
0.1

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CS103 Unit 0 –
Introduction

Mark Redekopp

0.2

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Welcome to Computer Science

This Photo by Unknown Author is licensed under CC BY-NC-ND

This Photo by Unknown Author is licensed under CC BY

https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html

https://loonylabs.org/2015/11/24/protein-structure-biotechnology-personalized-medicines/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.lifewire.com/facts-you-should-know-about-mobile-app-development-2373498?utm_source=pinterest&utm_medium=social&utm_campaign=mobilesharebutton2
https://creativecommons.org/licenses/by/3.0/
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html
https://phys.org/news/2018-06-demystifying-future-autonomous-vehicles.html

0.3

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What is Computer Science

• All science is computer science
– It is very interdisciplinary: Math, Engineering, Medicine, Natural

sciences, Art, Linguistics, Social Sciences etc.

• It is more about problem-solving and developing algorithms
to solve information-based problems
– How do I recognize objects in a photograph

– What patterns can be found in a set of data that would allow me to
predict future outcomes

– Identify the function of this protein given it structure

• Computer science is no more about computers than
astronomy is about telescopes*
– Computers are the primary tool

*This is a famous quote. However, who said it first is unclear.

0.4

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

What Computer Scientist Do…

• Find methods to solve information-based
problems (algorithms) [this is truly CS]

– Observe, organize, transform and discover useful
information from data

– Use math and logic to solve problems

– Work in (cross-discipline) groups

• Convert these methods/algorithms to a form
that a computer can execute [this is
programming]

• We generally do both

0.5

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Computer Science Is…

• A great way to make a living
– Maria Klawe, et. al. - To the age-old question -- "What do you want

to do when you grow up?" -- children today give many modern
answers: "Help feed hungry families." "Prevent and cure diseases."
"Find sources of renewable energy." "Understand the universe."
One clear path leads to each of these aspirations: the study of
computer science (& engineering).

http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html

http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html
http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html
http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html
http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html
http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html
http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html
http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html
http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html
http://www.huffingtonpost.com/maria-klawe/computing-our-childrens-f_b_388874.html

0.6

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CS 103 or CS 102
• CS103: Introduction to Programming

• Introduction but requires some prior programming
experience

– Must have passed AP CS exam and or the CS 102
placement exam

• Should know one of Java, Python, or C/C++

– Those that meet the above criteria, but don't feel
confident may consider CS 102 as a slower-paced
on ramp to programming

• Programming

– We'll try to teach good coding practices and how to
find efficient solutions (not just any solution)

– We'll focus on concepts present in most languages
using C/C++ as the primary language (not Java nor
Python)

http://climbingla.blogspot.com/2010/05/walk-6-hermon-and-highland-park.html

http://epg.modot.org/index.php?title=234.2_Diamond_Interchanges

0.7

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Course Structure

• The course is broken into 6 units each consisting of:

Lectures

1

Homework(s)
(Formative programming

problems)

Project(s)
(Cumulative

programming problems)

Labs
(Tools + Practice +

small group Help)

C++ Language

Syntax

1

Pointers and Memory

2

Objects 1

3

4

Recursion

6

Managing Data Objects 2

5

0.8

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exams and Grading

• The course will utilize 3 exams during our Quiz section

Midterm 1 – TBD

Midterm 2 – TBD

Final – Tuesday, May 12 4:30 - 6:30 PM

Grading will be as follows:

Labs
Homeworks
Projects

Lowest Exam
Median Exam

Highest Exam
Total

10%
15%
15%
15%
20%
25%
100%

0.9

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Syllabus

0.10

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Expectations

• Attend lectures & be engaged

– Ask questions

– We're a team…I need you!

– I'll give you my best. Try to give
me yours!

• Catch the wave!

– Start assignments early, complete
them early

– Study and review after each
lecture

• Go deep!

