. UsCviterbi €D
School of Engineering

CS 103 Unit 5h — File I/O Part 2

CSCI 103L Teaching Team

USC Viterbi &2

School of Engineering

File Streams

 C++ leverages the SAME interface that cin and cout provide to (via inheritance):
— Read data IN from a file (like cin, but data comes from a file not the keyboard) and
— Write data OUT to a file (like cout, but data goes to a file not the terminal).

* The counterpartto cinisan ifstream object
* The counterpart to cout isan ofstream object

#tinclude <iostream>

75 yes #1r.1clude <fstream>
using namespace std;
| 23 no X i
: int main() {

ofstream ofile("dat2.txt")
dat1.txt ofile << "Hi there" << std::endl;
ofile.close();
OS return 0;

}
#include <iostream>

#include <fstream> @ Hi there
output stream

input stream 1 Using namespace std;

memory: @ yi--- int main() { memory:
int x;
ifstream ifile("datl.txt"); H|i[|tlhle[r|e] \n ~ dat2.txt
ifile >> x;
// use x ™
ifile.close(); OS N, ®
return 0; -z

} This Photo by Unknown Author is licensed under CC BY

This Photo hv lInknown Aiithor is licensed 1inder C.C. RY-SA

http://flickr.com/photos/intelfreepress/6345916908
https://creativecommons.org/licenses/by/3.0/
http://superuser.com/questions/349393/what-does-the-two-man-folder-icon-mean
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

. UsCviterbi €D,
School of Engineering

How your program can directly access data in files

DIRECT FILE I/0O USING C++
STREAMS

- _00000000000___] USCViteﬂ?i .
Important Fact

* For your program to operate on data in a file...

 ...you MUST read it into a C/C++ variable
before processing it

* Everything we will see subsequently is simply
how to get data into a variable

— After that we can just process it normally

I SCViterbi €D,

Computer Organization

* Why can't we just process data in
a file directly?

* Because the processor can only
talk directly to RAM / memory

— It needs “translation” to access data
on the hard drive or other disk

 All code and data resides in RAM

— RAM stores all variables / data that
your program accesses

e How do we access files

— The C++ library and the OS provide
routines to perform the translation
to read/write data from RAM to a
file.

Code

Globals

Stack
(area for
data local to
FFFFfffc a function)

Memory

.ppt
Axt
.docx

Data files:

School of Engineering

¥ Processor
ints / strings
/ efc.

ifstream
ofstream

g i O

110010101001...

I SCViterbi

Starting File 1/0

* Just like with Microsoft Word or any other
application that uses files, you have two
options...

— Read info from the file (like 'Open’' command)
* Use an 'ifstream’ object to open the file
* Read data from the file
* Close it when you're done

— Write info to the file (like 'Save As' command)

e Use an 'ofstream’ object
* Write the data to a file
* Close it when you're done

I SCViterbi (D

School of Engineering

Two Kinds of Files: Binary and Text

Files are broken into two types based on how they represent
the given information:

— Text files: File is just a large sequence of ASCII characters (every piece
of data is just a byte)

— Binary files: Data in the file is just bits that can be retrieved in
different size chunks (4-byte int, 8-byte double, etc.)

 Example: Store the number 172 in a file:

— Text: Would store 3 ASCIl char’s ‘1’7’2’ (ASCII 0x31,0x37,0x32)
requiring 3 bytes

— Binary: If 172 was in a ‘char’ var., we could store a 1-byte value

representing 172 in unsigned binary (OxAC) or if 172 was in an ‘int’ var.
we could store 4-bytes with value 0xO00000AC

In this class we will only focus on Text files

I SCViterbi

School of Engineering

TEXT FILE 1/O

I SCViterbi

School of Engineering

Text File 1/O

e Text file I/O (what we've

learned previously) can simply
use ifstream and ofstream
objects and operator>>,
operator<<, and getline()

— Can do anything cin/cout can do

Must include <fstream>

input.txt output.txt

5 -3.5 Int from file is 5

Double from file is -3.5

#include <iostream>
#tinclude <fstream>
using namespace std;

int main ()

