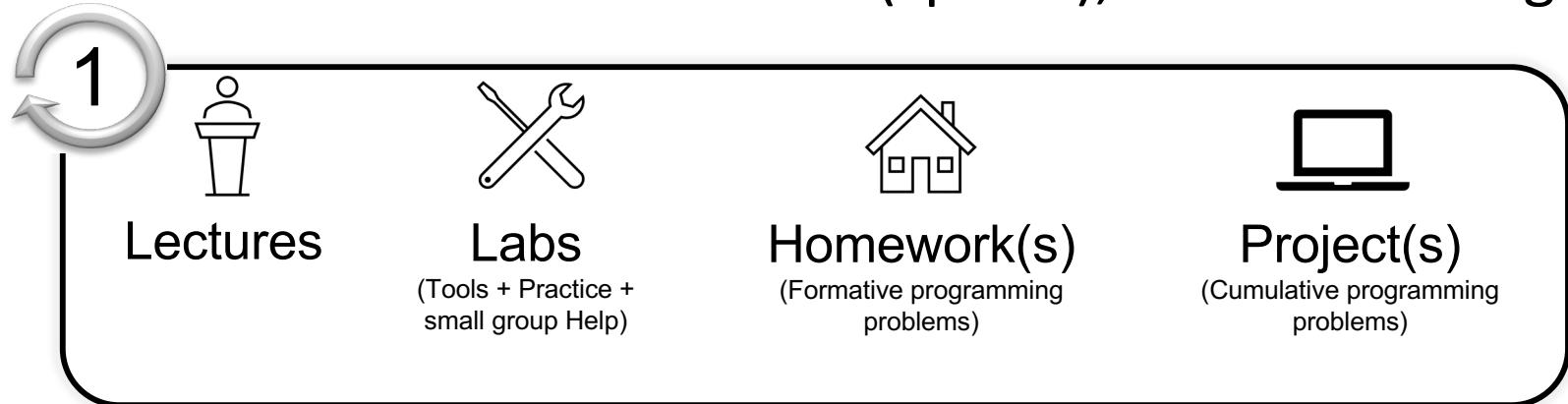
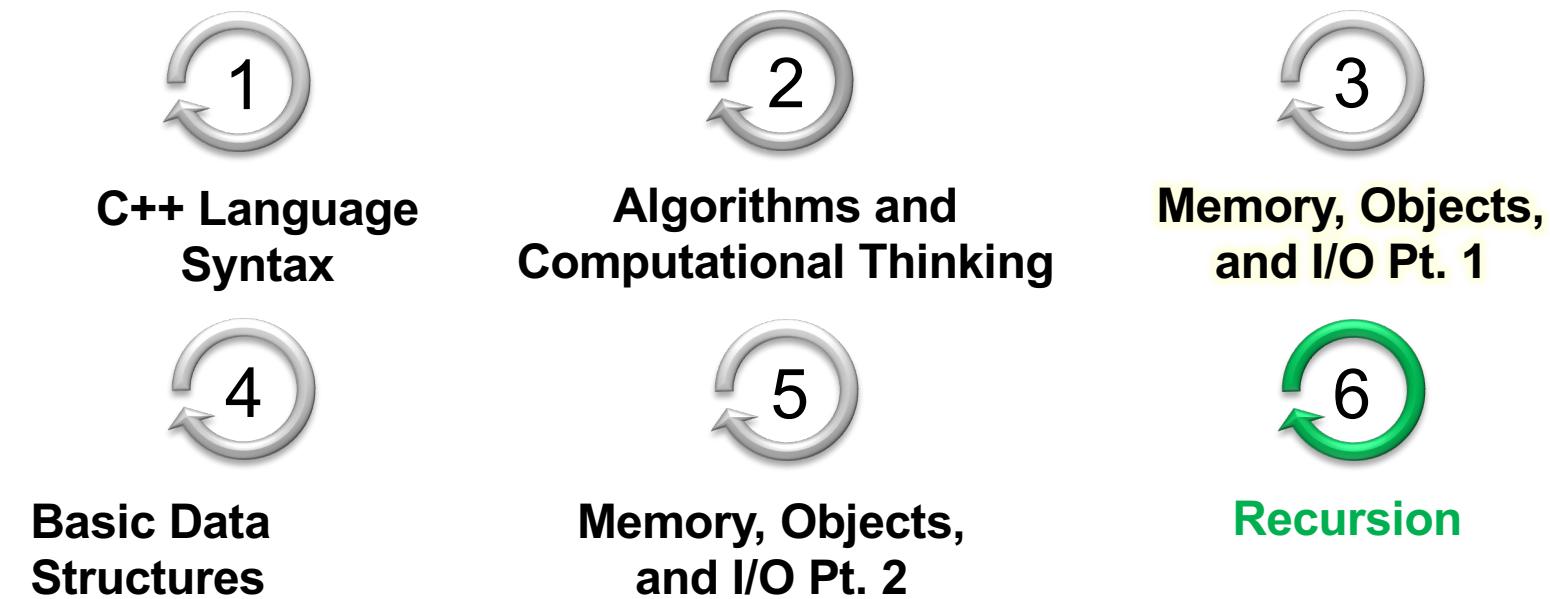


CS103 Unit 6a - Recursion

CSCI 103L Teaching Team

Unit 6 – Recursion

- The course is broken into 6 units (spirals), each consisting of:



Recursion

- Defining an object, mathematical function, or computer function in terms of *itself*