– Read more on your own or ask
questions

– Don't be satisfied with partial
understanding

– Build the mental muscles needed
to solve errors and bugs on your
own

This Photo by Unknown Author is licensed under CC BY-SA-NC

This Photo by Unknown Author is licensed under CC BY
This Photo by Unknown Author is licensed under CC BY-SA-NC
This Photo by Unknown Author is licensed under CC BY-NC-ND

http://www.flickr.com/photos/neeravbhatt/6878110355/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://foto.wuestenigel.com/chicago-deep-dish-pizza-with-cheese-and-tomato-by-uno-due-go/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://biodataofdrvhp.blogspot.com/2012/09/the-amazing-world-of-deep-sea.html
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.flickr.com/photos/taminator/22518407/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

0.11

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Programming Languages

• Imperative/Structured Languages
– Describe the what (data) and how (instructions/algorithm)

– Examples: C/C++, Java, Javascript, Python

– The focus of most programming courses

– Programs are like a recipe for how to operate on data

Combine 2c. Flour

Mix in 3 eggs
Instructions

Data
Computer

(Reads instructions,

operates on data)

Quadratic Equation Solver

0.12

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why C/C++

• We will teach C++ in this course because…
– C/C++ is still a very popular language in industry

– C/C++ is ubiquitous
• Used everywhere, even to implement other programming languages (i.e.

Python, Matlab, etc.)

– C/C++ is close to the actual hardware
• Makes it fast & flexible (Near direct control of the HW=Hardware)

• Makes it dangerous (Near direct control of the HW)

• Most common in embedded devices (your phone, car, wireless router, etc.)

– Principles and concepts of C/C++ will allow you to quickly learn
other programming languages

• C/C++ is extremely broad and allows you to learn other languages easily

– Not Java

0.13

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

High Level Languages

http://www.digibarn.com/collections/posters/tongues/ComputerLanguagesChart-med.png

0.14

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

History of C and C++

Language Originator Year

Algol International Group 1960

Basic Combined
Programming

Language (BCPL)
Martin Richards 1967

B Ken Thompson 1970

C Dennis Ritchie 1972

K&R C
Brian Kernighan &

Dennis Ritchie
1978

C++ Bjarne Stroustrup 1980

C++-98 and 03 ISO/IEC 14882:1998/2003 1998, 2003

C++-11,14,17,20 ISO/IEC 14882:2011 2011 and onward

https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/

https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/
https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/
https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/
https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/
https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/
https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/
https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/
https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/
https://www.scaler.com/topics/cpp/origin-and-philosophy-of-cpp/

0.15

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Philosophy of C++

• Compatibility
– The language should be compatible with C.

– The transition from C to C++ should not be difficult. (yeah right!)

• Choice (and Efficiency)
– The language should give the option to programmers to make their

own choice, even if it increases the possibility that a programmer
will choose incorrectly.

– The language should not slow down a program
or consume space (overhead) for the features
not used in the code.

• Summary: Minimalist
– C and C++ force nothing extra upon you (even protections)

– If you want "extra", implement it yourself or use a library

The Design and Evolution of C++, Bjarne

Stroustrup
This Photo by Unknown Author is licensed under CC BY-SA

https://www.flickr.com/photos/rudiriet/6264424004
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

0.16

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Quotes from Bjarne

This Photo by Unknown

Author is licensed under

CC BY-SA-NC

• "There are only two kinds of languages: the ones people

complain about and the ones nobody uses".

• "C++ is designed to allow you to express ideas, but if

you don't have ideas or don't have any clue about how to

express them, C++ doesn't offer much help."

- Bjarne Stroustrup (Quotes)

https://www.techug.com/post/creator-of-various-programming-languages.html
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.stroustrup.com/quotes.html

0.17

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

FACT 1 AND FACT 2
Fact 1: Everything is a number

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://gabriela-aguirre.blogspot.com/2011/03/salamerias.html
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

0.18

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

It’s A Numbers Game

• Fact 1: Everything in a computer is a number
– Sure. Things like 103 and 3.9 are numbers

– But what about text and images and sound?

– Everything!

• Fact 2: Computer operations can only work with or "see" 1 or 2
numbers at a time (i.e. they can only do 1 thing at a time)

• Humans process information
differently
– Therein lies some of the

difficultly of learning programming

Combine 2c. Flour

Mix in 3 eggs

0.19

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example (1)

• What do you see?

– The letter 'a'!

• What does the computer see?

– A number; each text character is
coded to a number

• Example: Character map / Insert
symbol

a

97

0.20

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Text Representation

• Most common
character code is
ASCII (UTF-8)

• Every character,
even non-printing,
characters have a
corresponding
numbers
– Decimal (base 10) /

Hexadecimal (base 16)

https://www.commfront.com/pages/ascii-chart

https://www.commfront.com/pages/ascii-chart
https://www.commfront.com/pages/ascii-chart
https://www.commfront.com/pages/ascii-chart

0.21

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example 2

• What do you see?
– A face!