{

int x; double y;
ifstream ifile ("input.txt");

if(ifile.fail()){ // able to open file?
cout << "Couldn't open file" << endl;
return 1;

}

ifile >> x >> y;

if (ifile.fail()){
cout << "Didn't enter an int and double";
return 1;

}
ofstream ofile("output.txt");

ofile << "Int from file is " << x << endl;
ofile << "Double from file is " << y << endl;

ifile.close();
ofile.close();

return 0;

School of Engineering

RECOVERING FROM ERRORS

I SCViterbi

School of Engineering

Input Stream Error Checking

#include <iostream> N

« We use the fail() member function of | Ysing namespace std; iy [i

input streams to DETECT ERRORS int main () 0| |o]| |0
« When an operation fails, the input t i b Gl

stream sets an internal flag bit (FAIL cout << "Enter an int: " << endl;

brt) cin >> x; // What if the user enters:

— But this bit STAYS ON even if // "ab"

subsequent operations succeed!
— We must CLEAR that fail bit using // Check if we successfully read an int

while(cin.fail()) {

Cln-Clear‘() cin.clear(); // turn off fail flag

* However, the data in the input stream cin.ignore(256, '\n'); // clear inputs
. . cout << "I said enter an int: ";
stays there and will continue to cause S 5 e
us to fail if we don't throw it away _ |a|b|\n|8|\n
. .. . } cin
using the cin.ignore() function 1 Tol T
— Takes a maximum number of e R
characters to throw away or a ,
) N cout << "Nice! X = " << x << endl;
delimeter to stop on ("\n') e G

— E.g.cin.ignore(256, '\n') }

School of Engineering

FILE LOCATION/POINTERS & INPUT
OPERATORS

USC Viterbi

School of Engineering

File Streams and EOF

fp/getp

* Your ifstream object implicitly keeps track
of where you are in the file using a file olnle

pointer (fp) or get pointer (getp)

Hard Drive

* EOF (end-of-file) or other error means no char c; ifile >> c;
more data can be read. Use the fail() fp _
. g Hard Drive
function to ensure the file is okay for
reading/writing ‘/On cle| |ulp|o|n]| |a |

* Input streams also allow you to check if
you've read the EOF character by calling
an eof () function, but
fail will be set when eof is and so it's easier
to just use fail()

char c; ifile >> c;

0| (0] |0
fail eof bad

char c; ifile >> c; fp

1 1 (%)
fail eof bad

] USCVite.fl?i .
operator>>

ifstream ifile("data.txt");

 operator>> stops getting a value when
it encounters whitespace and also skips fp/getp
whitespace to get to the next value l
— Sodo ifstream objects 11+l Tel7ls

File text

* Inthe example on this slide, the spaces
will NOT be read in char s[40]; ifile >> s;

// returns "It" and stops at space

— They will be skipped by operator>>

getp
« To get raw data from the file (including | File text
whitespaces) use the get () function 1lt| [6|7]s

char x; ifile >> x;
// skips space & gives x='6'

getp

| File text
I({t| |6]|7(8

I SCViterbi

School of Engineering

operator>> vs. get vs. peek

ifstream ifile("data.txt");

* To get raw data from the file (including
whitespaces) use the ifstream: :get () P/9eP

function yl/l File text
— Returns the character at the ‘fp’ and moves ‘fp’ ol e
on by one char ¢ = ifile.get(); // returns 'I'
* To see what the next character is without c = ifile.get(); // returns ' '
moving the "fp/getp" pointer on to the getp
next character, use 1/1/1 File text
ifstream: :peek() function 1| [c|a|n

— Returns the character at the "fp/getp" but does
NOT move "fp/getp" on

ifile >> c¢; // returns 'I’
ifile >> c¢; // skips space and
// returns 'c’

getp
| File text

I claln

c = ifile.peek(); // returns 'I'
// and doesn't move to next char

I SCViterbi

School of Engineering

Changing File Pointer Location (ifstream)

ios_base::cur

 Rather than read sequentially in a file 9elp seekg(9, ios_base::beg)

