-] USCViterbi®
School of Engineering

CS103 Unit 1c — Arrays and
Functions

-] USCViterbi@
School of Engineering

ARRAY BASICS

e USCViterbi@

Motivating Example

int main()

* Suppose | need to store the :
grades for all students so | can int scorel, score2, score3;
L. cin >> scorel >> score2 >> score3;
then compute statistics, sort
them, print them, etc.

// output scores in sorted order
if(scorel < score2 &&

scorel < score3)

/* score 1 is smallest */ }

* | would need to store them in (
variables that | could access and
use }

— This is easy if | have 3 or 4 students

/* more */

int main()
— This is painful if | have many t
int scorel, score2, score3,

students scored4, score5, scoreb,
score’7, score8, score9,
scorel@, scorell, scorel2,

* Enter arrays

— Collection of many variables jiOPeB;/SCOPel‘h scorels,
referenced by one name scoreld9, scorel5e;

_ Individual eIements can be cin >> scorel >> score2 >> score3
>> scored >> score5 >> scorebé

accessed with an integer index /¥ ... %/

e USCVlterbl
Array Basics

. . o int i
e Anarrayis a fixed size, named C VEED
collection of ordered variables of e SCICHIANG
// allocates 150 integers
the same type that are accessed // with garbage values
With an index and Stored // Initialize the array
: : for(int i=0; i < 150; i++){
contiguously in memory cin s> scores[il
— Fixed size: Cannot grow or shrink ; // or scores[i] = @;
— Named collection: One name to }
refer to all variables in the array
— Ordered / Accessed with an index: Addr: 520 524 528 1116
.. . . Index: [0] [1] [2] [149]
Individual element (variable) is
scores: 96 84 93 90

accessed with its position/index

(using [] brackets) Computer Memory

— Same Type: Variables in one array
must all be the same type (one array
can't store doubles and ints)

- USCViterbi@
Index vs. Value

o Value/data
* The expression in the square 1

brackets is an index 'scor‘es[z*j_+1]‘

* Using array[index] yields the ‘_'_'
data/value in the array at that index
index

* Anindex can be ANY EXPRESSION,
even the value from an array or
the return value from a function int main()

* Foran array declared to be sizen, |{

only indices 0 to n-1 are legal LT EEREES L2 ¢

/* ... fill in the data ... */
int 1 = 1;
int x = scores[2*i + 1]; // x=8
Addr: 520 524 528 532 536 .
Index: 0] [21 1B [int y = scores[scores[1]]; // y=9
int z = scores[max(4,2)]; // z=6

scores: 9 0 7 8 6 .
(values) return 0;

Computer Memory }

e USCViterbi

Array Intro (1)
(binclude <iostreans .

#include <algorithm>
#include <cmath>
using namespace std;

int main() A
// What are the initial values of the array?
int datal[5];
cout << "Datal: “;
for(int i=0; i < 5; i++) { cout << datal[i] << " "; }
cout << endl;

// What size will be inferred for this array

int data2[] = {103, 104, 170, 201, 270};

cout << "Data2: “;

for(int i=0; i < 5; i++) { cout << data2[i] << " "; }
cout << endl;

// What happens if you try to initialize elements in the array
// but provide too few?

int data3[5] = {103, 104, 105};

cout << "Data3: ";

for(int i=0; i < 5; i++) { cout << data3[i] << " "; }

cout << endl;

/] ...

return 9;

e USCViterbi®

Array Intro (2)
(tinclude <iostreams .

#include <algorithm>
#tinclude <cmath>
using namespace std;

int main() {
/] ...
// Try to access out of bounds
cout << "Out of bounds (5th element) " << data2[5] << endl;
// Try to access out of bounds
cout << "Out of bounds (-2nd element) " << data2[-2] << endl;
// Try to access out of bounds
// cout << "Out of bounds (millionth index) " << data2[1000000] << endl;

// Try to uncomment and compile this.
/*

int n;

cin >> n;

int data4[n];

for(int i=0; i < n; i++){
cin >> data4d[i];

}

cout << "Data4: ";

for(int i=0; i < n; i++) { cout << data4[i] << " "; }
cout << endl;

*/

return 0;

e USCViterbi

School of Engineering

Allocating and Accessing Arrays

int data[20];