GNU

- Makers of gedit, g++ compiler, etc.
- GNU = **GNU is Not Unix**

GNU is Not Unix

GNU is Not Unix

... **is Not Unix** **is not Unix** **is Not Unix**

Recursion

- Problem in which the solution can be expressed in terms of ***smaller versions of itself*** and ***a base/terminating case***
- Can often take the place of a loop and can lead to much more elegant coding solutions that if we were to use a loop
 - More guidance on this later
- Input to the problem must be categorized as a:
 - **Base case:** Small version of problem whose known beforehand or easily computable (no recursion needed)
 - **Recursive case:** Solution can be described using solutions to smaller problems of the same type
 - Keeping putting in terms of something smaller until we reach the base case
- Factorial: $n! = n * (n-1) * (n-2) * \dots * 2 * 1$
 - $n! = n * (n-1)!$
 - **Base case:** $n = 1$
 - **Recursive case:** $n > 1 \Rightarrow n * (n-1)!$

Recursive Function Mechanics

- Avoid infinite recursions by
 - Put the base case check first
 - Ensuring you recurse on a smaller problem [e.g. $f(n)$ should NOT recurse on $f(n)$] ***but a smaller version of the problem***
- The system stack provides separate areas of memory for each ***instance*** of a recursive function
 - Thus each **local variable** and **actual parameter** of a function is separate and isolated from other recursive function instances [e.g. each $\text{fact}(n)$ has its own version of n]

C Code:

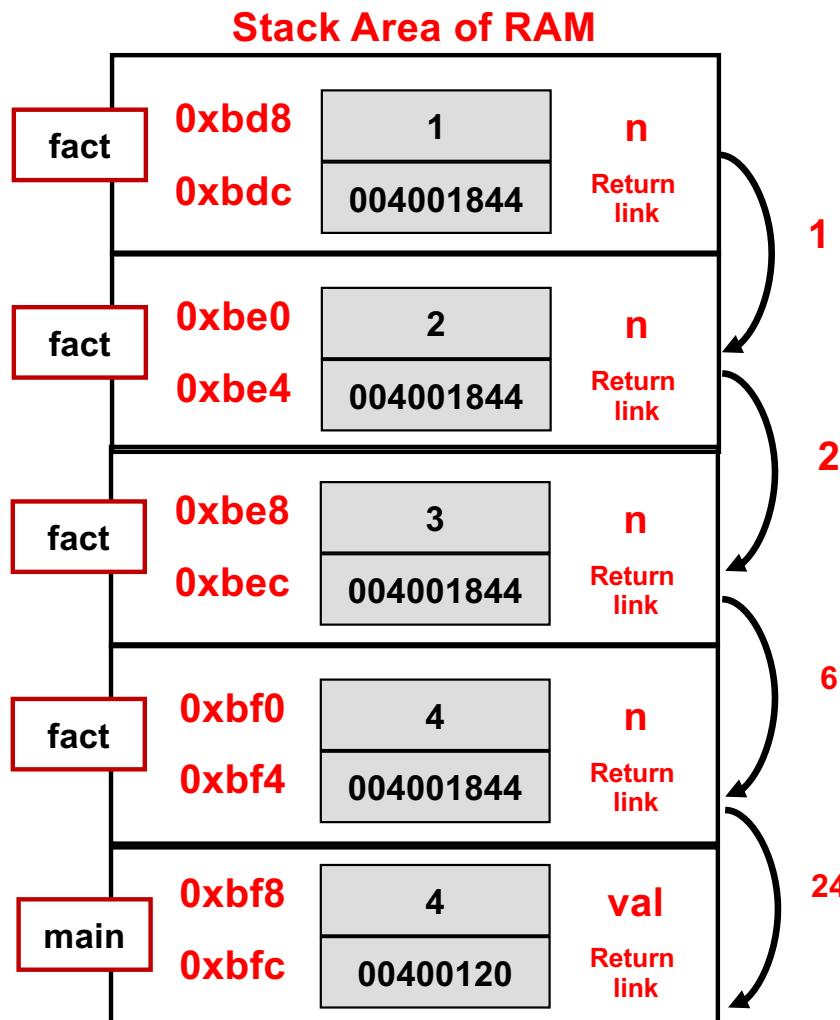
```
int fact(int n)
{
    if(n == 1){
        // base case
        return 1;
    }
    else {
        // recursive case
        return n * fact(n-1);
    }
}
```

Factorial:

- $n! = n * (n-1) * (n-2) * \dots * 2 * 1$
- $n! = n * (n-1)!$
 - Base case: $n = 1$
 - Recursive case: $n > 1 \Rightarrow n * (n-1)!$

Recursion & the Stack

- Must return back through the each call



Value/version of n is implicitly “saved” and “restored” as we move from one instance of the ‘fact’ function to the next

