
6a.1

CS103 Unit 6a - Recursion

CSCI 103L Teaching Team

6a.2

Unit 6 – Recursion

• The course is broken into 6 units (spirals), each consisting of:

C++ Language
Syntax

1

Lectures

1

Algorithms and
Computational Thinking

2
Memory, Objects,

and I/O Pt. 1

3

Memory, Objects,
and I/O Pt. 2

4

Recursion

5

Homework(s)
(Formative programming

problems)

Project(s)
(Cumulative programming

problems)

Labs
(Tools + Practice +
small group Help)

6

Basic Data
Structures

6a.3

Recursion

• Defining an object, mathematical function, or
computer function in terms of itself

GNU
• Makers of gedit, g++ compiler, etc.
• GNU = GNU is Not Unix

GNU is Not Unix

GNU is Not Unix

… is Not Unix is not Unix is Not Unix

6a.4

Recursion
• Problem in which the solution can be expressed in terms of

smaller versions of itself and a base/terminating case
• Can often take the place of a loop and can lead to much more

elegant coding solutions that if we were too use a loop
– More guidance on this later

• Input to the problem must be categorized as a:
– Base case: Small version of problem whose known beforehand or easily

computable (no recursion needed)
– Recursive case: Solution can be described using solutions to smaller

problems of the same type
• Keeping putting in terms of something smaller until we reach the base case

• Factorial: n! = n * (n-1) * (n-2) * … * 2 * 1
– n! = n * (n-1)!
– Base case: n = 1
– Recursive case: n > 1 => n*(n-1)!

6a.5

Recursive Function Mechanics
• Avoid infinite recursions by

– Put the base case check first
– Ensuring you recurse on a smaller

problem [e.g. f(n) should NOT
recurse on f(n)] but a smaller
version of the problem

• The system stack provides
separate areas of memory for
each instance of a recursive
function
– Thus each local variable and

actual parameter of a function is
separate and isolated from other
recursive function instances [e.g.
each fact(n) has it's own version
of n]

int fact(int n)
{
 if(n == 1){
 // base case
 return 1;
 }
 else {
 // recursive case
 return n * fact(n-1);

 }
}

C Code:

Factorial:
• n! = n * (n-1) * (n-2) * … * 2 * 1
• n! = n * (n-1)!

• Base case: n = 1
• Recursive case: n > 1 => n*(n-1)!

6a.6

Recursion & the Stack
• Must return back through the each call int fact(int n)

{
 if(n == 1){
 // base case
 return 1;
 }
 else {
 // recursive case
 return n * fact(n-1);

 }
}

int main()

{

 int val = 4;

 cout << fact(val) << endl;

}

Stack Area of RAM

main
4 val0xbf8

00400120 Return
link0xbfc

4 n0xbf0

004001844 Return
link0xbf4

fact

3 n0xbe8

004001844 Return
link0xbec

fact

2 n0xbe0

004001844 Return
link0xbe4

fact

1 n0xbd8

004001844 Return
link0xbdc

fact

1

2

6

24

Value/version of n is implicitly “saved” and “restored” as we move
from one instance of the ‘fact’ function to the next

6a.7

Recursive Analysis Tip: Box Diagrams
• Just for example's sake let's introduce a

temporary local variable, t
• To analyze recursive functions draw

a box diagram which is…
– A simplified view of each function instance

on the stack
• One box per function

– Show arguments, pertinent local
variables, and return values

4 3n n 2n

fact(4) fact(3) fact(2) fact(1)

11*2=22*3=64*6=24

Main()

1n

int fact(int n)
{
 if(n == 1){
 return 1;
 }
 else {
 int t = fact(n-1);
 return n * t;
 }
}

1t2t6t

6a.8

Head vs. Tail Recursion
• Head Recursion: Recursive call is made before the real work is

performed in the function body
• Tail Recursion: Some work is performed and then the recursive

call is made

void doit(int n)
{
 if(n == 1) cout << "Stop" << endl;
 else {
 cout << "Go" << endl;
 doit(n-1);
 }
}

void doit(int n)
{
 if(n == 1) cout << "Stop" << endl;
 else {
 doit(n-1);
 cout << "Go" << endl;
 }
}

