
5d.1

CSCI 103 – Unit 5g
Exceptions

CSCI 103L Teaching Team

5d.2

Thinking About Errors

• Consider the
vector<T> class

• Now consider error
conditions
–What member functions

could cause an error?
– How do I communicate

the error to the user?

#ifndef VECTOR_H
#define VECTOR_H

template <typename T>
class vector {
 public:
 vector();
 ~vector();
 bool empty() const;
 int size() const;

 void push_back(const T& val);

 void insert(size_t loc, const T& val);
 void erase(size_t loc);

 T& at(size_t loc);
 const T& at(size_t loc) const;
 ...
};
#endif

Vector Class
(Slightly modified from

actual C++ version)

5d.3

Thinking About Errors

• Now consider the
ListInt class

• Now consider error
conditions
–What member functions

could cause an error?
– How do I communicate

the error to the user?

#ifndef LISTINT_H
#define LISTINT_H

struct Item {
 int val;
 Item* next;
};

class ListInt {
public:
 ListInt();
 ~ListInt();
 void push_back(int v);
 void pop_back();
 void pop_front();
 int front() const;
 int back() const;

 // Get the value at the i-th location
 int& get(size_t i);
 const int& get(size_t i) const;

private:
 Item* head_;
 size_t len_;
};
#endif

5d.4

pop_front() Error
• What if I erase a

non-existent
location

#include "listint.h"

void ListInt::pop_front()
{
 // Empty list check?
 if(head_ == NULL){
 // What should I do?

 }
 else {
 Item* temp = head_;
 head_ = head_->next;
 delete temp;
 }
}

listint.cpp

mylist.pop_front();

We can use the return value and
return an error code.

But how does the client know what
those codes mean? What if I

change those codes?

0x0

Item*
head_

0

size_t
len_mylist

5d.5

get() Error
• What if I try to

get an item at an
invalid location

#include "listint.h"

int ListInt::get(size_t i) const
{
 // is i a valid index?
 if(i >= len_){
 // What should I do?
 }
 else {
 Item* temp = head_;
 while(i != 0) {
 temp = temp->next;
 i--;
 }
 return temp->val;
 }
}

I can't use the return value, since it's already
being used.

Could provide another reference parameter, but
that's clunky.

int get(int loc, int &error);

0x148

Item*
head_

3
int
val

0x1c0

Item*
next

9
int
val

0x164

Item*
next

0x1c00x148

2
int
val

0x0
(NULL)

Item*
next

0x164

3

size_t
len_

mylist.get(7);

mylist

5d.6

EXCEPTIONS

5d.7

Exception Handling

• When something goes wrong in one of your functions,
how should you notify the function caller?
– Return a special value from the function?
– Return a bool indicating success/failure?
– Set a global variable?
– Print out an error message?
– Print an error and exit the program?
– Set a failure flag somewhere (like “cin” does)?
– Handle the problem and just don't tell the caller?

5d.8

What Should I do?

• There's something wrong with all those options...
– You should always notify the caller something happened;

silence is not an option.
– What if something goes wrong in a Constructor?

• You don't have a return value available

– What if the function where the error happens isn't
equipped to handle the error

• All the previous strategies are passive. They require
the caller to actively check if something went wrong.

• You shouldn't necessarily handle the error
yourself…the caller may want to deal with it.

5d.9

The "assert" Statement

• The assert statement allows you to make sure certain
conditions are true and immediately halt your program
if they're not
– Good sanity checks for development/testing
– Not ideal for an end product

#include <cassert>
int divide(int num, int denom)
{
 assert(denom != 0);
 // if false, exit program

 return(num/denom);
}

5d.10

Topics

• What are exceptions
– When/where to use them

• Exception syntax in C++
– try, throw, catch

• Processing (handling) exceptions
– Uncaught exceptions
– Unexpected exceptions

• Stack unwinding
• Exception objects

5d.11

What are exceptions

• An exception is something exceptional
– Not expected to happen frequently

• In programming an exception (error) occurs
when a problem happens that is not handled
by the normal flow of your program
– Classic examples: divide by zero, out-of-memory

• How to deal with exceptions?

