
1a.1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CS 103 Unit 1a –
CPP Syntax and Expressions

1a.2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review C++ Program Structure

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
cout << "Hello world" << endl;
return 0;

}

1a.3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MODULE 1:
TYPES (CONSTANTS AND
VARIABLES)

Starting to represent data

1a.4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Basic Output via `cout`

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
cout << "some ";
cout << "text" << endl;
cout << 103 1889 << endl; // Bad...Fix me!
return 0;

}

1a.5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Printing Different Values & Types

• 'cout' requires appropriate use of
the insertion operator << as a
separator between consecutive
values or different types of values
– 'cout' does not add spaces between

consecutive values; you must do so
explicitly

• Generally good practice to give
some descriptive text when
outputting variables or computed
numbers
– Note: You may divide output over

multiple 'cout' statements. Unless a
newline is printed (with 'endl' or '\n'),
the next output statement will resume
where the last one left off

// iostream allows access to 'cout'
#include <iostream>
#include <string>
using namespace std;

int main()
{
int x = 103;
cout << x 1889 << endl; // Compile Error!
cout << x << 1889 << endl; // Better, but no spaces
cout << x << " " << 1889 << endl; // Best

string msg = "minutes";
cout << "There are " << 60*24*365 << " " << msg;
cout << " in a year." << endl;
return 0;

}
1031889
103 1889
There are 525600 minutes in a year.

The << operator has multiple (aka

"overloaded") meanings. In C (and still in C++)

it is used to shift bits in a variable to the left,

but C++ also uses it for output. In that (output)

context, it is NOT known as the shift operator

but the "stream insertion" operator!

1a.6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C++ Data Types
// Execution always starts at the main() function
int main()
{
int a1 = -42; // try assigning 4000000000 and see what happens
unsigned int a2 = 4000000000; // try assigning -1 and see what happens
double b1 = 3.14;
float b2 = 1.5; // double is PREFERRED over float.
char c = 'a';
char d = 97;
bool e = true;
string f = "abc";
string g = "Fight On for ol' SC; We all Fight On to victory. Our Alma Mater dear, Looks up

to you, Fight On and win, For ol' SC, Fight On to victory, Fight On!";

cout << "int: " << a1 << endl;
cout << "unsigned int: " << a2 << endl;
cout << "double: " << b1 << endl;
cout << "float: " << b2 << endl;
cout << "char " << c << " " << (int) c << endl;
cout << "char " << d << " " << (int) d << endl;
c = c+1;
cout << "'a'+1: " << c << endl;
cout << "bool " << d << endl;
cout << "Boolean constants: " << true << " " << false << endl << endl;
cout << "string: " << f << endl;
cout << "string: " << g << endl;

return 0;
}

1a.7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Data Types
• C/C++ types indicate how many bits (bytes) of storage (memory) are

required and how to interpret the number being stored

• Integer types
– int, unsigned int, and char (more explanation later)

• Floating point types - Very large 6.02E23 & very small numbers 6.626E-34
(i.e. an attempt to represent rational/real numbers)

– float or double (in general, prefer double over float as it has a greater range
of expressivity)

• String/Text types

– char, char arrays, strings

• Boolean type

– bool (true / false)

• Let's look at how to write constants (aka "literals") and declare
variables of these types.

1a.8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Constants (aka Literals)
• Integer: 496, 10005, -234

• Double: 12.0, -16., 0.23, 6.02E23, 4e-2
– Both very large and very small numbers (i.e. fractions/decimals)

• Characters (char type): enclosed in single quotes (')
– Printing characters: 'a', '5', 'B', '!'

– Non-printing special characters use "escape" sequences (i.e. preceded by a \):
'\n' (newline/enter), '\t' (tab) , '\\' (slash), '\'' (apostrophe)

• C-Strings (Note: there is also a C++ string type…)
– 0 or more characters between double quotes (")

"hi1\n", "12345", "b", "\tAns. is %d"

– Ends with a '\0'=0 (aka NULL character) added as the last
byte/character to allow code to delimit the end of the string

• Boolean (C++ only): true, false
– Physical representation: 0 = false, Non-zero (1, -5, 300) = true

104

105

49

10

00

17

…

0

1

2

3

4

5

59

120

6

7

‘h’

‘i’

‘1’

‘\n’

Null

String Example

(Memory Layout)

C/C++ handling

of single

characters and

strings is

different than

most other

languages and a

major source of

confusion in C++.

1a.9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

You're Just My Type

• Indicate which constants are matched with
the correct type.

Constant Type Right / Wrong

4.0 int

5 int

'a' C-string

"abc" C-string

5. double

5 char

"5.0" double

'5' int

Solutions are provided at the end of the slide packet.

1a.10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Motivation for Data Types
• How many data values are stored in the memory below (where does one

value stop and another start) and what are their values?

• C/C++ types indicate how many bits (bytes) of storage (memory) are required
and how to interpret the number being stored

1011 1111 1111 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

String Example

(Memory Layout)

0110 0001 0011 1001 0000 1010 0000 0000 0000 0000 0011 0111

0

0001 0010 1000 0000

61 39 0a 00 00 37 12 80
bf fc 00 00 00 00 00 00

'a'
char

As a human, would you rather write MANY 1s and 0s

or a few digits? (i.e. 0110 0001 OR 61)

- Probably a few digits.

We (humans) and debuggers often show the

contents of memory in base-16 (aka hexadecimal or

just hex for short) rather than binary because it is

less to write and easier to visually take-in.

