
5f.1

CS 103 Unit 5f – Error Checking,
Parsing and Stringstreams

CSCI 103L Teaching Team

5f.2

Recall: I/O Streams
• C++ and the OS use the notion of streams to temporarily store (aka buffer)

data to be input or output and then uses the cin and cout objects (from
the <iostream> library) to access those streams.

• The OS name for these streams are: stdin (keyboard) and stdout (the
terminal)

• cin pulls data from stdin and cout places data in the stdout stream

7 5 y ... #include<iostream>
int main()
{
 int x;
 std::cin >> x;
 return 0;
}

I t w a s t h e

output stream
memory (aka stdout):

#include<iostream>
int main()
{
 std::cout << "It was the" << std::endl;
 std::cout << "best of times.";
 return 0;
}

b\n
It was the

This Photo by Unknown Author is licensed under CC BY-NC

OS

cin

OS

e

cout
input stream
memory (aka stdin):

https://www.wisc-online.com/asset-repository/viewasset?id=472
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

5f.3

File Streams
• C++ leverages the SAME interface that cin and cout provide to:

– Read data IN from a file (like cin, but data comes from a file not the keyboard) and
– Write data OUT to a file (like cout, but data goes to a file not the terminal).

• The counterpart to cin is an ifstream object
• The counterpart to cout is an ofstream object

7 5 y ...

#include <iostream>
#include <fstream>
Using namespace std;
int main() {
 int x;
 ifstream ifile("dat1.txt");
 ifile >> x;
 // use x
 ifile.close();
 return 0;
}

H i t h e r e

output stream
memory:

#include <iostream>
#include <fstream>
using namespace std;
int main() {
 ofstream ofile("dat2.txt")
 ofile << "Hi there" << endl;
 ofile.close();
 return 0;
}

EOF\n

OS

ifstream

OS

ofstream
input stream
memory:

This Photo by Unknown Author is licensed under CC BY
This Photo by Unknown Author is licensed under CC BY-SA

dat1.txt

75 yes
23 no

Hi there

dat2.txt

http://flickr.com/photos/intelfreepress/6345916908
https://creativecommons.org/licenses/by/3.0/
http://superuser.com/questions/349393/what-does-the-two-man-folder-icon-mean
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

5f.4

Relationship of Input & Output Streams

• Recall, file streams behaved the same as cin
and cout (which are iostreams)!

• Why is that?
• Because they are related through inheritance.
• Where are getline() and operator>> defined?

– In the base class, std::istream

std::istream

std::ifstream std::iostream
(cin)

std::ostream

std::ofstream std::iostream
(cout)

5f.5

CHECKING FOR INPUT ERRORS AND
THE END OF INPUT

5f.6

Input Stream Error Checking
• We can check errors when cin

receives unexpected data that
can’t be converted to the given
type

• Use the function fail() member
function (i.e. cin.fail()) which
returns true if anything went
wrong opening or reading data
in from the file

• Internally, the istream class
maintains 3 status bits:
– Fail
– EOF (end-of-file / end-of-stream)
– Bad (ignore this one, it's rarely used)

#include <iostream>
using namespace std;

int main ()
{
 int x;
 cout << "Enter an int: " << endl;

 cin >> x; // What if the user enters:
 // "abc"

 // Check if we successfully read an int
 if(cin.fail()) {
 cout << "Error: I said enter an int!";
 cout << " Now I must exit!" << endl;
 return 1;
 }
 cout << "You did it! You entered an int";
 cout << " with value: " << x << endl;
 return 0;
 }

cin
0 0

fail eof

a b c

0
bad

\n

5f.7

Understanding Input Streams

int x=0;

cout << "Enter x: ";

cin >> x;

int y = 0;

cout << "Enter y: ";

cin >> y;

X =

cin =

X = stdin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

cin.fail() is false

User enters value “512 123” at the prompt

0

0

512

5 1 2

0

123 \n

1 2 3 \n

1 2 3 \n

cin
0 0

fail eof

1 2 3

0
bad

cin
0 0

fail eof

\n

0
bad

1 2 3 \n

5f.8

Take Care Mixing >> and Getline

int x=0;

cout << "Enter x: ";

cin >> x;

char y[80];

cout << "Enter y: ";

cin.getline(y, 80);

User enters the following:

Y =

cin =Y =

cin.fail() is false

Warning: >> stopped before the '\n' and so getline will read that in and stop.