* Arrays allow you to allocate a large number of variables data[e] = 103;

in a single step...but you can still only access one data[1] = -1;
element at a time data[2] = data[@]+1;
— Recall: Computers can see and work with 1 data value at a time Address Memory Data
« Step 1: Allocate the array for a SPECIFIC, FIXED size ssgp [BT]
— Specifies the type, a name for the collection, and how many
should be allocated 5504 -1
— Values will be garbage, if not initialized 5508 104
e Step 2: Use the individual array elements as if they 5512 | cdcdabab
were normal variables but remember to use the square o o
: -
bracket indexing syntax (e.g. data[0]) cc7e T eaaia ~
— Loops provide a nice way to process all items one at a time!
5580 | 129328cH

Just as a dormitory is known by

one name ("McCarthy") but has char word[3] = "hi";
many dorm rooms, each with a word[@] ='a';
number to identify them o
("McCarthy 234")... Address Memory Data

5508 64 30 31 32 00

5510 | 64 07 81 88 21 00 00 00

...arrays have one name for the
whole collection of variables
and uses integer indexes to
specify a particular element.

e USCViterbi

School of Engineering

Initializing Arrays With Constants

Arrays can be initialized with
constants when they are declared

To do so, use an initialization list
which is a comma separated list of
constantsin {...}

— Exception to the minimalist C/C++
rule: If fewer values are provided
than the size of the array, remaining
elements will be filled with Os

If an initialization list is provided you
need not specify the size in the square
brackets (i.e. just use empty []) as the
compiler can figure out what size the
array must be by counting the initial
values

Index: [0] [11 [21 [31 [4]
int main()
{ data: 9 7 9 9 5
int data[5] = {9, 7, 8, 9, 5};
double dec[4] = {0.25, 0.3};
dec: 0.25 0.3 0 0
char stri[3] = {'C', 'S', '\0'};

// For char arrays easier to use
char str2[3] = "CS";
// str2 initialization is same as strl

} strl:

Index: [0 [[21 31 [4]

int main()
{ data: 9 7 9 9 5

int data[] = {9, 7, 8, 9, 5};
// allocates array of size 5

double dec[] = {0.25, 0.3, 0.18, 0.2};
// allocates array of size 4

char str2[] = "CS";
// allocates array of size 3

Specifying sizes is not necessary when using initial values list

e USCViterbi

School of Engineering

When Do We Need Arrays?

int main()

* You may think an array is needed any time we {
need to process a sequence of many related data int scores[166];
. // Get the data

items of the same type for(int i=0; i < 100; i++){

cin >> scores[i];

 But a better question is when do we need to }
. . A 11 1
store these related data items in an array? e age o vatues

for(int i=0; i < 100; i++){
sum += scores[i];

e Answer: When we need to revisit the data more

than once)
cout << sum / 100.0 << endl;

— If we just want to find the min/max or average we

could just get the data from the user and update) PO 8
the sum or min/max as we go and not need to
store each data item int main()

/\ ' {
{ ! 5 — Don't introduce arrays where they are not needed int val, sum = 0;

// Get the data & average it

// at the same time

for(int i=0; i < 100; i++){
cin >> val;

val sum += val;
Addr: 520 524 528 1116 }

Index: [0] [1] [2] [149]

cout << sum / 100.0 << endl;
scores: 96 84 93 90 sum return 0;

C/C++ ARRAY SIMILARITIES AND
DIFFERENCES WITH OTHER
LANGUAGES

USC Viterbi >
Coming From Other Languages*

* SIMILARITIES: Like Python and Java, C/C++ arrays
1. Use 0-based indexing (beginning element at index 0)

2. Pair nicely with loops that can iterate over all the elements of an array

* DIFFERENCES: Unlike Python and Java, C/C++ arrays

3. Are fixed size (size must be a constant) and then cannot grow easily after that

4. Do not remember their size (no 1len() or .length) nor bounds-check an access (so
accessing scores[1048726] will happily execute in C/C++ and likely cause a crash

N
' ' (aka the dreaded "Segmentation Fault")
{ - 5 5. Are NOT objects (no .append() or .length)in C/C++, but degenerate to pointers