Everything is truly binary in the computer, but there

is an easy and fast way to convert between binary

and hex, so we show hex.

Memory contents

(using hexadecimal…see inset below)

-3.75
double

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

1a.11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Limited Range of Data
int main()
{

int x = std::numeric_limits<int>::max();
cout << "int max: " << x << " " << x + 1 << endl;
x = std::numeric_limits<int>::min();
cout << "int min: " << x << " " << x - 1 << endl;

unsigned int y = std::numeric_limits<unsigned int>::max();
cout << "unsigned int max: " << y << " " << y + 1 << endl;
y = std::numeric_limits<unsigned int>::min();
cout << "unsigned int min: " << y << " " << y - 1 << endl;

char z = std::numeric_limits<char>::max();
cout << "char max: " << z << " " << z + 1 << endl;
z = std::numeric_limits<char>::min();
cout << "char min: " << z << " " << z - 1 << endl;

bool b = true;
cout << "bool max: " << b << " " << b + 1 << endl;
b = false;
cout << "bool min: " << b << " " << b - 1 << endl;

return 0;
}

1a.12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Finite Range of Numbers

• Recall: EVERYTHING in a computer is a number!

• Key Idea: In computers, numbers are FINITE because
each memory cell has a fixed number of bits (digits)

• Scenario: A hotel has 3-digit room numbers.

– How many rooms can the hotel have?

– What if the hotel uses 4-digit room numbers?

– Range for n-digit room numbers?

• What is 999+1?

– 1000, obviously! Right!?

– Well, if we limit ourselves to 3-digit numbers, then the
answer is 000! We call this overflow and it is a common
issue programmer's must account for.

T
h

is
 P

h
o

to
b

y
 U

n
k
n

o
w

n
 A

u
th

o
r

is
 l
ic

e
n

s
e

d
 u

n
d

e
r

C
C

 B
Y

-N
C

T
h

is
 P

h
o

to
b

y
 U

n
k
n

o
w

n
 A

u
th

o
r

is
 l
ic

e
n

s
e

d
 u

n
d

e
r

C
C

 B
Y

-S
A

-N
C

3-digit Room Number

4-digit Room Number

0

0

https://www.flickr.com/photos/ncsofteurope/1250697872/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://www.flickr.com/photos/lwr/421278110
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

1a.13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Bits, Bytes, Words

• Computers store data as bits (binary digits) in
units of memory with a fixed number of bits

• A single bit can only represent 1 and 0

• To represent more than just 2 values we need
to use a combination / sequence of many bits

• Computer hardware (memory) defines
common, easily accessible units of a fixed size:
– A byte is defined as a group 8-bits

– A word varies in size but is usually 32-bits (4 bytes)

• For n-bit numbers, the range of values we can
represent is 0 to 2n-1
– For 8-bits, the range is 0 to 255.

– For 32-bits, the range is 0 to 4,294,967,295

01000001

1

A bit

A byte (C++ char)

00101110 11010001
10110101 01110111

A "word" (C++ int)

11010010

01001011

10010000

0

1

2

Address Data

…

M
e

m
o

ry
 D

e
v
ic

e

100100003

a byte

a word

Computer memory (storage) is

broken into bytes (with 1 or

more representing data values)

1a.14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Integer Data Types

• Integer variable types
– An unsigned (positive-only...including 0) number

– A signed (positive or negative) number

C Type
(Signed)

C Type (Unsigned) Bytes Bits Signed Range Unsigned
Range

char unsigned char 1 8 -128 to +127 0 to 255

short unsigned short 2 16 -32768 to +32767 0 to 65535

int unsigned int 4 32 -2 billion to
+2 billion

0 to 4 billion

long long unsigned long long
(aka size_t)

8 64 -8*1018 to +8*1018 0 to 16*1018

*These are the three integer types we will use 99% of the time

1a.15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary: C/C++ Floating Point
Types

• float and double types:
– Allow decimal representation (e.g. 6.125) as well as very large integers

(+6.023E23)

C Type Bytes Bits Range

float 4 32 ±7 significant digits * 10+/-38

double 8 64 ±16 significant digits * 10+/-308

• Prefer double over float
– Many compilers will upgrade floats to doubles anyhow

• Don't use floating-point if you don't need to
– It suffers from rounding error

– Some additional time overhead to perform arithmetic operations

1a.16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Variables
int data = -1; // global variable

void f1() {
int x = 42; // Does this work?
cout << "X: " << x << endl;

int y = -1;
cout << "Y: " << y << endl;
y = "abc";
cout << "Y: " << y << endl;

double z;
cout << "Uninitialized z: " << z << endl;

int a;
a += 1;
cout << a << endl;

}

int main() {
cout << "Dummy call " << 41 << 42 << 43 << 44 << 45 << 46 << 47 << 48 << endl;
f1();
cout << a << " " << data << endl;
return 0;

}

1a.17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Variables

• A variable is a reserved memory location that
– Stores a value that can be read (retrieved) or

written (changed) as often as desired

– Associates a descriptive name (e.g. x) the
programmer will use with that memory location
(aka address) and the value stored in that location

• You must "declare" your variables before
using/assigning to them

• If not initialized via assignment ('='), variables
will NOT default to a value like 0, but will
contain random data/garbage.
– Good practice to initialize your variables

01000001

01001011

10010000

11110100

01101000

11010001

…

00001011

100

101

102

103

104

105

…

char w = 'A';
A single-byte

variable. The name w
is associated the the

memory location 100

01101000

11010001

106

107

int x;
A four-byte variable

#include <iostream>
using namespace std;

int main()
{ // Sample variable declarations
char w = 'A';
int x; // Random: 0?, -12? 1758554321?

x = 0;
x = x + 3;

...
}

Variables are actually allocated in

RAM when the program is run

A picture of computer memory

(aka RAM)

Difference: C required that variables be

declared at the beginning of a function before

any operations.

