
7.1

Final Review

7.2

Final Details
• Saturday (yes, Saturday) December 13th at 11AM

• Location: (Based on Last Name)
• A-J: SGM 101
• K-Z: SGM 123

• Format: T/F, multiple choice, short answer, FiTB
coding, coding snippets

7.3

Topics
In no particular order

• Basic C++ syntax, control flow
• Functions - pass by value
• Arrays, multidimensional arrays
• Images
• Pointers
• C-strings
• Pass-by-pointer
• Pass-by-C++-reference
• Pointer Arithmetic/arrays +

pointers/arrays of pointers
• Dynamic multi-dimensional arrays
• Command line arguments
• Dynamic memory
• Deep/shallow copy
• C++ strings

• fstreams, stringstreams
• Basic objects: syntax,

constructors/destructors
• Vectors/deques/STL
• Linked Lists
• Operator overloading
• Objects:

Inheritance/Polymorphism
• Copy/Assignment semantics
• Exceptions
• Recursion
• Runtime (Big-O)

7.4

REVIEW

7.5

Review [1]

Const function arguments
• Will this code compile?
• Indicate what will be printed

(assuming it compiles)

Const member functions
• What does the highlighted const

keyword imply in the code
below?

class Item
{ int val;
 public:
 void foo();
 int bar() const;
};

void Item::foo()
{ val = 5; }

int Item::bar() const
{ return val+1; }

void f1(const Item& arg) {
 int x = arg.bar(); // fine
 arg.foo(); // Compiler Error!
}

void f1(const vector<int>& x){
 x.push_back(103);
 x.push_back(104);
}

void f2(string& y){
 y = "Bye";
}

int main()
{
 vector<int> a; string b = "Hi";
 f1(a);
 f2(b);
 cout << b.size() << endl;
 return 0;
}

7.6

Review [2]

Constructor Initialization Lists
• What is the most efficient means

to initialize the vals member to an
initial array size of 20 and s to a
user-defined argument?

Construction Order
• What is printed by the code

below?

class ABC {
 public:
 ABC() { cout << "ABC" << endl; }
};
class DEF {
 public:
 DEF() { cout << "DEF" << endl; }
};
class XYZ {
 ABC m1; DEF m2;
 public:
 XYZ()
 { cout << "XYZ" << endl; }
};
int main() {
 XYZ x1;
 return 0;
}

class Thing {
 public:
 Thing(const std::string& s_init);
 private:
 vector<int> vals;
 string s;
};

Thing::Thing(const std::string& s_init)

{
 // is this the most efficient way?
 vals.resize(20);
 s = s_init;
}

7.7

Review [3]

Friend Functions
• What does the highlighted friend

keyword imply in the code below?
• What would break if we remove it?

Friend Classes
• Can DEF::clear() access obj.x?
• If not, how can class ABC grant

access to DEF?

class Complex
{
 public:
 Complex();
 Complex(double r, double i);
 friend Complex operator+(const int&, const Complex&);
 private:
 double real, imag;
};

Complex operator+(const int& lhs, const Complex &rhs)
{
 Complex temp;
 temp.real = lhs + rhs.real; temp.imag = rhs.imag;
 return temp;
}

class ABC {
 int x; // data member
 public:

 ...
};

class DEF {
public:
 void clear(ABC& obj) { obj.x = 0; }
};

7.8

SOLUTIONS

7.9

Identify that Constructor

• Prototype what constructors are
being called here

• s1
– Student::Student()

// default constructor

• s2
– Student::Student(string, int) or
 Student::Student(const char*, int)

• dat
– vector<int>::vector<int>(int);

class Student {
public:
// Default constructor
Student();

// Initializing constructor
Student(const string& name);
...

private:
string name_;
int id_;
vector<int> grades_;

};

int main()
{

Student s1;
Student s2("Tommy", 12345);

vector<int> vals(10);
 ...
}

7.10

Review [1] Solutions

Const function arguments
• Will this code compile? No, modification

of x in f1()
• Indicate what will be printed (assuming it

compiles) – b.size() will be 3

Const member functions
• What does the highlighted const

keyword imply in the code below?
– No data members can be modified nor

non-const member functions called

class Item
{ int val;
 public:
 void foo();
 int bar() const;
};

void Item::foo()
{ val = 5; }

int Item::bar() const
{ return val+1; }

void f1(const vector<int>& x){
 x.push_back(103);
 x.push_back(104);
}

void f2(string& y){
 y = "Bye";
}

int main()
{
 vector<int> a; string b = "Hi";
 f1(a);
 f2(b);
 cout << b.size() << endl;
 return 0;
}

7.11

Review [2] Solutions

Constructor Initialization Lists
• What is the most efficient means

to initialize the vals member to an
initial array size of 20 and s to a
user-defined argument?