5d.12

Terms

• Exception
– Something has (or would go wrong)

• Signaling (throwing)
– Indicating that something has gone wrong

• Handling (catching)
– Dealing with the fact that something has gone

wrong

5d.13

Dealing with exceptions
• When writing programs we should expect *some*

errors to occur
• We can:

– Ignore them
• Not appropriate for “real” software

– Prevent them
• Validating all inputs in all cases is very hard
• Problems outside our control (e.g. out of memory)

– Use error codes, return error values
• Incurs processing overhead
• Like validation, hard to code for all possible cases

– Use exceptions and exception handling
• C++ Exceptions

5d.14

C++ Exceptions

• Standardized way to process errors
–Works across interface boundaries (classes,

functions), compatible with
encapsulation/isolation

• Defines syntax and semantics for signaling an
error has occurred (throw)

• Defines syntax and semantics for detecting
and handling errors (catch)
– These are separate parts of the program

5d.15

Programmatic error handling

• Code structure without exceptions

• Intermingled code/error processing makes code:
– Hard to read
– Hard to debug
– Hard to update/maintain
– Incurs processing overhead

• Checking for errors when errors *should* be rare

err = doTask1()

if err: process error

err2 = doTask2()

if err2: process error

err3 = doTask3()

if err3: process error

. . .

5d.16

With exceptions
• Regular or “main line” code does not expect errors, but signals when they do occur
• Main-line code and exception handlers when separate are easier to read and maintain

– Main line code detects and error, throws and then lets someone else deal with it
• Separate error handling into dedicated exception handlers
• Similar to a classes, ”users” of code (handlers) are separate from “implementors”

(throwers of exceptions)
• User decides to handle:

– No exceptions
– All exceptions
– All exceptions of a type
– All “related” exceptions

• “Handling” can be
– Ignore the exception
– Recover/restart
– Pass exceptions “up the stack”
– Filtering exceptions

5d.17

Exceptions Design Pattern

• Better/easier to assume exceptions never happen
– Write your program assuming no errors

• Then add code to detect and signal exceptions
• Then add code (if necessary) to handle

exceptions
• Don’t overuse exceptions – reserve for

exceptional cases
– Shouldn’t turn into alternate for regular control-flow
– Appropriate data validation is OK
– If local code can easily handle the error, don’t throw

5d.18

Why add handlers “if necessary”?
• Code reuse is often major goal of software projects
• What to do with an error often depends on who is ”using” your

code
• If you’re writing a class or a library of functions you don’t know if an

exception is truly an error or not
– So when something goes wrong, we signal that there is an exception

• If you’re using a class or a library you can decide what to do with
the error
– Throwing vs. catching are different operations that might be separated

by time or across different teams, etc.
• When detecting errors we don’t want to dictate how they are

handled
• If the function is used in different programs, or different ways in the

same program, each use might require different actions to be taken
when an exception occurs

5d.19

Exception Handling

• Give the function caller a choice on how (or if) they want to
handle an error
– Don't assume you know what the caller wants

• Decouple and CLEARLY separate the exception processing
logic from the normal control flow of the code

• They make for much cleaner code (usually)

// try function call
int status = doit();
if(status == 0){
 // Code A
}
else if(status < 0){
 // Code B
}
else {
 // Code C
}

Which portion of the if..else
statement is the normal case(s) and
which are the error-handling case(s)

5d.20

Basic C++ Exception Syntax

• C++ uses three keywords for exceptions
– try, catch, throw
– ”try” this code, “throw” an error, “catch” that

error
//somewhere in main…

try {

 //main line code

 int val = f1();

 //f1() *could* have an error

}

catch (Ex e) {

 //if an error occurs execution jumps here

 //so we can process it

}

//somewhere else in your code…

int f1()

{

 //regular code here

 //oh no! something is wrong

 throw Ex();