C++ relaxes this and allows declarations

anywhere in the code.

1a.18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Scope

• "Scope" of a variable refers to the
– Visibility (who can access it) and

– Lifetime of a variable (how long is the
memory reserved

• For now, there are 2 scopes we will
learn

– Global: Variables are declared
outside of any function and are
visible to all the code/functions in
the program

– Local: Variables are declared inside
of a function and are only visible in
that function and die when the
function ends

#include <iostream>
using namespace std;

// Global Variable
int x=1;

int add_x(int input)
{

// y and z NOT visible (in scope) here
// but x is since it is global
return (input + x);

} // input dies here

int main()
{

// y and z are "local" variables
int y, z=5; // y is garbage, z is five

z = add_x(z);
y += z; // BAD!! Why?
cout << x << " " << y << endl;
return 0;

} // y and z die here

1a.19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary: C/C++ Variable Types
• A type indicates how many bits / bytes of storage

(memory) are required and how to interpret the
number being stored

• Integer types

– Are signed (numbers can be positive or negative) by
default, or unsigned (positive-only...including 0)

– A character (more on this later)

• Floating point types: Very large 6.02E23 & very
small numbers 6.626E-34)

– A float or double

• String/Text types

– A single char (1 character)

– character arrays (C-Strings) / string (C++ string type)

• Boolean type

– bool (true / false)

#include <string>
using namespace std;

int main()
{

int a = -1;
unsigned int b = 2;
char c = 'A'; // 'A'=65

float d1 = 1.5;
double d2 = 3.14;

char e[6] = "Hello";
string f = "Goodbye";

bool g = true;

// ...

}

ConstantVariable

Variable

Constant

1a.20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary: Common Variable Types

C Type Usage Bytes Bits Range

char Text character
Small integer value

1 8 ASCII characters
-128 to +127

bool True/False value 1 8 true / false

int
unsigned int

Integer values 4 32 -2 billion to +2 billion
0 to +4 billion

double Rational/real values 8 64 ±16 significant digits
* 10+/-308

string Arbitrary text 1 or more - -

// iostream allows access to 'cout'
#include <iostream>
using namespace std;

// Execution always starts at the main() function
int main()
{
int w = -400;
double x = 3.7;
char y = 'a';
bool z = false;
cout << w << " " << x << " ";
cout << y << " " << z << endl;
return 0;

}

• Variables are declared by listing
their type and providing a name

• They can be given an initial
value using the '=' operator

1a.21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Assignment operator (=)
• Syntax:

variable = expression;

(LHS) (RHS)
– LHS = Left Hand-Side, RHS = Right Hand Side

• Should be read: Place the value of expression
into memory location of variable

– z = x + y – (2*z);

– If variable is on both sides, we use the old/current
value of the variable on the RHS

• Note: Without assignment values are computed and then forgotten
– x + 5; // will take x's value add 5 but NOT update x (just throws the result away)

– x = x + 5; // will actually updated x (i.e. requires an assignment)

• Shorthand assignment operators exist for updating a variable based on its
current value: +=, -=, *=, /=, &=, …
– x += 5; (x = x+5)

– y *= x; (y = y*x)

int x = 0;
x = x + 3;

current-value of x

(0)

new-value of x

(3)

Evaluate everything on the right-

hand side (RHS) before

considering the left-hand side

(LHS)

1a.22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Assignment Means Copy

• Assigning a variable makes a copy
– It leaves the source variable

unchanged

• Challenge: Swap the value of 2
variables

int main()
{

int x = 5, y = 3;
x = y; // copy y into x

// y still has 3
return 0;

}

3

y

5

x

7

a

9

b

9

a

9

b

int main()
{

int a = 7, b = 9;

// now consider swapping
// the value of 2 variables
a = b;
b = a;

return 0;
}

1a.23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

More Assignments

• Assigning a variable makes a copy
– It leaves the source variable unchanged

• Example: Swap the value of 2 variables
– Easiest method: Use a 3rd temporary variable to save one value

and then replace that variable

• Challenge: 4swap exercise
int main()
{
int a = 7, b = 9, temp;

// let's try again
temp = a;
a = b;
b = temp;

cout << a << " " << b << endl;
return 0;
}

7

a

9

b

9

a

9

b

7

te

mp

9

a

7

b

1

2

3

1a.24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MODULE 2:
C++ I/O (INPUT/OUTPUT)

Inputting and outputting data

1a.25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I/O Streams
• C++ and the OS use the notion of streams to temporarily store (aka

buffer) data to be input or output and then uses the cin and cout
objects (from the <iostream> library) to access those streams

• cin extracts data from the input stream [stdin] (skipping over preceding
whitespace then stopping at following whitespace)

• cout inserts data into the output stream [stdout] for display by the OS

7 5 y ... #include<iostream>
int main()
{
int x;
std::cin >> x;
return 0;

}

I t w a s t h e

output stream

memory (aka stdout):

#include<iostream>
int main()
{
std::cout << "It was the" << std::endl;
std::cout << "best of times.";
return 0;

}

b\n
It was the

This Photo by Unknown Author is licensed under CC BY-NC

OS

cin

OS

e

cout
input stream

memory (aka stdin):

https://www.wisc-online.com/asset-repository/viewasset?id=472
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

1a.26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

endl and Flushing
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

void task_that_may_crash(bool x);

int main() {
task_that_may_crash(false);
cout << "A\n";

task_that_may_crash(true);
cout << "B\n";

return 0;
}

1a.27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Newlines, endl, and Flushing

• To move the cursor to the next line
we need to print a new line, '\n'
(char)

• cout only inserts the characters to
the output stream, but the OS must
then copy them to the screen.