(more to come soon)

import java.util.Scanner; def main(): int main()
scores = [0]*150 {
class Scores { for(i in range(len(scores)): int scores[150];
public static void main(String[] args) scores[i] = int(input()) // allocates 150 integers
{ # Do something with scores // with garbage values

Scanner in = new Scanner(System.in);
Execution starts here (weird)

int[] scores = new int[150]; if _name__ == "main": for(int i=0; i < 150; i++){

for(int i=0; i < scores.length; i++){ main() cin >> scores[i];
scores[i] = in.nextInt(); }

} // Do something with scores

// Do something with scores

) Java Python C++

e USCViterbi

School of Engineering

Fixed (Statically) Sized Arrays

int main()

e C/C++ needs to know the size of the |1 .
array when the program is int data[42]; // 42 known at
. . N // compile time
compiled (statically), not when it is

run (dynamically). %tB/:'?!!

* This implies the size of the array ot b ot Known at
must be ONE, FIXED (or constant) // compile time

size everytime the program is run

OxFFFFFFFf = 4GB-1

* What could go wrong if we did
allow the variable-size array
allocation?

— Why don't hotels let you wait and
specify how many rooms you want
once you arrive?

0xCc0000000

0x10000000

Memory (RAM)
Layout of Program

0x00000000 = 0

— Too large an allocation can cause

~

e USCViterbi

School of Engineering

Dealing With Variable Size Arrays

. int main()
e C/C++ needs to know the size of {
. int data[100]; // max needed
the array when the program is A
compiled, not when it is run. cin >> n;
 Two approaches if we cannot gor(int 1=0; 1 < n; i++)
know the necessary size at cin >> data[i]; // only use n
compile time:))
— Allocate a LARGE array of the
maximum size potentially needed int main() This approach will be
d th | t fit { discussed in detail in
and then use only a portion of it as e e 2 future unit.
the program runs cin >> n;
— (Preferred) Use dynamic memory brre et = rre STl
(i.e. the new operator) to allocate a Eor(int i=0; i < n; 1++)
variable size array cin >> data[i]; // only use n
* Major topic of discussion in a future }
unit (don't worry about it for now) , delete [] data; // needed cleanup

FUNCTIONS: A QUICK LOOK

Functions Overview

* Functions (aka procedures,
subroutines, or methods) are the
primary unit of code
decomposition and abstraction
in C/C++

— Decomposition: Breaking programs
into smaller units of code

— Abstraction: Generalizing an action
or concept without specifying how
the details are implemented

Map
Service

Validatelnputs()

RetrieveMap()

GetOverlayData(
)

7

Render()

Publish()

Function Decomposition

e USCViterbi

School of Engineering

Function Signatures/Prototypes

* Also called procedures or methods Max

 We think of a function as a blackbox (don't know a: | |
or care how it does the task internally) of code b | ‘
where we can provide inputs and get back a value

— Or think of it as a web-app (or form) where you supply
data to "named" inputs and get back a value

* In C/C++, a function has: aAA b
— A name A

— Zero or more input parameters max

— 0 or 1return (output) values

* We only specify the type

* Oreturn values is indicated with void type int max(int a, int b);

* The signature (or prototype) of a function
specifies these aspects so others know how to
"call" the function

Function Signature/Prototype

e USCViterbi

User Defined Functions

#tinclude <iostream>

* We can define our own functions | using namespace std;

in 3 steps int max(int a, int b); // prototype
« Step 1: "Declare" your function o
by placing the prototype A
(signature) at the top of your 5 Gl o e €
code
e Step 2: "Define" the function }
(actual code implementation) int max(int a, int b)
anywhere (above or below it s o)
main()) by placing the code in {} ey U D SEEERER SEE

return b; // immediately stops max

* Step 3: "Call" the function from)
main() or another function
passing in desired inputs and
using the return value (output)

e USCViterbi

Functions Intro

(,#include <iostream> ‘\ /,;nt factorial(int n))
#include <cmath> {
using namespace std; if(n >= 0){
if(n == 0) { return 1; }
// Function prototypes int £ = 1;
void printName(string name); for(int i = 1; i <= n; i++) {
int factorial(int n); f *= i
}