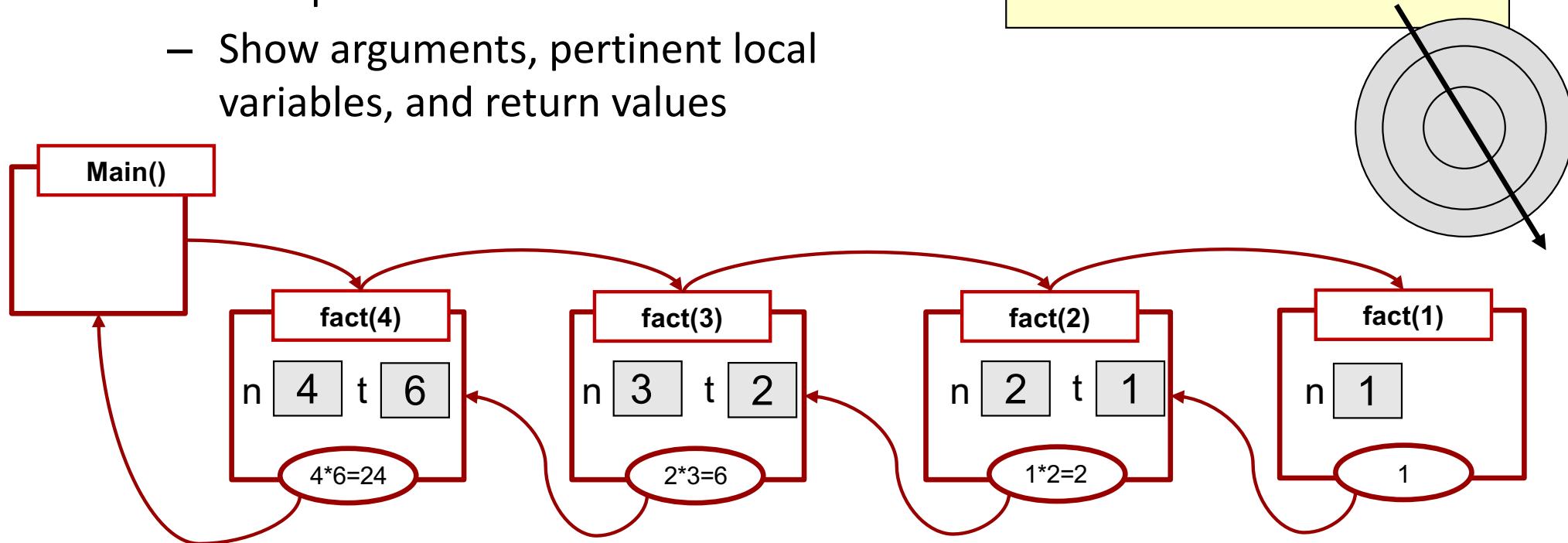
```
int fact(int n)
{
    if(n == 1){
        // base case
        return 1;
    }
    else {
        // recursive case
        return n * fact(n-1);
    }
}

int main()
{
    int val = 4;
    cout << fact(val) << endl;
}
```

Recursive Analysis Tip: Box Diagrams

- Just for example's sake let's introduce a temporary local variable, t
- To analyze recursive functions draw a box diagram which is...
 - A simplified view of each function instance on the stack
- One box per function
 - Show arguments, pertinent local variables, and return values

```
int fact(int n)
{
    if(n == 1){
        return 1;
    }
    else {
        int t = fact(n-1);
        return n * t;
    }
}
```



Head vs. Tail Recursion

- Head Recursion: Recursive call is made before the real work is performed in the function body
- Tail Recursion: Some work is performed and then the recursive call is made

Tail Recursion

```
void doit(int n)
{
    if(n == 1) cout << "Stop" << endl;
    else {
        cout << "Go" << endl;
        doit(n-1);
    }
}
```

Head Recursion

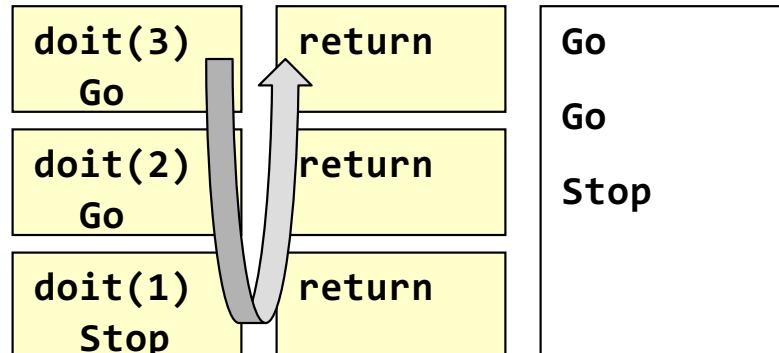
```
void doit(int n)
{
    if(n == 1) cout << "Stop" << endl;
    else {
        doit(n-1);
        cout << "Go" << endl;
    }
}
```

Head vs. Tail Recursion

- Head Recursion: Recursive call is made before the real work is performed in the function body
- Tail Recursion: Some work is performed and then the recursive call is made

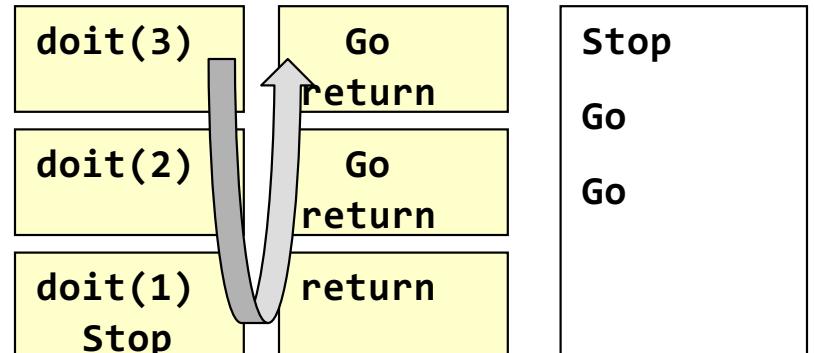
Tail Recursion

```
Void doit(int n)
{
    if(n == 1) cout << "Stop";
    else {
        cout << "Go" << endl;
        doit(n-1);
    }
}
```



Head Recursion

```
Void doit(int n)
{
    if(n == 1) cout << "Stop";
    else {
        doit(n-1);
        cout << "Go" << endl;
    }
}
```



