CS 103 Unit 1b —
C++ Program/Control Flow

Java and C++

* C++ uses the same control structures and syntax as
Java
— 1f,while, for, switch
* We expect you know each of the above structures

AND when and how to employ them to implement
computational approaches

 You should also be familiar with:

— break, continue

— The operation of nested loops (the inner loop performs
ALL of its iterations for each one iteration of the outer
loop)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

When Do | Use a While Loop (1)

Y When you DON'T know #include <iostream>

using namespace std;
int main()

in advance how many |
times something should |~~~) .
repeat? cin >> guess;

int guess;

while(guess != secretNum)
— How many guesses will { cout << "Enter guess: " << endl;
the user need before Lo
they get it right? cout << "You got it!" << endl;
: return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

When Do | Use a While Loop (2)

) Whenever you See, hea r’ #include <iostream>

using namespace std;
int main()

or use the word 'until' ina ||

int guess;

descnpt]On int secretNum = /* some code */
cin >> guess;
. while(guess != secretNum)
* Important Tip: (
cout << "Enter guess: " << endl;
— "until x" = "while not x" Cin o uess;
° Untll(X)<:>WhllE(|X) cout << "You got it!" << endl;
n . . return 0;
— Ex: "Keep guessing until }

you are correct" is the
same as "keep guessing
while you are NOT correct”

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

When Do | Use a For Loop (1)

° When yOU DO KNOW in // Program to output numbers
// 1 through n
advance (before the N |
include <iostream>
|00p Starts) hOW many using namespace std;

int main()

times to iterate t
int n;
— Usually, a constant or cin > n;
variable that has been 1{‘°r(int i=1; i < n; i++)
calculated or input from cout << i << endl;
the user)
return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering
Turn 360
Ginclude <iostream> \

#include <iomanip>
using namespace std;

int main() {
// Write your code here!

-

Counter-

N

Clockwise

clockwise
7 | RV

return 0;

}

- /

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise

* Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]
a. X >= -1 && x <=5
b. -1 <= x <=5
c. !'(x<-1]] x>5)
d. X > -2 && X < 6

See solutions at end of slides

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

http://www.polleverywhere.com/app
http://www.polleverywhere.com/app/help
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true

Conditions and DeMorgan's

* DeMorgan's theorem says there are always
two ways to express a logic condition

e Write a condition that eats a sandwich if it has

neither tomato nor lettuce

— if (!tomato && !lettuce) { eat_sandwich(); }
— if (!(tomato || lettuce)) { eat_sandwich(); }

* DeMorgan's theorem:
—1a & 'b ® !(a || b)
—la || 'b ©® !(a & b)

e More details in EE 109 and CS 170

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi ‘
Recall: Scope

#include <iostream>
using namespace std;

* Scope refers to the lifetime and

visibility of a variable ?nt main()
— Recall variables are just memory slots in int i;
the computer...eventually the program cin >> 15
will reclaim those slots and the variables if(i > 0){
will "die". int temp = 2*i;
cout << temp << endl;
— How long are those slots allocated and } // temp died here
r'ese'rved for your use (i.e. what is their e
lifetime)? £1(0);
— What parts of your program can access) ;ft;rgigé hare
the variables
. | . void f1()
* |In C/C++, a variable's scope is the {
.y - cly - // is i visible here?
curly braces {} it is declared within S

}

 Main Point: A variable dies at the
end of the {...} it was declared in

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

Declaring the Inductive Variable

#include <iostream>

* Theinitialization statement can be | [7" " (00 o tas

used to declare a control/inductive ?nt main()
variable, but its scope is ONLY the int n;

for loop (even though it is not cin >> 1

for(int 1=0; i < n; i++){
i i cout << 3*i << endl;
technically declared in the {..} of L e s e
the for loop)
. . . . // won't compile
— Just realize that variable will die at cout << i << endl;
the end of the loop

