
5h.1

CS 103 Unit 5h – File I/O Part 2

CSCI 103L Teaching Team



5h.2

File Streams
• C++ leverages the SAME interface that cin and cout provide to (via inheritance):

– Read data IN from a file (like cin, but data comes from a file not the keyboard) and 
– Write data OUT to a file (like cout, but data goes to a file not the terminal).

• The counterpart to cin is an ifstream object
• The counterpart to cout is an ofstream object

7 5 y ...

#include <iostream>
#include <fstream>
Using namespace std;
int main() {
  int x;  
  ifstream ifile("dat1.txt");
  ifile >> x;
  // use x
  ifile.close();
  return 0;
}

H i t h e r e

output stream 
memory:

#include <iostream>
#include <fstream>
using namespace std;
int main() {
  ofstream ofile("dat2.txt")
  ofile << "Hi there" << std::endl;
  ofile.close(); 
  return 0;
}

EOF\n

OS

ifstream

OS

ofstream
input stream 
memory:

This Photo by Unknown Author is licensed under CC BY
This Photo by Unknown Author is licensed under CC BY-SA

dat1.txt

75 yes
23 no

Hi there

dat2.txt

http://flickr.com/photos/intelfreepress/6345916908
https://creativecommons.org/licenses/by/3.0/
http://superuser.com/questions/349393/what-does-the-two-man-folder-icon-mean
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


5h.3

DIRECT FILE I/O USING C++ 
STREAMS

How your program can directly access data in files



5h.4

Important Fact

• For your program to operate on data in a file…
• …you MUST read it into a C/C++ variable 

before processing it
• Everything we will see subsequently is simply 

how to get data into a variable
– After that we can just process it normally 



5h.5

ints / strings 
/ etc.

Computer Organization

• Why can't we just process data in 
a file directly?

• Because the processor can only 
talk directly to RAM / memory 
– It needs “translation” to access data 

on the hard drive or other disk

• All code and data resides in RAM
– RAM stores all variables / data that 

your program accesses

• How do we access files
– The C++ library and the OS provide 

routines to perform the translation 
to read/write data from RAM to a 
file.

Memory

…

…

…

Code

Stack 
(area for 

data local to 
a function)

Globals

0

…

Heap

fffffffc

Data files:
.ppt
.txt

.docx

110010101001…

RAM

Processor

Disk

ifstream/
ofstream



5h.6

Starting File I/O

• Just like with Microsoft Word or any other 
application that uses files, you have two 
options…
– Read info from the file (like 'Open' command)
• Use an 'ifstream' object to open the file
• Read data from the file 
• Close it when you're done

– Write info to the file (like 'Save As' command)
• Use an 'ofstream' object
• Write the data to a file
• Close it when you're done



5h.7

Two Kinds of Files: Binary and Text

• Files are broken into two types based on how they represent 
the given information:
– Text files:  File is just a large sequence of ASCII characters (every piece 

of data is just a byte)
– Binary files:  Data in the file is just bits that can be retrieved in 

different size chunks (4-byte int, 8-byte double, etc.)

• Example:  Store the number 172 in a file:
– Text:  Would store 3 ASCII char’s ‘1’,’7’,’2’ (ASCII 0x31,0x37,0x32) 

requiring 3 bytes
– Binary:  If 172 was in a ‘char’ var., we could store a 1-byte value 

representing 172 in unsigned binary (0xAC) or if 172 was in an ‘int’ var. 
we could store 4-bytes with value 0x000000AC

In this class we will only focus on Text files



5h.8

TEXT FILE I/O



5h.9

Text File I/O
• Text file I/O (what we've 

learned previously) can simply 
use ifstream and ofstream 
objects and operator>>, 
operator<<, and getline()
– Can do anything cin/cout can do 

• Must  include <fstream> 

#include <iostream> 
#include <fstream> 
using namespace std;

int main () 