}

5d.21

The "throw" Statement
• Use the throw statement when code has

encountered a problem, but cannot handle
that problem itself

• throw HALTS the function and returns an
"error" value
– Like 'return' but special. Immediately ENDS

the executing function!
– If no piece of code deals with it, the program

will terminate
– Gives the caller the opportunity to catch and

handle it
• What can you "return" with the throw

statement?
– Anything (int, string, etc.)! But some things

are better than others...
– Doesn't have to match the return type

int main()
{
 int x;
 cin >> x;
 cout << divide(5,x) << endl;
 return 0;
}

int divide(int num, int denom)
{
 if(denom == 0)
 throw "Denom is 0";
 // normal case
 return(num/denom);
}

5d.22

The "try" and "catch" Statements

• try & catch are the companions to throw
• A try block surrounds the calling of any code that may throw

an exception
• A catch block lets you handle exceptions if a throw does

happen
– You can have multiple catch blocks…but think of catch like an

overloaded function where they must be differentiated based on
number and type of parameters.

try {
 x = divide(numerator, denominator);
}
catch(int badValue){
 cerr << "Can't use denominator: " << badValue << endl;
 x = 0;
}

// use x

int divide(int num, int denom)
{
 if(denom == 0)
 throw denom;
 // normal case
 return(num/denom);
}

5d.23

Multiple Errors (throws and catches)

• A function can have multiple throw statements (though it will
exit when the first executes) and each can throw a different type

• A try block can have multiple catch statements (one per type)
int main()
{
 int data[5] = {1,2,3,4,5};
 int i, j;
 cin >> i >> j;
 try {
 swap(data, 5, i, j);

 for(int i=0; i < 5; i++) {
 cout << data[i] << " ";
 }
 cout << endl;
 }
 catch (string& e) {
 cout << e << endl;
 }
 catch (int e) {
 cout << "Bad j – " << e << endl;
 }
 return 0;
}

void swap(int arr[], int len, int i, int j)
{
 if(i >= len) {
 // throw a string for no good reason
 throw string("bad index i");
 }
 if(j >= len) {
 // throw an int for no good reason
 throw -1;
 }
 int temp = arr[i];
 arr[i] = arr[j];
 arr[j] = temp;
}

5d.24

Catch Block Notes
• Should catch by reference

(avoid a copy)
• Will try the catch blocks of

a try statement in order
until it matches the type
of what is thrown
– More about this when

inheritance is used with the
thrown exception types

• catch(…) is like an 'else'
or default clause that will
catch any thrown type

int main()
{
 int data[5] = {1,2,3,4,5};
 int i, j;
 cin >> i >> j;
 try {
 swap(data, 5, i, j);

 for(int i=0; i < 5; i++) {
 cout << data[i] << " ";
 }
 cout << endl;
 }
 catch (string& e) {
 cout << e << endl;
 }
 catch (int e) {
 cout << "Bad j – " << e << endl;
 }
 catch (...) {
 cout << "Unknown exception" << endl;
 }
 return 0;
}

5d.25

Catch & The Stack

• When an exception is thrown,
the program will work its way up
the stack of function calls until it
hits a catch() block

• If no catch() block exists in the
call stack, the program will quit

int divide(int num, int denom)
{
 if(denom == 0)
 throw string("div-by-0");
 return(num/denom);
}

// some arbitrary "middle" function
int f1(int x)
{
 return divide(x, x-2); // arbitrary
}

int main()
{
 int res, a;
 cin >> a;
 try {
 res = f1(a);
 }
 catch(string& v) {
 cout << "Problem!" << endl;
 }
}main

… …0xbf8

00400120 Return
link0xbfc

… …0xbf0

004001844 Return
link0xbf4

f1

… …0xbe8

004001ca0 Return
link0xbec

divide
throw

Not caught…
keep going

caught

5d.26

Stack Unwinding

• When an exception is not caught in the same scope as
the throw we have to “unwind” the stack
– In the DivByZero example we threw in fdivide() but caught

in main (different scopes)
• We go down the stack looking for a matching catch() {}

block
– If we find one we “unwind” all of the intervening functions

(local variables go out of scope, destructors called)
• If we never find one (i.e. we get all the way back to

main() we have an “uncaught exception”
– Stack is *not* unwound
– terminate() is called, program ends