// okay to reuse i

* However, because it dies after the for(int i=0; i < nj i++){
. cout << 4*i << endl;
first loop you can use that same } // reincarnated i dies again

variable name in a subsequent loop | cturn o;
} // n dies here

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Nested Loops Example 1

* Key idea: Perform all
iterations of the inner loop
before starting the next
iteration of the outer loop

— Said another way: The inner
loop executes completely for
each single iteration of the
outer loop

* Trace through the execution
of this code and show what

will be printed

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()

{

for(int i=0; i < 2; i++){
for(int j=0; j < 3; j++){

}
}
}

cout << 1 << " "

<< j << endl;

R RR RO OO

WINPFRPO® WNRO®.

N (5 Vierbi "%
Understand Your Bodies

int main()
* When you write loops " int secret, guess;
write a comment as to S L S S
what the body of each poneten T Y
loop means in an abstract 1) choose secret num. 619
sense et T a0 % 2

— The body of the outerloop & || Lhite(guess 1= secret) ¢
represents 1 game (and we > £ Lot <o menten aumens v
repeat that over and over) :‘[} cin >> guess;

— The body of the inner loop cout << "Win!" << endl;
represents 1 turn (and we | sy o R
repeat turn after turn) Y o

)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- 00000000 USCViterbi .
Computing e*
//;;nclude <iostream> ‘\\\

using namespace std; . 2 3 A

int main()

{

// Starter code: modify the lines below
double x;
cin >> Xx;
double x to i = 1;
int i_fact = 1;
double e x = 1;
for(int i=1; i < 10; i++){
x_to i *= x;
i fact *= i;
e X += x_to 1 / i fact;

}
cout << e_x << endl;
return 0;

\L J

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Comparison, Logical Operators, if statements, switch statements

MODULE 4: CONDITIONAL
STRUCTURES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Comparison Operators

* To perform comparison of variables,
constants, or expressions in C/C++ we can use
the basic 6 comparison operators

Operator(s) Meaning Example
e Equality if(x == vy)
= Inequality if(x 1= 7)
< Less-than if(x < 9)
> Greater-than if(y > x)
<= Less-than OR equal to if(x <= -3)

>= Greater-than OR equal to if(y >= 2)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

If...Else If...Else

* Use to execute only

certain portions of code

« else if is optional

— Can have any number of

else if statements
 elseis optional
 {..}indicate code

associated with the if,

else if, else block

optional

else if else if

© 2022 b' %ecmshar , or distributed.

dse

if (conditionl)

{
// executed if conditionl is true

}

else if (condition2)

{
// executed if condition2 1is true
// but conditionl was false

}

else if (condition3)

{
// executed if condition3 1is true
// but conditionl and condition2
// were false

}

else

{

// executed if neither condition
// above 1is true

i, TS("Viterbi

School of Engineering

Mutually Exclusive Conditions

 What will each implementation print if 'grade’ is 957

if (grade >= 90)
{

cout << "A range" <«

}
else if (grade >= 80)

{

cout << "B range" <<

}
else if (grade >= 70)

{

cout << "C range" <<

}
else if (grade >= 60)

{

cout << "D range" <<

}

else

{
}

cout << "Not gonna happen!" << endl;

endl;

endl;

endl;

endl;

if (grade
{

cout <<
}
if (grade
{

cout <<
}
if (grade
{

cout <<
}
if (grade
{

cout <<
}
else
{

cout <<
}

>= 90)

"A range"

>= 80)

"B range"

>= 70)

"C range"

>= 60)

"D range"

<<

<<

<<

<<

endl;

endl;

endl;

endl;

"Not gonna happen!" << endl;

i, TS("Viterbi

If...Else If...Else

// BAD!
 Guideline: if (x<o) { ,
cout << "negative" << endl;
: }
— If various blocks of code 1F (x >= 0) {
are mutually exclusive S S8 REERHBRT S8 Gk
: }
then put them in an
. // GOOD!
if.. if (x < 0) {
else l'F cout << "negative" << endl;
[] [] }
else else {
cout << "positive" << endl;
structure and not many }
individual
if..
if..
if..