Tail Recursion Head Recursion

6a.9

Head vs. Tail Recursion
• Head Recursion: Recursive call is made before the real work is

performed in the function body
• Tail Recursion: Some work is performed and then the recursive

call is made

Void doit(int n)
{
 if(n == 1) cout << "Stop";
 else {
 cout << "Go" << endl;
 doit(n-1);
 }
}

doit(3)
 Go

doit(2)
 Go

doit(1)
 Stop

return

return

return

Void doit(int n)
{
 if(n == 1) cout << "Stop";
 else {
 doit(n-1);
 cout << "Go" << endl;
 }
}

doit(3)

doit(2)

doit(1)
 Stop

Go
return

return

Go
return

Go

Go

Stop

Stop

Go

Go

Tail Recursion Head Recursion

6a.10

Exercise

• Exercises
– Count-down
– Count-up

6a.11

Steps to Formulating Recursive
Solutions

1. Write out some solutions for a few input cases to discover how the
problem can be decomposed into smaller problems of the same form
– Does solving the problem on an input of smaller value or size help formulate

the solution to the larger
2. Identify the base case

– An input for which the answer is trivial
3. Identify how to combine the small solution(s) to solve the larger problem

Put another way, there are often 2 principles to finding recursive solutions
• Principle 1: Generally recursive functions are "responsible" for ONLY 1

value / element / item and use recursion to handle all remaining items
• Principle 2: Determine how to combine the 1 element you are responsible

for and the answer returned by recursion
– Assume via the "magic of recursion" you get the answer for all remaining

elements. How can you combine that with your 1 element to form the large
solution

6a.12

Recursive Functions
• Many loop/iteration based approaches

can be defined recursively as well
• How could summing an array be

implemented recursively?
– Question to answer:

• What 1 thing could each recursion be
responsible for?

• How could we combine that 1 thing
with the solution from the recursive
call?

• Once you have a recursive formulation
all that's left is the mechanics of the
implementation (i.e. arguments &
return values)

int main() {
 int data[4] = {8, 6, 7, 9};
 int size=4;
 int sum1 = isum_it(data, size);
 int sum2 = rsum_it(data, size);
}
int isum_it(int data[], int len)
{
 int sum = data[0];
 for(int i=1; i < len; i++){
 sum += data[i];
 }
 return sum;
}

int rsum_it(int data[], int len)
{
 if(len == 1)
 return _______________;
 else

 return __________________;
}

C Code:

8 6 7 9
0 1 2 3data[4]:

800

6a.13

Recursive Call Timeline

Each instance of rsum_it has its own len argument and sum variable
Every instance of a function has its own copy of local variables

rsum_it(data,4)
 int sum=
 rsum_it(data,4-1)

Time

len = 4 len = 3

len = 2 len = 1rsum_it(data,3)
 int sum=
 rsum_it(data,3-1) rsum_it(data,2)

 int sum=
 rsum_it(data,2-1) rsum_it(data,1)

 return data[0];

int main(){
 int data[4] = {8, 6, 7, 9};
 int size=4;
 cout << rsum_it(data, size);
 ...
}

8

int rsum_it(int data[], int len)
{
 if(len == 1)
 return data[0];
 else
 int sum = rsum_it(data, len-1);
 return sum + data[len-1];
}

int sum = 8
 return 8+data[1];

int sum = 14
 return 14+data[2];

int sum = 21
 return 21+data[3];

14
21

30

8 6 7 9
0 1 2 3data[4]:

800

3
2
1

4

6a.14

Code for all functions

System Stack & Recursion

• The system stack makes recursion
possible by providing separate
memory storage for the local
variables of each running instance
of the function

System stack area

System
Memory

(RAM)