Construction Order
• What is printed by the code below?

– ABC
DEF
XYZ

class ABC {
 public:
 ABC() { cout << "ABC" << endl; }
};
class DEF {
 public:
 DEF() { cout << "DEF" << endl; }
};
class XYZ {
 ABC m1; DEF m2;
 public:
 XYZ() { cout << "XYZ" << endl; }
};
int main() {
 XYZ x1;
 return 0;
}

class Thing {
 public:
 Thing(const std::string& s_init);
 private:
 vector<int> vals;
 string s;
};

Thing::Thing(const std::string& s_init)
 : vals(20), s(s_init)
{

}

7.12

Review [3] Solutions
Friend Functions

• What does the highlighted friend
keyword imply in the code below?
– That function can access Complex private

members

• What would break if we remove it?
– Could not access rhs.real / rhs.imag

Friend Classes
• Can DEF::clear() access obj.x? No
• If not, how can class ABC grant

access to DEF?
– Add friend definition

class Complex
{
 public:
 Complex();
 Complex(double r, double i);
 friend Complex operator+(const int&, const Complex&);
 private:
 double real, imag;
};

Complex operator+(const int& lhs, const Complex &rhs)
{
 Complex temp;
 temp.real = lhs + rhs.real; temp.imag = rhs.imag;
 return temp;
}

class ABC {
 int x; // data member
 public:
 friend class DEF;
 ...
};

class DEF {
public:
 void clear(ABC& obj) { obj.x = 0; }
};

7.13

OPERATOR OVERLOADING REVIEW

7.14

Operator Overloading Review

Member or Non-member?
• How do you decide if you can

make the operator overload
function a member function
of the class?

• When do you have to use a
non-member operator
function?

Arguments
• For member function

operator overloads, how
many input arguments are
needed for operator+? For
operator! ?

// arbitrary precision integer class
class BigInt {
 ...
};
int main(){
 BigInt x, y, z;
 x = y + 5;
}

// arbitrary precision integer class
class BigInt {
 ____ operator+();
 ____ operator!();
};
int main(){
 BigInt w, x, y, z;
 w = x + y;
 bool flag = !w;
}

7.15

Operator Overloading Review

Return types
• For class BigInt which

models an arbitrary
precision integer, what
should the return type be
for:
– Operator+
– Operator==

Chaining
• Do we need operator

overload functions with 2-,
3-, 4-inputs, etc. to handle
various use cases?

class BigInt {
 public:
 _________ operator+(const BigInt&);
 _________ operator==(const BigInt&);
};
int main(){
 BigInt w, x, y, z;
 w = x + y;
}

class BigInt {
 ...
};
int main(){
 BigInt w, x, y, z;
 w = x + y + z;
 cout << w << " is a bigint!" << endl;
}

7.16

SOLUTION

7.17

Operator Overloading Review

Member or Non-member?
• How do you decide if you can make

the operator overload function a
member function of the class?
– If the left-hand side operand is a class

instance
• When do you have to use a non-

member operator function?
– If the left operand of an operator is

NOT an instance of the class, you
cannot use a member function

Arguments
• For member function operator

overloads, how many input
arguments are needed for
operator+?
– Only 1, the left side operand is 'this'

• for operator!
– None, only operand is 'this'

// arbitrary precision integer class
class BigInt {
 ...
};
int main(){
 BigInt x, y, z;
 x = y + 5;
}

// arbitrary precision integer class
class BigInt {
 ____ operator+(const BigInt& rhs);
 ____ operator!();
};
int main(){
 BigInt w, x, y, z;
 w = x + y;
 bool flag = !w;
}

7.18

Operator Overloading Review

Return types
• For class BigInt which

models an arbitrary
precision integer, what
should the return type be
for:
– Operator+: BigInt (by value)
– Operator==: bool