Exercise

- Exercises
 - Count-down
 - Count-up

Steps to Formulating Recursive Solutions

1. Write out some solutions for a few input cases to discover how the problem can be decomposed into smaller problems of the same form
 - Does solving the problem on an input of smaller value or size help formulate the solution to the larger
2. Identify the base case
 - An input for which the answer is trivial
3. Identify how to combine the small solution(s) to solve the larger problem

Put another way, there are often 2 principles to finding recursive solutions

- Principle 1: Generally recursive functions are "responsible" for ONLY 1 value / element / item and use recursion to handle all remaining items
- Principle 2: Determine how to combine the 1 element you are responsible for and the answer returned by recursion
 - Assume via the "magic of recursion" you get the answer for all remaining elements. How can you combine that with your 1 element to form the large solution

Recursive Functions

- Many loop/iteration based approaches can be defined recursively as well
- How could summing an array be implemented recursively?
 - Question to answer:
 - What 1 thing could each recursion be responsible for?
 - How could we combine that 1 thing with the solution from the recursive call?
- Once you have a recursive formulation all that's left is the mechanics of the implementation (i.e. arguments & return values)

800

8	6	7	9
---	---	---	---

data[4]: 0 1 2 3

C Code:

```
int main() {
    int data[4] = {8, 6, 7, 9};
    int size=4;
    int sum1 = isum_it(data, size);
    int sum2 = rsum_it(data, size);
}

int isum_it(int data[], int len)
{
    int sum = data[0];
    for(int i=1; i < len; i++){
        sum += data[i];
    }
    return sum;
}

int rsum_it(int data[], int len)
{
    if(len == 1)
        return _____;
    else
        _____
    return _____;
}
```

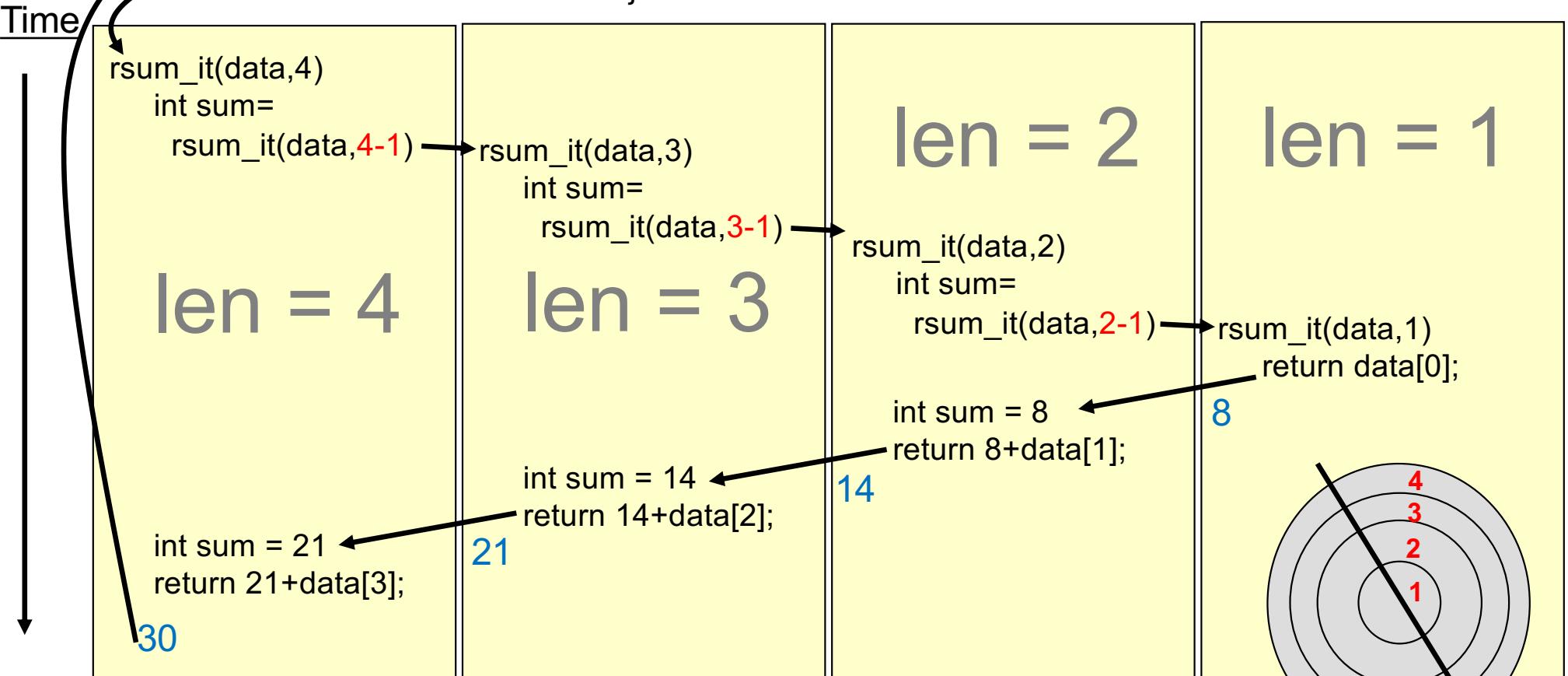
Recursive Call Timeline

```
int main(){
    int data[4] = {8, 6, 7, 9};
    int size=4;
    cout << rsum_it(data, size);
}
```

```
int rsum_it(int data[], int len)
{
    if(len == 1)
        return data[0];
    else
        int sum = rsum_it(data, len-1);
        return sum + data[len-1];
}
```