Code for all functions

int main()
{
 int data[4] = {8, 6, 7, 9};
 int sum2 = rsum_it(data, 4);
}

int rsum_it(int data[], int len)
{
 if(len == 1)
 return data[0];
 else
 int sum =
 rsum_it(data, len-1);
 return sum + data[len-1];
}

Data for rsum_it (data=800,
len=4, sum=??) and return link

Data for rsum_it (data=800,
len=3, sum=??) and return link

Data for rsum_it (data=800,
len=2, sum=??) and return link

Data for rsum_it (data=800,
len=1, sum=??) and return link
Data for rsum_it (data=800,

len=2, sum=8) and return link
Data for rsum_it (data=800,

len=3, sum=14) and return link
Data for rsum_it (data=800,

len=4, sum=21) and return link
Data for main (data=800,sum2=??) and

return link

8 6 7 9
0 1 2 3data[4]:

800

6a.15

Head and Tail Recursion Revisited
• Both head and tail recursion methods

are shown
• Head recursion:

– Recurses first and combines the answer
received in the return value with the one
element it is responsible for.

• Tail recursion:
– The recursive case is usually just what would

have been in the body of a loop (of an
iterative approach) BUT WITH a recursive call
at the end to start the next
"iteration/recursion".

– Usually requires additional arguments to
track the progress.

– The final result is usually "complete and
ready" when the base case is hit and just
needs to be returned through each recursive
level

int main()
{
 int data[4] = {8, 6, 7};
 int size=4;
 int sumh = rsumh(data, size);
 int sumt = rsumt(data, size, 0, 0);
}
int rsumh(int data[], int len)
{
 if(len == 1)
 return data[0];
 else
 int prevsum = rsum_it(data, len-1);
 return prevsum + data[len-1];
}
int rsumt(int data[], int len,
 int i, int prevsum)
{
 if(i == len) return prevsum;

 prevsum += data[i];
 return rsumt(data, len, i+1, prevsum);

}

C Code:

8 6 7
0 1 2data[4]:

800
rec
rec
base

work
work

work
work
base

rec
rectailhead

6a.16

Tail Recursion w/ Reference Parameter
• What if we didn't want to JUST

compute n! but compute AND store
all the factorial values between 1!
and n! in an array/vector

• What do you think of the code on the
right to achieve that goal?
– Hint: Consider how the vector is being

passed.

// res is short for "results"
int fact(int n, vector<int> res)
{
 if(n == 1){
 res.push_back(1);
 return 1;
 }
 else {
 int ans = fact(n-1, res) * n;
 res.push_back(ans);
 return ans;
 }
}

4 3n n 2n

fact(4,res) fact(3,res) fact(2,res) fact(1,res)

11*2=22*3=64*6=24

Main()

1n
1ans2ans6ans

res res resres

[24] [6] [2] [1]

6a.17

Tail Recursion w/ Reference Parameter
• What if we didn't want to JUST

compute n! but compure AND store
all the factorial values between 1!
and n! in an array/vector

• Often this is a better way:
– Have all recursions take in a REFERENCE

argument so that all recursive calls see/share
one object/variable that can collect their
results.

int main() {
 vector<int> results;
 fact(4, results);
 // use results
}

int fact(int n, vector<int>& res)
{
 if(n == 1){
 res.push_back(1);
 return 1;
 }
 else {
 int ans = fact(n-1, res) * n;
 res.push_back(ans);
 return ans;
 }
}

4 3n n 2n

fact(4,res) fact(3,res) fact(2,res) fact(1,res)

11*2=22*3=64*6=24

Main()

1n
1ans2ans6ans

results
1 2 6 24

6a.18

Recursion Double Check
• When you write a recursive routine:
– Check that you have appropriate base cases

• Need to check for these first before recursive cases

– Check that each recursive call makes progress
toward the base case
• Otherwise you'll get an infinite loop and stack overflow

– Check that you use a 'return' statement at each
level to return appropriate values back to each
recursive call
• You have to return back up through every level of

recursion, so make sure you are returning something
(the appropriate thing)

6a.19

Loops & Recursion
• Is it better to use recursion or iteration?