Chaining
• Do we need operator overload

functions with 2-, 3-, 4-inputs,
etc. to handle various use
cases?
– No, this is why the return type should

be BigInt to allow for chaining:
x.operator+(y).operator+(z), etc.

class BigInt {
 public:
 BigInt operator+(const BigInt&);
 bool operator==(const BigInt&);
};
int main(){
 BigInt w, x, y, z;
 w = x + y;
}

// arbitrary precision integer class
class BigInt {
 ...
};
int main(){
 BigInt w, x, y, z;
 w = x + y + z;
 cout << w << " is a bigint!" << endl;
}

7.19

REVIEW

7.20

Review [1]
• What is the correct prototype for

the copy constructor call when c3
is created in the code to the right?
– Complex(Complex);
– Complex(Complex &)
– Complex(const Complex &)

class Complex
{
 public:
 Complex();
 Complex(double r, double i);

 // What constructor definition do I
 // need for c3's declaration below

 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)
 Complex c3(c1);

}

7.21

Review [2]

Which function?
• For each of the following,

identify whether the copy
constructor is called or the
assignment operator
– Complex c1;

Complex c2 = c1;
– Complex c1;

Complex c2(c1);
– Complex c1, c2;

c2 = c1;

Default Versions
• What kind of copy does the

default copy constructor
and assignment operator
perform?

class MyArray
{
 ...
 private:
 int* data; // ptr to dynamic array
 size_t len;
};

7.22

Review [3]

State the Rule of 3
• The rule of 3:

Assignment Operator Specifics?
• What extra considerations does the

assignment operator need to handle
vs. the copy constructor?

• What should operator= return?

class MyArray
{

 private:
 int* data; // ptr to dynamic array
};

MyArray& operator=(const MyArray& other)
{

}

7.23

SOLUTIONS

7.24

Review [1]
• What is the correct prototype for

the copy constructor call when c3
is created in the code to the right?
– Complex(Complex);

• We will see that this can't be right…

– Complex(Complex &)
• Possible

– Complex(const Complex &)
• Best! (Making a copy shouldn't

change the input argument, thus
'const')

class Complex
{
 public:
 Complex();
 Complex(double r, double i);

 // What constructor definition do I
 // need for c3's declaration below

 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)
 Complex c3(c1);

}

7.25

Review [2]

Which function?
• For each of the following,

identify whether the copy
constructor is called or the
assignment operator
– Complex c1;

Complex c2 = c1;
• Copy constructor

– Complex c1;
Complex c2(c1);
• Copy constructor

– Complex c1, c2;
c2 = c1;
• Assignment operator

Default Versions
• What kind of copy does the

default copy constructor
and assignment operator
perform?
– Shallow copy (member by

member copy)

class MyArray
{
 ...
 private:
 int* data; // ptr to dynamic array
 size_t len;
};

7.26

Review [3]

State the Rule of 3
• The rule of 3:

– If a class needs a user-defined
version of any one of the 3: copy
constructor, assignment
operator, or destructor, it needs
ALL 3.

Assignment Operator Specifics?
• What extra considerations

does the assignment
operator need to handle vs.
the copy constructor?
– Must clean up old resources

before copying
– Beware of self assignment

• What should operator=
return?
– A reference to an instance of

the class which should be
*this;

class MyArray
{

 private:
 int* data; // ptr to dynamic array
};

MyArray& operator=(const MyArray& other)
{

}

7.27

REVIEW QUESTIONS

7.28

Inheritance Review 1

• T/F: A student object has a name_
and id_ member

• T/F: Code from the Student class
can access name_ and id_
– What could you change to flip the T/F

answer?

• What would change if Student
inherited Person through private
inheritance?

class Person {
 public:
 Person(string n, int ident);
 string get_name();
 int get_id();
 private:
 string name_; int id_;
};

class Student : public Person {
 public:
 Student(string n, int ident, int mjr);
 int get_major();
 double get_gpa();
 void set_gpa(double new_gpa);
 private:
 int major_; double gpa_;
};
int main()
{
 Student s1("Amanda", 12345, 1);
 cout << s1.get_name() << endl;
 return 0;
}

7.29

Inheritance Review 2

• Inheritance defines an _______ relationship between classes
• Composition defines a _________ relationship between two

objects
• Protected access makes members accessible to ____________

but still not to ___________________

7.30

SOLUTIONS

7.31

Inheritance Review 1
• T/F: A student object has a name_ and id_

member
• T/F: Code from the Student class can

access name_ and id_
– What could you change to flip the T/F

answer? Changing Person's access
specifier to protected or public. Regardless
of how Student inherits, name_ and id_
will be private to the Student class.