5d.27

terminate()

• Special function that terminates (stops) your
program with a message

• Used when things go wrong with exception
handling

5d.28

Catch & The Stack

• You can use catch() blocks
to resolve the problem

• The while loop and the
cin in the catch statement
will cause the program to
keep getting new inputs
until f1(a) does NOT
throw

int divide(int num, int denom)
{
 if(denom == 0)
 throw denom;
 return(num/denom);
}
int f1(int x)
{
 return divide(x, x-2);
}

int main()
{
 int res, a;
 cin >> a;
 while(1){
 try {
 res = f1(a);
 break;
 }
 catch(int& v) {
 cin >> a;
 }
 }
 // We know we have a good result
 ...
}

5d.29

What Should You "Throw"
• Usually, don't throw primitive values (e.g. an int, double, etc.) or a

string
– throw 123;

• The value that is thrown may not always be meaningful and provides little context

– throw "Someone passed in a 0 and stuff broke!";
• Easy for humans to read but hard for computer to understand

• Use a class, some are defined already in <stdexcept> header file
– throw std::invalid_argument("Denominator can't be 0!");

throw std::runtime_error("Epic Fail!");

– http://www.cplusplus.com/reference/stdexcept/
– Serves as the basis for building your own exceptions
– You can always make your own exception class too!

5d.30

C++ Exception Hierarchy
• Using an inheritance hierarchy is recommended and C++ provides

one in <stdexcept>
• All exceptions are derived from std::exception

– bad_alloc is thrown by new if not enough memory is available
– out_of_range is thrown by vector::at if bad index is given
– logic_error: errors that the programmer should have been able to avoid
– runtime_error: errors that could not detected until the program runs

std::exception

logic_error

invalid_argument out_of_range

runtime_error

range_error overflow_error underflow_error

bad_cast bad_alloc

5d.31

Standard C++ Exception Practice

• Exceptions are instances of a class
– Usually derived from C++ standard exceptions
– Not just whacky control flow, thrower gets to send an

object to the handler
• If code detects an error
– “throw” an appropriate instance depending on what

went wrong
• Calling code (or using in the case of classes) can

choose to “catch” exceptions they care about
– Matching based on the exception instance type

5d.32

Why throw classes?

• Technically you can “throw” anything (any
type)

• Throwing a specific class allows you to pack
detailed information about what went wrong
in the instance data members

• Catching code can match based on the class
type and will know exactly what went wrong

5d.33

C++ Exception Hierarchy
• std::exception defines a

what() function that returns a
message the that can be given to
the constructor of a derived
exception and retrieved when
caught

#include <iostream>
#include <stdexcept>
using namespace std;

int divide(int num, int denom)
{
 if(denom == 0)
 throw range_error("Div by 0");
 return(num/denom);
}

int main()
{
 int res, n, d;
 cin >> n >> d;
 while(1){
 try {
 res = divide(n,d);
 cout << "Result is " << res << endl;
 break;
 }
 catch(range_error& e) {
 cout << e.what() << endl;
 cin >> n >> d;
 }
 }
 return 0;
}

class exception {
public:
 exception ();
 exception (const exception&);
 exception& operator= (const exception&);
 virtual ~exception();
 virtual const char* what() const;
}

5d.34

You Can/Should Define Your Own
• You can define your own

exceptions
• Because catch statements execute

based on the TYPE of exception
thrown, it is recommended to
make your own exception types
(structs/classes)

• It is recommended you inherit
from std::exception or one of its
subclasses

#include <iostream>
#include <stdexcept>
using namespace std;

struct DivByZero : public std::range_error {
 DivByZero(const char* what) :
 range_error(what) { }
};

int divide(int num, int denom) {
 if(denom == 0)
 throw DivByZero("Div by 0");
 return(num/denom);
}

int main() {
 int res, n, d;
 cin >> n >> d;
 while(1){
 try {
 res = divide(n,d);
 break;
 }
 catch(DivByZero& e) {
 cout << e.what() << endl;
 cin >> n >> d;
 }
 }
 return 0;
}