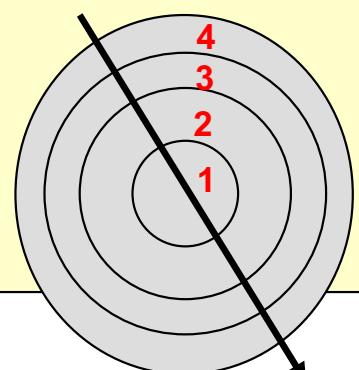
800

 data[4]: 0 1 2 3



Each instance of `rsum_it` has its own `len` argument and `sum` variable

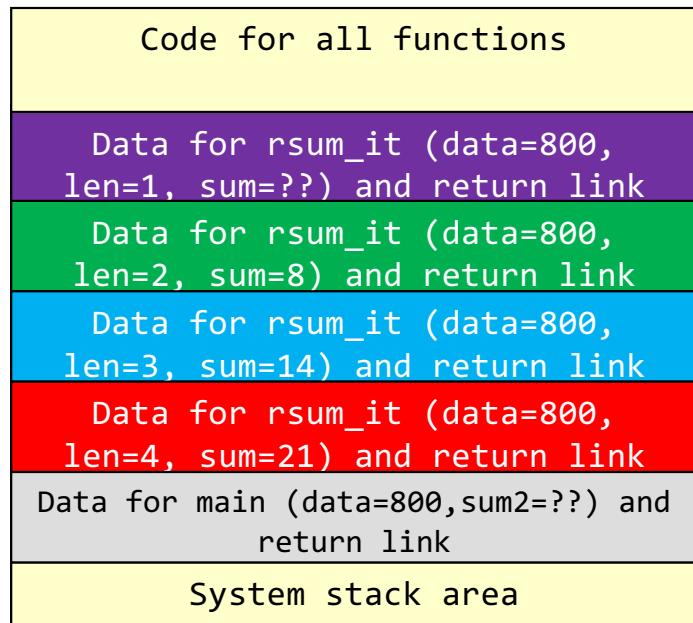
Every instance of a function has its own copy of local variables



System Stack & Recursion

- The system stack makes recursion possible by providing separate memory storage for the local variables of each running instance of the function

System
Memory
(RAM)



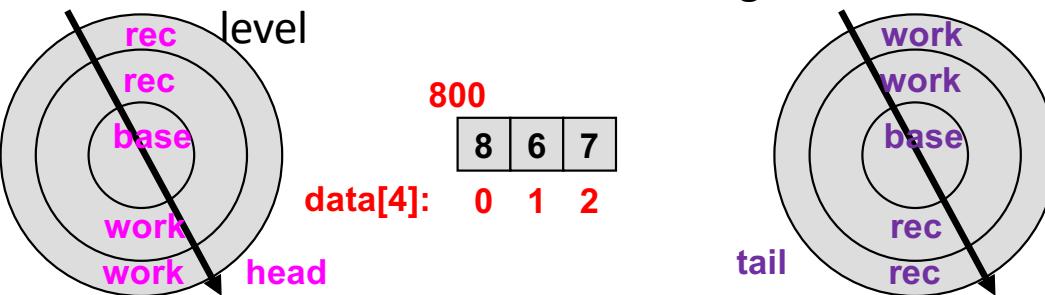
```
int main()
{
    int data[4] = {8, 6, 7, 9};
    int sum2 = rsum_it(data, 4);
}

int rsum_it(int data[], int len)
{
    if(len == 1)
        return data[0];
    else
        int sum =
            rsum_it(data, len-1);
        return sum + data[len-1];
}
```

800
8 6 7 9
data[4]: 0 1 2 3

Head and Tail Recursion Revisited

- Both head and tail recursion methods are shown
- Head recursion:**
 - Recurse first and combines the answer received in the return value with the one element it is responsible for.
- Tail recursion:**
 - The recursive case is usually just what would have been in the body of a loop (of an iterative approach) BUT WITH a recursive call at the end to start the next "iteration/recursion".
 - Usually requires additional arguments to track the progress.
 - The final result is usually "complete and ready" when the base case is hit and just needs to be returned through each recursive level



C Code:

```

int main()
{
    int data[4] = {8, 6, 7};
    int size=4;
    int sumh = rsumh(data, size);
    int sumt = rsumt(data, size, 0, 0);
}

int rsumh(int data[], int len)
{
    if(len == 1)
        return data[0];
    else
        int prevsum = rsum_it(data, len-1);
        return prevsum + data[len-1];
}

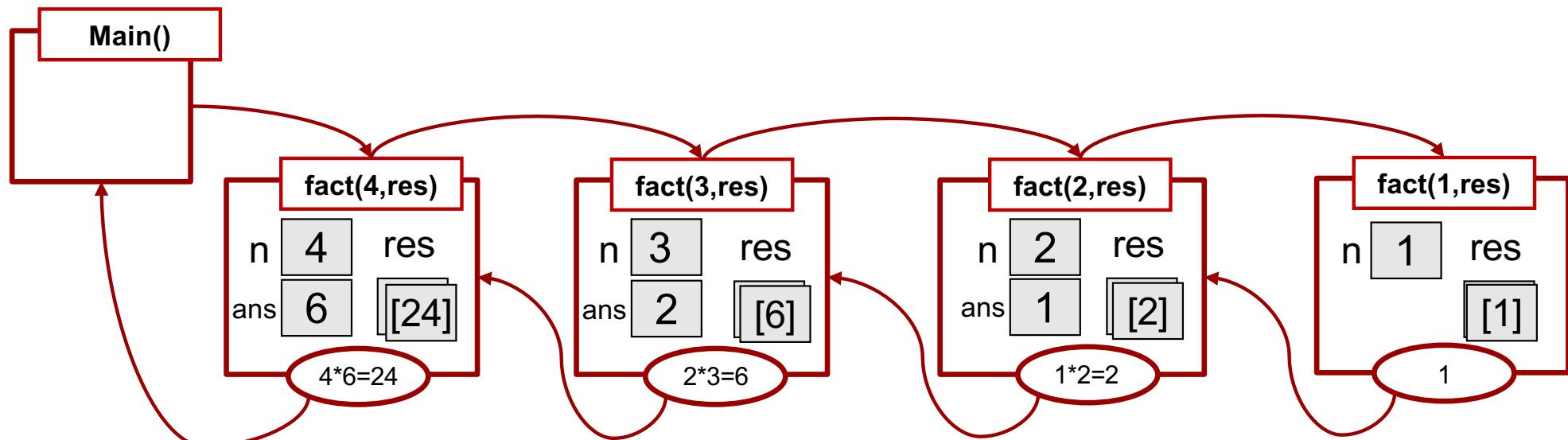
int rsumt(int data[], int len,
          int i, int prevsum)
{
    if(i == len) return prevsum;
    prevsum += data[i];
    return rsumt(data, len, i+1, prevsum);
}