{ 

  int x; double y;

  ifstream ifile ("input.txt"); 

  if(  ifile.fail() ){  // able to open file?
    cout << "Couldn't open file" << endl;
    return 1;
  }

  ifile >> x >> y; 
  if (  ifile.fail() ){
    cout << "Didn't enter an int and double";
    return 1;
  }

  ofstream ofile("output.txt"); 

  ofile << "Int from file is " << x << endl;
  ofile << "Double from file is " << y << endl;

  ifile.close(); 
  ofile.close();

  return 0;
 }5 -3.5

input.txt
Int from file is 5
Double from file is -3.5

output.txt



5h.10

RECOVERING FROM ERRORS



5h.11

Input Stream Error Checking
• We use the fail() member function of 

input streams to DETECT ERRORS
• When an operation fails, the input 

stream sets an internal flag bit (FAIL 
bit)
– But this bit STAYS ON even if 

subsequent operations succeed!
– We must CLEAR that fail bit using 

cin.clear()
• However, the data in the input stream 

stays there and will continue to cause 
us to fail if we don't throw it away 
using the cin.ignore() function
– Takes a maximum number of 

characters to throw away or a 
delimeter to stop on ('\n')

– E.g. cin.ignore(256, '\n') 

#include <iostream> 
using namespace std;

int main () 
{ 
  int x;
  cout << "Enter an int: " << endl;

  cin >> x;  // What if the user enters:
             //    "ab"

  // Check if we successfully read an int
 while(  cin.fail() ) {
    cin.clear(); // turn off fail flag
    cin.ignore(256, '\n'); // clear inputs
    cout << "I said enter an int: ";
    cin >> x;

  }

  cout << "Nice!  X = " << x << endl; 
  return 0;
 }

cin
0 0

fail eof

a b \n

cin
1 0

fail eof

a b \n 8 \n

0
bad

0
bad



5h.12

FILE LOCATION/POINTERS & INPUT 
OPERATORS



5h.13

File Streams and EOF
• Your ifstream object  implicitly keeps track 

of where you are in the file using a file 
pointer (fp) or get pointer (getp)

• EOF (end-of-file) or other error means no 
more data can be read.  Use the fail() 
function to ensure the file is okay for 
reading/writing

• Input streams also allow you to check if 
you've read the EOF character by calling
an eof() function, but
fail will be set when eof is and so it's easier 
to just use fail()

O n c e u p o n a

fp/getp

char c; ifile >> c;

T h e E n d ! EOF

fp

...

...

char c; ifile >> c;

Hard Drive

0 0
fail eof

0
bad

O n c e u p o n a

fp

...

Hard Drive

char c; ifile >> c;

T h e E n d ! EOF

fp

...
1 1

fail eof

0
bad



5h.14

operator>>
• operator>> stops getting a value when 

it encounters whitespace and also skips 
whitespace to get to the next value

– So do ifstream objects

• In the example on this slide, the spaces 
will NOT be read in

– They will be skipped by operator>>

• To get raw data from the file (including 
whitespaces) use the get() function

I t 6 7 8

fp/getp

char s[40]; ifile >> s;
// returns "It" and stops at space

...

ifstream ifile("data.txt");

File text

I t 6 7 8

getp

...

File text

char x; ifile >> x;
// skips space & gives x='6'

I t 6 7 8

getp

...

File text



5h.15

operator>> vs. get vs. peek
• To get raw data from the file (including 

whitespaces) use the ifstream::get() 
function

– Returns the character at the ‘fp’ and moves ‘fp’ 
on by one

• To see what the next character is without 
moving the "fp/getp" pointer on to the 
next character, use 
ifstream::peek() function

– Returns the character at the "fp/getp" but does 
NOT move "fp/getp" on

I c a n

fp/getp

char c = ifile.get(); // returns 'I'
c = ifile.get(); // returns ' '

...

ifstream ifile("data.txt");

File text

I c a n ...

ifile >> c; // returns 'I'
ifile >> c; // skips space and
            // returns 'c'

getp

File text

I c a n ...

getp

File text

c = ifile.peek(); // returns 'I'
   // and doesn't move to next char 



5h.16

Changing File Pointer Location (ifstream)

• Rather than read sequentially in a file 
we often need to jump around to 
particular byte locations

