
1b.1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CS 103 Unit 1b –
C++ Program/Control Flow

1b.2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Java and C++

• C++ uses the same control structures and syntax as
Java

– if, while, for, switch

• We expect you know each of the above structures
AND when and how to employ them to implement
computational approaches

• You should also be familiar with:

– break, continue

– The operation of nested loops (the inner loop performs
ALL of its iterations for each one iteration of the outer
loop)

1b.3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Do I Use a While Loop (1)

• When you DON'T know
in advance how many
times something should
repeat?

– How many guesses will
the user need before
they get it right?

#include <iostream>
using namespace std;
int main()
{
 int guess;

 int secretNum = /* some code */
 cin >> guess;
 while(guess != secretNum)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 }

 cout << "You got it!" << endl;
 return 0;
}

1b.4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Do I Use a While Loop (2)

• Whenever you see, hear,
or use the word 'until' in a
description

• Important Tip:

– "until x" = "while not x"

• until(x)while(!x)

– Ex: "Keep guessing until
you are correct" is the
same as "keep guessing
while you are NOT correct"

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 cin >> guess;
 while(guess != secretNum)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 }

 cout << "You got it!" << endl;
 return 0;
}

1b.5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When Do I Use a For Loop (1)

• When you DO KNOW in
advance (before the
loop starts) how many
times to iterate

– Usually, a constant or
variable that has been
calculated or input from
the user

// Program to output numbers
// 1 through n

#include <iostream>
using namespace std;
int main()
{
 int n;

 cin >> n;
 for(int i=1; i < n; i++)
 {
 cout << i << endl;
 }

 return 0;
}

1b.6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Turn 360
#include <iostream>
#include <iomanip>
using namespace std;

int main() {
 // Write your code here!

 return 0;
}

Clockwise
Counter-

clockwise

1b.7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise

• Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]

a. x >= -1 && x <= 5

b. -1 <= x <= 5

c. !(x < -1 || x > 5)

d. x > -2 && x < 6

See solutions at end of slides

See solutions at end of slides

http://www.polleverywhere.com/app
http://www.polleverywhere.com/app/help
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true

1b.8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Conditions and DeMorgan's

• DeMorgan's theorem says there are always
two ways to express a logic condition

• Write a condition that eats a sandwich if it has
neither tomato nor lettuce
– if (!tomato && !lettuce) { eat_sandwich(); }

– if (!(tomato || lettuce)) { eat_sandwich(); }

• DeMorgan's theorem:
– !a && !b  !(a || b)

– !a || !b  !(a && b)

• More details in EE 109 and CS 170

1b.9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recall: Scope
• Scope refers to the lifetime and

visibility of a variable
– Recall variables are just memory slots in

the computer…eventually the program
will reclaim those slots and the variables
will "die".

– How long are those slots allocated and
reserved for your use (i.e. what is their
lifetime)?

– What parts of your program can access
the variables

• In C/C++, a variable's scope is the
curly braces {} it is declared within

• Main Point: A variable dies at the
end of the {…} it was declared in

#include <iostream>
using namespace std;
int main()
{
 int i;
 cin >> i;

 if(i > 0){
 int temp = 2*i;
 cout << temp << endl;
 } // temp died here

 cout << temp << endl; // ERROR!
 f1();
 return 0;
} // i dies here

void f1()
{
 // is i visible here?
 cout << i << endl;
}

1b.10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Declaring the Inductive Variable

• The initialization statement can be
used to declare a control/inductive
variable, but its scope is ONLY the
for loop (even though it is not
technically declared in the {..} of
the for loop)
– Just realize that variable will die at

the end of the loop

• However, because it dies after the
first loop you can use that same
variable name in a subsequent loop

#include <iostream>
using namespace std;
int main()
{
 int n;
 cin >> n;
 for(int i=0; i < n; i++){
 cout << 3*i << endl;
 } // i dies here

 // won't compile
 cout << i << endl;