```

Tail Recursion w/ Reference Parameter

- What if we didn't want to JUST compute $n!$ but compute AND store all the factorial values between $1!$ and $n!$ in an array/vector
- What do you think of the code on the right to achieve that goal?
 - Hint: Consider how the vector is being passed.

```
// res is short for "results"
int fact(int n, vector<int> res)
{
    if(n == 1){
        res.push_back(1);
        return 1;
    }
    else {
        int ans = fact(n-1, res) * n;
        res.push_back( ans );
        return ans;
    }
}
```



Tail Recursion w/ Reference Parameter

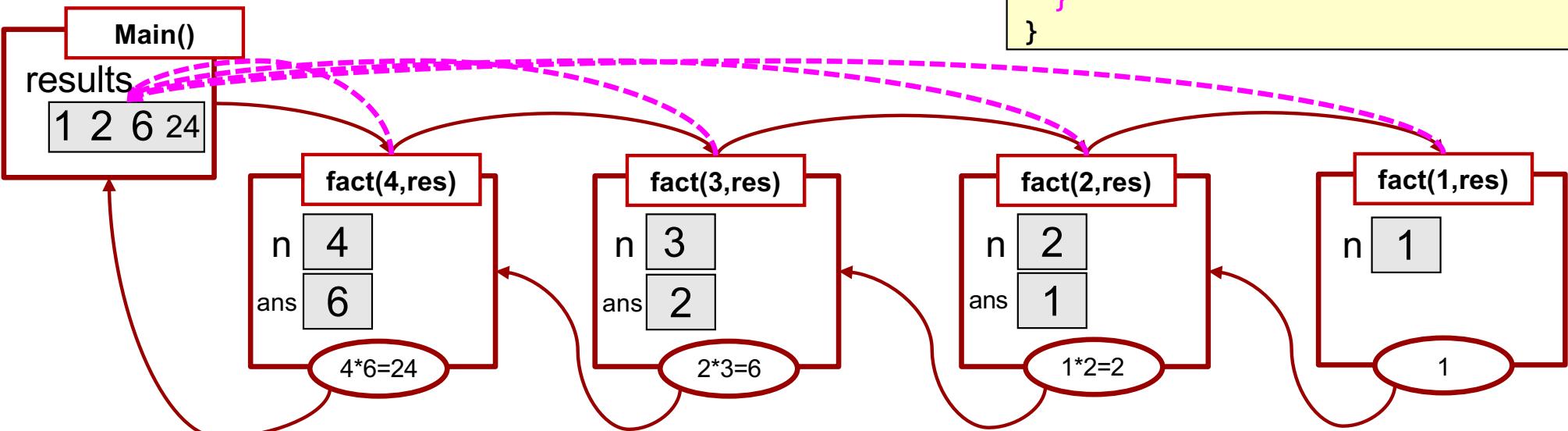
- What if we didn't want to JUST compute $n!$ but compute AND store all the factorial values between $1!$ and $n!$ in an array/vector
- Often this is a better way:
 - Have all recursions take in a **REFERENCE argument** so that all recursive calls see/share one object/variable that can collect their results.

```

int main() {
    vector<int> results;
    fact(4, results);
    // use results
}

int fact(int n, vector<int>& res )
{
    if(n == 1){
        res.push_back(1);
        return 1;
    }
    else {
        int ans = fact(n-1, res) * n;
        res.push_back( ans );
        return ans;
    }
}

```



Recursion Double Check

- When you write a recursive routine:
 - Check that you have appropriate base cases
 - Need to check for these first before recursive cases
 - Check that each recursive call makes progress toward the base case
 - Otherwise you'll get an infinite loop and stack overflow
 - Check that you use a 'return' statement at each level to return appropriate values back to each recursive call
 - You have to return back up through every level of recursion, so make sure you are returning something (the appropriate thing)

Loops & Recursion

- Is it better to use recursion or iteration?
 - ANY problem that can be solved using recursion can also be solved with iteration and other appropriate data structures
 - Often 1 recursive call per function can be implemented with a loop
- Why use recursion?
 - Usually clean & elegant.
 - For some problems an iterative approach would be very difficult to formulate but the recursive approach is small and elegant
 - Often occurs when the function instance makes ***multiple (more than 1)*** recursive calls
 - Can lead to stack overflow if recursive depth is too large
- How do you choose?
 - Iteration is usually faster and uses less memory and should be used when possible
 - However, if iteration produces a very complex solution, consider recursion

```
void rfunc1(int n)
{
    ...
    rfunc1(n-1);
    ...
}
```