5d.35

You Can/Should Define Your Own
• Best practice: Order your catch

statements from the MOST derived
type first to the base type

• Why?
– Recall: DivByZero is-a range_error
– So a DivByZero can be passed to a

range_error

#include <iostream>
#include <stdexcept>
using namespace std;

int main()
{
 try {
 doTask();
 }
 catch(DivByZero& e) {
 // Handle divide by 0
 }
 catch(range_error& e) {
 // Handle a more generic range_error
 }
 catch(exception& e) {
 // Handle any error derived
 // from std::exception
 }
 catch(...) {
 // Handle any exception not derived
 // from std::exception
 }
 return 0;
}

try {
 doTask();
}
catch(range_error& e) {
 // Handle a more generic range_error
}
catch(DivByZero& e) {
 // Handle divide by 0
}
...

Correct catch
ordering

Incorrect catch
ordering

5d.36

Re-Throwing Exceptions
• You may want to catch an

exception to take some
intermediate action, but you
can't fully process the error
and so you can re-throw it.
– May want to log some error in

the intermediate function but
then throw it again to be handled
by the higher level software

#include <iostream>
#include <stdexcept>
using namespace std;
int divide(int num, int denom)
{
 if(denom == 0)
 throw invalid_argument("Div by 0");
 return(num/denom);
}
int f1(int x)
{
 int y;
 try { y = divide(x, x-2); }
 catch(invalid_argument& e){
 cout << "Caught first here!" << endl;
 throw; // throws 'e' again
} }

int main()
{
 int res, a;
 cin >> a;
 while(1){
 try {
 res = f1(a);
 break;
 }
 catch(invalid_argument& e) {
 cout << "Caught again" << endl;
 cin >> a;
} } }

5d.37

NEVER Throw from a Destructor
• Do not use throw from a

destructor. Your code will go
into an inconsistent (and
unpleasant) state. Or just
crash.
– Because data member or base

class destructors may not have
the chance to run

class Base {
public:
 Base() { bptr_ = new int; *bptr_ = 0; }
 virtual ~Base() { delete bptr_; }
private:
 int* bptr_;
}

class Composite : public Base {
public:
 Composite() {
 sptr_ = new string("hi");
 inUse_ = true;
 }
 ~Composite() {
 if(inUse_ == true) {
 throw std::logic_error(
 "Should not be in use anymore");
 }
 // If we throw, do we ever do this code?
 delete sptr_;
 }

private:
 string* sptr_;
 bool inUse_;
}

5d.38

Exception Safety
• Be careful WHEN you throw an

exception that you don't leave
the code in a bad state or leak
resources

• Recall your maze search.
What's wrong with the code to
the right where I throw if I
don't find an 'S'?

int maze_search(char** maze, int r, int c)
{
 int numS = 0;
 bool** explored = new bool*[r];
 // allocate the rest of the 2D explored
 // array

 for(int i=0; i < r; i++) {
 for(int j=0; j < c; j++) {
 if(maze[r][c] == 'S')
 numS++;
 }
 }
 if(numS != 1) {
 throw runtime_error("Expected 1 S");
 // Any issue here?
 }
 ...

 // deallocate 2D explored array
}

5d.39

Using the Stack To Help
• Recall: Objects declared on the stack

AUTOMATICALLY have their
destructors called when the function
ends (whether by a normal return or
BY A THROW)

• Read more: C++-11 shared_ptr,
unique_ptr, etc.

int maze_search(char** maze, int r, int c)
{
 int numS = 0;
 bool** explored = new bool*[r];
 for(int i=0; i < rows_; i++) {
 exp_[i] = new bool[c];
 }
 // How does this help solve the issue
 // if we throw below
 ExploredDeleter expdel(explored, r);

 for(int i=0; i < r; i++) {
 for(int j=0; j < c; j++) {
 if(maze[r][c] == 'S')
 numS++;
 }
 }
 if(numS != 1) {
 throw runtime_error("Expected 1 S");
 // Do we still have an issue?
 }
 ...

