School of Engineering

CSCI 103 — Unit 5g
Exceptions

CSCI 103L Teaching Team

Thinking About Errors

e Consider the
vector<T> class

e Now consider error
conditions

— What member functions
could cause an error?

— How do | communicate
the error to the user?

#ifndef VECTOR_H
#define VECTOR_H

template <typename T>
class vector {
public:
vector();
~vector();
bool empty() const;
int size() const;

void push_back(const T& val);

void insert(size_t loc, const T& val);
void erase(size_t loc);

T& at(size_ t loc);
const T& at(size t loc) const;

};
#tendif

Vector Class
(Slightly modified from
actual C++ version)

Thinking About Errors

* NOow consic
ListIntc

* Now consic
conditions

er the
ass

er error

— What member functions
could cause an error?

— How do | communicate
the error to the user?

#ifndef LISTINT_H
#define LISTINT_H

struct Item {
int val;
Item* next;

};

class ListInt {
public:
ListInt();
~ListInt();
void push_back(int v);
void pop_back();
void pop_ front();
int front() const;
int back() const;

// Get the value at the i-th location
int& get(size_t i);
const int& get(size t i) const;

private:
Item* head_;
size t len_;
}s
#endif

- USCViteﬂ,.Di .
pop front() Error

* What if | erase a #include "listint.h"
nOn-eX|Stent void ListInt::pop_front()
{
I // Empty list check?
|OC3tIOn if(head_ == NULL){
// What should I do?
mylist.pop_front(); }
else {
E Item* temp = head_;
mylist head = head_ ->next;
0 delete temp;
}
}

We can use the return value and
return an error code.

But how does the client know what
those codes mean? What if |

change those codes? listint. cpp

i, IS Viterbi

School of Engineering

get() Error

e What if | try to
get an item at an
invalid location

mylist.get(7);

mylist \

#include "listint.h"

int ListInt::get(size t i) const
{
// 1s i a valid index?
if(i >= len_){
// What should I do?

}
else {
Item* temp = head_;
while(i != @) {
temp = temp->next;
i--;
}
return temp->val;
}

| can't use the return value, since it's already
being used.

Could provide another reference parameter, but
that's clunky.
int get(int loc, int &error);

EXCEPTIONS

Exception Handling

* When something goes wrong in one of your functions,
how should you notify the function caller?

— Return a special value from the function?

— Return a bool indicating success/failure?

— Set a global variable?

— Print out an error message?

— Print an error and exit the program?

— Set a failure flag somewhere (like “cin” does)?

— Handle the problem and just don't tell the caller?

What Should | do?

There's something wrong with all those options...

— You should always notify the caller something happened;
silence is not an option.

— What if something goes wrong in a Constructor?

* You don't have a return value available

— What if the function where the error happens isn't
equipped to handle the error

All the previous strategies are passive. They require
the caller to actively check if something went wrong.

You shouldn't necessarily handle the error
yourself...the caller may want to deal with it.

The "assert" Statement

 The assert statement allows you to make sure certain
conditions are true and immediately halt your program
if they're not

— Good sanity checks for development/testing
— Not ideal for an end product

#include <cassert>
int divide(int num, int denom)

{

assert(denom != 9);
// if false, exit program

return(num/denom);

}

What are exceptions
— When/where to use them

Exception syntax in C++
— try, throw, catch

Processing (handling) exceptions
— Uncaught exceptions
— Unexpected exceptions

Stack unwinding
Exception objects

What are exceptions

* An exception is something exceptional
— Not expected to happen frequently
* |n programming an exception (error) occurs

when a problem happens that is not handled
by the normal flow of your program

— Classic examples: divide by zero, out-of-memory

* How to deal with exceptions?