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

0

0

23

2 3 \n H i :) \n

\n H i :) \n

23
Hi :)

\n H i :) \n…

\0 … cin = H i :) \n

5f.9

Solution (Use 2 Getlines?)

int x=0;

cout << "Enter x: ";

cin >> x;

char y[80];

cout << "Enter y: ";

cin.getline(y, 80);

cin.getline(y, 80);

User enters the following:

Y =

cin =Y =

cin.fail() is false
1st getline() gets the rest of what's on the line with 23, second gets the next line.

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

0

0

23

2 3 \n H i :) \n

\n H i :) \n

23
Hi :)

\n H i :) \n…

\0 … cin = H i :) \n

Y = cin =H i :) \0

5f.10

Alternate Solution (Use std::ws)

int x=0;

cout << "Enter x: ";

cin >> x;

char y[80];

cout << "Enter y: ";

cin >> ws;

cin.getline(y, 80);

User enters the following:

Y =

cin =Y =

cin.fail() is false

X =

cin =

X = cin =

X =

cin =

0

0

23

2 3 \n H i :) \n

\n

23
Hi :)

\n…

\0 … cin = H i :) \n

Y = cin =H i :) \0

Use std::ws to advance to the next NON-WHITESPACE character in the stream.

H i :) \n

H i :) \n

After cin >> ws

Before cin >> ws

5f.11

When Does It Fail

int x=0;

cout << "Enter x: ";

cin >> x;

int y = 0;

cout << "Enter y: ";

cin >> y;

X =

cin =

X = cin =

X =

cin =

cin.fail() is false

Y = cin =

Y = cin =

Y = cin =

● User enters value “23abc” at 1st prompt, 2nd prompt fails

0

0

23

2 3 a b

0

0

??

c \n

a b c \n

a b c \n

a b c \n

a b c \n

cin.fail() is true

cin
1 0

fail eof

a b c

0
bad

cin
0 0

fail eof

a b c

0
bad

5f.12

File Streams and EOF
• Your ifstream object implicitly

keeps track of where you are in the
file using a "file pointer" (fp)

• EOF (end-of-file) or other error
means no more data can be read.
Use the fail() function to ensure
the file is okay for reading/writing

• Input streams also allow you to
check if you've read the EOF
character by calling
an eof() function, but
fail will be set when eof is and so
it's easier to just use fail()

O n c e u p o n a

fp

char c; ifile >> c;

T h e E n d ! EOF

fp

...

...

char c; ifile >> c;

Hard Drive

0 0
fail eof

0
bad

O n c e u p o n a

fp

...

Hard Drive

char c; ifile >> c;

T h e E n d ! EOF

fp

...
1 1

fail eof

0
bad

5f.13

When Does It Fail

For filestreams &
soon stringstreams

the stream does
NOT fail until you

read PAST the EOF.
Reading something

that stops ON or
AT the EOF will

NOT cause fail() or
eof() to return true

T h e e n d . \n

fp

EOFFile text
char buf[40];
ifstream inf(argv[1]);

inf >> buf;

inf >> buf;

inf >> buf;

T h e \0buf

T h e e n d . \n

fp

EOFFile text

e n d \0buf

T h e e n d . \n

fp

EOFFile text

.

e n d \0buf

T h e e n d . \n

fp

EOFFile text

.

0 0
fail eof

0
bad

0 0
fail eof

0
bad

1 1
fail eof

0
bad

5f.14

Pattern for File I/O or Streams

• Step 1: Try to read data (>> or getline)
• Step 2: Check if you succeeded or failed
• Step 3: Only use the data read from step 1 if

you succeeded

• If you read from a stream and then blindly use
the data you read without checking for failure,
you will likely get one BOGUS data value at
the end!