• What would change if Student inherited
Person through private inheritance?
– External clients (like main) would not be able to

access the inherited members (from Person) of
a Student object.

class Person {
 public:
 Person(string n, int ident);
 string get_name();
 int get_id();
 private:
 string name_; int id_;
};

class Student : public Person {
 public:
 Student(string n, int ident, int mjr);
 int get_major();
 double get_gpa();
 void set_gpa(double new_gpa);
 private:
 int major_; double gpa_;
};
int main()
{
 Student s1("Amanda", 12345, 1);
 cout << s1.get_name() << endl;
 return 0;
}

7.32

Inheritance Review 2

• Inheritance defines an is-a relationship between classes
• Composition defines a has-a relationship between two objects
• Protected access makes members accessible to a derived/child

class but still not to external/3rd-party clients

7.33

Review Questions 1
• As we call processPerson(&p) what

member functions will be called
(e.g. Person::print_info,
CSStudent::useComputer, etc.)

• As we call processPerson(&s)?

• As we call processPerson(&cs)?

• We use the terms static and dynamic binding
when referring to which function will be
called when virtual is NOT or IS present.

class Person {
 public:
virtual void print_info() const; // name, ID

 void useComputer(); // stream a show
 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major
 void useComputer(); // write a paper
 int major; double gpa;
};
class CSStudent : public Student {
 public:
 void print_info() const; // print OH queue pos
 void useComputer(); // fight with Codio
};

void processPerson(Person* p)
{ p->print_info();
 p->useComputer(); }

int main(){
 Person p(...); processPerson(&p);
 Student s(...); processPerson(&s);
 CSStudent cs(...); processPerson(&cs);
 // more
}

7.34

Review Questions 2
• What does "=0;" mean in the

declarations to the right?

• What do we call a class with 1 or
more of these kind of
declarations?

• Is it okay that Student doesn't
provide a useComputer()
implementation?

• Can we declare Person objects?
• Can we declare pointers or

references to Person objects?
• When should a class have a

virtual destructor?

class Person {
 public:
virtual void print_info() const = 0;
virtual void useComputer(); // stream a show

 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major
 int major; double gpa;
};
class CSStudent : public Student {
 public:
 void print_info() const; // print OH queue pos
 void useComputer(); // fight with Docker
};

void printPerson(Person* p) { p->print_info(); }
void compute(Person& p) { p.useComputer(); }

int main(){
 Person p(...); // Allowed?
 Student s(...); useComputer(s);
 CSStudent cs(...); printPerson(&cs);
 // more
}

7.35

SOLUTIONS

7.36

Review Questions 1
• As we call processPerson(&p)

what member functions will be
called (e.g. Person::print_info,
CSStudent::useComputer, etc.)
– Person::print_info() /

Person::useComputer()

• As we call processPerson(&s)?
– Student::print_info() /

Person::useComputer()

• As we call processPerson(&cs)?
– CSStudent::print_info() /

Person::useComputer()
• We use the terms static and dynamic

binding when referring to which function
will be called when virtual is NOT or IS
present.

class Person {
 public:
virtual void print_info() const; // name, ID

 void useComputer(); // stream a show
 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major
 void useComputer(); // write a paper
 int major; double gpa;
};
class CSStudent : public Person {
 public:
 void print_info() const; // print OH queue pos
 void useComputer(); // fight with Docker
};

void processPerson(Person* p)
{ p->print_info();
 p->useComputer(); }

int main(){
 Person p(...); processPerson(&p);
 Student s(...); processPerson(&s);
 CSStudent cs(...); processPerson(&cs);
 // more
}

7.37

Review Questions 2
• What does "=0;" mean in the

declarations to the right?
– Pure virtual function

• What do we call a class with 1 or
more of these kind of declarations?
– Abstract class

• Is it okay that Student doesn't
provide a useComputer()
implementation?
– Yes, it inherits Person::useComputer()