 // okay to reuse i
 for(int i=0; i < n; i++){
 cout << 4*i << endl;
 } // reincarnated i dies again

 return 0;
} // n dies here

1b.11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Nested Loops Example 1

• Key idea: Perform all
iterations of the inner loop
before starting the next
iteration of the outer loop

– Said another way: The inner
loop executes completely for
each single iteration of the
outer loop

• Trace through the execution
of this code and show what
will be printed

int main()
{
 for(int i=0; i < 2; i++){
 for(int j=0; j < 3; j++){

cout << i << " " << j << endl;
 }
 }
}

i
0
0
0
0
1
1
1
1

j
0
1
2
3
0
1
2
3

1b.12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understand Your Bodies

• When you write loops
write a comment as to
what the body of each
loop means in an abstract
sense

– The body of the outer loop
represents 1 game (and we
repeat that over and over)

– The body of the inner loop
represents 1 turn (and we
repeat turn after turn)

int main()
{
 int secret, guess;
 char again = 'y';

 while(again == 'y') {
 // A single game

 // Choose secret num. 0-19
 secret = rand() % 20;
 guess = -1;
 // inner loop
 while(guess != secret) {
 // A turn of the game
 cout << "Enter guess: ";
 cin >> guess;
 }
 cout << "Win!" << endl;
 cout << "Play again (y/n): ";
 cin >> again;
 }
 return 0;
}

1

g
a
m
e

1

t
u
r
n

1b.13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Computing ex

#include <iostream>
using namespace std;

int main()
{
 // Starter code: modify the lines below
 double x;
 cin >> x;
 double x_to_i = 1;
 int i_fact = 1;
 double e_x = 1;
 for(int i=1; i < 10; i++){
 x_to_i *= x;
 i_fact *= i;
 e_x += x_to_i / i_fact;
 }
 cout << e_x << endl;
 return 0;
}

1b.14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MODULE 4: CONDITIONAL
STRUCTURES

Comparison, Logical Operators, if statements, switch statements

1b.15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Comparison Operators

• To perform comparison of variables,
constants, or expressions in C/C++ we can use
the basic 6 comparison operators

Operator(s) Meaning Example

== Equality if(x == y)

!= Inequality if(x != 7)

< Less-than if(x < 0)

> Greater-than if(y > x)

<= Less-than OR equal to if(x <= -3)

>= Greater-than OR equal to if(y >= 2)

1b.16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

If…Else If…Else

• Use to execute only
certain portions of code

• else if is optional

– Can have any number of
else if statements

• else is optional

• { … } indicate code
associated with the if,
else if, else block

if (condition1)
{
 // executed if condition1 is true
}
else if (condition2)
{
 // executed if condition2 is true
 // but condition1 was false
}
else if (condition3)
{
 // executed if condition3 is true
 // but condition1 and condition2
 // were false
}
else
{
 // executed if neither condition
 // above is true
}

if elseelse ifelse if

optional

1b.17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Mutually Exclusive Conditions

• What will each implementation print if 'grade' is 95?

if (grade >= 90)
{
 cout << "A range" << endl;
}
if (grade >= 80)
{
 cout << "B range" << endl;
}
if (grade >= 70)
{
 cout << "C range" << endl;
}
if (grade >= 60)
{
 cout << "D range" << endl;
}
else
{
 cout << "Not gonna happen!" << endl;
}

if (grade >= 90)
{
 cout << "A range" << endl;
}
else if (grade >= 80)
{
 cout << "B range" << endl;
}
else if (grade >= 70)
{
 cout << "C range" << endl;
}
else if (grade >= 60)
{
 cout << "D range" << endl;
}
else
{
 cout << "Not gonna happen!" << endl;
}

1b.18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

If…Else If…Else

• Guideline:

– If various blocks of code
are mutually exclusive
then put them in an
if..
else if..
else
structure and not many
individual
if..
if..
if..
statements

// BAD!
if (x < 0) {
 cout << "negative" << endl;
}
if (x >= 0) {
 cout << "positive" << endl;
}

