School of Engineering

CS103 Unit 6a - Recursion

CSCI 103L Teaching Team

USC Viterbi

School of Engineering

Unit 6 — Recursion

 The course is broken into 6 units (spirals), each consisting of:

\1/ = y N)
] S e L]
Lectures Labs Homework(s) Project(s)

(Tools + Practice + (Formative programming (Cumulative programming
small group Help) problems) problems)
_ y,
\\) ‘ N
QD 0 &)
C++ Language Algorithms and Memory, Objects,
Syntax Computational Thinking and /O Pt. 1
‘ N | -
< &) ®
Basic Data Memory, Objects, Recursion
Structures and I/O Pt. 2

Recursion

* Defining an object, mathematical function, or
computer function in terms of itself

GNU
« Makers of gedit, g++ compiler, etc.
. GNU;GNU Is Not Unix

GNU is Not Unix

T

GNU is Not Unix
-

... i1s Not Unix is not Unix is Not Unix

Recursion

Problem in which the solution can be expressed in terms of
smaller versions of itself and a base/terminating case

Can often take the place of a loop and can lead to much more
elegant coding solutions that if we were too use a loop

— More guidance on this later

Input to the problem must be categorized as a:

— Base case: Small version of problem whose known beforehand or easily
computable (no recursion needed)

— Recursive case: Solution can be described using solutions to smaller
problems of the same type

* Keeping putting in terms of something smaller until we reach the base case
Factorial: n! = n * (n-1) * (n-2) * .. * 2 * 1
—n!l =n* (n-1)!
— Basecase: n =1
— Recursivecase:n > 1 => n*(n-1)!

R,]S Viterbi

School of Engineering

Recursive Function Mechanics

* Avoid infinite recursions by C Code:
— Put the base case check first
— Ensuring you recurse on a smaller int fact(int n)
problem [e.g. f(n) should NOT { if(n == 1)
recurse on f(n)] but a smaller // base case
version of the problem return 1;
 The system stack provides zlse {
separate areas of memory for ﬁgt:ﬁﬁugsiviazzj‘;_l);
each instance of a recursive .
function }
— Thus each local variable and Factorial:

actual parameter of a functionis « nr=p*(n-1)*(n-2)*..*2*%1
separate and isolated from other .)= * (n-1)!
recursive function instances [e.g. « Basecase: n=1

each fact(n) has it's own version * Recursive case: n >1=> n*(n-1)!
of n]

- USCVlterb1
Recursion & the Stack

* Must return back through the each call int fact(int n)
{
Stack Area of RAM if(n == 1){
// base case
ot Oxbd8 1 n , return 1;
Oxbdc Re_turn
004001844 U . else {
// recursive case
ot Oxbe0 2 n return n * fact(n-1);
Oxbe4 | 004001844 | "5 }
2 }
fact Oxbe8 3 n
Oxbec | 004001844 | " int main()
0xbf0 ° {
X
fact - . n int val = 4;
0xbf4 eturn
SR link cout << fact(val) << endl;
L 0xbf8 4 val 24 }
main
Oxbfc | 00400120 | 5"

Value/version of n is implicitly “saved” and “restored” as we move
from one instance of the ‘fact’ function to the next

e USCViterbi

School of Engine

Recursive Analysis Tip: Box Dlagrams

e Just for example's sake let's introduce a int fact(int n)
: {

temporary local variable, t if(n == 1)
* To analyze recursive functions draw } return 1;

a box diagram which is... else {

— Asimplified view of each function instance int t = f:Ct(“'“S
on the stack } return n Tt

* One box per function }

— Show arguments, pertinent local
variables, and return values

o Main()

T T~ T

fact(2) fact(1)

n 2|t 1 n| 1
\—/G>—

- USCVitcﬂ?i .
Head vs. Tail Recursion

e Head Recursion: Recursive call is made before the real work is
performed in the function body