• The OS may choose to delay and not
print immediately causing strange
issues (see bottom)

• endl = '\n' + a flush of the output
stream

O

S
cout

cout << "Hi" << endl;

OS, could you

print this for

me. Oh and

btw, I'm

flushing!

Yes! Right

away!

O

S
cout

cout << "Hi\n";

_

OS, could

you print

this for

me?

Pshh! I'm busy.

Maybe I'll do it

now, maybe

later.

Hi

_

int main() {
task_that_might_crash(); // Doesn't crash
cout << "Got Here 1";
task_that_might_crash(); // Does crash!
cout << "Got Here 2";
return 0;

} <Segmentation fault>

int main() {
task_that_might_crash(); // Doesn't crash
cout << "Got Here 1" << endl;
task_that_might_crash(); // Does crash!
cout << "Got Here 2" << endl;
return 0;

} Got Here 1
<Segmentation fault>

Use descriptive

messages and

endls when

debugging.

1a.28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Input with cin
#include <iostream>
#include <iomanip>
using namespace std;

int main() {
string name;
int age;

cout << "Enter your first name and age: " << endl;
// now get the input
cin >> name >> age;

if(age >= 18) {
cout << name << ", you are allowed to vote in the next election." << endl;

}
else {

cout << name << ", wait " << 18-age << " more years to vote." << endl;
}

return 0;
}

1a.29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coming From Java

• If you come from Java, cin works most
similarly to the Scanner class with its nextInt(),
nextLine(), nextFloat()

1a.30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Input with cin
#include <iostream>
using namespace std;

int main() {
char w;
int x;
double y;
string z;

cout << "Enter a char, int, double, and string: " << endl;
cin >> w >> x >> y >> z;
cout << w << " " << x << " " << y << " " << z << endl;

return 0;
}

1a.31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Keyboard Input

#include <iostream>
using namespace std;

int main()
{

int dozens;

cout << "Enter number of dozen: " << endl;

cin >> dozens;

cout << 12 * dozens << " eggs" << endl;
return 0;

}
1 5

• In C++, the 'cin' object is in
charge of receiving input
from the keyboard

• Keyboard input is captured
and stored by the OS (in an
"input stream") until cin is
called upon to "extract" info
into a variable

• 'cin' converts text input to
desired format (e.g. integer,
double, etc.)

cin

\n

15

dozens

variable

input stream:

input stream:

\n
The >> operator also has multiple (aka

"overloaded") meanings. In C (and still in C++)

it is used to shift bits in a variable to the right,

but C++ also uses it for input. In that (input)

context, it is known not as the shift operator but

the "stream extraction" operator!

1a.32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Dealing With Whitespace

#include <iostream>
using namespace std;

int main()
{
int dozens;

cout << "Enter number of dozen: "
<< endl;

cin >> dozens;

cout << dozens << " dozen "
<< " is " << 12*dozens
<< "items." << endl;

return 0;
}

• Whitespace (def.):
– Characters that represent

horizontal or vertical blank
space. Examples: newline ('\n'),
TAB ('\t'), spacebar (' ')

• cin sequentially discards
leading whitespace characters
until it hits a non-whitespace.

• cin then checks the characters
can be converted to the
appropriate variable type and
keeps scanning for more

• cin will STOP at the first
trailing whitespace (or on a
character unable to be
converted to the desired
type) and await the next cin
command

5

cin

\n

15

dozens

input stream:

input stream:

Suppose at the prompt

the user types:

1

\n

\t

Main Take-aways:

cin SKIPS leading whitespace

cin STOPS on the first trailing whitespace

Space ≠ Whitespace (Whitespace = ' ', '\t', '\n',

etc.)

1a.33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Timing of Execution

#include <iostream>
using namespace std;

int main()
{
int dozens;

cout << "Enter number of dozen: "
<< endl;

cin >> dozens; // input stream empty
// so wait for input

cout << 12*dozens << " eggs" << endl;

double gpa;
cout << "What is your gpa?" << endl;
cin >> gpa; // input stream has text

// so do not wait…
// just use next text

cout << "GPA = " << gpa << endl;
return 0;

}

• When execution reaches a
'cin' statement, it will
either:

– Wait for input if nothing
is available in the input
stream
• OS will capture what is

typed until the next 'Enter'
key is hit

• User can type as little or
much as desired until Enter
(\n)

– Immediately extract from
the input stream if some
text is available and
convert it to the desired
type of data

5

cin

3 . 7 \n

3 . 7

15

dozens

input stream:

input stream:

cin

input stream:

No input available. Wait

for user to type and hit

Enter

1

\n

cin

\n

3.7

gpa

\t

1a.34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Multiple Inputs and Unexpected
Inputs

#include <iostream>
using namespace std;

int main()
{
int score;
double multiplier;
cin >> score >> multiplier;

cout << "Your new score is "
<< score * multiplier << endl;

int x, y;
cin >> x >> y;
cout << x << " " << y << endl;
return 0;

}

• Use the '>>' operator to
separate any number of
variables you want to read
in

• If non-whitespace
characters are
encountered, cin simply
stops and leaves the
variable values unchanged

– It does not discard the
unexpected characters so
they will likely cause
another error on the next
read, too.