• ifstream::seekg()
– Go to a particular byte location 
– Pass an offset relative from current 

position or absolute byte from start 
or end of file

– To specify what the offset is relative 
to, use one of ios_base::beg/cur/end

• ifstream::tellg()
– Return the current location’s byte-

offset  from the beginning of the file
2nd arg. to seekg()
  ios_base::beg = pos. from beginning of file
  ios_base::cur = pos. relative to current location
  ios_base::end = pos. relative from end of file 
                             (i.e. 0 or negative number)

I t w a s t h e b e s t o f ...

getp

3123
EOF

0 1 2

ios_base::begin ios_base::end

seekg(9, ios_base::beg)

9

ios_base::cur

I t w a s t h e b e s t o f ...
3123
EOF

0 1 2

ios_base::begin ios_base::end

tellg() => 9

9

ios_base::cur

getp
seekg(-4, ios_base::cur)

5



5h.17

Changing File Pointer Location (ifstream)

2nd arg. to seekg()
  ios_base::beg = pos. from beginning of file
  ios_base::cur = pos. relative to current location
  ios_base::end = pos. relative from end of file 
                             (i.e. 0 or negative number)

I t w a s t h e b e s t o f

getp

a t f e r . T h e E n d ! EOF...

...

Hard Drive

getp

fstr.seekg(0,ios_base::end);

I t w a s t h e b e s t o f

getp

...

fstr.seekg(1, ios_base::beg);
fstr >> c;  // get 't'

3123

0

1

ios_base::begin

ios_base::end

ios_base::cur

ios_base::begin

0

ios_base::cur

I t w a s t h e b e s t o f

getp

...

fstr.seekg(-2, ios_base::cur);

1

ios_base::begin

0

ios_base::cur

int main(int argc, char *argv[])
{
  int size; char c;
  ifstream fstr("stuff.txt");

  fstr.seekg(0,ios_base::end);
  size = fstr.tellg();
  cout << "File size (bytes)=" << size << endl;

  fstr.seekg(1, ios_base::beg);
  cout << "2nd byte in file is ";

  fstr >> c;
  cout << c << endl;

  fstr.seekg(-2, ios_base::cur);
  cout << "1st byte in file is ";
  fstr >> c;
  cout << c << endl;

  fstr.close();
  return 0;
}



5h.18

BINARY FILE I/O



5h.19

Binary vs. Text File I/O

• Binary file content takes the literal bits from memory/RAM 
and saves it to a file

• Text file content is the ASCII representation of the data (as it 
would be printed). 

struct Student {
   char name[40];
   int major;
   double gpa;
};

int main(int argc, char *argv[])
{
  Student s1;
  strcpy(s1.name, "Jill");
  s1.major = 5;
  s1.gpa = 3.7;

  return 0;
}

4A 69 6C 6C 20 35
20 34 2E 30 0A

4a696c6c

00 ? ? ?

   ...

 ? ? ? ?

00000005

c0100000       

00000000

Jill 5 4.0
4a696c6c

00 ? ? ?

   ...

 ? ? ? ?

00000005

c0100000       

00000000

7300

7304 

... 

7336 

7340

7344

Address Memory Data

s1.name

[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.gpa

s1

&s1

Binary File 
Content

Text File 
Content



5h.20

Binary File I/O Functions

• When opening the file, include the "binary" mode flag
– open(const char* filename, ios_base::openmode mode) 
– In addition, to the filename argument, provide ios::binary

• To write data to a binary file use the write() function
– ostream& ostream::write (const char* s, streamsize n);
– s =  pointer to the starting address of the data to write to the file 
– should be cast to a char*
– n = the number of bytes to be written = number_of_elements * 

size_of_element 

• To read data from a binary file use the read() function
– istream& istream::read (char* s, streamsize n);
– s = a pointer to where you want the data read from the file to be 

placed in memory…this pointer should be cast to a char*
– n = Number of bytes you want to read



5h.21

Copy a File
#include <iostream>
#include <fstream>      // std::ifstream, std::ofstream
using namespace std;

int main () {
  std::ifstream infile ("src.txt",ios::binary);
  std::ofstream outfile ("copy.txt",ios::binary);

  infile.seekg (0,infile.end); // get size of file
  long size = infile.tellg();
  infile.seekg (0);

  // allocate memory for file content
  char* buffer = new char[size];

  // read content of infile
  infile.read (buffer,size);

