthy 234")…

…arrays have one name for the

whole collection of variables

and uses integer indexes to

specify a particular element.

103

-1

104

cdcdabab

...

3829ae4a

129328c0

5500

5504

5508

5512

...

5576

5580

Address Memory Data

data

69 6a 00 64 30 31 32 00

64 07 81 88 21 00 00 00

5508

5510

Address Memory Data

word [0] [1] [2]

"hi" "ai"

data[0]

data[1]

data[2]

data[3]

data[19]

1c.9

Initializing Arrays With Constants
• Arrays can be initialized with

constants when they are declared

• To do so, use an initialization list
which is a comma separated list of
constants in {…}

– Exception to the minimalist C/C++
rule: If fewer values are provided
than the size of the array, remaining
elements will be filled with 0s

• If an initialization list is provided you
need not specify the size in the square
brackets (i.e. just use empty []) as the
compiler can figure out what size the
array must be by counting the initial
values

int main()
{

int data[5] = {9, 7, 8, 9, 5};

double dec[4] = {0.25, 0.3};

char str1[3] = {'C', 'S', '\0'};
// For char arrays easier to use ""
char str2[3] = "CS";
// str2 initialization is same as str1

}

int main()
{

int data[] = {9, 7, 8, 9, 5};
// allocates array of size 5

double dec[] = {0.25, 0.3, 0.18, 0.2};
// allocates array of size 4

char str2[] = "CS";
// allocates array of size 3

}

Index: [0] [1] [2] [3] [4]

data: 9 7 9 9 5

Index: [0] [1] [2] [3] [4]

data: 9 7 9 9 5

dec: 0.25 0.3 0 0

str1:

Specifying sizes is not necessary when using initial values list

1c.10

When Do We Need Arrays?
• You may think an array is needed any time we

need to process a sequence of many related data
items of the same type

• But a better question is when do we need to
store these related data items in an array?

• Answer: When we need to revisit the data more
than once

– If we just want to find the min/max or average we
could just get the data from the user and update
the sum or min/max as we go and not need to
store each data item

– Don't introduce arrays where they are not needed

int main()
{

int scores[100];
// Get the data
for(int i=0; i < 100; i++){
cin >> scores[i];

}
// Average all values
int sum = 0;
for(int i=0; i < 100; i++){

sum += scores[i];
}
cout << sum / 100.0 << endl;

return 0;
}

int main()
{

int val, sum = 0;
// Get the data & average it
// at the same time
for(int i=0; i < 100; i++){

cin >> val;
sum += val;

}
cout << sum / 100.0 << endl;
return 0;

}

Addr:
Index:

520
[0]

524
[1]

528
[2]

1116
[149]

scores: 96 84 93 … 90 sum

val

1c.11

C/C++ ARRAY SIMILARITIES AND
DIFFERENCES WITH OTHER
LANGUAGES

1c.12

Coming From Other Languages
• SIMILARITIES: Like Python and Java, C/C++ arrays

1. Use 0-based indexing (beginning element at index 0)

2. Pair nicely with loops that can iterate over all the elements of an array

• DIFFERENCES: Unlike Python and Java, C/C++ arrays

3. Are fixed size (size must be a constant) and then cannot grow easily after that

4. Do not remember their size (no len() or .length) nor bounds-check an access (so
accessing scores[1048726] will happily execute in C/C++ and likely cause a crash
(aka the dreaded "Segmentation Fault")

5. Are NOT objects (no .append() or .length) in C/C++, but degenerate to pointers
(more to come soon)

–
int main()
{
int scores[150];
// allocates 150 integers
// with garbage values

for(int i=0; i < 150; i++){
cin >> scores[i];

}
// Do something with scores

}

def main():
scores = [0]*150
for(i in range(len(scores)):

scores[i] = int(input())
Do something with scores

Execution starts here (weird)
if __name__ == "main":

main()

import java.util.Scanner;

class Scores {
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);

int[] scores = new int[150];
for(int i=0; i < scores.length; i++){

scores[i] = in.nextInt();
}
// Do something with scores

}
} C++PythonJava

1c.13

Fixed (Statically) Sized Arrays

• C/C++ needs to know the size of the
array when the program is
compiled (statically), not when it is
run (dynamically).