* Exception

— Something has (or would go wrong)
* Signaling (throwing)

— Indicating that something has gone wrong
* Handling (catching)

— Dealing with the fact that something has gone
wrong

Dealing with exceptions

 When writing programs we should expect *some*
errors to occur

* We can:

— lgnore them
* Not appropriate for “real” software

— Prevent them
* Validating all inputs in all cases is very hard
* Problems outside our control (e.g. out of memory)

— Use error codes, return error values

* Incurs processing overhead

* Like validation, hard to code for all possible cases
— Use exceptions and exception handling

* C++ Exceptions

C++ Exceptions

e Standardized way to process errors

— Works across interface boundaries (classes,
functions), compatible with
encapsulation/isolation

* Defines syntax and semantics for signaling an
error has occurred (throw)

* Defines syntax and semantics for detecting
and handling errors (catch)

— These are separate parts of the program

R,]S Viterbi

School of Engineering

Programmatic error handling

 Code structure without exceptions

err = doTaskl1()

if err: process error
err2 = doTask2()
if err2: process error
err3 = doTask3()

if err3: process error

* Intermingled code/error processing makes code:
— Hard to read
— Hard to debug
— Hard to update/maintain

— Incurs processing overhead
* Checking for errors when errors *should™ be rare

- USC\Zitgrbi '
With exceptions

* Regular or “main line” code does not expect errors, but signals when they do occur

* Main-line code and exception handlers when separate are easier to read and maintain
— Main line code detects and error, throws and then lets someone else deal with it

e Separate error handling into dedicated exception handlers

* Similar to a classes, “users” of code (handlers) are separate from “implementors”
(throwers of exceptions)

 User decides to handle:

— No exceptions

— All exceptions

— All exceptions of a type

— All “related” exceptions
 “Handling” can be

— Ignore the exception

— Recover/restart

— Pass exceptions “up the stack”

— Filtering exceptions

Exceptions Design Pattern

* Better/easier to assume exceptions never happen
— Write your program assuming no errors

* Then add code to detect and signal exceptions

 Then add code (if necessary) to handle
exceptions

 Don’t overuse exceptions — reserve for
exceptional cases

— Shouldn’t turn into alternate for regular control-flow
— Appropriate data validation is OK

— |If local code can easily handle the error, don’t throw

R,]S Viterbi

School of Engineering

Why add handlers “if necessary”?

 Code reuse is often major goal of software projects

 What to do with an error often depends on who is "using” your
code

e |f you're writing a class or a library of functions you don’t know if an
exception is truly an error or not

— So when something goes wrong, we signal that there is an exception

* |f you're using a class or a library you can decide what to do with
the error

— Throwing vs. catching are different operations that might be separated
by time or across different teams, etc.

* When detecting errors we don’t want to dictate how they are
handled

e |f the function is used in different programs, or different ways in the
same program, each use might require different actions to be taken
when an exception occurs

R,]S Viterbi

Exception Handling

School of Engineering

* Give the function caller a choice on how (or if) they want to
handle an error

— Don't assume you know what the caller wants

* Decouple and CLEARLY separate the exception processing
logic from the normal control flow of the code

 They make for much cleaner code (usually)

// try function call

int status = doit(); \thhpoﬂmnofﬂmlﬂebe
if(status == @){ staFenwentlsthe norn1a|c§se(s)and
// Code A which are the error-handling case(s)

}
else if(status < 0){
// Code B

}

else {
// Code C

}

Basic C++ Exception Syntax

* C++ uses three keywords for exceptions
— try, catch, throw
— "try” this code, “throw” an error, “catch” that

error

//somewhere in main.. //somewhere else in your code..
try { int f1()

//main line code {

int val = f1(); //regular code here

//f1() *could* have an error //oh no! something is wrong
} throw Ex();
catch (Ex e) { }

//if an error occurs execution jumps here

//s0 we can process it
}

- USC\[itgrbi .
The "throw" Statement

e Use the throw statement when code has

encountered a problem, but cannot handle , ,
. int main()
that problem itself {
. int x;
* throw HALTS the function and returns an cin >> x;
uerrorn Value E(e)z’;r‘;<e<.jivide(5,x) << endl;
— Like 'return’' but special. Immediately ENDS }
the executing function! int divide(int num, int denom)
— If no piece of code deals with it, the program ¢ e dienen == @)
will terminate throw "Denom is @";
)] // normal case
— Gives the caller the opportunity to catch and return(num/denom) ;
handle it }
* What can you "return" with the throw
statement?