  // write to outfile
  outfile.write (buffer,size);

  // release dynamically-allocated memory
  delete[] buffer;

  outfile.close();
  infile.close();
  return 0;
}

https://cplusplus.com/reference/ostream/ostream/write/



5h.22

Binary File I/O
• write() – member 

of ofstream
– Pass a pointer to the 

starting location of the data 
to write to the file (should 
be cast to a char*) and 
the number of bytes to be 
written = 
number_of_elements * 
size_of_element 

• read() – member of 
ifstream

– Pass a pointer to where you 
want the data read from the 
file to be placed in 
memory…this pointer 
should be cast to a char*

– Pass # of bytes you want to 
read

struct Student {
   char name[40];
   int major;
   double gpa;
};

void saveToFile(const char* fname, Student* data) {
  ofstream ofile(fname, ios::binary);
  ofile.write(static_cast<char *>(data), 100*sizeof(Student));
  ofile.close();
}
void readFromFile(const char* fname, Student* data) {
  ifstream ifile(fname, ios::binary);
  ifile.read(static_cast<char *>(data), 100*sizeof(Student));
  ifile.close();
}
int main(int argc, char *argv[])
{
  Student stu[100];
  // initialize and fill the 100 Student objects
  saveToFile("class.dat", stu);

  Student duplicate[100];
  readFromFile("class.dat", duplicate);
  return 0;
}



5h.23

I/O REDIRECTION



5h.24

I/O redirection via th eOS

Overview

• Two methods for file I/O
– File streams (ifstream and 

ofstream) are part of the C++ 
library and perform file I/O 
directly through a cin- and 
cout-like interface (Covered in 
Unit 3)

– I/O redirection: The OS reads 
or writes data to/from a file by 
controlling cin & cout
• The program just performs 

normal cin and cout 
commands

• Covered in this unit

2 1

cin

\n

input stream:

input stream:

\n

DISK

15 21
 hello

data.txt

Your program variables:
15x

cin >> x >> y

1 5

21y

ifstream

ifstream ifile;
ifile >> x >> y

./app1

$ ./app1 < data.txt
./app1



5h.25

File I/O Options

• A second method (other than ifstream and 
ofstream objects) is to use an OS mechanism called 
I/O Redirection
– All general operating systems support this mechanism.

• The OS can:
– Redirects the contents of a file into stdin (i.e. cin)
– Redirect the output sent to stdout (i.e. cout) to a file rather 

than the terminal



5h.26

Redirection & Pipes

• The OS (Linux or Windows or Mac) provides the following 
abilities at the command line

• < redirect contents of a file as input (stdin) to program
– ./simulation <  input.txt
– OS places contents of input.txt into 'stdin' input stream which broke can 

access via 'cin'

• > redirect program output to a file
– ./ simulation < input.txt > results.txt
– OS takes output from 'stdout' produced by cout and writes them into a 

new output file on the hard drive:  results.txt

• | pipe output of first program to second
– stdout of first program is then used as stdin of next program



5h.27

Redirection & Pipe Examples
• $ ./shapes < input.txt

– Redirects contents of input.txt to stdin 
(i.e. cin) in HW2 shapes program

• Codio Demo
– Go to Codio and find the Exercise 6 – I/O Redirection

• From the terminal, compile the programs
– $ make randgen
– $ make average

• Run them without using redirection and pipes
– $ ./randgen 20 10  

• Notice 20 values between 1-10 are output on stdout/cout

– $ ./average 
• Now type in a list of numbers followed by typing Ctrl-D

0 10 10 100 50
0 200 220 20 30
1 80 180 25 25
1 180 50 30 60
2

input.txt



5h.28

Redirection & Pipe Examples

• Output Redirection:  >
– $ ./randgen 20 10 > out.txt  
– Now inspect out.txt contents
– What would have displayed on the screen is now in out.txt

• Input redirection:  <
– $ ./average < out.txt
– The output captured from randgen is now used as input to 

average

• Pipes:  |
– $ ./randgen 20 10 | ./average
– The output of randgen is fed as input to average 



5h.29

BACKGROUND ON C FILE I/O 
(NOT COVERED)