• Can we declare Person objects? No
• Can we declare pointers or

references to Person objects? Yes
• When should a class have a virtual

destructor?
– When at least one other virtual function

is declared in the class

class Person {
 public:
virtual void print_info() const = 0;
virtual void useComputer(); // stream a show

 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major
 int major; double gpa;
};
class CSStudent : public Person {
 public:
 void print_info() const; // print OH queue pos
 void useComputer(); // fight with Docker
};

void printPerson(Person* p) { p->print_info(); }
void compute(Person& p) { p.useComputer(); }

int main(){
 Person p(...); // Allowed?
 Student s(...); useComputer(s);
 CSStudent cs(...); printPerson(&cs);
 // more
}

7.38

Efficiency

Data Structure Operations

Vector Push_back() Push_front() Get/at(location i) Pop_front()

Deque Push_back() Push_front() Get/at(location i) Pop_front()

Singly-Linked List (w/
head ptr only)

Push_back() Push_front() Get/at(location i) Pop_back()

Singly-Linked List (w/
head + tail ptr)

Push_back() Push_front() Get/at(location i) Pop_back()

Doubly-linked list (w/
head + tail ptr)

Push_back() Push_front() Get/at(location i) Pop_back()

7.39

Consider this class

• Does this class need to
define a copy
constructor? If so,
define it.

class Student {
 public:
 Student(string name, char* mjr) {
 name_ = name;
 major = new char[strlen(mjr)+1];
 strcpy(major, mjr);
 }

 void addScore(int s)
 { scorse.push_back(s); }
 private:
 string name_;
 char* major;
 vector<int> scores;
};

7.40

Trace the output

• Does this class need to
define a copy
constructor? If so,
define it.

class SchoolBus : public Bus
{
public:
 virtual void brake() {
 honk();
 cout << "SchoolBus::brake" << endl;
 }
};

int main()
{
 Vehicle *v1 = new Bus();
 v1->brake();
 Vehicle *v2 = new SchoolBus();
 v2->brake();
 v2->drive();
 delete v1;
 delete v2;
 return 0;
}
// if destructors printed the class name,
// what would you see?

#include <iostream>
using namespace std;
class Vehicle {
public:
 void drive() {
 honk();
 cout << "Vehicle::drive" << endl;
 }
 void honk()
 { cout << "Vehicle::honk" << endl; }
 virtual void brake()
 { cout << "Vehicle::brake" << endl; }
};
class Bus : public Vehicle {
public:
 void honk() { cout << "Bus::honk" << endl; }
 virtual void brake() {
 drive();
 cout << "Bus::brake" << endl;
 }
};

7.41

Recursion Tracing
int gc(int x, int y)
{
 if(y==0) return x;
 else return gc(y, x%y)
}

int main(){
 cout << gc(323 , 85) << endl;
 cout << gc(36, 15) << endl;

7.42

Recursion Tracing

• Trace this code
int m1(int* dat, int len) {
 int temp = -1;
 m2(dat, len, temp);
 return temp;
}

void m2(int* dat, int len, int& num) {
 if(len <= 1){
 num = *dat;
 }
 else if(num == -1){
 num = 0;
 m2(dat+1, len-1, num);
 num += *dat;
 }
 else {
 m2(dat+1, len-1, num);
 }
}

int main()
{
 int data[4] = {3, 6, 2, 9};
 cout << m1(data, 4) << endl;;
 // what will be output?
}

7.43

Programming I

• Zip 2 arrays of the same size (alternate taking from
each array) into a new 3rd array and return that 3rd
array.

7.44

Programming II

• Given a singly linked list storing values in Item
structs (as shown below) and given a head
pointer, write a function to delete the 2nd
Item in the list (if it exists)?

struct Item {
 int val;
 Item* next
};
void deleteSecond(Item* head){

}

7.45

Programming III

• Make a `Change` class with data members:
– quarters, dimes, pennies (no nickels)
– Provides a constructor to initialize those three values to

user-specified arguments but normalizes to use as many
quarters as possible, then as many dimes, then as many
pennies (i.e. if they pass 1 quarter, 3 dimes, and 11
pennies you'd want to store 2 quarters, 1 dimes, and 6
pennies

– Support operator+ and operator==
• Always re-"normalize" after adding

– Support an ostream operator that shows the change in the
normalized form "Q:2 D:1 P:6"