• What does the computer
see?
– Individual pixels whose value

indicates the shade of gray (or
color)

0.22

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

The Connection with Mathematics

• Brightness
– Each pixel value is

increased/decreased by a constant
amount

– Pnew = Pold + B
• B > 0 = brighter

• B < 0 = less bright

• Contrast
– Each pixel value is multiplied by a

constant amount

– Pnew = C*Pold + k
• C > 1 = more contrast

• 0 < C < 1 = less contrast

• Same operations performed on
all pixels

+ BrightnessOriginal- Brightness

- Contrast

+ Contrast

Input

Pixel

Output

Pixel

0.23

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

But Why?

• Why can't computer just "look" at
the image
– Computers store information as

numbers (e.g. each pixel of an image
is a separate number)

– These numbers are stored as units of
8-, 32- or 64-bits in the computer's
RAM (memory)

– The computer processor must
retrieve them from memory 1 at a
time

204

Processor RAM

(memory)

Can only transfer 1

value at a time

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=

0.24

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Memory

• Set of cells that each store a
group of bits (usually, 1 byte
= 8 bits)

• Unique address assigned to
each cell
– Used to reference the value in

that location

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

1023

Address Data

Memory

Device

204

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=

0.25

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Memory Operations

• Processor can access 1 location
at a time, either reading or
writing that location
– Read: retrieves data value in a

particular location (specified using
the address)

– Write: changes data in a location
to a new value

• High level operation: x=x+1
– Read x's current value from

memory to the processor
– Add 1
– Write x's new value back to

memory

11010010

01001011

00000101

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

1023

11010010

01001011

000000110

11110100

01101000

00000110

…

00001011

0

1

2

3

4

5

1023

2 = (00000010)

5 = (00000101)

Read

(1)

Addr.

Data

Control

Addr.

Data

Control

2 = (00000010)

6 = (00000110)

Write

(0)

A Write Operation

A Read Operation

x

x

0.26

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

1 OR MANY
How many steps does it take a computer to perform the following tasks

0.27

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

One Operation or Many (1)

#include <iostream>
#include <string>
using namespace std;

// Execution starts at main()
int main()
{

int x = 1, y = 2;

x = y;

return 0;
}

One / Many

This Photo by Unknown Author is licensed under CC BY-SA

#include <iostream>
#include <string>
using namespace std;

// Execution starts at main()
int main()
{

string x = "abc", y = "defg";

x = y;

return 0;
}

One / Many

https://en.wikiversity.org/wiki/IT_Fundamentals/Operating_Systems
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

0.28

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

One Operation or Many (1)

#include <iostream>
#include <string>
using namespace std;

// Execution starts at main()
int main()
{

int x = 1, y = 2;

x = y;

return 0;
}

One

ints are single objects to a computer
strings are composite objects (i.e. an array) to a computer

This Photo by Unknown Author is licensed under CC BY-SA

#include <iostream>
#include <string>
using namespace std;

// Execution starts at main()
int main()
{

string x = "abc", y = "defg";

x = y;

return 0;
}

Many

https://en.wikiversity.org/wiki/IT_Fundamentals/Operating_Systems
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

0.29

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Strings Overview

• strings simply abstract character arrays

• Behind the scenes strings are just creating and manipulating character
arrays but giving you a simplified set of operators and functions

• When the contents of the string grow too large, a new array is allocated
behind the scenes (potentially copying the contents of the old string)

#include <iostream>
#include <string>
using namespace std;

int main()
{

string str2 = "abc";
// str2 stores 3 chars. = "abc"

str2 = "defgh";
// now str2 stores 5 characters

}

str2

abc

defg

h

Plain-old character array

Plain-old character array

35

0.30

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

One Operation or Many (2)

#include <iostream>
#include <string>
using namespace std;

int main()
{

char c = 'a', d = 'b';

if(c == d) {
...
}
return 0;

}

One / Many

This Photo by Unknown Author is licensed under CC BY-SA

#include <iostream>
#include <string>
using namespace std;

int main()
{

string x = "abc", y = "acb";

if(x == y) {
...
}
return 0;

}

One / Many

https://en.wikiversity.org/wiki/IT_Fundamentals/Operating_Systems
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

0.31

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

One Operation or Many (2)

#include <iostream>
#include <string>
using namespace std;

int main()
{

char c = 'a', d = 'b';

if(c == d) {
...
}
return 0;

}

One

chars, doubles, ints can be compared in a single operation
strings are arrays an must be compared character by character