// GOOD!
if (x < 0) {
 cout << "negative" << endl;
}
else {
 cout << "positive" << endl;
}

1b.19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Logical Operators

• We can create compound conditions by using
the logical AND, OR, and NOT operator

Operator(s) Meaning Example

&& AND if((x==0) && (y==0))

|| OR if((x < 0) || (y < 0))

! NOT if(!x)

1b.20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Logical AND, OR, NOT

• The following tables show how the logical operations
are evaluated under any set of values

• AND:

– All inputs must be true for resulting expression to be true

– If even one is false, the condition is fails (false)

• OR:

– If any input is true the condition evaluates to true

A B AND

False False False

False True False

True False False

True True True

A B OR

False False False

False True True

True False True

True True True

A NOT

False True

True False

1b.21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise

• Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]

a. x >= -1 && x <= 5

b. -1 <= x <= 5

c. !(x < -1 || x > 5)

d. x > -2 && x < 6

See solutions at end of slides

See solutions at end of slides

http://www.polleverywhere.com/app
http://www.polleverywhere.com/app/help
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true

1b.22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Conditions and DeMorgan's

• DeMorgan's theorem says there are always
two ways to express a logic condition

• Write a condition that eats a sandwich if it has
neither tomato nor lettuce
– if (!tomato && !lettuce) { eat_sandwich(); }

– if (!(tomato || lettuce)) { eat_sandwich(); }

• DeMorgan's theorem:
– !a && !b  !(a || b)

– !a || !b  !(a && b)

• More details in EE 109 and CS 170

1b.23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Timeout: In-Class Exercises

• nth

1b.24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common Mistakes 1
• Using assignment operator (=)

rather than equality check
operator (==)
– If you accidentally use '=', it will

convert the assigned value to a
Boolean

– Recall: The computer uses
• 0 to mean false

• Non-zero to mean true

• Using multiple if statements
rather than if..else or if..else

if statements
– Two 'if' statements imply both could

be true while 'if..else' implies only
one

int main()
{
 int x, y;
 cin >> x >> y;

 // Wrong!
 if(x = 0) { /* some code */ }
 // Right!
 if(x == 0) { /* some code */ }

 // Wrong!
 if(x != y) { x = 5; }
 if(x == y) { y = 7; }

 // Right
 if(x != y) { x = 5; }
 else { y = 7; }
 return 0;
}

When comparing with a constant, many companies
and style guides recommend you flip the order to:
 if(0 == x) { /* some code */ }
This, way the code won't compile if you accidentally
write:
 if(0 = x) // won't compile!

1b.25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common Mistakes 2

• All conditions must be
formulated as a
combination of
comparisons of two values
at a time

• Recall: The computer uses

– 0 to mean false

– Non-zero to mean true

int main()
{
 int x, y;
 cin >> x >> y;

 // Wrong!
 if(0 <= x <= 9)
 { /* some code */ }
 // Right!
 if((0 <= x) && (x <= 9))
 { /* some code */ }

 // Wrong!
 if(x == 0 || 1)
 { /* some code */ }
 // Right!
 if((x == 0) || (x == 1))
 { /* some code */ }
 return 0;
}

1b.26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Other Selection Structures

• C/C++ (and some other languages) provide
alternative structures to if..else

– switch (case) statement

– Ternary operator (cond ? x : y)

• We will not require knowledge of these but
simply recommend you briefly look over this
material

– Slides covering these structures are available at
the end of the packet

1b.27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MODULE 5: ITERATIVE STRUCTURES

while, do..while, and for Loops

1b.28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Motivation for Loops

• Take a simple task such
as outputting the first
1000 positive integers

– We could write 1000
cout statements

– Yikes! We could do it
but it would be painful!