statements

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Logical Operators

* We can create compound conditions by using
the logical AND, OR, and NOT operator

Operator(s) Meaning Example
& AND if((x==0) && (y==0))
| | OR if((x <0) [(y <o)
| NOT if(!x)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

)

Logical AND, OR, NOT

* The following tables show how the logical operations
are evaluated under any set of values

* AND:
— All inputs must be true for resulting expression to be true
— If even one is false, the condition is fails (false)

* OR:

— If any input is true the condition evaluates to true

A | B AND A | B OR
False False False False False False False True
False True False False True True True False
True False False True False True | | |
o200 True True True N True True True

Exercise

* Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]
a. X >= -1 && x <=5
b. -1 <= x <=5
c. !'(x<-1]] x>5)
d. X > -2 && X < 6

See solutions at end of slides

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

http://www.polleverywhere.com/app
http://www.polleverywhere.com/app/help
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true

Conditions and DeMorgan's

* DeMorgan's theorem says there are always
two ways to express a logic condition

e Write a condition that eats a sandwich if it has

neither tomato nor lettuce

— if (!tomato && !lettuce) { eat_sandwich(); }
— if (!(tomato || lettuce)) { eat_sandwich(); }

* DeMorgan's theorem:
—1a & 'b ® !(a || b)
—la || 'b ©® !(a & b)

e More details in EE 109 and CS 170

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Timeout: In-Class Exercises

* nth

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

Common Mistakes 1

. . int main()
e Using assignment operator (=) {
. int x, vy;
rather than equality check Cin >3 X > y;
operator (==
// Wrong!
— If you accidentally use '=', it will if(x =0) { /* some code */ }
. // Right!
cBon\llert the assigned value to a if(x == ©) { /* some code */ }
oolean
// Wrong!
— Recall: The computer uses if(x 1= y) { x=5; }
if(x == = 7;
* 0to mean false e O /
. _ // Right
Non-zero to mean true iF(x 1= y) { x = 5;)
« Using multiple if statements et R AR
rather than if..else orif..else |} .
if statements (When comparing with a constant, many companie\§~>
— Two 'if' statements imply both could a"°i' ;t(vlg ggi_de; rt)ecc;m;rlensdo?'nc;u zllpdtehe*c;rd;r to:
be true while 'if..else’ implies only This, way the code won't compile if you accidentally
one write:

\\,if(@ =x) // won't compile! 4/

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

Common Mistakes 2

 All conditions must be

formulated as a
combination of
comparisons of two values
at a time

e Recall: The computer uses

— 0 to mean false
— Non-zero to mean true

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()
{
int x, y;
cin >> x >> vy;

// Wrong!

if(@ <= x <= 9)
{ /* some code */ }

// Right!

if((0 <= x) && (x <=9))
{ /* some code */ }

// Wrong!
if(x==0 || 1)
{ /* some code */ }
// Right!
if((x ==0) || (x==1))
{ /* some code */ }
return 0;

Other Selection Structures

* C/C++ (and some other languages) provide
alternative structures to if..else

— switch (case) statement
— Ternary operator (cond ? x : vy)
 We will not require knowledge of these but

simply recommend you briefly look over this
material

— Slides covering these structures are available at
the end of the packet

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

while, do..while, and for Loops

MODULE 5: ITERATIVE STRUCTURES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Motivation for Loops
#include <iostream>
gsing ?amespace std;
e Take a simple task such |{™ ™0
. . cout << 1 << endl;
as outputting the first cout << 2 << endl;
cout << 3 << endl;
1000 pos|t|ve |ntegers // hundreds more cout statements
— We could write 1000 TR S e o
cout statements return 0
}