This Photo by Unknown Author is licensed under CC BY-SA

#include <iostream>
#include <string>
using namespace std;

int main()
{

string x = "abc", y = "acb";

if(x == y) {
...
}
return 0;

}

Many

https://en.wikiversity.org/wiki/IT_Fundamentals/Operating_Systems
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

0.32

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

One Operation or Many (3)

This Photo by Unknown Author is licensed under CC BY-SA

#include <iostream>
#include <string>
using namespace std;

int main()
{

// Mimics an integer array
vector<int> y = {1,2,3};

y.push_back(4); // append 1 int

return 0;
}

One / Many

https://en.wikiversity.org/wiki/IT_Fundamentals/Operating_Systems
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

0.33

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

One Operation or Many (3)

Growing an array (which is the underlying structure of a vector) may require
reallocating a larger array and copying the old contents

This Photo by Unknown Author is licensed under CC BY-SA

#include <iostream>
#include <string>
using namespace std;

int main()
{

// Mimics an integer array
vector<int> y = {1,2,3};

y.push_back(4); // append 1 int

return 0;
}

Many

https://en.wikiversity.org/wiki/IT_Fundamentals/Operating_Systems
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

0.34

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

#include <iostream>
#include <vector>
using namespace std;
int main()
{

vector<int> v1(5);
for(int i=0; i < 5; i++){

v1[i] = i+50;
}
v1.push_back(10);
// causes a resize behind the scenes

What Happens Behind the Scenes
• Vectors abstract arrays

– Behind the scenes vectors are just creating and manipulating arrays but giving you a
simplified set of operators and functions

v1

5data size

5 cap

5

0

5

1

5

2

5

3

5

4

0 1 2 3 4

0 1 2 3 4

1

0
? ? ? ?

5 6 7 8 9

5

0

5

1

5

2

5

3

5

4

10

6

0.35

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Who Am I
• Newest Teaching faculty in CS

• Undergrad at Cal Poly

• Grad at UC Riverside

• PhD in VR

• Worked in software Eng. Before PhD

• Previously Visiting Faculty at

Harvey Mudd College

• Guitarist, Banjoist.

• Tabletop game connoisseur.

0.36

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

THINK LIKE A COMPUTER
Fact 2: A computer operation can only process 1 or 2 values at a time

0.37

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning

• Find shortest path from S to F

S F

0.38

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning

• Find shortest path from S to F

S F

0.39

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning
• Let's say you are a maps application and must find the

appropriate path

• Fact 2 (from earlier): A computer usually can only process (or
"see") one or two data items (a square) at a time

S F

May just compute a

straight line path from

‘S’ to ‘F’

2

0

1

5

3

4

7

6

0 1 2 3 4 5 6 7

0.40

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning

S F

2

0

1

5

3

4

7

6

0 1 2 3 4 5 6 7

0.41

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning

S F

2

0

1

5

3

4

7

6

0 1 2 3 4 5 6 7

0.42

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning
• What if I don’t know where the Finish square is? You can examine

any square in any order (no longer a robot) one at a time.

• In what order would you examine the locations to find the shortest
path to the goal location?

S

?

?

?
2

0

1

5

3

4

7

6

0 1 2 3 4 5 6 7

S F

0.43

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning

• Examine all closer squares one at a time before
progressing to further squares.

S F

3 2 1

3

3 2

2 3

3

3

1 S

3 2 1

3

1 3

2 3

3

2

2

2

If you don’t know

where F is and want to

find the shortest path,

you should examine all

closer locations before

examining further-

away locations.

Uninformed search for

shortest path:

Breadth-first

0.44

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OVERVIEW OF C++ PROGRAM
STRUCTURE AND COMPILATION

A quick high-level view before we dive into the details…

0.45

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Coming From Other Languages

#include <iostream>
#include <cmath>
using namespace std;

void printName(string name)
{
cout << name << " Trojan" << endl;

}
// Execution starts at main()
int main()
{
cout << "Hello: " << endl;
printName("Tommy");
printName("Tina");
double e_x = exp(1.0);
cout << "e is " << e_x << endl;
return 0;

}

import math

def printName(name):
print(name, "Trojan")

def main():
print("Hello: ")
printName("Tommy")
printName("Tina")
e_x = math.exp(1.0)
print("e is", e_x)

Execution starts here (weird)
if __name__ == "main":

main()

import java.lang.Math.*;

class Hello {
public static void printName(String name) {
System.out.println(name + " Trojan");