— Anything (int, string, etc.)! But some things
are better than others...

— Doesn't have to match the return type

R,]S Viterbi

School of Engineering

The "try" and "catch"” Statements

« try & catch are the companions to throw

A try block surrounds the calling of any code that may throw
an exception

* A catch block lets you handle exceptions if a throw does
happen

— You can have multiple catch blocks...but think of catch like an

overloaded function where they must be differentiated based on
number and type of parameters.

int divide(int num, int denom) try {
{ x = divide(numerator, denominator);

if(denom == 0) }

throw denom; catch(int badValue){

// normal case cerr << "Can't use denominator: " << badValue << endl;

return(num/denom); X = 0;
} }

// use X

R,]S Viterbi

School of Engineering

Multiple Errors (throws and catches)

e A function can have multiple throw statements (though it will
exit when the first executes) and each can throw a different type

* Atry block can have multiple catch statements (one per type)

void swap(int arr[], int len, int i, int j) int main()
{ {
if(i >= len) { int data[5] = {1,2,3,4,5};
// throw a string for no good reason int i, j;
throw string("bad index i"); cin >> 1 >> j;
} try {
if(j >= len) { swap(data, 5, i, j);
// throw an int for no good reason
throw -1; for(int i=0; i < 5; i++) {
} cout << data[i] << " ";
int temp = arr[i]; }
arr[i] = arr[j]; cout << endl;
arr[j] = temp; }
} catch (string& e) {
cout << e << endl;
}
catch (int e) {
cout << "Bad j - " << e << endl;
}
return 0;
}

Catch Block Notes

e Should catch by reference

(avoid a copy)

Will try the catch blocks of
a try statement in order
until it matches the type
of what is thrown

— More about this when
inheritance is used with the
thrown exception types

catch(...) is like an 'else'
or default clause that will
catch any thrown type

int main()

{

int data[5] = {1,2,3,4,5};
int i, j;
cin >> i >> j;
try {
swap(data, 5, i, j);
for(int i=0; i < 5; i++) {
cout << data[i] << " ";
¥
cout << endl;
¥

catch (string& e) {
cout << e << endl;

}
catch (int e) {

cout << "Bad j - "

}
catch (...) {
cout << "Unknown exception" << endl;

}

return 0;

<< e << endl;

R,]S Viterbi

Catch & The Stack *

* When an exception is thrown,
the program will work its way up | ™ @videtint num. dnt denom)

the stack of function calls until it e s 9)

throw string("div-by-0");

. return(num/denom) ;
hits a catch() block .
* If no catch() block exists in the // some arbitrary "middle” function
. . int f1(int x)
call stack, the program will quit {
return divide(x, x-2); // arbitrary
}
divide Oxbe8 . o int main()
Oxbec | 004001ca0 R?it:;n throw { int res, a;
cin >> a;
try {
. 0xbf0 L o ﬂftcaught" res = f1(a);
Oxbf4 Return eep 9oing t
X R A link catch(string& v) {
cout << "Problem!" << endl;
0xbf3 }
main caught }
Oxbfc | 00400120 | Rty

Stack Unwinding

* When an exception is not caught in the same scope as
the throw we have to “unwind” the stack

— In the DivByZero example we threw in fdivide() but caught
in main (different scopes)

* We go down the stack looking for a matching catch() {}
block

— |f we find one we “unwind” all of the intervening functions
(local variables go out of scope, destructors called)

* |f we never find one (i.e. we get all the way back to
main() we have an “uncaught exception”