— Yikes! We could do it

but |t WOUId be painfu“ #include <iostream>

using namespace std;
int main()

* Or we could use aloop |«

for(int i=1; i <= 1000; i+=1)

{

cout << i << endl;
}
return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. }

School of Engineering

4 Necessary Parts of a Loop

Loops involve writing a task to be repeated

Regardless of that task, there must be
4 parts to a make a loop work

Initialization

— Initialization of the variable(s) that will
control how many iterations (repetitions)
the loop will executed

Condition

— Condition to decide whether to repeat the
task or stop the loop

Body
— Code to repeat for each iteration
Update

— Modify the variable(s) related to the
condition

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Initialization

(e.g.i=1)
|

Loop *

Condition
(e.g. i <=1000)

1 True

Body
(cout << i << endl;)

'

Update Statement

(e.g.i+=1)

Code after the loop [+——

i, TS("Viterbi

False

i, TS("Viterbi

Types of Loops

School of Engineering

* There are 2 (and a half) kinds of loops

* while (do..while)loopsand for loops
— Let's look at the syntax of each

T T F

int i = 1; L1 VDO 0O
while (i <= 1000) 4 parts: for (int i = 1; i <= 1000; i++)
{ * Initialization { ©06

// repetitive task e Condition cout << i << endl;

cout << i << endl; « Body }
} i++; // update . Update ©// following statements
// following statements

There is a variant of the while loop which is
the do. .while loop which we'll cover later.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

Which Kind of Loop

’ Use a Whlle |00p: #include <iostream>
— When you DON'T know how using namespace std;

int main()

many times to iterate before {
the loop starts.

int guess;

int secretNum = /* some code */

 How many guesses will the cin >> guess;
user need before they get it while(guess != secretNum)
right? { cout << "Enter guess: " << endl;
— When you use "until" (see , A Euesss
next S|Id€) cout << "You got it!" << endl;
* Use a for loop: , O B

— When you DO know the
number of times to iterate in
BEFORE you start the loop.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

"Until" and "While not"

School of Engineering

° Whenever yOu See or use #include <iostream>

using namespace std;

the word 'until' in a %nt main()

description int guess;

int secretNum = /* some code */

< . cin >> guess;
° Important Tlp while(guess != secretNum)
. . {
— "until x" = "while not x" cout << "Enter guess: " << endl;
. " . . cin >> guess;
— Saying "keep guessing until }
n
YOU are correct’ Is the cout << "You got it!" << endl;
same as "keep guessing return ©;

while you are not correct”

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

NESTED LOOPS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

e — 5 Viterbi >
Nested Loop Sequencing

* Key Idea: The inner loop runs in its entirety for each
iteration of the outer loop

Condl: T T F False
() { @ o © —<gond1l
while (condl
Cond2: T T F| // codel 2 @ I True
Cond2: T F while(cond2) { ®© O O0® & codel
| // code 2 00 ©® False
} —
// code3 O @ —> cond?2
} ¥ True
LS code?
— code3 .
Following

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

statements

— 5 Viterbi
Nested Loops Example 1

* When you write loops TG
consider what the body " int secret, guess;
of each loop means in e
an abstract sense T s B T O

— The body of the outer [eener 7 pand0 % 28
loop represents 1 game v/déligr(‘zgei‘s’oﬁ’z cecret)
(and we repeat that g‘ 3 (st <c “tnter avese:
over and over) :" p‘[cin >> guess;

— The body of the inner - gout << "Win!" << endl;
loop represents 1 turn | o s gty cein (/M
(and we repeat turn L N
after turn) }

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Nested Loops Example 2

* Key idea: Perform all
iterations of the inner loop
before starting the next
iteration of the outer loop

— Said another way: The inner
loop executes completely for
each single iteration of the
outer loop

* Trace through the execution
of this code and show what

will be printed

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()

{

for(int i=0; i < 2; i++){
for(int j=0; j < 3; j++){

}
}
}

cout << 1 << " "

<< j << endl;

R RR RO OO

WINPFRPO® WNRO®.