5f.15

Getting the order right
• Be sure you CHECK

whether the input failed
before you USE the
result!
– See top example

• If you don't CHECK and
the input fails, you will
use a garbage value
– See bottom example

int main ()
{
 int x, sum = 0;
 while(! cin.fail()) {
 cout << "Enter an int: " << endl;
 cin >> x; // What if the user enters: abc
 sum += x; // May use BAD value
 }
 cout << "sum = " << sum << endl;
 return 0;
}

int main ()
{
 int x, sum = 0;
 cout << "Enter an int: " << endl;
 cin >> x;

 // Check if we successfully read an int
 while(! cin.fail()) {
 sum += x;
 cin >> x; // What if the user enters abc
 }
 cout << "sum = " << sum << endl;
 return 0;
}

3 Step Process
1. Try
2. Check
3. Use

Correct Approach

Incorrect Approach

5f.16

Which Option Works?
#include<iostream>
#include<fstream>
using namespace std;
int main()
{
 vector<int> nums;
 ifstream ifile("data.txt");
 int x;
while(!ifile.fail()){

ifile >> x;
nums.push_back(x);

}
 ...
}

#include<iostream>
#include<fstream>
using namespace std;
int main()
{
 vector<int> nums;
 ifstream ifile("data.txt");
 int x;
while(true){

ifile >> x;
if(ifile.fail()) break;
nums.push_back(x);

}
 ...
}

7 8 EOF

data.txt

_

nums
_ _ _

Goal is to read all integers
from the file into a vector.

Which of these works?

Remember:
3 Step Process
1. Try
2. Check
3. Use

5f.17

A Tangent: Implicit Type Conversion
• Would the following if condition

make sense?
• No! If statements want Boolean

variables, not objects
• But let's go back to "operator

overloading". C++ provides type-
conversion operators.
– operator <type>()

• Student::operator bool()
– Code to specify how to convert a

Student to a bool
• Student::operator int()

– Code to specify how to convert a
Student to an int

class Student {
 private: int id; double gpa;
};
int main()
{
 Student s1;
 if(s1){ cout << "Hi" << endl; }
 return 0;
}

class Student {
 private:
 int id; double gpa;
 public:
 operator bool() { return gpa >= 2.0;}
 operator int() { return id; }
};

Student s1;
if(s1){ // calls operator bool() and
 int x = s1; // calls operator int()
}
...

5f.18

Getting All The Inputs
• The istream class defines an

operator bool() which returns true
if the stream didn't fail
– istream::operator bool()

{ return !fail(); }

• So we can combine the TRY and
CHECK into a single if/while
statement
if/while(cin >> val)
 { /* process val */ }

• In this approach cin does two things
– It does try to extract input into the

variable 'val'
– It returns 'true' if it successfully got

input, 'false' otherwise
• Keeps grabbing values one at a time

until the user types Ctrl-D

#include <iostream>
using namespace std;
int main()
{
 int val, sum = 0;
 // reads until user hits Ctrl-D
 // which is known as End-of-File(EOF)
 cout << "Enter a sequence of integers";
 cout << " or Ctrl-D (EOF) to quit: ";
 cout << endl;

 while(cin >> val){
 sum += val; // we know val is good

 }
 cout << "Sum is " << sum << endl;
 return 0;
}

5f.19

A More Compact Way
#include<iostream>
#include<fstream>
using namespace std;
int main()
{
 vector<int> nums;
 ifstream ifile("data.txt");
 int x;
 while(!ifile.fail()){
 ifile >> x;
 nums.push_back(x);
 }
 ...
}

#include<iostream>
#include<fstream>
using namespace std;
int main()
{
 vector<int> nums;
 ifstream ifile("data.txt");
 int x;
 while(true){
 ifile >> x;
 if(ifile.fail()) break;
 nums.push_back(x);
 }
 ...
}

 int x;
 while(ifile >> x){
 nums.push_back(x);
 }
 ...

7 8 EOF

data.txt

_

nums
_ _ _

Calling >> on an input
stream will essentially
return a Boolean:
• true = success
• false = failure

5f.20

Getline() for char* (C-Strings)
• We can get a whole line of text (including

spaces) with getline()
– istream& istream::getline(

 char *buf, int bufsize);
– Reads through a newline OR a max of

bufsize-1 characters and then adds the
null character to the end of the given
character array

• But getline() uses char* (C-Strings)…
what if we want to use C++ strings???