• This implies the size of the array
must be ONE, FIXED (or constant)
size everytime the program is run

• What could go wrong if we did
allow the variable-size array
allocation?
– Why don't hotels let you wait and

specify how many rooms you want
once you arrive?

– Too large an allocation can cause
"stack overflow" and corrupt the
program

int main()
{

// GOOD!!
int data[42]; // 42 known at

// compile time

// BAD!!
int n;
cin >> n;
int data[n]; // n not known at

// compile time
}

Code 0x00000000 = 0

0xffffffff = 4GB-1

M
e
m

o
ry

 (
R

A
M

)

L
a
y
o
u
t

o
f

P
ro

g
ra

m
-

Global

Data

-

Heap

-

Stack

-

0xc0000000

0x10000000

1c.14

Dealing With Variable Size Arrays

• C/C++ needs to know the size of
the array when the program is
compiled, not when it is run.

• Two approaches if we cannot
know the necessary size at
compile time:
– Allocate a LARGE array of the

maximum size potentially needed
and then use only a portion of it as
the program runs

– (Preferred) Use dynamic memory
(i.e. the new operator) to allocate a
variable size array
• Major topic of discussion in a future

unit (don't worry about it for now)

int main()
{

int data[100]; // max needed
int n;
cin >> n;

for(int i=0; i < n; i++)
{

cin >> data[i]; // only use n
}

}

int main()
{

int n;
cin >> n;

int* data = new int[n];
for(int i=0; i < n; i++)
{

cin >> data[i]; // only use n
}
delete [] data; // needed cleanup

}

This approach will be

discussed in detail in

a future unit.

1c.15

FUNCTIONS: A QUICK LOOK

1c.16

Functions Overview

• Functions (aka procedures,
subroutines, or methods) are the
primary unit of code
decomposition and abstraction
in C/C++
– Decomposition: Breaking programs

into smaller units of code

– Abstraction: Generalizing an action
or concept without specifying how
the details are implemented

ValidateInputs()

RetrieveMap()

GetOverlayData(

)

Render()

Publish()

F
u
n
c
ti
o
n
 D

e
c
o
m

p
o
s
it
io

n

Map

Service

1c.17

Function Signatures/Prototypes
• Also called procedures or methods

• We think of a function as a blackbox (don't know
or care how it does the task internally) of code
where we can provide inputs and get back a value
– Or think of it as a web-app (or form) where you supply

data to "named" inputs and get back a value

• In C/C++, a function has:

– A name

– Zero or more input parameters

– 0 or 1 return (output) values

• We only specify the type

• 0 return values is indicated with void type

• The signature (or prototype) of a function
specifies these aspects so others know how to
"call" the function

ba

max

int max(int a, int b);

Function Signature/Prototype

Max

a:

b:

1c.18

User Defined Functions

• We can define our own functions
in 3 steps

• Step 1: "Declare" your function
by placing the prototype
(signature) at the top of your
code

• Step 2: "Define" the function
(actual code implementation)
anywhere (above or below
main()) by placing the code in { }

• Step 3: "Call" the function from
main() or another function
passing in desired inputs and
using the return value (output)

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{

int x, y, mx;
cin >> x >> y;

/* Code for main */

}

int max(int a, int b)
{

if(a > b)
return a; // immediately stops max

else
return b; // immediately stops max

}

1c.19

Functions Intro
#include <iostream>
#include <cmath>
using namespace std;

// Function prototypes
void printName(string name);
int factorial(int n);

// Function definitions
int main()
{

printName("Tina");
cout << factorial(4) << endl;
return 0;

}

void printName(string name)
{

if(name == ""){
return;

}
cout << "Hello, " << name << endl;

}

int factorial(int n)
{

if(n >= 0){
if(n == 0) { return 1; }
int f = 1;
for(int i = 1; i <= n; i++) {

f *= i;
}
return f;

}
// Return some value that will mean "error"
return -1;

}

// Cannot have 2 return values
// double, double getCirclePerimAndArea(
// double radius)
// {
// return 2*M_PI*radius, M_PI*radius*radius;
// }

1c.20

Calling a Function

• We "call" or "invoke" the function by:

– Using its name and place variables or
constants that the current function
has declared in the order that we
want them to map to the
parameter/argument list

– First variable listed (x) will map to the
first parameter (a) in the function's
argument list, the second variable (y)
to the second parameter (b), etc.