 // Removed the deallocation code
 // deallocate 2D explored array
}

struct ExploredDeleter {
 ExploredDeleter(bool** explored, int nr) {
 exp_ = explored;
 rows_ = nr;
 }
 ~ExploredDeleter() {
 for(int i=0; i < rows_; i++) {
 delete [] exp_[i];
 }
 delete [] exp_;
 }
 bool** exp_;
 int rows_;
};

5d.40

Classic Example: Divide by Zero
#include <stdexcept>

using namespace std::runtime_error;

//Derive a runtime error to indicate a divide by zero error

class DivByZeroException : public runtime_error {

public:

 DivByZeroException();

};

DivByZeroException::DivByZeroException() :

 runtime_error(”divide by zero exception occurred”) //runtime_error is std::string

 {} //empty constructor body

DivByZero.h

5d.41

Divide by Zero
#include <iostream>
#include “DivByZero.h”
using namespace std;
double fdivide(int n, int d)
{
 if (d == 0) throw DivByZeroException(); //create instance of our exception and “throw” it

 return (double)n/d;
}
int main(int argc, char* argv[])
{
 int x, y;
 double q;
 cout << ”Enter two integers (x and y) to divide:” << endl;
 while(cin >> x >> y)

 {
 //try block contains the code that
 //*could* have an error
 try {
 q = fdivide(x,y);
 cout << ”Result: “ << q << endl;
 }
 catch (DivByZeroException &e) { //match a DivByZeroException by reference
 cout << “Uh-oh! Exception! ” << e.what() << endl; //call .what() to get the error string

 cout << “y can not be zero, try again. << endl; //provide error specific feedback
 }
 cout << ”Enter two integers (x and y) to divide:” << endl;
 }
}

Main line code, assumes no error

Error handling

Something went wrong, let my caller handle it

5d.42

noexcept (C++ 11)

• In C++ 11 and later we can label a function
“noexcept”

• Optimization opportunity for the compiler
– supporting stack unwinding has some overhead

• If myFunc() calls a function that does throw,
terminate() is called immediately
– Stack is not unwound

int myFunc(double v, int x) noexcept

{

 //code that *will not* throw an exception

}

5d.43

STD LIBRARY EXCEPTION USAGE

5d.44

cin Error Handling (Old)

#include <iostream>

using namespace std;

int main()
{
 int number = 0;
 cout << “Enter a number: “;
 cin >> number;

 if(cin.fail()) {
 cerr << “That was not a number.” << endl;
 cin.clear();
 cin.ignore(1000,'\n');
 }

}

5d.45

cin Error Handling (New)

#include <iostream>

using namespace std;

int main()
{
 cin.exceptions(ios::failbit); //tell “cin” it should throw
 int number = 0;
 try {
 cout << “Enter a number: “;
 cin >> number; // cin may throw if can't get an int
 }
 catch(ios::failure& ex) {
 cerr << “That was not a number.” << endl;
 cin.clear();

 // clear out the buffer until a '\n'
 cin.ignore(std::numeric_limits<int>::max(), '\n');
 }

}

5d.46

Why use exceptions?

• Some programs *must* continue to execute
after an error occurs
–Mission-critical or life/safety software
– Business critical (downtime = $$$)

• Developers of libraries and classes can
concentrate on main-line development
– Let users deal with errors

• If no exception occurs, main-line code
executes with minimal overhead
– Remember exceptions are rare!

5d.47

Other Exceptions Notes

• Think about where you want to handle the error
– If you can handle it, handle it…
– If you can't, then let the caller

#include <iostream>
#include <stdexcept>
using namespace std;

int f1(char* filename)
{
 ifstream ifile;
 ifile.exceptions(ios::failbit);
 // will throw if opening fails
 ifile.open(filename);

 // Should you catch exception here
 // Or should you catch it in main()
}

int main(int argc, char* argv[])
{
 readFile(argv[1]);
 ...
}