}

// Execution starts here
public static void main(String[] args)
{
System.out.println("Hello: ");
printName("Tommy");
printName("Tina");
double e_x = Math.exp(1.0);
System.out.println("e is " + e_x);

}
}

C++PythonJava

$ python3 hello.py
Hello:
Tommy Trojan
Tina Trojan
e is 2.71828

This Photo by Unknown Author is licensed under CC BY-SA

$ g++ hello.cpp –o hello
$./hello
Hello:
Tommy Trojan
Tina Trojan
e is 2.71828

$ javac Hello.java
$ java Hello
Hello:
Tommy Trojan
Tina Trojan
e is 2.71828

https://en.wikiversity.org/wiki/IT_Fundamentals/Operating_Systems
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

0.46

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Compilation & Execution Process

204

MHV2200BT

Executable

Binary Image

("test")

1110 0010 0101
1001

0110 1011 0000
1100

0100 1101 0111
1111

1010 1100 0010
1011

0001 0110 0011
1000C++ file(s)

(test.cpp)

Compiler

#include <iostream>
using namespace std;
int main()
{
int x = 5;
cout << "Hello" << endl;
cout << "x=" << x;
return 0;

}

g++
Load &

Execute

2 Compile & fix compiler

errors
1 Edit & write

code
3 Load & run the

executable program

-g = Enable Debugging

-Wall =Show all warnings

-o test = Specify Output executable name

Std C++ &

Other

Libraries

$ g++ –g –Wall test.cpp –o test $ g++ –g –Wall test.cpp –o test
$./test

http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id=218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q=ram+dimm&svnum=10&hl=en&lr=
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id=3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q=hard+disk&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N

0.47

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

C/C++ Program Format/Structure
• Comments

– C-Style => "/*" and "*/"

– C++ Style => "//"

• Compiler Directives

– #includes tell compiler what other library
functions you plan on using

– 'using namespace std;' -- Just do it for now!

• main() function

– Starting point of execution for the program

– All code/statements in C/C++ must be
inside a function

– Statements execute sequentially (one line
after the next) and end with a semicolon (;)

– Ends with a 'return 0;' statement

• Other functions

– Functions (and later, classes) are the primary
unit of code organization (and problem
decomposition/abstraction)

– Enclosed by { and } (aka curly braces)

/* Anything between slash-star and
star-slash is ignored even across
multiple lines of text or code */

// Anything after "//" is ignored on a single line

// #includes allow access to library functions
#include <iostream> // cout and endl
#include <cmath> // exp
using namespace std;

void printName(string name)
{
cout << name << " Trojan" << endl;

}

// Execution always starts at the main() function
int main()
{

cout << "Hello: " << endl;
printName("Tommy");
printName("Tina");
double e_x = exp(1.0);
cout << "e is " << e_x << endl;
return 0;

}
$ g++ hello.cpp –o hello # compile
$./hello # execute
Hello:
Tommy Trojan
Tina Trojan
e is 2.71828

0.48

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BACKUP

0.49

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning
• You can't see obstacles until you are directly neighboring them.

• Now I tell you where the finish, F, location is. Can that help you
reduce the number of squares explored?

S F

Select a square to

explore with minimum

distance to the finish

5

5

5

3

2

0

1

5

3

4

7

6

0 1 2 3 4 5 6 7

(2,2) to (3,6)

Dist: |2-3|+|2-6| = 5

0.50

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning
• You can't see obstacles until you are directly neighboring them.

• Now I tell you where the finish, F, location is. Can that help you
reduce the number of squares explored?

4

S 2

4

F

Select a square to

explore with minimum

distance to the finish

5

5

5

3

2

0

1

5

3

4

7

6

0 1 2 3 4 5 6 7

0.51

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning

• But what if we run into a blockage?
– Now we would pick the best among the remaining, unchosen locations.

4

S 2

4

F

Select a square to

explore with minimum

distance to the finish

5

5

5

3

2

0

1

5

3

4

7

6

0 1 2 3 4 5 6 7

0.52

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Path Planning

• But what if we run into a blockage?
– Now we would pick the best among the remainder.

S 2

Select a square to

explore with minimum

distance to the finish

5

5

5

3 F

4

4

4

4 3

5

4

1

2

F

55

2

0

1

5

3

4

7

6

0 1 2 3 4 5 6 7

0.53

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Programming vs. Algorithms

• Programming entails converting an algorithm into a specific
process that a computer can execute

S 2

5

5

5

3 F

4

4

4

4 3

5

4

1

2

F

55
00000000

00000000

00000001

00000001

…

00001011

0

1

2

…

20

21

1023

Addr.