– More on error handling
and input validation in a
few weeks

5

cin

2 . 4 \n

15

score

input stream:

1

\n

2.4

multiplier

\t

\n

15 2.4
Your new score is 36
ab
0 21999

b \na\n

cin

??

input stream:

??

x y b \na

1a.35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Question

#include <iostream>
#include <string>
using namespace std;

int main()
{
int x;
cin >> x; // User types 1.5 42

double y, z;
cin >> y >> z;

string s;
cin >> s; // User types 103.25

cout << "x = " << x << endl;
cout << "y,z= " << y << " " << z << endl;
cout << "s = " << s << endl;
return 0;

}

• What do you think would
happen if the user typed
a double when an
integer was expected?

• What happens if you
type numeric digits when
a string is expected?

.

cin

5 4 2 \n

x

input stream:

1

\n

1.5 42
103.25
x =
y,z=
s =

cin

input stream:

y z

0

cin

3 . 2 5 \n

s

input stream:

1

1a.36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

MODULE 3: EXPRESSIONS
Performing computation

1a.37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Expressions and Operators
int main() {

int x = 7, y = 5, z = 12;

cout << "Modulo:" << endl;
cout << "7 % 5 = " << x % y << endl;
cout << "7 % 12 = " << x % z << endl;

cout << "Integer division:" << endl;
cout << "7 / 5 = " << x / y << endl;
cout << "7 / 5.0 = " << x / 5.0 << endl;

cout << "Update Assignment operator:" << endl;
x += 1;
cout << "x = " << x << endl;
x /= 2;
cout << "x = " << x << endl;

cout << "Pre/post increment/decrement:" << endl;
cout << "z++ : " << z++ << endl;
cout << "z-- : " << z-- << endl;
cout << "++z : " << ++z << endl;
cout << "--z : " << --z << endl;
return 0;

}

1a.38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Arithmetic Operators

• Addition, subtraction, multiplication work as expected for
both integer and floating point types

• Division works ‘differently’ for integer vs. doubles/floats

• Modulus is only defined for integers

Operator Name Example

+ Addition 2 + 5

- Subtraction 41 - 32

* Multiplication 4.23 * 3.1e-2

/ Division
(Integer vs. Double division)

10 / 3 (=3)
10.0 / 3 (=3.3333)

% Modulus (remainder)
[for integers only]

17 % 5
(result will be 2)

17 % 10 = __
4 % 7 = __

1a.39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Division

• Computers perform division differently based on the
type of values used as inputs

• Integer Division:
– When dividing two integral values, the result will also be

an integer (any remainder/fraction will be dropped)

– 10 / 4 = 2 52 / 10 = 5 6 / 7 = 0

• Floating-point (Double) & Mixed Division
– 10.0 / 4.0 = 2.5 52.0 / 10 = 5.2 6 / 7.0 = 0.8571

– Note: If one input is a double, the other will be promoted
temporarily (aka implicitly casted) to compute the result
as a double

1a.40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Precedence
• Order of operations/

evaluation of an expression

• Higher level (level 16 in table) done
first

• Notice operations with the same
level or precedence usually are
evaluated left to right)

• Evaluate:
– 2*-4-3+5/2;

• Tips:

– Use parenthesis to add clarity

– Add a space between literals
(2 * -4) – 3 + (5 / 2)

https://discuss.codechef.com/upfiles/CPP.PNG

1a.41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise Review

• Evaluate the following:

25 / 3

17 + 5 % 2 – 3

28 - 5 / 2.0

Exercises from: D.S. Malik, C++ Programming, 5th Ed., Ch. 2, Q6.

1a.42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Casting (C and C++ Style)
#include <iostream>
#include <string>
using namespace std;

int main() {
int x = 3, y = 2;
double z = x/y;
cout << "z = " << z << endl;

// What will this print?
int a = 42;
cout << "int cast to string: " << static_cast<string>(a) << endl;

// What will this print?
double b = 3.14;
cout << "double cast to string: " << static_cast<string>(b) << endl;

string s1 = "-3";
cout << "string cast to int: " << static_cast<int>(s1) << endl;

string s2 = "4.5";
cout << "string cast to double: " << static_cast<double>(s2) << endl;

return 0;
}

1a.43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Casting Motivation
• Def. casting: Temporarily converting the type of a data value

• What is the result of 5 + 3/2 ?
• To achieve the correct answer for 5 + 3 / 2 we could…

• Use implicit casting (mixed expression)
– Could just write 5 + 3.0 / 2

• If operator is applied to mixed type inputs, less expressive type is automatically implicitly

cast (promoted) to the more expressive (int is promoted to double)

• But what if instead of constants we have variables
– int x=5, y=3, z=2;

x + y/z; // Won't work & you can't write y.0

• We can perform an explicit cast using either the C or C++ syntax
– x + (double) y / z; // C style casting method

– x + static_cast<double>(y) / z ; // C++ style casting method

• BE CAREFUL!! This won't yield the 6.5 answer you expect.
– x + static_cast<double>(y/z); // Why not?