— Stack is *not* unwound
— terminate() is called, program ends

terminate()

e Special function that terminates (stops) your
program with a message

* Used when things go wrong with exception
handling

Catch & The Stack

* You can use catch() blocks
to resolve the problem

* The while loop and the
cin in the catch statement
will cause the program to
keep getting new inputs
until f1(a) does NOT
throw

int divide(int num, int denom)
{
if(denom == 0)
throw denom;
return(num/denom);

)
int f1(int x)
{
return divide(x, x-2);

}

int main()
{
int res, a;
cin >> a;
while(1){
try {
res = fl1(a);
break;

}
catch(int& v) {

cin >> a;
¥
¥

// We know we have a good result

}

R,]S Viterbi

What Should You "Throw"

e Usually, don't throw primitive values (e.g. an int, double, etc.) or a
string
— throw 123;

* The value that is thrown may not always be meaningful and provides little context
— throw "Someone passed in a © and stuff broke!";

e Easy for humans to read but hard for computer to understand

 Use aclass, some are defined already in <stdexcept> header file

— throw std::invalid_argument("Denominator can't be 0!");
throw std::runtime_error("Epic Fail!");

— http://www.cplusplus.com/reference/stdexcept/
— Serves as the basis for building your own exceptions
— You can always make your own exception class too!

- /] USC\Zitgrbi '
C++ Exception Hierarchy

e Using an inheritance hierarchy is recommended and C++ provides
one in <stdexcept>

e All exceptions are derived from std: :exception
— bad_alloc is thrown by new if not enough memory is available
— out_of range isthrown by vector::at if badindexis given
— logic_error: errors that the programmer should have been able to avoid
— runtime_error: errors that could not detected until the program runs

{ std: :exception }

{logic_er‘r'or‘} { runtime_error } {bad_cast} { bad _alloc }

I I
[| [I |

{ invalid_argument } {out_of_r‘ange} { range_error J { overflow_error } {under‘flow_error‘}

R,]S Viterbi

School of Engineering

Standard C++ Exception Practice

* Exceptions are instances of a class
— Usually derived from C++ standard exceptions
— Not just whacky control flow, thrower gets to send an
object to the handler
* |f code detects an error

— “throw” an appropriate instance depending on what
went wrong

e Calling code (or using in the case of classes) can
choose to “catch” exceptions they care about

— Matching based on the exception instance type

Why throw classes?

* Technically you can “throw” anything (any
type)
 Throwing a specific class allows you to pack

detailed information about what went wrong
in the instance data members

e Catching code can match based on the class
type and will know exactly what went wrong

R,]S Viterbi

School of Engineering

C++ Exception Hierarchy

 std::exception definesa
what() function that returns a
message the that can be given to
the constructor of a derived
exception and retrieved when
caught

class exception {
public:
exception ();
exception (const exception&);
exception& operator= (const exception&);
virtual ~exception();
virtual const char* what() const;

#include <iostream>
#include <stdexcept>
using namespace std;

int divide(int num, int denom)
{
if(denom == 0)
throw range_error("Div by 0");
return(num/denom);

}

int main()
{
int res, n, d;
cin >> n >> d;
while(1){
try {
res = divide(n,d);
cout << "Result is " << res << endl;
break;
}
catch(range_error& e) {
cout << e.what() << endl;
cin >> n >> d;

}
}

return 9;

R,]S Viterbi

School of Engineering

You Can/Should Define Your Own

#tinclude <iostream>
#include <stdexcept>

* You can define your own using namespace std;
exceptions struct DivByZero : public std::range_error {
DivByZero(const char* what) :
* Because catch statements execute | =~ renge-error(unan) {3
based on the TYPE of exception o .
o 1nF divide(int num, int denom) {
thrown, it is recommended to if(denom == @))
throw DivByZero("Div by 0");
make your own exception types , return(num/denom);

(structs/classes)

int main() {

* |tis recommended you inherit e
. . hil
from std::exception or one of its e
t) I res = divide(n,d);
subclasses roak:
)

catch(DivByZero& e) {
cout << e.what() << endl;
cin >> n >> d;

}
}

return 9;

i, IS Viterbi

School of Engineering

You Can/Should Define Your Own

Best practice: Order your catch

statements from the MOST derived

type first to the base type
Why?