5h.30

C STYLE I/O
You are not responsible for this material



5h.31

FILE* variables
• To access files, C (with the help of the OS) 

has a data type called ‘FILE’ which tracks all 
information and is used to access a single file 
from your program 

• You declare a pointer to this FILE type (FILE 
*)

• You “open” a file for access using fopen()
– Pass it a filename string (char *) and a string 

indicating read vs. write, text vs. binary
– Returns an initialized file pointer or NULL if there 

was an error opening file

• You “close” a file when finished with fclose()
– Pass the file pointer

• Both of these functions are defined in 
stdio.h

int main(int argc, char *argv[])
{
  char first_char;
  char first_line[80];
  FILE *fp;

  fp = fopen("stuff.txt","r");
  if (fp == NULL){
    printf(“File doesn’t exist\n”);
    exit(1)
  }
  // read first char. of file
  first_char = fgetc(fp);
  // read thru first ‘\n’ of file
  fgets(first_line, 80 ,fp); 

  fclose(fp);
  return 0;
}

Second arg. to fopen()
“r” / “rb” = read mode, text/bin file
“w” / “wb” = write mode, text/bin file
“a” / “ab” = append to end of text/bin file
“r+” / “r+b” = read/write text/bin file
others…



5h.32

File Access

• Many file I/O functions
– Text file access:

• fprintf(), fscanf()
• fputc(), fgetc(), fputs(), fgets()

– Binary file access:
• fread(), fwrite()

• Your file pointer (FILE * var) implicitly 
keeps track of where you are in the 
file

• EOF constant is returned when you 
hit the end of the file or you can use 
feof() which will return true or false.  

I t w a s t h e b e s t o f

...

fp

c = fgetc(fp)

a t f e r . T h e E n d ! EOF

fp

I t w a s t h e b e s t o f

fp

...

...

...

while( ! feof(fp) )
  // okay to access next
  //  byte of file

if((c = fgetc(fp) != EOF)
  // process c 



5h.33

Text File Input

• fgetc()
– Get a single ASCII character

• fgets()
– Get a line of text or a certain number of characters (up to and 

including \n)
– Stops at EOF…If EOF is first char read then the function returns NULL
– Will append the NULL char at the end of the characters read

• fscanf()
– Read ASCII char’s and convert to another variable type
– Returns number of successful items read or ‘EOF’ if that is the first 

character read



5h.34

Text File Output

• fputc()
– Write a single ASCII character to the file

• fputs()
– Write a text string to the file

• fprintf()
– Write the resulting text string to the file



5h.35

Binary File I/O

• fread()
– Pass a pointer to where you want the 

data read from the file to be placed in 
memory (e.g. &x if x is an int or data if 
data is an array)

– Pass the number of ‘elements’ to read 
then pass the size of each ‘element’

– # of bytes read = number_of_elements 
* size_of_element 

– Pass the file pointer

• fwrite()
–  Same argument scheme as fread()

int main(int argc, char *argv[])
{
  int x;
  double data[10];
  FILE *fp;

  fp = fopen(“stuff.txt”,”r”);
  if (fp == NULL){
    printf(“File doesn’t exist\n”);
    exit(1)
  }
  fread(&x, 1, sizeof(int), fp);
  fread(data, 10, sizeof(double),fp);

  fclose(fp);
  return 0;
}



5h.36

Changing File Pointer Location

• Rather than read/writing 
sequentially in a file we often 
need to jump around to 
particular byte locations

• fseek()
– Go to a particular byte location 
– Can be specified relative from 

current position or absolute byte 
from start or end of file

• ftell()
– Return the current location’s byte-

offset  from the beginning of the 
file

int main(int argc, char *argv[])
{
  int size;
  FILE *fp;

  fp = fopen("stuff.txt","r");
  if (fp == NULL){
    printf(“File doesn’t exist\n”);
    exit(1)
  }
  fseek(fp,0,SEEK_END);
  size = ftell(fp);

  printf(“File is %d bytes\n”, size);

  fclose(fp);
  return 0;
}

Third arg. to fseek()
  SEEK_SET = pos. from beginning of file
  SEEK_CUR = pos. relative to current location
  SEEK_END = pos. relative from end of file 
                          (i.e. negative number)