we often need to jump around to l—

particular byte locations 012 ° 3123
. I|t| (w|a|s| [t|h|e| |b|e|s|t| |o|f|... [EOF
 ifstream::seekg()
. . ios_base::begin ios base::end
— Go to a particular byte location
— Pass an offset relative from current
position or absolute byte from start ios_base::cur
or end of file getp tellg() => 9
. . . kg(-4, i b -
— To specify what the offset is relative —~ = g4, fos base:rcun)
to, use one of ios_base::beg/cur/end 012 5 9 3123
° ifstpeam::tellg() I|t| |w|a|s| |[t|h|le| [b|e|s|t| |o|f|... |[EOF
— Return the current location’s byte- los_base: :begin los_base::end

offset from the beginning of the file

2d arg. to seekg()
ios_base::beg = pos. from beginning of file
ios_base::cur = pos. relative to current location
ios_base::end = pos. relative from end of file
(i.e. 0 or negative number)

I SCViterbi

School of Engineering

Changing File Pointer Location (ifstream)

ios _base:
int main(int argc, char *argv[]) getp
t Hard Drive
int size; char c;
ifstream fstr("stuff.txt"); t| |wlals| |[t|h|e| |ble|s|t] |o|f
fstr.seekg(09,ios base::end); ios_ ::begin
size = fstr.tellg(); } fstr.seekg(0,ios base::end);

cout << "File size (bytes)=" << size << endl;

cout << "2nd byte in file is “;

fstr.seekg(l, ios_base::beg);

10s_base::end

fstr >> c;
cout << c << endl; getp
ios _base::cur
fstr.seekg(1l, ios_base::beg);

. getp : "
fstr.seekg(-2, ios_base::cur); fstr >> ¢; // get 't
cout << "1st byte in file is “;
fstr >> c;
cout << c << endl; I|t| |(w|a|s| |t|h|le| |ble|s|t| |o|f

ios _base:: in
fstr.close();
return 0, . fstr.seekg(-2, ios_base::cur);
1 ios_base::cur
2d arg. to seekg() getp

ios_base::beg = pos. from beginning of file

ios_base::cur = pos. relative to current location

ios_base::end = pos. relative from end of file
(i.e. 0 or negative number)

ios_base:: in

School of Engineering

BINARY FILE I/O

I SCViterbi

Binary vs. Text File 1/0

* Binary file content takes the literal bits from memory/RAM
and saves it to a file

* Text file content is the ASCII representation of the data (as it

. Binary File
would be printed). Content
struct Student { 4a696¢6¢
char name[40]; Address Memory Data loo > » » :
int major; Al — e Jill 5 4.0
double gpa; 7300 | 4ab96chC
}; sl.name @ GIE)) e
7304 |60 ? ? ? 22?2 ?

?nt main(int argc, char *argv[]) o o) 00000005 Text File
Student s1; R 7336 ? p ? 0100000 Content
strcpy(sl.name, "Jill%); L 4A 69 6C 6C 20 35
sl.major = 5; 7340 | |00000005 00000000 20 34 2F 30 OA
S1.gpa = 3.7; |

&P 7344 | |c0100000]
. return loeeeceee
P

I SCViterbi

Binary File I/O Functions

* When opening the file, include the "binary" mode flag
— open(const char* filename, ios base::openmode mode)
— In addition, to the filename argument, provide 1i0s: :binary

* To write data to a binary file use the write() function
— ostream& ostream::write (const char* s, streamsize n);
— s = pointer to the starting address of the data to write to the file
— should be cast to a char*
— n =the number of bytes to be written = number_of _elements *
size_of_element

* To read data from a binary file use the read() function
— 1istream& istream::read (char* s, streamsize n);

— s =a pointer to where you want the data read from the file to be
placed in memory...this pointer should be cast to a char*

— n = Number of bytes you want to read

- 00001 USC\ﬁterbi .
Copy a File

#include <iostream>
#include <fstream> // std::ifstream, std::ofstream
using namespace std;

int main () {
std::ifstream infile ("src.txt",ios::binary);
std::ofstream outfile ("copy.txt",ios::binary);

infile.seekg (@,infile.end); // get size of file
long size = infile.tellg();
infile.seekg (0);

// allocate memory for file content
char* buffer = new char[size];

// read content of infile
infile.read (buffer,size);