— Recall: DivByZero is-a range_error

— So a DivByZero can be passed to a
range_error

try {
doTask();

}
catch(range_error& e) {
// Handle a more generic range_error

}
catch(DivByZero& e) {

// Handle divide by ©

?. , Incorrect catch
ordering

#include <iostream>
#include <stdexcept>
using namespace std;

int main() Correct catch

{ ordering
try {

doTask();
}
catch(DivByZero& e) {
// Handle divide by ©
}
catch(range_error& e) {
// Handle a more generic range_error
}
catch(exception& e) {
// Handle any error derived
// from std::exception
}
catch(...) {
// Handle any exception not derived
// from std::exception

}

return 0;

std: :exception ’

bad_cast

r
logic_error

runtime_error bad_alloc

[invalid_argument] [out_of_r‘ange

T T 1
range_error ’ ‘ overflow_error ’ [under‘flow_er‘r‘or‘ ’

R,]S Viterbi

School of Engineering

Re-Throwing Exceptions

* You may want to catch an
exception to take some
intermediate action, but you
can't fully process the error
and so you can re-throw it.

— May want to log some error in
the intermediate function but
then throw it again to be handled
by the higher level software

#include <iostream>
#include <stdexcept>
using namespace std;
int divide(int num, int denom)
{
if(denom == 0)
throw invalid_argument("Div by 0");
return(num/denom);
by
int f1(int x)
{
int y;
try { y = divide(x, x-2); }
catch(invalid_argument& e){
cout << "Caught first here!" << endl;
throw; // throws 'e' again

>}

int main()
{
int res, a;
cin >> a;
while(1){
try {
res = fl1(a);
break;
}
catch(invalid_argument& e) {
cout << "Caught again" << endl;
cin >> a;

Yt}

R,]S Viterbi

School of Engineering

NEVER Throw from a Destructor

class Base {
public:

Do not use throw from a Base() { bptr_ = new int; *bptr_ = @; }
. virtual ~Base() { delete bptr_; }
destructor. Your code will go private:
int* bptr_;
into an inconsistent (and }
unpleasant) state. Orjust class Composite : public Base {
public:
crash. Composite() {
sptr_ = new string("hi");
— Because data member or base , inUse_ = true;
class destructors may not have ~Composite() {
the chance to run if(inUse_ == true) {
throw std::logic_error(
"Should not be in use anymore");
}

// If we throw, do we ever do this code?
delete sptr_;

}

private:
string* sptr_;
bool inUse_;

}

- USC\[itgrbi .
Exception Safety

int maze_search(char** maze, int r, int c)

* Be careful WHEN you throw an {

int numS = 0;

exception that yOU donlt |eave bool** explored = new bool*[r];
. // allocate the rest of the 2D explored
the code in a bad state or leak // array
resources for(int i=0; i < r; i++) {
for(int j=0; j < c; j++) {
e Recall your maze search. 1f(maze[r]lc] == 's’)
numsS++;
What's wrong with the code to !
the right where | throw if | Lf(numS 1= 1) { . .
throw runtime_error("Expected 1 S");
don't find an 'S'? // Any issue here?

}

// deallocate 2D explored array

i, IS Viterbi

School of Engineering

Using the Stack To Help

Recall: Objects declared on the stack
AUTOMATICALLY have their
destructors called when the function

ends (whether by a normal return or
BY A THROW)

Read more: C++-11 shared_ptr,
unique_ptr, etc.

struct ExploredDeleter {
ExploredDeleter(bool** explored, int nr) {
exp_ = explored;
rows_ = nr;
}
~ExploredDeleter() {
for(int i=0; i < rows_; i++) {
delete [] exp [i];

}
delete [] exp_;

}

bool** exp_;
int rows_;

};

int maze_search(char** maze, int r, int c)
{

int numS = 0;

bool** explored = new bool*[r];

for(int i=0; i < rows_; i++) {

exp [i] = new bool[c];

}

// How does this help solve the issue

// 1if we throw below

ExploredDeleter expdel(explored, r);

for(int i=0; i < r; i++) {
for(int j=0; j < c; j++) {
if(maze[r][c] == 'S")
numsS++;
¥
}
if(numS = 1) {
throw runtime_error("Expected 1 S");
// Do we still have an issue?