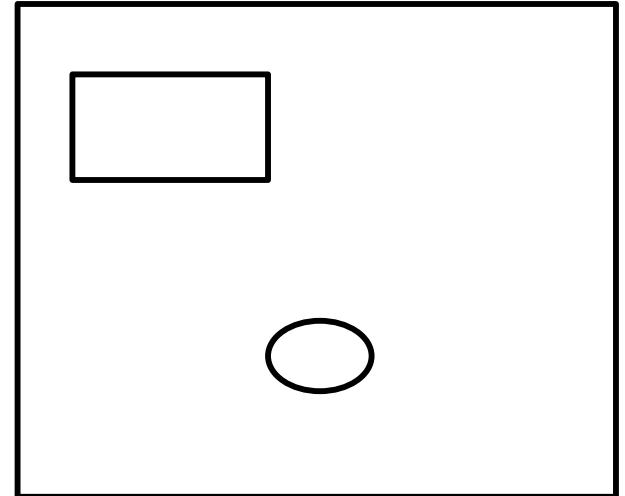
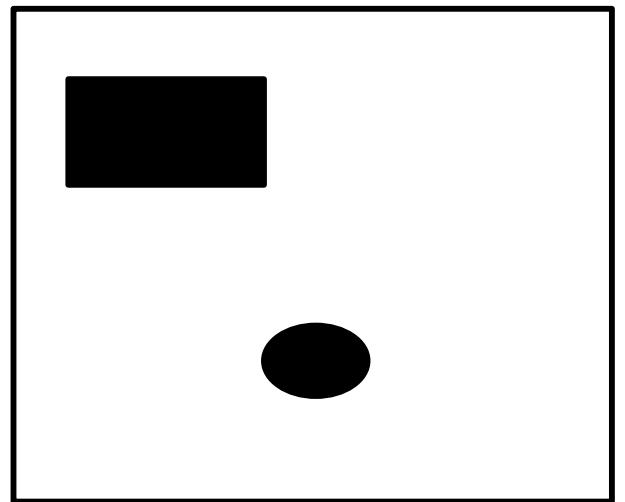
```
void rfunc2(int n)
{
    ...
    t = rfunc2(n-1);
    s = rfunc2(n-2);
    ...
}
```

Flood Fill Exercise

- Codio Recursion Exercise

Flood Fill

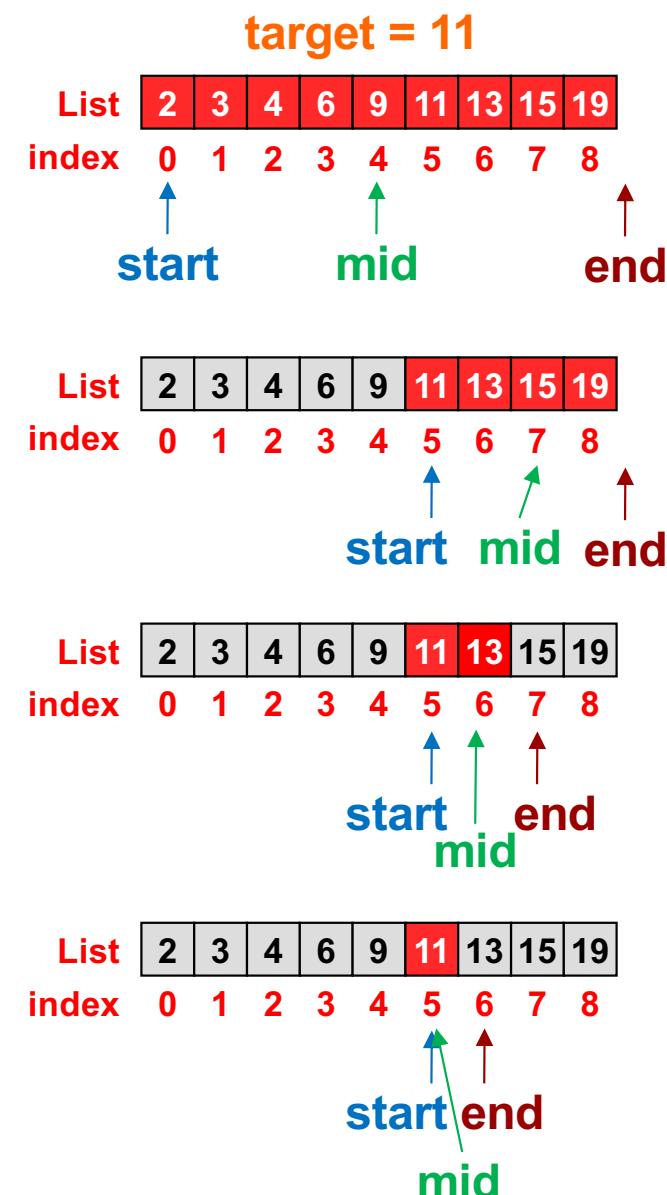
- Imagine you are given an image with outlines of shapes (boxes and circles) and you had to write a program to shade (make black) the inside of one of the shapes. How would you do it?
- Flood fill is a recursive approach
- Given a pixel
 - Base case: If it is black already, stop!
 - Recursive case: Call floodfill on each neighbor pixel
 - Hidden base case: If pixel out of bounds, stop!