// write to outfile
outfile.write (buffer,size);

// release dynamically-allocated memory
delete[] buffer;

outfile.close();
infile.close();
return 0;

https:/Icplusplus.com/reference/ostream/ostream/write/

] USCViterbi .
Binary File I/0

struct Student {

* write() — member char name[40];
int major;
of ofstream double gpa;

— Pass a pointer to the g

starting location of the data void saveToFile(const char* fname, Student* data) {

to write to the file (should ofstream ofile(fname, ios::binary);
be cast to 3 char'*) and ofile.write(static_cast<char *>(data), 100*sizeof(Student));

ofile.close();
the number of bytes to be }

written = void readFromFile(const char* fname, Student* data) {

% ifstream ifile(fname, ios::binary);
nL.meer'_o*F_elements ifile.read(static_cast<char *>(data), 100*sizeof(Student));
size of _element ifile.close();

}
* read() — member of int main(int argc, char *argv[])

ifstream {

P . h Student stu[100];

— Pass a pointer to where you // initialize and fill the 100 Student objects
want the data read from the saveToFile("class.dat", stu);

file to be placed in
Student duplicate[100];

memory"‘thls pointer readFromFile("class.dat", duplicate);
should be cast to a char* return 0;

— Pass # of bytes you want to
read

School of Engineering

I/O REDIRECTION

USC Viterbi

School of Engineering

Overview

 Two methods for file I/O DISK
— File streams (ifstreamand df‘;aztft
ofstream) are part of the C++ hello
library and perform file 1/O
directly through a cin- and ./app1
cout-like interface (Covered in $ /appl < data.txt
Unit 3) I/O redirection via th eOS\
— 1/0 redirection: The OS reads 1|5 [2|1]\n
or writes data to/from a file by input stream:
controlling cin & cout iiﬁgeii‘ i‘ciey ;°/
e The program just performs cin >> x >> y
normal cin and cout ‘ ‘
commands

Your program variables:

X | 15 y | 21

* Covered in this unit i

input stream:
./appl

I SCViterbi

File I/O Options

School of Engineering

A second method (other than 1fstreamand
ofstream objects) is to use an OS mechanism called
/0O Redirection

— All general operating systems support this mechanism.

e The OS can:

— Redirects the contents of a file into stdin (i.e. cin)

— Redirect the output sent to stdout (i.e. cout) to a file rather
than the terminal

I SCViterbi

Redirection & Pipes

The OS (Linux or Windows or Mac) provides the following
abilities at the command line

< redirect contents of a file as input (stdin) to program
— ./simulation < input.txt

— OS places contents of input.txt into 'stdin’ input stream which broke can
access via ‘cin’

> redirect program output to a file
— ./ simulation < input.txt > results.txt

— OS takes output from ‘stdout’ produced by cout and writes them into a
new output file on the hard drive: results.txt

| pipe output of first program to second

— stdout of first program is then used as stdin of next program

II[ﬂijmﬁﬂﬁGHBD

School of Engineering

Redirection & Pipe Examples

« $./shapes < input.txt OO 0h 000050
. . . 0 200 220 20 30
— Redirects contents of input.txt to stdin 1 80 180 25 25
(i.e. cin) in HW2 shapes program L 18050 50 60
* Codio Demo input. txt

— Go to Codio and find the Exercise 6 — I/O Redirection

* From the terminal, compile the programs
— $ make randgen
— $ make average

* Run them without using redirection and pipes
— $./randgen 20 10

* Notice 20 values between 1-10 are output on stdout/cout

— $./average
* Now type in a list of numbers followed by typing Ctrl-D

I SCViterbi

School of Engineering

Redirection & Pipe Examples

* QOutput Redirection: >

— $./randgen 20 10 > out.txt

— Now inspect out.txt contents

— What would have displayed on the screen is now in out.txt
* Input redirection: <

— $./average < out.txt

— The output captured from randgen is now used as input to
average

* Pipes: |
—$./randgen 20 10 | ./average
— The output of randgen is fed as input to average

School of Engineering

BACKGROUND ON C FILE I/O
(NOT COVERED)