• Don't

– Relist the return type in the call

– Relist the type of the arguments

– Use variable names that don't exist in
the current function

– Forget to save the returned value

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{

int x, y, mx;
cin >> x >> y;

/* Call the function */

mx = max(x, y);
cout << mx << endl;

/* Bad */
mx = int max(x, y);
mx = max(int x, int y);
mx = max(a, b);
max(x, y);

}

int max(int a, int b)
{

if(a > b)
return a; // immediately stops max

else
return b; // immediately stops max

}

1c.21

Calling a Function (2)

• Statements in a function are executed
sequentially by default

• Defined once, called over and over

• Functions can call other functions can
call other functions

• Example: Compute max of two
integers

Each call causes the program to pause
the current function, go to the called
function and execute its code with
the given arguments then return to
where the calling function left off,

• Return value is substituted in place of
the function call

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{

int x, y;
cin >> x >> y; // User types: -5 7

int mx = 1 + max(x, y); // call max
cout << mx << endl;

cout << max(0, x) << endl; // call max
}

int max(int a, int b)
{

if(a > b)
return a; // immediately stops max

else
return b; // immediately stops max

}

8
0

Program Output (if user types -5 7):

7

0

1c.22

Passing Arrays As Arguments

• Syntax:
– Step 1: In the prototype and

function definition:
• Put empty square brackets []

after the formal parameter name
if it is an array
(e.g. int data[]) ..OR..

• Put an * between the type and
formal parameter name (e.g. int*
data)

• We'll prefer int data[] for now
but int* data is JUST AS VALID
and we'll learn more about it
when we cover pointers)

– Step 2: When you call the
function, just provide the name
of the array as the actual
parameter

// Prototype
int init(int data[], int max_size);

int main()
{

int vals[100];
int len = init(vals, 100);
// some code to process the input
// in the vals array
for(int i=0; i < len; i++) {

cout << vals[i] << endl;
}
return 0;

}

int init(int data[], int max_size)
{

int i=0, num;
cin >> num;
while(i < max_size && num != -1) {

data[i] = num;
i++;
cin >> num;

}
return i;

}

1c.23

MORE FUNCTION DETAILS

1c.24

Function Prototypes
• The compiler (g++/clang++) needs to

see a function's prototype or definition
before it allows a call to that function

• The compiler will scan a file from top to
bottom

• If it encounters a call to a function
before the actual function definition it
will complain…[Compile error]

• …Unless a prototype ("declaration") for
the function is provided earlier

• A prototype only needs to include data
types for the parameters but not their
names (ends with a ‘;’)
– Prototype is used to check that you are

calling it with the correct syntax (i.e.
parameter data types & return type)
(like a menu @ a restaurant)

int main()
{

double area1,area2,area3;
area3 = triangle_area(5.0,3.5);

}

double triangle_area(double b, double h)
{

return 0.5 * b * h;
}

double triangle_area(double, double);

int main()
{

double area1,area2,area3;
area3 = triangle_area(5.0,3.5);

}

double triangle_area(double b, double h)
{

return 0.5 * b * h;
}

Compiler encounters a call to triangle_area()

before it has seen its definition (Error!)

Compiler sees a prototype and can check the

syntax of any following call and expects the

definition later.

X

1c.25

The Need For Prototypes

• You might say:

– "I don't like prototypes. I'll define each function before I call it"

• How would you order the functions in the program on the left if you did
NOT want to use prototypes?