* Tail Recursion: Some work is performed and then the recursive

call is made
Tail Recursion Head Recursion
void doit(int n) void doit(int n)
{ {
if(n == 1) cout << "Stop" << endl; if(n == 1) cout << "Stop" << endl;
else { else {
cout << "Go" << endl; doit(n-1);
doit(n-1); cout << "Go" << endl;
} }
} }

- USCVite:ﬂ,.)i .
Head vs. Tail Recursion

e Head Recursion: Recursive call is made before the real work is
performed in the function body

* Tail Recursion: Some work is performed and then the recursive

call is made
Tail Recursion Head Recursion
Void doit(int n) Void doit(int n)
{ {
if(n == 1) cout << "Stop"“; if(n == 1) cout << "Stop"“;
else { else {
cout << "Go" << endl; doit(n-1);
doit(n-1); cout << "Go" << endl;
} }
} }
doit(3) | | return Go doit(3) _ Go Stop
Go : Go : eturn Go
doit(2) return Stop doit(2) Go Go
Go | | | ’return
doit(1) return doit(1) return
Stop Stop

Exercises
— Count-down
— Count-up

Exercise

N (]S Viterbi %o
Steps to Formulating Recursives=--

Solutions

1. Write out some solutions for a few input cases to discover how the
problem can be decomposed into smaller problems of the same form

— Does solving the problem on an input of smaller value or size help formulate
the solution to the larger
2. ldentify the base case
— An input for which the answer is trivial

3. Identify how to combine the small solution(s) to solve the larger problem

Put another way, there are often 2 principles to finding recursive solutions

* Principle 1: Generally recursive functions are "responsible” for ONLY 1
value / element / item and use recursion to handle all remaining items

* Principle 2: Determine how to combine the 1 element you are responsible
for and the answer returned by recursion

— Assume via the "magic of recursion" you get the answer for all remaining
elements. How can you combine that with your 1 element to form the large

solution

- USCViteﬂ?i '
Recursive Functions

C Code:

* Many loop/iteration based approaches | int main() {

can be defined recursively as well e CEiERllR]l S 1, By Uy B
int size=4;

* How could summing an array be int suml = isum_it(data, size);
implemented recursively? e Sk S POU_SE(ERiE, SHER)E
: }
— Question to answer: int isum_it(int data[], int len)
* What 1 thing could each recursion be {
responsible for? int sum = data[@];

for(int i=1; i < len; i++){

* How could we combine that 1 thing .
sum += data[i];

with the solution from the recursive

call? }
return sum;

* Once you have a recursive formulation }
all that's left is the mechanics of the int rsum_it(int data[], int len)
implementation (i.e. arguments & {
return values) if(len == 1)
return 5
else
800 -
3l6l79 return 5
dataf4]: 0 1 2 3 }

USC Viterbi

School of Engineering

Recursive Call Timeline

int rsum_it(int data[], int len)

int main(){
int data[4] = {8, 6, 7,
int size=4;

cout << rsum _it(data, size);

9}; if(len 1)

return data[e];

else

int sum = rsum_it(data, len-1);
return sum + data[len-1];

data[4]:

800
8
0

w|©

rsum_it(data,4)
int sum=
rsum_it(data,4-1) =

len = 4

int sum = 21 <« |
return 21+data[3];

30

P rsum_it(data,3)
int sum=

len = 3

—return 14+data[2];

21

rsum_it(data,3-1) —p

intsum = 14 «— |

len = 2

rsum_it(data,2)
int sum=
rsum_it(data,2-1)

intsum=8 <+ |
_— return 8+data[1];

14

rsum_it(data,1)

l/

8

Each instance of rsum_it has its own len argument and sum variable

Every instance of a function has its own copy of local variables

len = 1

return data[0];

N

i, IS Viterbi

School of Engineering

System Stack & Recursion

* The system stack makes recursion
possible by providing separate
memory storage for the local
variables of each running instance
of the function