• Or we could use a loop

#include <iostream>
using namespace std;
int main()
{
 cout << 1 << endl;
 cout << 2 << endl;
 cout << 3 << endl;
 // hundreds more cout statements

 cout << 999 << endl;
 cout << 1000 << endl;

 return 0;
}

#include <iostream>
using namespace std;
int main()
{
 for(int i=1; i <= 1000; i+=1)
 {
 cout << i << endl;
 }
 return 0;
}

1b.29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

4 Necessary Parts of a Loop
• Loops involve writing a task to be repeated

• Regardless of that task, there must be
 4 parts to a make a loop work

• Initialization

– Initialization of the variable(s) that will
control how many iterations (repetitions)
the loop will executed

• Condition

– Condition to decide whether to repeat the
task or stop the loop

• Body

– Code to repeat for each iteration

• Update

– Modify the variable(s) related to the
condition

Condition
(e.g. i <= 1000)

Body
(cout << i << endl;)

True

Code after the loop

Initialization
(e.g. i = 1)

F
a

ls
e

Update Statement
(e.g. i += 1)

Loop

1b.30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Types of Loops

• There are 2 (and a half) kinds of loops

• while (do..while) loops and for loops

– Let's look at the syntax of each

int i = 1;
while (i <= 1000)
{
 // repetitive task
 cout << i << endl;
 i++; // update
}
// following statements

for (int i = 1; i <= 1000; i++)
{
 cout << i << endl;
}
// following statements

There is a variant of the while loop which is
the do..while loop which we'll cover later.

4 parts:

• Initialization

• Condition

• Body

• Update

1

3

4

9

T T F
2

6

75 8

1b.31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Which Kind of Loop

• Use a while loop:

– When you DON'T know how
many times to iterate before
the loop starts.

• How many guesses will the
user need before they get it
right?

– When you use "until" (see
next slide)

• Use a for loop:

– When you DO know the
number of times to iterate in
BEFORE you start the loop.

#include <iostream>
using namespace std;
int main()
{
 int guess;

 int secretNum = /* some code */
 cin >> guess;
 while(guess != secretNum)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 }

 cout << "You got it!" << endl;
 return 0;
}

1b.32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

"Until" and "While not"

• Whenever you see or use
the word 'until' in a
description

• Important Tip:

– "until x" = "while not x"

– Saying "keep guessing until
you are correct" is the
same as "keep guessing
while you are not correct"

#include <iostream>
using namespace std;
int main()
{
 int guess;
 int secretNum = /* some code */
 cin >> guess;
 while(guess != secretNum)
 {
 cout << "Enter guess: " << endl;
 cin >> guess;
 }

 cout << "You got it!" << endl;
 return 0;
}

1b.33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

NESTED LOOPS

1b.34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Nested Loop Sequencing

• Key Idea: The inner loop runs in its entirety for each
iteration of the outer loop

while (cond1) {
 // code1
 while(cond2) {
 // code 2
 }
 // code3
}

cond1

code1
True

False

Following
statements

cond2

code2

code3

True

False

1

T FCond1:

T T FCond2:

T FCond2:

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

T

1b.35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Nested Loops Example 1

• When you write loops
consider what the body
of each loop means in
an abstract sense

– The body of the outer
loop represents 1 game
(and we repeat that
over and over)

– The body of the inner
loop represents 1 turn
(and we repeat turn
after turn)

int main()
{
 int secret, guess;
 char again = 'y';
 // outer loop
 while(again == 'y')
 { // Choose secret num. 0-19
 secret = rand() % 20;
 guess = -1;
 // inner loop
 while(guess != secret)
 {
 cout << "Enter guess: ";
 cin >> guess;
 }
 cout << "Win!" << endl;
 cout << "Play again (y/n): ";
 cin >> again;
 }
 return 0;
}

1

g
a
m
e

1

t
u
r
n

1b.36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Nested Loops Example 2

• Key idea: Perform all
iterations of the inner loop
before starting the next
iteration of the outer loop

– Said another way: The inner
loop executes completely for
each single iteration of the
outer loop