* Nested loops often help us represent and
process multi-dimensional data

— 2 loops allow us to process data that corresponds
to 2 dimension (i.e. rows/columns)

— 3 loops allow us to process data that corresponds
to 3 dimensions (i.e. rows/columns/planes)

2,3

W M = O

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

/O Manipulators

Manipulators control HOW cout handles
certain output options and how cin
interprets the input data (but print
nothing themselves)

— Must #include <iomanip>
Common examples

— setw(n): Separate consecutive outputs by
n spaces

— setprecision(n): Use n digits to
display doubles (both the integral +
decimal parts)

— fixed: Uses the precision for only the
digits after the decimal point

— boolalpha: Show Booleans as true and
false rather than 1 and O, respectively

Separated by << or >> and used inline with
actual data

Other than setw, manipulators continue

02022, 2 ARRIY 1Q Other output until changed ..o

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
double pi = 3.14159;

cout << pi << endl;
// Prints: 3.14159

cout << setprecision(2) << fixed << pi << endl;
// Prints: 3.14

return 0;

http://en.cppreference.com/w/cpp/io/manip

See "iomanip" in-class exercise to
explore various options

http://en.cppreference.com/w/cpp/io/manip

i, TS("Viterbi

break statement

School of Engineering

* break

— Ends the current loop immediately and continues execution after its last
statement

— Only stops the INNER-MOST containing loop, not ALL nested loops.

* Consider two alternatives for stopping a loop if an invalid
(negative) guess is entered

bool done = false; bool done = false;

while (done == false) { while (done == false) {
cout << "Enter guess\ " << endl; cout << "Enter guess: " << endl;
cin >> guess; cin >> guess;
if(guess < 0) if(guess < 0)

done = true; break;

T -

else { // Process guess
<~ // Process guess < // If guess < © we would skip this
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

continue statement

e continue

— Ends the current loop [not if statement] immediately and
continues execution after its last statement

* Consider two alternatives for repeating a loop to get a
new guess if an invalid (negative) guess is entered

— Often continue can be eliminated by changing the if

condition

bool done = false;

while(done false) {
cout << "Enter guess: "
cin >> guess;

\\\}f(guess < 0){
continue;
}

// Process guess (only here if guess>=0)

}

<< endl;

TN

(

bool done = false;

while (done false) {
cout << "Enter guess: "
cin >> guess;

//»if(guess >= 0) {

// Process Guess
L}
]

<< endl;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ODDS AND ENDS REGARDING
C/C++ LOOPS

- USCViterbi ‘
Recall: Scope

#include <iostream>
using namespace std;

* Scope refers to the lifetime and

visibility of a variable ?nt main()
— Recall variables are just memory slots in int i;
the computer...eventually the program cin >> 15
will reclaim those slots and the variables if(i > 0){
will "die". int temp = 2*i;
cout << temp << endl;
— How long are those slots allocated and } // temp died here
r'ese'rved for your use (i.e. what is their e
lifetime)? £1(0);
— What parts of your program can access) ;ft;rgigé hare
the variables
. | . void f1()
* |In C/C++, a variable's scope is the {
.y - cly - // is i visible here?
curly braces {} it is declared within S

}

 Main Point: A variable dies at the
end of the {...} it was declared in

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

Declaring the Inductive Variable

#include <iostream>

* Theinitialization statement can be | [7" " (00 o tas

used to declare a control/inductive ?nt main()
variable, but its scope is ONLY the int n;

for loop (even though it is not cin >> 1

for(int 1=0; i < n; i++){
i i cout << 3*i << endl;
technically declared in the {..} of L e s e
the for loop)
. . . . // won't compile
— Just realize that variable will die at cout << i << endl;
the end of the loop