// Function definitions return f;
int main() }
{ // Return some value that will mean "error"

printName("Tina"); return -1;

cout << factorial(4) << endl; }

return 0;
} // Cannot have 2 return values

// double, double getCirclePerimAndArea(

void printName(string name) // double radius)
{ /7 A

if(name == ""){ // return 2*M_PI*radius, M_PI*radius*radius;

return; // }

}

cout << "Hello, " << name << endl;
}

- USCVlterbl
Calling a Function

#include <iostream>
using namespace std;

« We "call" or "invoke" the function by: int max(int a, int b); // prototype
— Using its name and place variables or int main()
constants that the current function {

int x, y, mx;

has declared in the order that we NG NG

want them to map to the

. /* Call the function */
paranneter/argunwentlmt

mx = max(x, y);
— First variable listed (x) will map to the cout << mx << endl;

first parameter (a) in the function's

: . /* Bad */
argument list, the second variable (y) mx = int max(x, y);
to the second parameter (b), etc. mx = max(int x, int y);
. . mx = max(a, b);
Don't max(x, y);
— Relist the return type in the call }
— Relist the type of the arguments int max(int a, int b)
: \ N {
— Use variable names that don't exist in if(a > b)
the current function return a; // immediately stops max
else
— Forget to save the returned value return b; // immediately stops max

e USCViterbi

School of Engineering

Calling a Function (2)

Statements in a function are executed
sequentially by default

Defined once, called over and over

Functions can call other functions can
call other functions

Example: Compute max of two
integers
Each call causes the program to pause
the current function, go to the called
function and execute its code with

the given arguments then return to
where the calling function left off,

Return value is substituted in place of
the function call

N

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{
int x, y;

cin >> x >> vy; // dlser types: -5 7

|
int mx =1 + max(X;
—cout << mx << endl;

%)
cout << max(9, x

}

;. // call max

< endl; // call max

int max(int a, int b)

{
if(a > b)
return a; fately stops max
else
return b; / immediately stops max
}

Program Output (if user types -5 7):

8
%)

e USCViterbi

School of Engineering

Passing Arrays As Arguments

Syntax:

— Step 1: In the prototype and
function definition:

e Put empty square brackets [|
after the formal parameter name
ifitis an array
(e.g. int data[]) ..OR..

e Put an * between the type and
formal parameter name (e.g. int*
data)

 We'll prefer int data[] for now
but int* data is JUST AS VALID
and we'll learn more about it
when we cover pointers)

— Step 2: When you call the
function, just provide the name
of the array as the actual
parameter

// Prototype
int init(int data[], int max_size);

int main()
{
int vals[100];
int len = init(vals, 100);
// some code to process the input
// in the vals array
for(int i=0; i < len; i++) {
cout << vals[i] << endl;

}

return 9;

}

int init(int data[], int max_size)
{
int i=0, num;
cin >> num;
while(i < max_size && num != -1) {
data[i] = num;
i++;
cin >> num;

}

return i;

}

MORE FUNCTION DETAILS

] USCVlterbl
Function Prototypes

int main()

* The compiler (g++/clang++) needs to {
. ' e ey double areal,area2,area3;
see a funCt|0n S prototype Or dEflnltlon areas3 = tpiangle_apea(5.9J3_5);
before it allows a call to that function X |?
 The compiler will scan a file from top to double triangle_area(double b, double h)
{
bottom return 0.5 * b * h;

}

* |f it encounters a call to a function
before the actual function definition it Compiler encounters a call to triangle_area()
. . . before it has seen its definition (Error!)
will complain...[Compile error]

) double triangle_area(double, double);
e ..Unless a prototype ("declaration") for int main()
the function is provided earlier {
double areal,area2,area3;
* A prototype only needs to include data , area3 = triangle_area(5.6,3.5);
types for the parameters but not their
names (ends with a ’;’) double triangle area(double b, double h)
{
— Prototype is used to check that you are return 0.5 * b * h;
calling it with the correct syntax (i.e. |
parameter data types & return type) Compiler sees a prototype and can check the
(like a menu @ a restaurant) syntax of any following call and expects the

definition later.

e USCViterbi

The Need For Prototypes

* You might say:

— "l don't like prototypes. I'll define each function before I call it"

* How would you order the functions in the program on the left if you did
NOT want to use prototypes?