• Trace through the execution
of this code and show what
will be printed

int main()
{
 for(int i=0; i < 2; i++){
 for(int j=0; j < 3; j++){

cout << i << " " << j << endl;
 }
 }
}

i
0
0
0
0
1
1
1
1

j
0
1
2
3
0
1
2
3

1b.37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Tips

• Nested loops often help us represent and
process multi-dimensional data

– 2 loops allow us to process data that corresponds
to 2 dimension (i.e. rows/columns)

– 3 loops allow us to process data that corresponds
to 3 dimensions (i.e. rows/columns/planes)

1b.38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I/O Manipulators
• Manipulators control HOW cout handles

certain output options and how cin
interprets the input data (but print
nothing themselves)

– Must #include <iomanip>

• Common examples

– setw(n): Separate consecutive outputs by
n spaces

– setprecision(n): Use n digits to
display doubles (both the integral +
decimal parts)

– fixed: Uses the precision for only the
digits after the decimal point

– boolalpha: Show Booleans as true and
false rather than 1 and 0, respectively

• Separated by << or >> and used inline with
actual data

• Other than setw, manipulators continue
to apply to other output until changed

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
 double pi = 3.14159;

cout << pi << endl;
// Prints: 3.14159

cout << setprecision(2) << fixed << pi << endl;
// Prints: 3.14

 return 0;
}

http://en.cppreference.com/w/cpp/io/manip

See "iomanip" in-class exercise to
explore various options

http://en.cppreference.com/w/cpp/io/manip

1b.39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

break statement

• break
– Ends the current loop immediately and continues execution after its last

statement

– Only stops the INNER-MOST containing loop, not ALL nested loops.

• Consider two alternatives for stopping a loop if an invalid
(negative) guess is entered

bool done = false;
while (done == false) {
 cout << "Enter guess: " << endl;
 cin >> guess;
 if(guess < 0)
 done = true;
 }
 else {
 // Process guess
 }
}

bool done = false;
while (done == false) {
 cout << "Enter guess: " << endl;
 cin >> guess;
 if(guess < 0)
 break;
 }
 // Process guess
 // If guess < 0 we would skip this
}

1b.40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

continue statement
• continue

– Ends the current loop [not if statement] immediately and
continues execution after its last statement

• Consider two alternatives for repeating a loop to get a
new guess if an invalid (negative) guess is entered

– Often continue can be eliminated by changing the if
condition

bool done = false;
while (done == false) {
 cout << "Enter guess: " << endl;
 cin >> guess;
 if(guess >= 0) {
 // Process Guess
 }
}

bool done = false;
while(done == false) {
 cout << "Enter guess: " << endl;
 cin >> guess;
 if(guess < 0){
 continue;
 }
 // Process guess (only here if guess>=0)
}

1b.41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ODDS AND ENDS REGARDING
C/C++ LOOPS

1b.42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Recall: Scope
• Scope refers to the lifetime and

visibility of a variable
– Recall variables are just memory slots in

the computer…eventually the program
will reclaim those slots and the variables
will "die".

– How long are those slots allocated and
reserved for your use (i.e. what is their
lifetime)?

– What parts of your program can access
the variables

• In C/C++, a variable's scope is the
curly braces {} it is declared within

• Main Point: A variable dies at the
end of the {…} it was declared in

#include <iostream>
using namespace std;
int main()
{
 int i;
 cin >> i;

 if(i > 0){
 int temp = 2*i;
 cout << temp << endl;
 } // temp died here

 cout << temp << endl; // ERROR!
 f1();
 return 0;
} // i dies here

void f1()
{
 // is i visible here?
 cout << i << endl;
}

1b.43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Declaring the Inductive Variable

• The initialization statement can be
used to declare a control/inductive
variable, but its scope is ONLY the
for loop (even though it is not
technically declared in the {..} of
the for loop)
– Just realize that variable will die at

the end of the loop

• However, because it dies after the
first loop you can use that same
variable name in a subsequent loop

#include <iostream>
using namespace std;
int main()
{
 int n;
 cin >> n;
 for(int i=0; i < n; i++){
 cout << 3*i << endl;
 } // i dies here