MORE EXAMPLES

Recursive Binary Search

- Assume remaining items = [start, end)
 - **start** is the **inclusive** index of start item in remaining list
 - **end** is the **exclusive** index of end item (1 beyond the end) in remaining list
 - Put another way, consider items at index i such that:
 $\text{start} \leq i < \text{end}$
- `binSearch(target, list[], start, end)`
 - Perform base check (empty range/list)
 - Return NOT FOUND (-1)
 - Pick **mid** item
 - Based on comparison of **target** with `list[mid]`
 - EQ => Found => return **mid**
 - LT => return answer to `binSearch[start, mid)`
 - GT => return answer to `binSearch[mid+1, end)`



Sorting

- If we have an unordered list, sequential search becomes our only choice
- If we will perform a lot of searches it may be beneficial to sort the list, then use binary search
- Many sorting algorithms of differing complexity (i.e. faster or slower)
- Bubble or Selection Sort
 - Simple though not terribly efficient
 - On each pass through thru the list, pick up the maximum element and place it at the end of the list. Then repeat using a list of size _____ (i.e. w/o the newly placed maximum value)

List	7	3	8	6	5	1
index	0	1	2	3	4	5

Original

List	3	7	6	5	1	8
index	0	1	2	3	4	5

After Pass 1

List	3	6	5	1	7	8
index	0	1	2	3	4	5

After Pass 2

List	3	5	1	6	7	8
index	0	1	2	3	4	5

After Pass 3

List	3	1	5	6	7	8
index	0	1	2	3	4	5

After Pass 4

List	1	3	5	6	7	8
index	0	1	2	3	4	5

After Pass 5

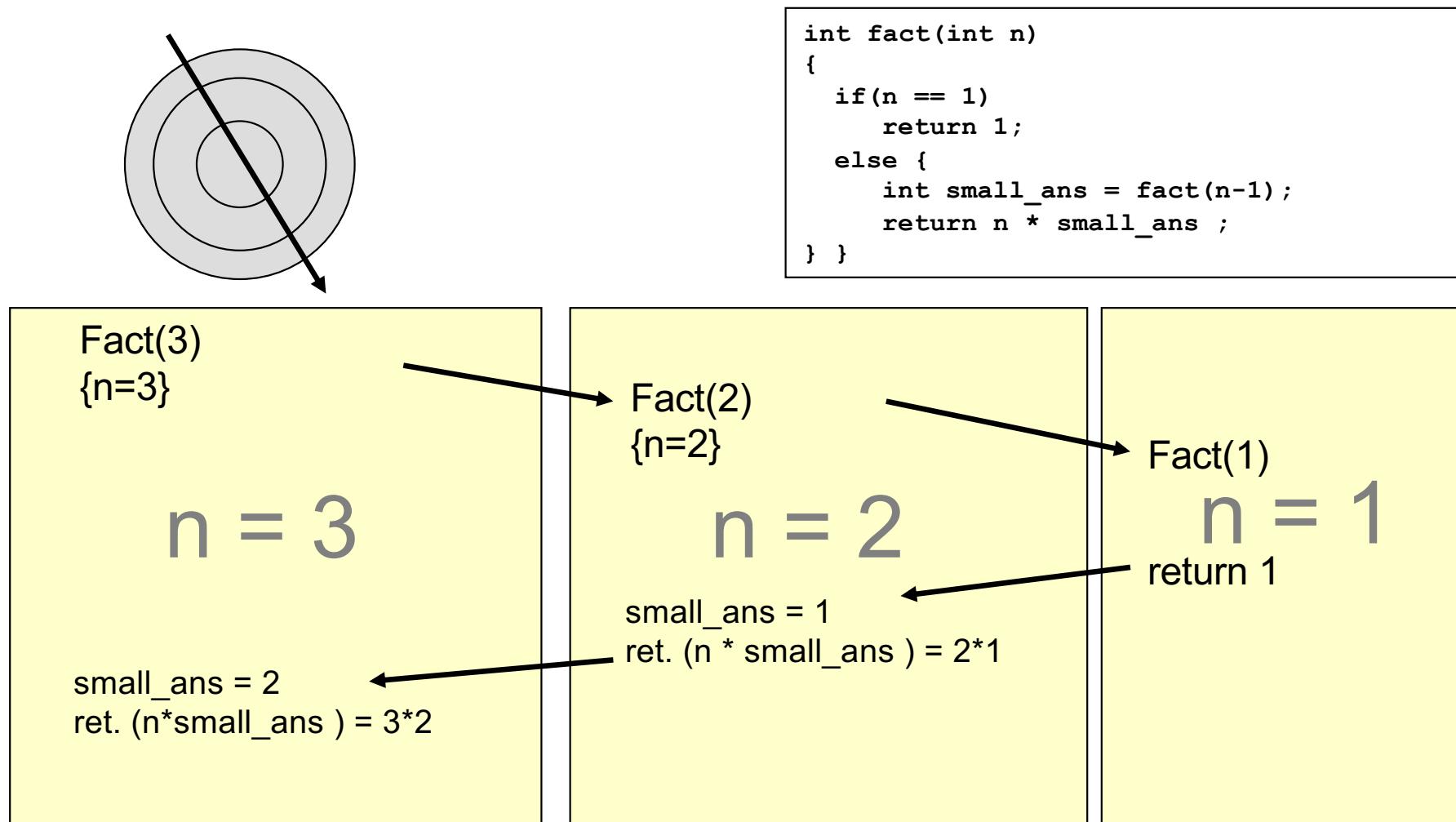
Exercise

- Exercises
 - Text-based fractal

OLD/UNUSED

Recursive Call Timeline

Time



- Value/version of n is implicitly “saved” and “restored” as we move from one instance of the ‘`fact`’ function to the next