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

 char myline[100]; int i = 1;

 ifstream ifile ("input.txt");

 if(ifile.fail()){ // can't open?
 return 1;
 }

 while (ifile.getline(myline, 100)) {
 cout << i++ << ": " << myline << endl;
 }

 ifile.close();
 return 0;
}

The fox jumped over the log.

The bear ate some honey.

The CS student solved a hard problem.

1: The fox jumped over the log.

2: The bear ate some honey.

3: The CS student solved a hard problem.

input.txt

5f.21

Getline() for std::string (C++ strings)
• C++ string library (#include <string> defines a global function (not a

member of istream) that can read a line of text into a C++ string
• Prototype: istream& getline(istream &is, string &str, char delim='\n');

– is = any input stream (ifstream, cin), etc.)
– str = A C++ string that it will fill in with text
– delim = A char to stop on (by default it is '\n') which is why it's called getline
– Returns the updated istream (the 'is' object you passed in as the 1st arg)

• The text from the input stream will be read up through the first occurrence
of 'delim' (defaults to '\n') and placed into str. The delimiter will be stripped
from the end of str and the input stream will be pointing at the first
character after 'delim'. int line_no = 0;

ifstream myfile(argv[1]);
string myline;

while (getline(myfile, myline)) {
 cout << "Line: " << myline << endl;
}

ifstream myfile(argv[1]);
string myline;
// Not a member function
myfile.getline(myline); // doesn't work

// global scope function...correct
getline(myfile, myline);

5f.22

STRINGSTREAMS

5f.23

Introducing…Stringstreams

• I/O streams
– Keyboard (cin) and terminal (cout)

• File streams – Contents of file are the stream of data
– #include <fstream> and #include <iostream>
– ifstream and ofstream objects

• Stringstreams – Contents of a string are the stream
of data
– #include <sstream> and #include <iostream>
– stringstream objects

5f.24

C++ String Stream

• If streams are just sequences of characters, aren't
strings themselves like a stream?
– The <sstream> library lets you treat C++ string objects like

they were streams

• Why would you want to treat a string as a stream?
– Parse out (break up) the pieces of a string
– Buffer up output for later display
– Data type conversions

• Very useful in conjunction with string's
getline(...)

5f.25

C++ Stringstream: Application 1

• Can parse (split) a string of many values into
separate variables

#include <sstream>
using namespace std;
int main()
{
 stringstream ss;
 ss << "2.0 35 a";

 double x, int y; char z;
 ss >> x >> y >> z;

 return 0;
}

sstream_test3.cpp

getp

EOFss

2 . 0 3

getp

EOFss

getp

ss
2.0x
35y
'a'z

5 a

2 . 0 3 EOF5 a

Getp stands for "get
pointer" and is the
placeholder where

the next >> or
getline will start

extracting / getting
data

5f.26

C++ Stringstream: Application 2

• Use the .str() member function to create a large string from
many values (i.e. return a string with the contents of whatever
is in the stream)
– Alternative is to use to_string and the string + operator:

to_string(2.0) + " " + to_string(35) + " a";

#include<sstream>
using namespace std;
int main()
{
 stringstream ss;
 ss << 2.0 << " " << 35;
 ss << " " << 'a';

 string s = ss.str();

 return 0;
}

sstream_test4.cpp

getp

EOFss

2 . 0 3

getp

EOFss

getp

ss
"2.0 35 a"s

5 a

2 . 0 3 EOF5 a

5f.27

C++ Stringstream: Application 3a
• Can be used as an alternative to to_string()
• Use << and >> to convert numbers into strings

(i.e. 12345 => "12345")
– Same result as to_string(12345)

#include<sstream>
using namespace std;
int main()
{
 stringstream ss;
 int num = 12345;
 ss << num;

 string strNum;
 ss >> strNum;

 return 0;
}

getp

EOFss

1 2 3 4 5

getp

EOFss

1 2 3 4 5

getp

EOFss

12345num

"12345"strNum

5f.28

C++ Stringstream: Application 3b

• Can be used as an alternative to stoi() or stod()
• Use << and >> to convert strings into numbers

(i.e. "12345" => 12345)
– Same result as stoi("12345")