 // won't compile
 cout << i << endl;

 // okay to reuse i
 for(int i=0; i < n; i++){
 cout << 4*i << endl;
 } // reincarnated i dies again

 return 0;
} // n dies here

1b.44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The Loops That Keep On Giving
• There's a problem with the loops below

• We all write "infinite" loops at one time or another

• Infinite loops never quit

• When you do write such a program, just type "Ctrl-C" at the
terminal to halt the program

#include <iostream>
using namespace std;
int main()
{ int val;
 bool again = true;
 while(again = true){
 cout << "Enter an int or -1 to quit";
 cin >> val;
 if(val == -1) {
 again = false;
 }
 }
 return 0;
}

#include <iostream>
using namespace std;
int main()
{
 int i=0;
 while(i < 10) {
 cout << i << endl;
 i + 1;
 }
 return 0;
}

http://blog.codinghorror.com/rubber-duck-problem-solving/

http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/

1b.45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The Loops That Keep On Giving
• There's a problem with the loop below

• We all write "infinite" loops at one time or another

• Infinite loops never quit

• When you do write such a program, just type "Ctrl-C" at the
terminal to halt the program

#include <iostream>
using namespace std;
int main()
{ int val;
 bool again = true;
 while(again == true){
 cout << "Enter an int or -1 to quit";
 cin >> val;
 if(val == -1) {
 again = false;
 }
 }
 return 0;
}

#include <iostream>
using namespace std;
int main()
{
 int i=0;
 while(i < 10) {
 cout << i << endl;
 i = i + 1;
 }
 return 0;
}

http://blog.codinghorror.com/rubber-duck-problem-solving/

http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/

1b.46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

1b.47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise

• Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]

a. x >= -1 && x <= 5

b. -1 <= x <= 5

c. !(x < -1 || x > 5)

d. x > -2 && x < 6

See solutions at end of slides

See solutions at end of slides

http://www.polleverywhere.com/app
http://www.polleverywhere.com/app/help
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true

1b.48

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OTHER SELECTION STRUCTURES

1b.49

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Switch (Study on own)
• Again used to execute only

certain blocks of code

• Cases must be a constant

• Best used to select an action
when an expression could be 1
of a set of constant values

• { … } around entire set of cases
and not individual case

• Computer will execute code
until a break statement is
encountered
– Allows multiple cases to be

combined

• Default statement is like an else
statement

switch(expr) // expr must eval to an int
{

 case 0:
 // code executed when expr == 0
 break;
 case 1:
 // code executed when expr == 1
 break;
 case 2:
 case 3:
 case 4:
 // code executed when expr is
 // 2, 3, or 4
 break;
 default:
 // code executed when no other
 // case is executed
 break;

}

1b.50

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Switch (Study on own)

• What if a break is
forgotten?
– All code underneath will be

executed until another
break is encountered

switch(expr) // expr must eval to an int
{

 case 0:
 // code executed when expr == 0
 break;
 case 1:
 // code executed when expr == 1
 // what if break was commented
 // break;
 case 2:
 case 3:
 case 4:
 // code executed when expr is
 // 3, 4 or 5
 break;
 default:
 // code executed when no other
 // case is executed
 break;

}

1b.51

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

? Operator (Study on own)

• A simple if..else statement can be expressed with the
? operator
– int x = (y > z) ? 2 : 1;

– Same as:
if(y > z) x = 2;

else x = 1;

• Syntax: (condition) ? expr_if_true : expr_if_false;

• Meaning: the expression will result/return
expr_if_true if condition evaluates to true or
expr_if_false if condition evaluates to false

1b.52

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

LOOP STRUCTURES

1b.53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Type 1: while Loops

• A while loop is essentially a repeating 'if' statement

initialization
while (condition1)
{

 // Body: if condition1 is true

} // go to top, eval cond1 again

// following statements
// only gets here when cond1 is false

2

4

5

7

8

9

T T F

1

Condition
(e.g. i < 1000)

Loop task
(cout << i << endl;)