1a.44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common Casting Errors

• Only changes the type temporarily
for the sake of the expression (not a
permanent type change)

• Casting only really works on numeric
types and NOT strings
– Different than many other languages like

Python

– When converting to/from a string, do
NOT use casting, but functions from the
string library (to_string(), stoi(), stod(),
etc.)

#include <iostream>
#include <string>
using namespace std;
int main() {

double a = 3.6;
int b = static_cast<int>(a) / 2;

// Works! b = 1 (casts 3.6 to 3)

int c = 123;
string d = static_cast<string>(c);

// Error! Doesn't compile.
string d = to_string(c);

// Works! But only since C++11

string e = "42";
int f = static_cast<int>(e);

// Error! Doesn't compile.
int f = stoi(e); // string-to-int

// Works! But only since C++11
// use stod() for string-to-double

return 0;
}

def f1():
e = "123"
f = int(e)
c = str(42)

class Main {
public static f1(){
int e = Integer.parseInt("42");
String c = Integer.toString(123);

} }

1a.45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding ASCII and chars

• A char is just an integer type that

– Is only 1 byte (limited range 0 to 255 or -128 to +127)

– cout uses the type, char or int, to infer if we want the
ASCII character or integer

• We can perform arithmetic/comparison operations on
ASCII chars since they are converted to integers

char c = 'a'; // same as char c = 97;
cout << c << endl; // prints 'a'
c = 97;
cout << c << endl; // prints 'a'
int x = c;
cout << x << endl; // prints 97

char d = 'a' + 1; // d now contains 98 (ASCII 'b')
cout << d << endl; // prints 'b' on the screen
if(c >= 'a' && c <= 'z') { } // && means AND

// better than if(c >= 97 && c <= 122)
c = '1'; d = 1; // c stores decimal 49, d stores 1
cout << c << " " << d << endl;

// only prints: "1 ", not "1 1"

97

char c

98

char d

97

int x

1a.46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pre-/Post- Increment/Decrement

• Increment and decrement operators: ++ and -- (add and subtract 1)
– If ++ comes before a variable it is call pre-increment; if after, it is called post-increment

– x++; // If x was 2 it will be updated to 3 (x = x + 1)

– ++x; // Same as above (no difference when not in a larger expression)

– x--; // If x was 2 it will be updated to 1 (x = x – 1)

– --x; // Same as above (no difference when not in a larger expression)

• Difference between pre- and post- is only evident when used in a larger
expression

• Meaning:
– Pre: Update (inc./dec.) the variable before using it in the expression

– Post: Use the old value of the variable in the expression then update (inc./dec.) it

• Examples [suppose we start each example with: int y; int x = 3;]
– y = x++ + 5; // Post-inc.; Use x=3 in expr. then inc. [y=8, x=4]

– y = ++x + 5; // Pre-inc.; Inc. x=4 first, then use in expr. [y=9, x=4]

– y = x-- + 5; // Post-dec.; Use x=3 in expr. then dec. [y=8, x=2]

– y = --x + 5; // Pre-dec.; Dec. x=2 first, then use in expr. [y=7, x=2]

1a.47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Library Functions
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <string>
using namespace std;

// Execution always starts at the main() function
int main()
{
cout << "cos(pi) = " << cos(M_PI) << endl;
cout << "2 to the 3rd power = " << pow(2,3) << endl;
cout << "sqrt(100) = " << sqrt(100) << endl;
cout << "|-3| = " << abs(-3) << endl;
cout << "Smaller of -5 and -2 = " << min(-5, -2) << endl;
cout << "\"103\" converted to an int and added to 1 = "

<< atoi("103")+1 << endl;
cout << "\"1.25\" converted to a double and added to 2.5 = "

<< atof("1.25")+2.5 << endl;
return 0;

}

1a.48

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Math & Other Library Functions

• C++ predefines a variety of functions for you. Here are
a few of them:

– sqrt(x): returns the square root of x (in <cmath>)

– pow(x, y): returns xy, or x to the power y
(in <cmath>)

– sin(x)/cos(x)/tan(s): returns the sine of x if x is in
radians (in <cmath>)

– abs(x): returns the absolute value of x (in <cstdlib>)

– max(x, y) and min(x,y): returns the
maximum/minimum of x and y (in <algorithm>)

• You call these by writing them similarly to how you
would use a function in mathematics [using
parentheses for the inputs (aka) arguments]

• Result is replaced into bigger expression

• Must #include the correct library
– #includes tell the compiler about the various pre-defined

functions that your program may choose to call

#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;

int main()
{

// can call functions
// in an assignment
double res = cos(0); // res = 1.0

// can call functions in an
// expression
res = sqrt(2) / 2; // res = 1.414/2

cout << max(34, 56) << endl;
// outputs 56

return 0;
}

http://www.cplusplus.com/reference/cmath/

http://www.cplusplus.com/reference/cmath/

1a.49

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

#include Directive
• Common usage: To include “header files” that allow us to

access functions defined in a separate file or library

• For pure C compilers, we include a C header file with its
filename: #include <stdlib.h>

• For C++ compilers, we include a C header file without the .h
extension and prepend a ‘c’: #include <cstdlib>

C Description C++ Description

stdio.h
cstdio

C Input/Output/File access (printf,
fopen, snprintf, etc.)