– ANY problem that can be solved using recursion can also be
solved with iteration and other appropriate data structures

• Often 1 recursive call per function can be implemented with a loop

• Why use recursion?
– Usually clean & elegant.
– For some problems an iterative approach would be very

difficult to formulate but the recursive approach is small
and elegant

• Often occurs when the function instance makes
multiple (more than 1) recursive calls

– Can lead to stack overflow if recursive depth is too large
• How do you choose?

– Iteration is usually faster and uses less memory and should
be used when possible

– However, if iteration produces a very complex solution,
consider recursion

void rfunc1(int n)
{
 ...

 rfunc1(n-1);

 ...

}

void rfunc2(int n)
{
 ...

 t = rfunc2(n-1);

 s = rfunc2(n-2);

 ...

}

6a.20

Flood Fill Exercise

• Codio Recursion Exercise

6a.21

Flood Fill

• Imagine you are given an image with
outlines of shapes (boxes and circles)
and you had to write a program to
shade (make black) the inside of one
of the shapes. How would you do it?

• Flood fill is a recursive approach
• Given a pixel

– Base case: If it is black already, stop!
– Recursive case: Call floodfill on each

neighbor pixel
– Hidden base case: If pixel out of bounds,

stop!

6a.22

MORE EXAMPLES

6a.23

Recursive Binary Search

• Assume remaining items = [start, end)
– start is the inclusive index of start item in remaining list
– end is the exclusive index of end item (1 beyond the end)

in remaining list
– Put another way, consider items at index i such that:

start <= i < end
• binSearch(target, list[], start, end)

– Perform base check (empty range/list)
• Return NOT FOUND (-1)

– Pick mid item
– Based on comparison of target with list[mid]

• EQ => Found => return mid
• LT => return answer to binSearch[start,mid)
• GT => return answer to binSearch[mid+1,end)

2 3 4 6 9 11 13 15 19List
index

2 3 4 6 9 11 13 15 19List
index

mid

target = 11

endstart

mid endstart

2 3 4 6 9 11 13 15 19List
index

endstart
mid

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

2 3 4 6 9 11 15 19List
index

endstart
mid

0 1 2 3 4 5 6 7 8
13

6a.24

Sorting

• If we have an unordered list, sequential
search becomes our only choice

• If we will perform a lot of searches it may
be beneficial to sort the list, then use
binary search

• Many sorting algorithms of differing
complexity (i.e. faster or slower)

• Bubble or Selection Sort
– Simple though not terribly efficient
– On each pass through thru the list, pick up the

maximum element and place it at the end of
the list. Then repeat using a list of size ____
 (i.e. w/o the newly placed maximum value)

7 3 8 6 5 1List
index

Original
1 2 3 4 50

3 7 6 5 1 8List
index

After Pass 1
1 2 3 4 50

3 6 5 1 7 8List
index

After Pass 2
1 2 3 4 50

3 5 1 6 7 8List
index

After Pass 3
1 2 3 4 50

3 1 5 6 7 8List
index

After Pass 4
1 2 3 4 50

1 3 5 6 7 8List
index

After Pass 5
1 2 3 4 50

6a.25

Exercise

• Exercises
– Text-based fractal

6a.26

OLD/UNUSED

6a.27

Recursive Call Timeline

• Value/version of n is implicitly “saved” and “restored” as we
move from one instance of the ‘fact’ function to the next

Fact(3)
{n=3} Fact(2)

{n=2} Fact(1)

return 1

small_ans = 2
 ret. (n*small_ans) = 3*2

Time

small_ans = 1
 ret. (n * small_ans) = 2*1

n = 3 n = 2 n = 1

int fact(int n)
{
 if(n == 1)
 return 1;
 else {
 int small_ans = fact(n-1);
 return n * small_ans ;
} }