// okay to reuse i

* However, because it dies after the for(int i=0; i < nj i++){
. cout << 4*i << endl;
first loop you can use that same } // reincarnated i dies again

variable name in a subsequent loop | cturn o;
} // n dies here

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

The Loops That Keep On Giving

 There's a problem with the loops below

* We all write "infinite" loops at one time or another

* Infinite loops never quit

* When you do write such a program, just type "Ctrl-C" at the

terminal to halt the program

#include <iostream>
using namespace std;
int main()
{ int val;
bool again = true;
while(again = true){
cout << "Enter an int or -1 to quit";
cin >»> val;

if(val == -1) {
again = false;
}
}
return 9;

}

#include <iostream>
using namespace std;
int main()
{
int i=0;
while(i < 10) {
cout << i << endl;
i+ 1;
}

return 0;

© 2022 by Mark Redekopp. This contentb E@JJ&I@%QQ'Q@!@J%GngAEHb be r‘d UCk‘DrOblem'SOIVi nq/

http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/

i, TS("Viterbi

School of Engineering

The Loops That Keep On Giving

 There's a problem with the loop below

 We all write "infinite" loops at one time or another

* Infinite loops never quit

* When you do write such a program, just type "Ctrl-C" at the

terminal to halt the program

#include <iostream>
using namespace std;
int main()

{ int val;
bool again = true;
while(again == true){

cout << "Enter an int or -1 to quit";
cin >»> val;

if(val == -1) {
again = false;
}
}
return 9;

}

#include <iostream>
using namespace std;
int main()
{
int i=0;
while(i < 10) {
cout << i << endl;
i=1+1;
}

return 0;

© 2022 by Mark Redekopp. This contentb EL@JJ&I@%QQ'Q@!@J%GngAEHb be r‘d UCk-DrObIem'SOIVi nq/

http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/

i, TS("Viterbi

School of Engineering

SOLUTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise

* Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]
a. X >= -1 && x <=5
b. -1 <= x <=5
c. !'(x<-1]] x>5)
d. X > -2 && X < 6

See solutions at end of slides

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

http://www.polleverywhere.com/app
http://www.polleverywhere.com/app/help
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true
https://www.polleverywhere.com/multiple_choice_polls/NDg0MzI4MTQx?preview=true

i, TS("Viterbi

School of Engineering

OTHER SELECTION STRUCTURES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

— 5 Viterbi
Switch (Study on own)

* Again used to execute only

switch(expr) // expr must eval to an int

certain blocks of code /
e (Cases must be a constant case O:
. // code executed when expr == 0
e Best used to select an action break;
. case 1:
when an expression could be 1 77 Gt @i Wi G == 1
of a set of constant values break;
. case 2:
e {...}around entire set of cases | case 3:
and not individual case case 4: .
// code executed when expr is
* Computer will execute code [/ 2 3 0r 4
until a break statement is default:
encountered // code executed when no other
// case 1is executed
— Allows multiple cases to be break;
combined }

e Default statement is like an else
statement

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

Switch (Study on own)

° What |f 3 break iS ?witch(expr') // expr must eval to an int
forgotten? case ©:

// code executed when expr ==

— All code underneath will be break;
executed until another case 1:

// code executed when expr == 1
break S encountered // what if break was commented
// break;
case 2:
case 3:
case 4:
// code executed when expr is
// 3, 4 or 5
break;
default:
// code executed when no other
// case is executed
break;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

* Asimple if..else statement can be expressed with the
? operator
—int x = (y >z) ? 2 : 1;
— Same as:
if(y > z) x = 2;
else x = 1;

e Syntax: (condition) ? expr if true :expr if false;
 Meaning: the expression will result/return

expr_if true if condition evaluates to true or
expr_if false if condition evaluates to false