— You can't!

int f1(int x)

{
return f2(x-1);
}
int f2(int y)
{

if(y <= @) return 1;
else return f1(y);

}

int main()

{
cout << f1(5) << endl;

}

int fi1(int x);
int f2(int y);

int main()

{

cout << f1(5) << endl;
}

int f1(int x)
{
return f2(x-1);

}

int f2(int y)

{
if(y <= 0) return 1;
else return f1(y);

}

e USCVlterb1.

School of Engine

Overloading: A Function's Slgnature

 What makes up a function signature unique:
— nName

— number and type of arguments

 No two functions are allowed to have the same signature

* The following 6 functions are unique and allowed to have
different implementations...
— int f1(int), int f1(double), int f1(int, double)
— void f1(char), double f1(), int f1(int, char)
 Return type does not make a function unique
— int f1() anddouble f1() are notunique and thus not
allowable
 Two functions with the same name are said to be

"overloaded"
— int max(int, int); double max(double, double);

e — 5 Viterbi =
Why Functions? Reuse (1)

Desired Program Output: #include <iostream>
using namespace std;
/17
//
/ int main()
{
11777 // Print triangle of 3 rows
/177 for(int i=0; i < 3; i++){
/1] for(int k=0; k < 3-i; k++){
// cout << '/';
/ }
cout << endl;
¥
* Functions are best used to perform 77 PR rERle of 5 e
H for(int i=0; i < 5; i++){
;od? thatdwould otherwise have to be (e P K 2 B T
uplicate cout << '/';
.)) ¥
e By "factoring" common code into its cout << endl;
own function and possibly &
parameterizing it we can make . return @;
flexible, reusable blocks of code

e USCViterbi

Why Functions? Reuse (2)

Desired Program Output: nElUgs QIBSITFeE
using namespace std;
/17
// void printTri(int rows);
;//// int main()
{
//// printTri(3);
/17 printTri(5);
// return 0;
/ }
void printTri(int rows)

* Here we have factored the common { CoR(eE A S < TerEs S
code into its own function fOEélj:t(E:?j,'f < rows-1; k++){
parameterized based on how many }

. cout << endl;
rows are desired }
¥

We could create 1 or 2 functions to do this
job

How could defining printRow allow for
reuse if chose to draw a different shape
(like a square)?

What else could we parameterize that

might make this code more reusable?
The fill character (' /")

But don't go too crazy

Program Output:

11/
//

/
/11177
/117
11/
//

/

&

e USCViterbi

School of Engineering

#include <iostream>
using namespace std;

void printRow(int n);
void printTri(int rows);

// prototype
// prototype

int main()

{
printTri(3);

/,,printTri(S);
return 0;

void printTri(int rows)

{

for(int i=0; i < rows; i++){

///,fprintRow(rows—i);
}

\%Bfa‘printRow(int n);

{

for(int i=0; i < n; i++){
cout << '/';
}

cout << endl;
¥

e USCViterbi

School of Engineering

Review: Program Decomposition

 Cisaprocedural language

— A function or procedure is the primary unit of
code organization, problem decomposition, and
abstraction

— Function is a unit of code that

e Can be called from other locations in the
program

* Can be passed variable inputs (a.k.a.
arguments or parameters)

e Can return a value to the code that called it
— Can be reused

 C++is considered an object-oriented language
(adds objected-oriented constructs to C) though still
supports a procedural approach

— A class or object is the primary unit of code
organization, problem decomposition, and
abstraction

— Can be reused

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/lego-png/download/52866
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Exercise

* To decompose a program into functions, try
listing the verbs or tasks that are performed to
solve the problem

— Model a card game as a series of tasks/procedures...

— A database representing a social network

Nested Call Practice

* Find characters in a string then use that function
to find how many vowels are in a string

— Exercise: draw-square
— Exercse: vowels

MORE FUNCTION EXAMPLES

e USCViterbi

Example Functions 1

Function Signature/Prototype
double calcInterest(double amt, int yrs, double rate);

main #include <iostream>
#include <cmath>
using namespace std;
amount 8 g ’
// prototype
double calcInterest(double amt, int yrs, double rate);
int main()
{
double amount, r;
‘ A ‘ cin >> amount >> r;
double interest = calcInterest(amount, 30, r);
amt r rate cout << "Interest: " << interest << endl;
return 9;
_ ¥
calcinterest interest
double calcInterest(double amt, int yrs, double rate)
{
return amt * pow(rate/12, 12*yrs);
_> 4,/// }

e USCVlterbl
Example Functions 2

Function Signature/Prototype

bool checkLogin(string exp_pwd);