iostream I/O and File streams (cin, cout, cerr)

stdlib.h
cstdlib

rand(), Memory allocation, etc. fstream File I/O (ifstream, ofstream)

string.h
cstring

C-string library functions that operate
on character arrays

string C++ string class that defines the ‘string’
object

math.h
cmath

Math functions: sin(), pow(), etc. vector Array-like container class

1a.50

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Random Number Generator
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main() {
// srand(42);
// srand(time(0));
cout << "RAND_MAX is" << RAND_MAX << endl;
cout << rand() << endl;
cout << rand() << endl;
cout << rand() << endl;
cout << rand() << endl;

}

1a.51

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

rand() and RAND_MAX

• (Pseudo)random number generation [(P)RNG] in C is
accomplished with the rand() function declared/prototyped
in cstdlib

• rand() returns an integer between 0 and RAND_MAX
– RAND_MAX is an integer constant defined in <cstdlib>

• How could you generate a value that simulates the flip of a coin
[i.e. 2 outcomes: 0 or 1 with equal probability]?

int r;

r = rand();

if(r < RAND_MAX/2){ cout << "Heads"; }

• How could you generate a fraction (decimal) with uniform probability of
being between [0,1]

double r;

r = static_cast<double>(rand()) / RAND_MAX;

0

RAN

D_M

AX

1a.52

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Seeding Random # Generator

• Re-running a program that calls rand() will generate the same sequence of
random numbers (i.e. each run will be exactly the same)

• If we want each execution of the program to be different then we need to
seed the RNG with a different value

• srand(int seed) is a function in <cstdlib> to seed the RNG with the value
of seed

– Unless seed changes from execution to execution, we’ll still have the same
problem

• Solution: Seed it with the day and time [returned by the time() function
defined in ctime]
– srand(time(0)); // only do this once at the start of the program

– int r = rand(); // now call rand() as many times as you want

– int r2 = rand(); // another random number

– // sequence of random #’s will be different for each execution of program

Only call srand() ONCE at the start of the program,

not each time you want to call rand()!!!

Approximate rand() function:

val = ((val * 1103515245) + 12345) % RAND_MAX;

1a.53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

1a.54

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

You're Just My Type

• Indicate which constants are matched with
the correct type.

Constant Type Right / Wrong

4.0 int double (.0)

5 int int

'a' string char

"abc" string C-string

5. double float/double (. = non-integer)

5 char Int…but if you store 5 in a char
variable it'd be okay (char = some
number that fits in 8-bits/1-byte

"5.0" double C-string

'5' int char

1a.55

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Question

#include <iostream>
#include <string>
using namespace std;

int main()
{
int x;
cin >> x; // User types 1.5 42

double y, z;
cin >> y >> z;

string s;
cin >> s; // User types 103.25

cout << "x = " << x << endl;
cout << "y,z= " << y << " " << z << endl;
cout << "s = " << s << endl;
return 0;

}

• What do you think would
happen if the user typed
a double when an
integer was expected?
– cin will stop on the

decimal point ('.')

• What happens if you
type numeric digits when
a string is expected?
– Numeric digits can be part

of a string, so it simply
reads all characters
through the first
whitespace.

.

cin

5 4 2 \n

1

x

input stream:

1

\n

1.5 42
103.25
x = 1
y,z= 0.5 42
s = 103.25

cin

0.5

input stream:

42.0

y z

. 5 4 2 \n

0

cin

3 . 2 5 \n

"103.25"

s

input stream:

1

\n

1a.56

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

DIGGING DEEPER

1a.57

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Parts of C/C++ Variables

• Variables have a:

– type [int, char, unsigned int, float, double, etc.]

– name/identifier that the programmer will use to
reference the value in that memory location [e.g. x,
numStudents, is_high_enough, etc.]
• Identifiers must start with [A-Z, a-z, or an underscore ‘_’] and can

then contain any alphanumeric character [0-9, A-Z, a-z, _] (but no
punctuation other than underscores)

• Use descriptive names (e.g. numStudents, doneFlag)

• Avoid cryptic names (myvar1, a_thing)

– location [the address in memory where it is allocated]

– Value

• Reminder: You must declare a variable before using it

int quantity = 4;
double cost = 5.75;
cout << quantity*cost << endl;

4

qu

ant

ity10084

12

co

st
28714

4 5.75

Code

What's in a name?
To give descriptive names we often

need to use more than 1 word/term.

But we can't use spaces in our

identifier names. Thus, most

programmers use either camel-case

or snake-case to write compound

names

Camel case: Capitalize the first

letter of each word (with the

possible exception of the first word)

numStudents, isHighEnough

Snake case: Separate each word

with an underscore '_'

num_students, is_high_enough

Address

name

value

Address

1a.58

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Choosing Your Type

What am I storing?

Text/Character(s)

for display
Number

What kind of number is it? Is it a single char or many (i.e.

a string of chars)?

Contains a

decimal/fractional

value

Logical

(true/false) value

Single Many

Use a…

bool

Use a…

double char string

Use a…Use a…

3.0,
-3.14159,
6.27e-23

'a', '1',
'.'

"Hi",
"2022"

true,
false

Integer

What range of values

might it use?

unsigned int
size_t

Positive

only

Possibly

negative

int

Use an…Use an…

0,
2147682,

…

0,
-2147682,
2147682

1a.59

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Preprocessor & Directives

• Somewhat unique to C/C++

• Compiler will scan through C code looking for directives (e.g.
#include, #define, anything else that starts with '#')

• Performs textual changes, substitutions, insertions, etc.