– You can't!

int f1(int x)
{

return f2(x-1);
}

int f2(int y)
{

if(y <= 0) return 1;
else return f1(y);

}

int main()
{

cout << f1(5) << endl;
}

int f1(int x);
int f2(int y);

int main()
{

cout << f1(5) << endl;
}

int f1(int x)
{

return f2(x-1);
}

int f2(int y)
{

if(y <= 0) return 1;
else return f1(y);

}

1c.26

Overloading: A Function's Signature
• What makes up a function signature unique:

– name

– number and type of arguments

• No two functions are allowed to have the same signature

• The following 6 functions are unique and allowed to have
different implementations…
– int f1(int), int f1(double), int f1(int, double)

– void f1(char), double f1(), int f1(int, char)

• Return type does not make a function unique
– int f1() and double f1() are not unique and thus not

allowable

• Two functions with the same name are said to be
"overloaded"
– int max(int, int); double max(double, double);

1c.27

Why Functions? Reuse (1)

• Functions are best used to perform
code that would otherwise have to be
duplicated

• By "factoring" common code into its
own function and possibly
parameterizing it we can make
flexible, reusable blocks of code

#include <iostream>
using namespace std;

int main()
{

// Print triangle of 3 rows
for(int i=0; i < 3; i++){

for(int k=0; k < 3-i; k++){
cout << '/';

}
cout << endl;

}

// Print triangle of 5 rows
for(int i=0; i < 5; i++){

for(int k=0; k < 5-i; k++){
cout << '/';

}
cout << endl;

}

return 0;
}

///
//
/
/////
////
///
//
/

Desired Program Output:

1c.28

Why Functions? Reuse (2)

• Here we have factored the common
code into its own function
parameterized based on how many
rows are desired

#include <iostream>
using namespace std;

void printTri(int rows);

int main()
{

printTri(3);
printTri(5);
return 0;

}

void printTri(int rows)
{
for(int i=0; i < rows; i++){
for(int k=0; k < rows-i; k++){

cout << '/';
}
cout << endl;

}
}

///
//
/
/////
////
///
//
/

Desired Program Output:

1c.29

Reuse

• We could create 1 or 2 functions to do this
job

• How could defining printRow allow for
reuse if chose to draw a different shape
(like a square)?

• What else could we parameterize that
might make this code more reusable?
– The fill character ('/')

• But don't go too crazy

#include <iostream>
using namespace std;

void printRow(int n); // prototype
void printTri(int rows); // prototype

int main()
{

printTri(3);
printTri(5);
return 0;

}
void printTri(int rows)
{
for(int i=0; i < rows; i++){
printRow(rows-i);

}
}
void printRow(int n);
{

for(int i=0; i < n; i++){
cout << '/';

}
cout << endl;

}

///
//
/
/////
////
///
//
/

Program Output:

1c.30

Review: Program Decomposition

• C is a procedural language

– A function or procedure is the primary unit of
code organization, problem decomposition, and
abstraction

– Function is a unit of code that

• Can be called from other locations in the
program

• Can be passed variable inputs (a.k.a.
arguments or parameters)

• Can return a value to the code that called it

– Can be reused

• C++ is considered an object-oriented language
(adds objected-oriented constructs to C) though still
supports a procedural approach

– A class or object is the primary unit of code
organization, problem decomposition, and
abstraction

– Can be reused

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/lego-png/download/52866
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

1c.31

Exercise

• To decompose a program into functions, try
listing the verbs or tasks that are performed to
solve the problem

– Model a card game as a series of tasks/procedures…

– A database representing a social network

1c.32

Nested Call Practice

• Find characters in a string then use that function
to find how many vowels are in a string

– Exercise: draw-square

– Exercse: vowels

1c.33

MORE FUNCTION EXAMPLES

1c.34

main

Example Functions 1

rateyrs

calcInterest

double calcInterest(double amt, int yrs, double rate);

Function Signature/Prototype

#include <iostream>
#include <cmath>
using namespace std;

// prototype
double calcInterest(double amt, int yrs, double rate);

int main()
{
double amount, r;
cin >> amount >> r;

double interest = calcInterest(amount, 30, r);
cout << "Interest: " << interest << endl;
return 0;

}

double calcInterest(double amt, int yrs, double rate)
{
return amt * pow(rate/12, 12*yrs);

}

amt

30 ramount

interest

1c.35

main

Example Functions 2

exp_pwd

checkLogin

bool checkLogin(string exp_pwd);