#tinclude <iostream>

/ main \ using namespace std;

// prototype

pass bool checkLogin(string exp_pwd);
int main()
{
string pass = "Openl23!"; // secret password
bool valid;
' cout << "Enter your password: " << endl;
exp de valid = checkLogin(pass);
- if(valid == true) { cout << "Success!" << endl; }
return 0;
: i }
checkLogin valid
bool checkLogin(string exp pwd)
{

string actual;
cin »> actual;
return actual == exp_pwd;

- |

-] USCVlterbl
Example Functions 3

Function Signature/Prototype

void validatelLogin(string exp pwd);

#tinclude <iostream>

/ main \ using namespace std;

// prototype
pass void validateLogin(string exp pwd);

int main()

{

string pass = "Openl23!"; // secret password
bool valid;

' cout << "Enter your password: " << endl;

exp de validateLogin(pass);
— return 9;

}

checkLogin void validatelLogin(string exp_pwd)

{

string actual;

cin »> actual;

if(actual == exp pwd){ cout << "Success!" << endl; }
else { cout << "Incorrect!" << endl; }

e USCViterbi

Example Functions 4

Function Signature/Prototype

bool genCoinFlip();

. #include <iostream>
Mmalin #include <cstdlib>
using namespace std;

// prototype
bool genCoinFlip();

int main()

{

bool heads;

heads = genCoinFlip();

if(heads == true) { cout << "Heads!" << endl; }
else { cout << "Tails!" << endl; }
return 0;

}

genCoinFlip heads

bool genCoinFlip()

{
int r = rand(); // Generate random integer
return r%2;

}

SOLUTIONS

P {J5C Viterb{
Pass by Value Solution

void dec(int);
int main()

 Wait! But they have the same name, 'y’ b y = 3;

_ s . . dec(y);
What's in a name...Each function is a separate cout << y << endl;

entity and so two 'y' variables exist (one in main return ©;

and one in decrement it) \};oid dec(int y)

— The only way to communicate back to main is via | {
return }

y-=-5

— Try to change the code appropriately

* Main Point: Each function is a completely [i,

separate "sandbox" (i.e. is isolated from i“t main()
other functions and their data) and copies v e
of data are passed and returned between cout <<y << endl;
them return 9;
}
int dec(int y)
{
y--;
return y;

}

	Slide 1: CS103 Unit 1c – Arrays and Functions
	Slide 2: ARRAY BASICS
	Slide 3: Motivating Example
	Slide 4: Array Basics
	Slide 5: Index vs. Value
	Slide 6: Array Intro (1)
	Slide 7: Array Intro (2)
	Slide 8: Allocating and Accessing Arrays
	Slide 9: Initializing Arrays With Constants
	Slide 10: When Do We Need Arrays?
	Slide 11: C/C++ ARRAY SIMILARITIES AND DIFFERENCES WITH OTHER LANGUAGES
	Slide 12: Coming From Other Languages
	Slide 13: Fixed (Statically) Sized Arrays
	Slide 14: Dealing With Variable Size Arrays
	Slide 15: FUNCTIONS: A QUICK LOOK
	Slide 16: Functions Overview
	Slide 17: Function Signatures/Prototypes
	Slide 18: User Defined Functions
	Slide 19: Functions Intro
	Slide 20: Calling a Function
	Slide 21: Calling a Function (2)
	Slide 22: Passing Arrays As Arguments
	Slide 23: MORE FUNCTION DETAILS
	Slide 24: Function Prototypes
	Slide 25: The Need For Prototypes
	Slide 26: Overloading: A Function's Signature
	Slide 27: Why Functions? Reuse (1)
	Slide 28: Why Functions? Reuse (2)
	Slide 29: Reuse
	Slide 30: Review: Program Decomposition
	Slide 31: Exercise
	Slide 32: Nested Call Practice
	Slide 33: MORE FUNCTION EXAMPLES
	Slide 34: Example Functions 1
	Slide 35: Example Functions 2
	Slide 36: Example Functions 3
	Slide 37: Example Functions 4
	Slide 38: SOLUTIONS
	Slide 39: Pass by Value Solution