True

Code after the loop

Initialization
(e.g. i = 0)

F
a
ls

e

Update Statement
(e.g. i += 1)

Loop

3 6

int i=0;
while (i < 1000)
{
 cout << i << endl;
 i++;
}

// following statements

While loop printing 0 to 999

1b.54

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

while vs. do..while Loops
• while loops have two

variations: while and do..while

• while
– Cond is evaluated first

– Body only executed if condition is
true (maybe 0 times)

• do..while
– Body is executed at least once

– Cond is evaluated

– Body is repeated if cond is true

// While:
while(condition)
{
 // code to be repeated
 // (should update condition)
}

// Do while:
do {
 // code to be repeated
 // (should update condition)
} while(condition);

1b.55

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Accept Guess

Correct

Draw out a flow chart of the

desired sequence and look

for the repetitive sequence

True

False

Using Flow Charts to Find Loops

Post-Loop
Code

Accept Guess

Correct

False

Accept Guess

Correct

False

D
o
..

W
h
ile

 L
o
o
p

Here we check at the end

to see if we should

repeat…perfect for a

do..while loop

do

 { accept_guess }

while (! correct)

1b.56

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Accept Guess

Correct

Draw out a flow chart of the

desired sequence and look

for the repetitive sequence

Post-Loop
Code

True

False

W
h
ile

 l
o
o
p

Finding the ‘while’ Structure

Accept Guess

Not
Correct

True

Accept Guess

But a while loop

checks at the

beginning of the

loop, so we must

accept one guess

before starting:

accept_guess

while(! correct)

 { accept_guess }

Post-Loop
Code

Accept Guess

Correct

False

Accept Guess

Correct

False

False

Here we check at the end

to see if we should

repeat…perfect for a

do..while loop

do

 { accept_guess }

while (! correct)

w
h
ile

 l
o
o
p

1b.57

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hand Tracing (1)
• For the first program,

trace through the code
and show all changes to i
for:

– n = 2;

• For the second program,
trace through the code
and show the output for:

– t = PI/2, T = 2*PI

int main()
{
 int n;
 cin >> n;
 for(int i = -n; i <= n; i++)
 {
 cout << i << endl;
 }
 return 0;
}

int main()
{
 double t, T;
 cin >> t >> T;
 for(double th = 0 ; th < T; th += t)
 {
 cout << sin(th) << endl;
 }
 return 0;
}

1b.58

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hand Tracing (2)
• For the first program,

trace through the code
and show all changes to i
and y for:

– x = 10

– y = 2

• For the second program,
trace through the code
and show all changes to i
and y for:

– x = 4

– y = 11

int main()
{
 int x, y;
 cin >> x >> y;
 for(int i=1; i <= x; i=i+y)
 {
 cout << i << endl;
 y++;
 }
 return 0;
}

int main()
{
 int x, y;
 cin >> x >> y;
 for(; x < y; x++)
 {
 cout << x << " " << y << endl;
 y--;
 }
 return 0;
}

1b.59

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

bools, ints, and Conditions
• Loops & conditional statements require a condition to be

evaluated resulting in a true or false result.

• In C/C++…
– 0 means false / Non-Zero means true

– bool type available in C++ => ‘true’ and ‘false’ keywords can be used
but internally

• true = non-zero (usually 1) and

• false = 0

• Any place a condition would be used, a bool or int type can be
used and will be interpreted as bool

• Example:

int x = 100;
while(x)
 { x--; }

bool done = false;
while(! done)
 { cin >> done; }

int x=100, y=3, z=0;
if(!x || (y && !z))
 { /* code */ }

1b.60

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Single Statement Bodies

• The Rule: Place code for an if,
else if, or else construct in curly
braces { … }

• The Exception:
– An if or else construct with a single

statement body does not require
{ … }

– Another if counts as a single
statement

• However, you should ALWAYS
prefer { … } even in single
statement bodies so that editing
later does not introduce bugs

if (x == 5)
 y += 2;
else
 y -= 3;
cout << "done1" << endl;

while (x != 0)
 x--;
cout << "done2" << endl;

for(int i=0; i < 10; i++)
 if(i % 2 == 0)
 cout << i << endl;
cout << "done3" << endl;