Code for all functions

Data for rsum_it (data=800,

len=1, sum=??) and return link
SyStem Data for rsum_it (data=800,
Memory len=2, sum=8) and return link
Data for rsum_it (data=800,
(RAM) len=3, sum=14) and return link

Data for rsum_it (data=800,

len=4, sum=21) and return link

Data for main (data=800,sum2=??) and
return link

System stack area

int main()

{
int data[4] = {8, 6, 7, 9};
int sum2 = rsum_it(data, 4);

}

int rsum_it(int data[], int len)
{
if(len == 1)
return data[o];
else
int sum =
rsum_it(data, len-1);
return sum + data[len-1];

800
8
0

= | O

data[4]:

i, IS Viterbi

School of Engineering

Head and Tail Recursion Revisited

Both head and tail recursion methods
are shown

Head recursion:

— Recurses first and combines the answer
received in the return value with the one
element it is responsible for.

Tail recursion:

— The recursive case is usually just what would
have been in the body of a loop (of an
iterative approach) BUT WITH a recursive call
at the end to start the next
"iteration/recursion".

— Usually requires additional arguments to
track the progress.

— The final result is usually "complete and
ready" when the base case is hit and just
needs to be returned through each recursive

evel

800
8
0

- o
N |~

data[4]:

 head

C Code:

int main()
{

int data[4] = {8, 6, 7};

int size=4;

int sumh = rsumh(data, size);

int sumt = rsumt(data, size, 0, 0);
}

int rsumh(int data[], int len)

{
if(len 1)
return data[o0];
else
int prevsum = rsum_it(data, len-1);
return prevsum + data[len-1];

}

int rsumt(int data[], int 1len,
int i, int prevsum)
{
if(i

len) return prevsum;

prevsum += data[i];
return rsumt(data, len, i+1, prevsum);

R,]S Viterbi

School of Engineering

Tail Recursion w/ Reference Parameter

e What if we didn't want to JUST ﬁtrizciiiﬁ:o: iZZtLEfiﬂifslies>

compute n! but compute AND store { if(n == 1){

all the factorial values between 1! ety

and n! in an array/vector - {

int ans = fact(n-1, res) * n;

 What do you think of the code on the res-push_back(ans);

right to achieve that goal? L

— Hint: Consider how the vector is being

passed.

. Main()

o~ T T

fact(4,res) [T fact(3,res) fact(2,res) fact(1,res)
nl 4 | res nl 3 | res nj| 2| res n| 1| res
ans| O { [24] ans| 2 { [6] [2] [1]

i, IS Viterbi

School of Engineering

Tail Recursion w/ Reference Parameter

. . ' int main() {
* What if we didn't want to JUST oy A
fact(4, results);
compute n! but compure AND store e
all the factorial values between 1! }
and n| in an array/vector int fact(int n, vector<int>& res)
) {
. . if(n == 1){
e Often this is a better way: res.push_back(1);
return 1;
— Have all recursions take in a REFERENCE } ’
argument so that all recursive calls see/share ﬂs‘i*m{: S & L, e O o
one object/variable that can collect their res.push_back(ans’); ’
results return ans;
' }
Main() | }
reSUItg e e e e T e
12624 \} NN —2x ~==
fact(4,res) [T — | fact(3,res) fact(2,res) fact(1,res)
ni 4 ni3 ni2 n| 1
ans| B ans| 2 ans| 1

- USCViteﬂ?i .
Recursion Double Check

 When you write a recursive routine:
— Check that you have appropriate base cases

* Need to check for these first before recursive cases

— Check that each recursive call makes progress
toward the base case

* Otherwise you'll get an infinite loop and stack overflow

— Check that you use a 'return’ statement at each
level to return appropriate values back to each

recursive call
* You have to return back up through every level of

recursion, so make sure you are returning something
(the appropriate thing)

- USC\Zitgrbi .
Loops & Recursion

e |sit better to use recursion or iteration?