I SCViterbi

School of Engineering

You are not responsible for this material

CSTYLEI/O

- USC\ﬁtgrbi .
FTILE* variables

int main(int argc, char *argv[])
* To access files, C (with the help of the OS) b har first char;
has a data type called ‘FILE” which tracks all ;;EVE‘ jjc;?t-li“e[%];
information and is used to access asingle file | . _ ¢ o voiue txer, ey
from your program if (fp == NULL){
printf(“File doesn’t exist\n”);
* You declare a pointer to this FILE type (FILE } exit(1)
*) // read first char. of file
“ ” .) first_char = fgetc(fp);
* You “open” a file for access using fopen() // read thru first ‘\n’ of file
— Pass it a filename string (char *) and a string fgets(first_line, 86 ,fp);
indicating read vs. write, text vs. binary fclose(fp);
— Returns an initialized file pointer or NULL if there) return 0;
was an error opening file

« You “close” a file when finished with fclose() Second arg. to fopen()
“r’ [“rb” = read mode, text/bin file

“w” [“wb” = write mode, text/bin file

* Both of these functions are defined in “a” | “ab” = append to end of text/bin file
stdio.h “r+” [“r+b” = read/write text/bin file

others...

— Pass the file pointer

I SCViterbi

School of Engineering

File Access

e Many file I/O functions fP

— Text file access: 1
 fprintf(), fscanf()
 fputc(), fgetc(), fputs(), fgets()
— Binary file access:
 fread(), fwrite()

* Your file pointer (FILE * var) implicitly [
keeps track of where you are in the

file

* EOF constant is returned when you] [alelefel=]-T Te[u]e] Te[a]a]:[eor
hit the end of the file or you can use 1
feof() which will return true or false. N ey o))

// okay to access next fp
// byte of file

if((c = fgetc(fp) !'= EOF)
// process c

lll'LEK}V&gﬁﬁgﬂa’
Text File Input

« fgetc()
— Get a single ASCII character
 fgets()
— Get a line of text or a certain number of characters (up to and
including \n)

— Stops at EOF...If EOF is first char read then the function returns NULL
— Will append the NULL char at the end of the characters read

 fscanf()

— Read ASCII char’s and convert to another variable type

— Returns number of successful items read or ‘EOF’ if that is the first
character read

Illl[Kxjggfgﬂjﬂa’
Text File Output

 fputc()

— Write a single ASCII character to the file
 fputs()

— Write a text string to the file
e fprintf()

— Write the resulting text string to the file

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII[ﬁK:Vﬁ@¢iq=B'
Binary File I/0

 fread()

— Pass a pointer to where you want the
data read from the file to be placed in —
. .) . int main(int argc, char *argvl])
memory (e.g. &x if xisanint or data iff ¢
int x;

data is an array) double datall0];
FILE *fp;

— Pass the number of ‘elements’ to read
fp = fopen (“stuff.txt”,”r”);

then pass the size of each ‘element’ if (fp == NULL) {
printf (“File doesn’t exist\n”);
— # of bytes read = number_of _elements exit (1)
* i }
Slze_Of_eIement fread(&x, 1, sizeof (int), fp);

i 1 f d(d t 14 10! I f d bl ,f H
— Pass the file pointer read(data sizeof (double) , fp)

fclose (fp);

¢ -er‘itE() return O;

— Same argument scheme as fread()

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII[EK:thﬁﬁGEB

School of Engineering

Changing File Pointer Location

Rather than read/writing
sequentially in a file we often
need to jump around to
particular byte locations

fseek()

— Go to a particular byte location

— Can be specified relative from
current position or absolute byte
from start or end of file

ftell()

— Return the current location’s byte-
offset from the beginning of the
file

int main(int argc, char *argv/[])
{

int size;

FILE *fp;

fp = fopen("stuff.txt","r");

if (fp == NULL) {
printf (“File doesn’t exist\n”);
exit (1)

}
fseek (fp, 0, SEEK END) ;

size = ftell (fp);

printf (“File is %d bytes\n”, size);

fclose (fp);
return O;

Third arg. to fseek()
SEEK_SET = pos. from beginning of file
SEEK _CUR = pos. relative to current location
SEEK _END = pos. relative from end of file
(i.e. negative number)