Data

Control

0.54

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Another Example: Image Compression

• Images are just 2-D arrays (matrices) of numbers

• Each number corresponds to the color or a pixel in
that location

• Image store those numbers in some way

Column Index

0.55

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example 2 and 3

• What does the computer
see?
– Coordinate pairs of each "pixel"

– …or…

– r = 120; origin = (10, 14)

– Computer has to enumerate
and visit each location and
color it black

(x,y)=(60,100)

(x,y)=(59,101)

(x,y)=(57,102)

(x,y)=(56,103)

0.56

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Image Compression
129 131 130 133 132 132 130 129 128 130 131 129

130 130 131 129 131 132 131 133 130 129 129 131

132 131 130 132

134 132 131 132

133 131

156 157

153 155

154 152

207 204

208 205

0.57

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Image Compression
129 131 130 133 132 132 130 129 128 130 131 129

130 130 131 129 131 132 131 133 130 129 129 131

132 131 130 132

134 132 131 132

133 131

156 157

153 155

154 152

207 204

208 205

129 131 130 133

130 130 131 129

132 131 130 132

134 132 131 132

129 2 1 4

2 1 2 0

3 2 1 3

5 3 2 3

1. Break Image into small blocks of

pixels

2. Store the difference of each pixel and the upper

left

(or some other representative pixel)

129 2 0 4

2 0 2 0

2 2 0 2

4 2 2 2

3. We can save more space by rounding numbers

to a smaller set of options (i.e. only even #

differences)

129 2 1 4

2 1 2 0

3 2 1 3

5 3 2 3

0.58

© 2024 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Video Compression

• Video is a sequence of still frames

– 24-30 frames per second (fps)

• How much difference is expected between frames?

• Idea:
– Store 1 of every K frames, with other K-1 frames being

differences from frame 1 or from previous frame

This Photo by Unknown Author is licensed under CC BY-ND

http://msaleshabrittaingoodlett.blogspot.com/2008/06/random-beach-pictures-with-couple-from.html
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/
https://creativecommons.org/licenses/by-nd/3.0/

	Slide 1: CS103 Unit 0 – Introduction
	Slide 2: Welcome to Computer Science
	Slide 3: What is Computer Science
	Slide 4: What Computer Scientist Do…
	Slide 5: Computer Science Is…
	Slide 6: CS 103 or CS 102
	Slide 7: Course Structure
	Slide 8: Exams and Grading
	Slide 9: Syllabus
	Slide 10: Expectations
	Slide 11: Programming Languages
	Slide 12: Why C/C++
	Slide 13: High Level Languages
	Slide 14: History of C and C++
	Slide 15: Philosophy of C++
	Slide 16: Quotes from Bjarne
	Slide 17: FACT 1 AND FACT 2
	Slide 18: It’s A Numbers Game
	Slide 19: Example (1)
	Slide 20: Text Representation
	Slide 21: Example 2
	Slide 22: The Connection with Mathematics
	Slide 23: But Why?
	Slide 24: Memory
	Slide 25: Memory Operations
	Slide 26: 1 OR MANY
	Slide 27: One Operation or Many (1)
	Slide 28: One Operation or Many (1)
	Slide 29: Strings Overview
	Slide 30: One Operation or Many (2)
	Slide 31: One Operation or Many (2)
	Slide 32: One Operation or Many (3)
	Slide 33: One Operation or Many (3)
	Slide 34: What Happens Behind the Scenes
	Slide 35: Who Am I
	Slide 36: THINK LIKE A COMPUTER
	Slide 37: Path Planning
	Slide 38: Path Planning
	Slide 39: Path Planning
	Slide 40: Path Planning
	Slide 41: Path Planning
	Slide 42: Path Planning
	Slide 43: Path Planning
	Slide 44: OVERVIEW OF C++ PROGRAM STRUCTURE AND COMPILATION
	Slide 45: Coming From Other Languages
	Slide 46: Compilation & Execution Process
	Slide 47: C/C++ Program Format/Structure
	Slide 48: BACKUP
	Slide 49: Path Planning
	Slide 50: Path Planning
	Slide 51: Path Planning
	Slide 52: Path Planning
	Slide 53: Programming vs. Algorithms
	Slide 54: Another Example: Image Compression
	Slide 55: Example 2 and 3
	Slide 56: Image Compression
	Slide 57: Image Compression
	Slide 58: Video Compression