1b.61

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Solutions 1

-2
-1
0
1
2

Program Output for input of 2:

0
1
0
-1

Program Output for input π /2 and 2π:

int main()
{
 int n;
 cin >> n;
 for(int i = -n; i <= n; i++)
 {
 cout << i << endl;
 }
 return 0;
}

int main()
{
 double t, T;
 cin >> t >> T;
 for(double th = 0 ; th < T; th += t)
 {
 cout << sin(th) << endl;
 }
 return 0;
}

1b.62

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Solutions 2

1
4
8

Program Output for input of 10 2:

4 11
5 10
6 9
7 8

Program Output for input 4 11:

int main()
{
 int x, y;
 cin >> x >> y;
 for(int i=1; i <= x; i=i+y)
 {
 cout << i << endl;
 y++;
 }
 return 0;
}

int main()
{
 int x, y;
 cin >> x >> y;
 for(; x < y; x++)
 {
 cout << x << " " << y << endl;
 y--;
 }
 return 0;
}

	Slide 1: CS 103 Unit 1b – C++ Program/Control Flow
	Slide 2: Java and C++
	Slide 3: When Do I Use a While Loop (1)
	Slide 4: When Do I Use a While Loop (2)
	Slide 5: When Do I Use a For Loop (1)
	Slide 6: Turn 360
	Slide 7: Exercise
	Slide 8: Conditions and DeMorgan's
	Slide 9: Recall: Scope
	Slide 10: Declaring the Inductive Variable
	Slide 11: Nested Loops Example 1
	Slide 12: Understand Your Bodies
	Slide 13: Computing ex
	Slide 14: Module 4: CONDITIONAL STRUCTURES
	Slide 15: Comparison Operators
	Slide 16: If…Else If…Else
	Slide 17: Mutually Exclusive Conditions
	Slide 18: If…Else If…Else
	Slide 19: Logical Operators
	Slide 20: Logical AND, OR, NOT
	Slide 21: Exercise
	Slide 22: Conditions and DeMorgan's
	Slide 23: Timeout: In-Class Exercises
	Slide 24: Common Mistakes 1
	Slide 25: Common Mistakes 2
	Slide 26: Other Selection Structures
	Slide 27: Module 5: ITERATIVE STRUCTURES
	Slide 28: Motivation for Loops
	Slide 29: 4 Necessary Parts of a Loop
	Slide 30: Types of Loops
	Slide 31: Which Kind of Loop
	Slide 32: "Until" and "While not"
	Slide 33: Nested Loops
	Slide 34: Nested Loop Sequencing
	Slide 35: Nested Loops Example 1
	Slide 36: Nested Loops Example 2
	Slide 37: Tips
	Slide 38: I/O Manipulators
	Slide 39: break statement
	Slide 40: continue statement
	Slide 41: Odds and Ends regarding C/C++ Loops
	Slide 42: Recall: Scope
	Slide 43: Declaring the Inductive Variable
	Slide 44: The Loops That Keep On Giving
	Slide 45: The Loops That Keep On Giving
	Slide 46: Solutions
	Slide 47: Exercise
	Slide 48: Other Selection Structures
	Slide 49: Switch (Study on own)
	Slide 50: Switch (Study on own)
	Slide 51: ? Operator (Study on own)
	Slide 52: Loop Structures
	Slide 53: Type 1: while Loops
	Slide 54: while vs. do..while Loops
	Slide 55: Using Flow Charts to Find Loops
	Slide 56: Finding the ‘while’ Structure
	Slide 57: Hand Tracing (1)
	Slide 58: Hand Tracing (2)
	Slide 59: bools, ints, and Conditions
	Slide 60: Single Statement Bodies
	Slide 61: Solutions 1
	Slide 62: Solutions 2