. ‘ void rfuncl(int n)
— ANY problem that can be solved using recursion can also be | ¢

solved with iteration and other appropriate data structures

* Often 1 recursive call per function can be implemented with a loop rfuncli(n-1);

 Why use recursion?
— Usually clean & elegant. }

— For some problems an iterative approach would be very

difficult to formulate but the recursive approach is small

and elegant void rfunc2(int n)
{

e Often occurs when the function instance makes
multiple (more than 1) recursive calls

+
]

— Can lead to stack overflow if recursive depth is too large rfunc2(n-1);

rfunc2(n-2);

w0
]

* How do you choose?

— Iteration is usually faster and uses less memory and should
be used when possible

— However, if iteration produces a very complex solution,
consider recursion

Flood Fill Exercise

e Codio Recursion Exercise

Flood Fill

Imagine you are given an image with
outlines of shapes (boxes and circles)
and you had to write a program to

shade (make black) the inside of one
of the shapes. How would you do it?

Flood fill is a recursive approach
Given a pixel

— Base case: If it is black already, stop!

— Recursive case: Call floodfill on each
neighbor pixel

— Hidden base case: If pixel out of bounds,
stop!

School of Engineering

MORE EXAMPLES

——————— (5 \lcrbi @
Recursive Binary Search

target = 11
* Assume remaining items = [start, end) index 0 1 2 3 4 56 7 8
— start is the inclusive index of start item in remaining list f T f
. o . start mid end
— end is the exclusive index of end item (1 beyond the end)
in remaining list List [2]3]4]6 [ELIREREED)
— Put another way, consider items at index i such that: index 0 1 2 3 456 7 8
start <= i < end f f f
. . start mid end
* binSearch(target, list[], start, end)
— Perform base check (empty range/list) ist [2[3]4[6]o FHRE]15]19
index 0 1 2 3 4 5 6 7 8
e Return NOT FOUND (-1) TT T
— Pick mid item start | end
mid

— Based on comparison of target with 1ist[mid]

« EQ=>Found => return mid List [2][3] 4] e[9 [lE13[15[19
index 01 2 3 4 5 6 7 8

f

start\end
mid

* LT =>return answer to binSearch[start,mid)
e GT =>return answer to binSearch[mid+1,end)

R,]S Viterbi

School of Engineering

* If we have an unordered list, sequential List [7]3]8]6]5]1
search becomes our only choice ndex 0 (1)rizgif‘a;‘ °
* If we will perform a lot of searches it may List [3]7 651 |3
be beneficial to sort the list, then use index 0 1.2 3 4 5

After Pass 1

binary search
List (36|51 WAK:

* Many sorting algorithms of differing index 0 12 3 45

lexit (fast |) After Pass 2
complexity (i.e. faster or slower

P Y List [3[5[1 [HEAEN
e Bubble or Selection Sort index 0 1 2 3 4 5

After Pass 3

— Simple though not terribly efficient
List [3 | 1 BB ENAR:

— On each pass through thru the list, pick up the index 0 1 2 3 4 5
maximum element and place it at the end of After Pass 4
the list. Then repeat using a list of size List
(i.e. w/o the newly placed maximum value) index 0 1 2 3 4 5

After Pass 5

Exercises

— Text-based fractal

Exercise

OLD/UNUSED

USC Viterbi ¢

School of Engin
Recursive Call Timeline
int fact(int n)
{
if(n == 1)
m els:‘ei{:urn 1;
int small _ans = fact(n-1);
return n * small ans ;
} o}
Fact(3) —
{n=3} ~— Fact(2)
{n=2} N Fact(1)
n=3 n=2 n="1
— return 1
small_ans =1
— ret. (n * small_ans) = 2*1
small_ans =2 «
ret. (n*small_ans) = 3*2
v

* Value/version of n is implicitly “saved” and “restored” as we
move from one instance of the ‘fact’ function to the next