}

// Removed the deallocation code

//—deallocate 2D explored array

R,]S Viterbi

School of Engineering

Classic Example: Divide by Zero

#include <stdexcept>

using namespace std::runtime_error;
//Derive a runtime error to indicate a divide by zero error
class DivByZeroException : public runtime_error {
public:

DivByZeroException();
¥
DivByZeroException: :DivByZeroException() :

runtime_error(”divide by zero exception occurred”) //runtime_error is std::string

{} //empty constructor body

DivByZero.h

- /] USCVitgrbi .
Divide by Zero

#include <iostream>
#include “DivByZero.h”

using namespace std;

double fdivide(int n, int d) / Something went wrong, let my caller handle it
{

if (d == @) throw DivByZeroException(); //create instance of our exception and “throw” it
return (double)n/d;

}
int main(int argc, char* argv[])
{

int x, y;

double q;

cout << ”Enter two integers (x and y) to divide:” << endl;
while(cin >> x >> y)

{
//try block contains the code that Main line code, assumes no error
//*could* have an error
try {
q = fdivide(x,y); Error handling
cout << ”Result: “ << g << endl; /
}
catch (DivByZeroException &e) { //match a DivByZeroException by reference
cout << “Uh-oh! Exception! ” << e.what() << endl; //call .what() to get the error string
cout << “y can not be zero, try again. << endl; //provide error specific feedback
}
cout << “Enter two integers (x and y) to divide:” << endl;
}

noexcept (C++ 11)

e In C++ 11 and later we can label a function
“noexcept”

* Optimization opportunity for the compiler
— supporting stack unwinding has some overhead

* |f myFunc() calls a function that does throw,
terminate() is called immediately

— Stack is not unwound

int myFunc(double v, int x) noexcept

{

//code that *will not* throw an exception

}

STD LIBRARY EXCEPTION USAGE

School of Engineering

i, IS Viterbi

cin Error Handling (Old)

#include <iostream>
using namespace std;

int main()
int number = 0;
cout << “Enter a number: ;
cin >> number;

if(cin.fail()) {
cerr << “That was not a number.” << endl;
cin.clear();
cin.ignore(1000, '\n');

}

i, IS Viterbi

cin Error Handling (New)

#include <iostream>
using namespace std;

int main()

{

cin.exceptions(ios::failbit); //tell “cin” it should throw
int number = 0;

try {

cout << “Enter a number: ;

cin >> number; // cin may throw if can't get an int
}

catch(ios::failure& ex) {

cerr << “That was not a number.” << endl;
cin.clear();

// clear out the buffer until a '\n’
cin.ignore(std::numeric_limits<int>::max(), '\n');

}

Why use exceptions?

 Some programs *must* continue to execute
after an error occurs

— Mission-critical or life/safety software
— Business critical (downtime = SSS)

* Developers of libraries and classes can
concentrate on main-line development

— Let users deal with errors

* |[f no exception occurs, main-line code
executes with minimal overhead

— Remember exceptions are rare!

- /] USC\h/iEglzid
Other Exceptions Notes

 Think about where you want to handle the error
— If you can handle it, handle it...
— If you can't, then let the caller

#include <iostream>
#include <stdexcept>
using namespace std;

int fi1(char* filename)

{

ifstream ifile;
ifile.exceptions(ios::failbit);
// will throw if opening fails
ifile.open(filename);

// Should you catch exception here
// Or should you catch it in main()

}

int main(int argc, char* argv[])

{
readFile(argv[1]);