Function Signature/Prototype

#include <iostream>
using namespace std;

// prototype
bool checkLogin(string exp_pwd);

int main()
{
string pass = "Open123!"; // secret password
bool valid;

cout << "Enter your password: " << endl;
valid = checkLogin(pass);
if(valid == true) { cout << "Success!" << endl; }
return 0;

}

bool checkLogin(string exp_pwd)
{
string actual;
cin >> actual;
return actual == exp_pwd;

}

pass

valid

1c.36

main

Example Functions 3

exp_pwd

checkLogin

void validateLogin(string exp_pwd);

Function Signature/Prototype

#include <iostream>
using namespace std;

// prototype
void validateLogin(string exp_pwd);

int main()
{
string pass = "Open123!"; // secret password
bool valid;

cout << "Enter your password: " << endl;
validateLogin(pass);
return 0;

}

void validateLogin(string exp_pwd)
{
string actual;
cin >> actual;
if(actual == exp_pwd){ cout << "Success!" << endl; }
else { cout << "Incorrect!" << endl; }

}

pass

1c.37

Example Functions 4

genCoinFlip

bool genCoinFlip();

Function Signature/Prototype

#include <iostream>
#include <cstdlib>
using namespace std;

// prototype
bool genCoinFlip();

int main()
{
bool heads;

heads = genCoinFlip();
if(heads == true) { cout << "Heads!" << endl; }
else { cout << "Tails!" << endl; }
return 0;

}

bool genCoinFlip()
{
int r = rand(); // Generate random integer
return r%2;

}

heads

main

1c.38

SOLUTIONS

1c.39

Pass by Value Solution

• Wait! But they have the same name, 'y'
– What's in a name…Each function is a separate

entity and so two 'y' variables exist (one in main
and one in decrement it)

– The only way to communicate back to main is via
return

– Try to change the code appropriately

• Main Point: Each function is a completely
separate "sandbox" (i.e. is isolated from
other functions and their data) and copies
of data are passed and returned between
them

int dec(int);
int main()
{

int y = 3;
y = dec(y);
cout << y << endl;
return 0;

}
int dec(int y)
{

y--;
return y;

}

void dec(int);
int main()
{

int y = 3;
dec(y);
cout << y << endl;
return 0;

}
void dec(int y)
{

y--;
}

	Slide 1: CS103 Unit 1c – Arrays and Functions
	Slide 2: ARRAY BASICS
	Slide 3: Motivating Example
	Slide 4: Array Basics
	Slide 5: Index vs. Value
	Slide 6: Array Intro (1)
	Slide 7: Array Intro (2)
	Slide 8: Allocating and Accessing Arrays
	Slide 9: Initializing Arrays With Constants
	Slide 10: When Do We Need Arrays?
	Slide 11: C/C++ ARRAY SIMILARITIES AND DIFFERENCES WITH OTHER LANGUAGES
	Slide 12: Coming From Other Languages
	Slide 13: Fixed (Statically) Sized Arrays
	Slide 14: Dealing With Variable Size Arrays
	Slide 15: FUNCTIONS: A QUICK LOOK
	Slide 16: Functions Overview
	Slide 17: Function Signatures/Prototypes
	Slide 18: User Defined Functions
	Slide 19: Functions Intro
	Slide 20: Calling a Function
	Slide 21: Calling a Function (2)
	Slide 22: Passing Arrays As Arguments
	Slide 23: MORE FUNCTION DETAILS
	Slide 24: Function Prototypes
	Slide 25: The Need For Prototypes
	Slide 26: Overloading: A Function's Signature
	Slide 27: Why Functions? Reuse (1)
	Slide 28: Why Functions? Reuse (2)
	Slide 29: Reuse
	Slide 30: Review: Program Decomposition
	Slide 31: Exercise
	Slide 32: Nested Call Practice
	Slide 33: MORE FUNCTION EXAMPLES
	Slide 34: Example Functions 1
	Slide 35: Example Functions 2
	Slide 36: Example Functions 3
	Slide 37: Example Functions 4
	Slide 38: SOLUTIONS
	Slide 39: Pass by Value Solution