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

LOOP STRUCTURES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

B ()5 Vierbi
Type 1: while Loops

A while loop is essentially a repeating 'if' statement

initialization L Iitializati
while (conditionl) @ © © ALl '_za ol
{ T TF (e.g.i=0)
(36 l
// Body: 1if conditionl 1is true
iy X7 Loop
} // go to top, eval condl again — Condition e
(9] (e.g. i< 1000)
// following statements
// only gets here when condl is false 1 True
int i=0; Loop task
while (i < 1000) (cout << i << endl;) 3
{ | ©
cout << 1 << endl; L
P44 Update Statement
} (e.g.i+=1)

// following statements
. —
While loop printing 0 to 999 Code after the loop

© 2022 by Mark Redekopp. This content is protected and may Bt bpshared, uploadg or distributed.

i, TS("Viterbi

while vs. do..while Loops

* while loops have two // While:

o]] while(condition)
variations: while and do..while |«
// code to be repeated

e while // (should update condition)

}
— Cond is evaluated first

— Body only executed if condition is

true (maybe 0 times) // Do while:
do {
e do..while // code to be repeated
) // (should update condition)
— Body is executed at least once } while(condition);

— Cond is evaluated

— Body is repeated if cond is true

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

Draw out a flow chart of the
desired sequence and look
for the repetitive sequence

Here we check at the end
to see if we should
repeat...perfect for a
do..while loop

Do..While Loop

Accept Guess

do
{ accept_guess }

_____ Take—" while (! correct)

Accept Guess

>

J False

True

Post-Loop
Code

© 2022 by Mark Redekopp. not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Finding the ‘while” Structure

Accept Guess

Draw out a flow chart of the
desired sequence and look
for the repetitive sequence

Here we check at the end
to see if we should
repeat...perfect for a
do..while loop

True

J False

© 2022 by Mark Redekopp.

Post-Loop
Code

do
{ accept_guess }
while (! correct)

while loop

But a while loop
checks at the
beginning of the
loop, so we must
accept one guess
before starting:

accept_guess
while(! correct)

not be shared, uploa{jeggr%igre}ted.guess }

While loop

Accept Guess

Accept Guess

Post-Loop
Code

Hand Tracing (1)

* For the first program, o
trace through the code e
and show all changes to | A
fOr: } cout << i << endl;
—h=2: } return ©;
* For the second program,
trace through the code (om0
and show the output for: o O,
—t= PI/2, T = 2*P| 1Eor‘(double th = @ ; th < T; th += t)
cout << sin(th) << endl;
ietur‘n 9;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Hand Tracing (2)

* For the first program,
trace through the code
and show all changes to i

and vy for:
—x=10
_y=2

* For the second program,
trace through the code
and show all changes to i

and vy for:
— Xx=4
—y=11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()
{
int x, y;
cin >> X >> y;
for(int i=1; i <= x; i=i+y)
{
cout << 1 << endl;
y++;
}

return 0;

}

int main()
{
int x, y;
cin >> x >> y;
for(; X < y; X++)
{
cout << x << " " <<y << endl;
y--5
}

return 0;

——— ()5 CVitcrbi
bools, ints, and Conditions

* Loops & conditional statements require a condition to be
evaluated resulting in a true or false result.

* In C/C++...

— Omeans false / Non-Zero means true
— bool type available in C++ => “true’ and ‘false’ keywords can be used
but internally
* true =non-zero (usually 1) and
« false=0
* Any place a condition would be used, a bool or int type can be
used and will be interpreted as bool

int x = 100; bool done = false; int x=100, y=3, z=0;
while(x) while(! done) if('x || (y && 1z))
{ x--; } { cin >> done; } { /* code */ }

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

Single Statement Bodies

* The Rule: Place code for an if, if (x == 5)
: : y += 2;
else if, or else construct in curly olee
braces{ ... } y -= 3;

e The Exception' cout << "donel" << endl;