• #include <filename> or #include "filename"
– Inserts the entire contents of "filename" into the given C text file

• #define find_pattern replace_pattern
– Replaces any occurrence of find_pattern with replace_pattern

– #define PI 3.14159

Now in your code:
x = PI;

is replaced by the preprocessor with
x = 3.14159;

1a.60

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I Do Declare
• Again, (unlike Python) you must do a

one-time declaration of a variable before
using it

• If not initialized via assignment ('='),
variables will NOT default to a value like
0, but will contain random data/garbage.
– Good practice to initialize your variables

• C++ is a strongly-typed language; Python
is too, but C++ has more restrictions

– You cannot change what type of value
the variable stores); this is because in C++
a variable name corresponds to a
reserved, fixed-size memory location

#include <iostream>
using namespace std;
int main() {

x = 5; // Error: x assigned before
// it is declared

int x; // uninitialized variables
// will have a (random) garbage
// value until we initialize it

x = x+1; // BAD. X is uninitialized still
x = 1; // Initialize x's value to 1

double y = 3.14;

x = "pi is"; // Error: x declared as int
// cannot be assigned a string

cout << x << " " << y << endl;
return 0;

}

def main():
x = 5 # x stores an integer
y = 3.14
x = "pi is" # x changes to store a string
print(x, y)

Python does not require explicitly

declaring and typing a variable

C++ is "strongly-typed" and requires

variables to be declared before being used.

01101000

11010001

104

105

01101000

11010001

106

107

int x;

1a.61

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Integer Data Types

• Integer variable types
– An unsigned (positive-only...including 0) number

– A signed (positive or negative) number

C Type
(Signed)

C Type (Unsigned) Bytes Bits Signed Range Unsigned
Range

char unsigned char 1 8 -128 to +127 0 to 255

short unsigned short 2 16 -32768 to +32767 0 to 65535

int unsigned int 4 32 -2 billion to
+2 billion

0 to 4 billion

long long unsigned long long
(aka size_t)

8 64 -8*1018 to +8*1018 0 to 16*1018

*These are the three integer types we will use 99% of the time

1a.62

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary: C/C++ Floating Point
Types

• float and double types:
– Allow decimal representation (e.g. 6.125) as well as very large integers

(+6.023E23)

C Type Bytes Bits Range

float 4 32 ±7 significant digits * 10+/-38

double 8 64 ±16 significant digits * 10+/-308

• Prefer double over float
– Many compilers will upgrade floats to doubles anyhow

• Don't use floating-point if you don't need to
– It suffers from rounding error

– Some additional time overhead to perform arithmetic operations

	Slide 1: CS 103 Unit 1a – CPP Syntax and Expressions
	Slide 2: Review C++ Program Structure
	Slide 3: MODULE 1: TYPES (CONSTANTS AND VARIABLES)
	Slide 4: Basic Output via `cout`
	Slide 5: Printing Different Values & Types
	Slide 6: C++ Data Types
	Slide 7: C/C++ Data Types
	Slide 8: Constants (aka Literals)
	Slide 9: You're Just My Type
	Slide 10: Motivation for Data Types
	Slide 11: Limited Range of Data
	Slide 12: Finite Range of Numbers
	Slide 13: Bits, Bytes, Words
	Slide 14: C/C++ Integer Data Types
	Slide 15: Summary: C/C++ Floating Point Types
	Slide 16: Variables
	Slide 17: C/C++ Variables
	Slide 18: Scope
	Slide 19: Summary: C/C++ Variable Types
	Slide 20: Summary: Common Variable Types
	Slide 21: Assignment operator (=)
	Slide 22: Assignment Means Copy
	Slide 23: More Assignments
	Slide 24: MODULE 2: C++ I/O (INPUT/OUTPUT)
	Slide 25: I/O Streams
	Slide 26: endl and Flushing
	Slide 27: Newlines, endl, and Flushing
	Slide 28: Input with cin
	Slide 29: Coming From Java
	Slide 30: Input with cin
	Slide 31: Keyboard Input
	Slide 32: Dealing With Whitespace
	Slide 33: Timing of Execution
	Slide 34: Multiple Inputs and Unexpected Inputs
	Slide 35: Question
	Slide 36: MODULE 3: EXPRESSIONS
	Slide 37: Expressions and Operators
	Slide 38: Arithmetic Operators
	Slide 39: Division
	Slide 40: Precedence
	Slide 41: Exercise Review
	Slide 42: Casting (C and C++ Style)
	Slide 43: Casting Motivation
	Slide 44: Common Casting Errors
	Slide 45: Understanding ASCII and chars
	Slide 46: Pre-/Post- Increment/Decrement
	Slide 47: Library Functions
	Slide 48: Math & Other Library Functions
	Slide 49: #include Directive
	Slide 50: Random Number Generator
	Slide 51: rand() and RAND_MAX
	Slide 52: Seeding Random # Generator
	Slide 53: SOLUTIONS
	Slide 54: You're Just My Type
	Slide 55: Question
	Slide 56: DIGGING DEEPER
	Slide 57: Parts of C/C++ Variables
	Slide 58: Choosing Your Type
	Slide 59: Preprocessor & Directives
	Slide 60: I Do Declare
	Slide 61: C/C++ Integer Data Types
	Slide 62: Summary: C/C++ Floating Point Types