#include<sstream>
using namespace std;
int main()
{
 stringstream ss;
 string strNum = "12345";
ss << strNum;

int num;
ss >> num;

 return 0;
}

getp

EOFss

1 2 3 4 5

getp

EOFss

1 2 3 4 5

getp

EOFss

"12345"strNum

12345num

5f.29

C++ Stringstream Reuse

• Beware of re-using the same stringstream object for
multiple conversions. It can be weird.
– Make sure you clear it out between uses and re-init with

an empty string

• Or just make a new stringstream each time
stringstream ss;

//do something with ss

ss.clear();

ss.str("");

// now you can reuse ss

stringstream ss1;

//do something with ss1

// Just declare another stream
stringstream ss2;

// do something with ss2

Option 1: Reuse
Option 2: Use new stringstream

5f.30

Exercise

string text;
int num;
double val;

stringstream ss("Hello 103 2.0");
ss >> text >> num >> val;

• What's in each variable after
execution?
– text
– num
– val

5f.31

Exercises

• In class exercises
– Stringstream_in
– Stringstream_out
– Date

http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php

5f.32

Exercises

• Use the following in-class exercises to practice
the prior material and illustrate the next few
slides
– wordcount-all
– wordcount
– wordcount_parens

5f.33

getline() and stringstreams
• Imagine a file has a certain format

where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

• Can we use >>?
– No it doesn't differentiate between

different whitespace (i.e. a ' ' and a '\n'
look the same to >> and it will skip over
them)

• We can use getline() to get the
whole line, then a stringstream with
>> to parse out the pieces

int num_lines = 0;
int total_words = 0;

ifstream myfile(argv[1]);

string myline;
while(getline(myfile, myline)){

 stringstream ss(myline);

 string word;
 while(ss >> word)
 { total_words++; }
 num_lines++;
}

double avg =
 (double) total_words / num_lines;

cout << "Avg. words per line: ";
cout << avg << endl;

The fox jumped over the log.
The bear ate some honey.
The CS student solved a hard problem.

it was a
good day in
CS 103

5f.34

Using Delimeters
• Imagine a file has a certain format

where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

• Can we use >>?
– No it doesn't differentiate between

different whitespace (i.e. a ' ' and a '\n'
look the same to >> and it will skip over
them)

• We can use getline() to get the
whole line, then a stringstream with
>> to parse out the pieces

vector<string> mywords;

ifstream myfile(argv[1]);

string myline;
getline(myfile, myline, '(');
// gets "garbage stuff "
// and throws away '('

getline(myfile, myline, ')');
// gets "words I care about"
// and throws away ')'`

stringstream ss(myline);
string word;
while(ss >> word) {
 mywords.push_back(word);
}

garbage stuff (words I care about) junk

"words" "I" "care" "about"mywords

0 1 2 3

Text file:

5f.35

I/O Decision Tree (1)
Where is my

data?

Keyboard
(use iostream [cin])

File
(use ifstream)

String
(use stringstream)

Do I know how many
items to read?

Yes, n items
Use

for(i=0;i<n;i++)

No, arbitrary
Use while(cin >> temp) or
while(getline(cin,temp))

5f.36

getline or >>

Text
(getline or >>)

getline ALWAYS returns text

ints/doubles
(Use >> because it converts

text to the given type)

What type of
data?

Is it delimited?

Yes at newlines
Use getline()

No, stop on any
whitespace…use >>

Yes at special chars
(';' or ',')

Use getline with 3rd
input parameter

(delimeter parameter)

5f.37

Choosing an I/O Strategy
• Is my data delimited by particular characters?

– Yes, stop on newlines: Use getline()
– Yes, stop on other character: User getline() with optional 3rd character
– No, Use >> to skip all whitespaces and convert to a different data type

(int, double, etc.)

• If "yes" above, do I need to break data into smaller pieces (vs.
just wanting one large string)
– Yes, create a stringstream and extract using >>
– No, just keep the string returned by getline()

• Is the number of items you need to read known as a constant
or a variable read in earlier?
– Yes, Use a loop and extract (>>) values placing them in array or vector
– No, Loop while extraction doesn't fail placing them in vector

Remember: getline() always gives text/string.
To convert to other types it is easiest to use >>