— An if or else construct with a single

statement body does not require while (x != 0)
() .
— Another if counts as a single cout << "done2" << endl;

statement for(int i=0; i < 10; i++)
 However, you should ALWAYS if(1%2==29)
. . cout << 1 << endl;
prefer { ... } even in single e g Teea® < el
statement bodies so that editing

later does not introduce bugs

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, TS("Viterbi

School of Engineering

Solutions 1

int main()
{
int n;
cin >> n;
for(int 1 = -n; 1 <= n; i++)
{
cout << i << endl;
}
return 0;
}

{

int main()

double t, T;
cin > t >> T;

for(double th = 0 ; th < T; th += t)
{
cout << sin(th) << endl;
}
return 0;

Program Output for input of 2:

-2
-1
(%]
1
2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Program Output for input /2 and 21:

Or 0o

- USCViterbi ‘
Solutions 2

int main() int main()
{ {
int x, y; int x, y;
cin >> x >> y; cin >> x >> y;
for(int i=1; i <= x; i=i+y) :‘;or(5 X < Y5 X+t)
¢ cout << i << endl; cout << x << " " << y << endl;
Y4+ y=-s
} }
return 0; return 0;
} }
Program Output for input of 10 2: Program Output for input 4 11:
1 4 11
4 5 10
8 6 9
7 8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

	Slide 1: CS 103 Unit 1b – C++ Program/Control Flow
	Slide 2: Java and C++
	Slide 3: When Do I Use a While Loop (1)
	Slide 4: When Do I Use a While Loop (2)
	Slide 5: When Do I Use a For Loop (1)
	Slide 6: Turn 360
	Slide 7: Exercise
	Slide 8: Conditions and DeMorgan's
	Slide 9: Recall: Scope
	Slide 10: Declaring the Inductive Variable
	Slide 11: Nested Loops Example 1
	Slide 12: Understand Your Bodies
	Slide 13: Computing ex
	Slide 14: Module 4: CONDITIONAL STRUCTURES
	Slide 15: Comparison Operators
	Slide 16: If…Else If…Else
	Slide 17: Mutually Exclusive Conditions
	Slide 18: If…Else If…Else
	Slide 19: Logical Operators
	Slide 20: Logical AND, OR, NOT
	Slide 21: Exercise
	Slide 22: Conditions and DeMorgan's
	Slide 23: Timeout: In-Class Exercises
	Slide 24: Common Mistakes 1
	Slide 25: Common Mistakes 2
	Slide 26: Other Selection Structures
	Slide 27: Module 5: ITERATIVE STRUCTURES
	Slide 28: Motivation for Loops
	Slide 29: 4 Necessary Parts of a Loop
	Slide 30: Types of Loops
	Slide 31: Which Kind of Loop
	Slide 32: "Until" and "While not"
	Slide 33: Nested Loops
	Slide 34: Nested Loop Sequencing
	Slide 35: Nested Loops Example 1
	Slide 36: Nested Loops Example 2
	Slide 37: Tips
	Slide 38: I/O Manipulators
	Slide 39: break statement
	Slide 40: continue statement
	Slide 41: Odds and Ends regarding C/C++ Loops
	Slide 42: Recall: Scope
	Slide 43: Declaring the Inductive Variable
	Slide 44: The Loops That Keep On Giving
	Slide 45: The Loops That Keep On Giving
	Slide 46: Solutions
	Slide 47: Exercise
	Slide 48: Other Selection Structures
	Slide 49: Switch (Study on own)
	Slide 50: Switch (Study on own)
	Slide 51: ? Operator (Study on own)
	Slide 52: Loop Structures
	Slide 53: Type 1: while Loops
	Slide 54: while vs. do..while Loops
	Slide 55: Using Flow Charts to Find Loops
	Slide 56: Finding the ‘while’ Structure
	Slide 57: Hand Tracing (1)
	Slide 58: Hand Tracing (2)
	Slide 59: bools, ints, and Conditions
	Slide 60: Single Statement Bodies
	Slide 61: Solutions 1
	Slide 62: Solutions 2

