School of Engineering

CS 103 Unit 5f — Error Checking,
Parsing and Stringstreams

CSCI 103L Teaching Team

i, IS Viterbi (52

School of Engineering

Recall: I/O Streams

e C++ and the OS use the notion of streams to temporarily store (aka buffer)
data to be input or output and then uses the cin and cout objects (from
the <iostream> library) to access those streams.

 The OS name for these streams are: stdin (keyboard) and stdout (the
terminal)

* cin pulls data from stdin and cout places data in the stdout stream

input stream
memory (aka stdin):

0S

#include<iostream>

int main()

{
std::cout << "It was the" << std::endl;
std::cout << "best of times.";

I7!5| y| ...

#include<iostream>
int main()
{
int x;
std::cin >> x;
return 0;

}

return 0;
@ output stream

}
memory (aka stdout):

I|t] |wlals| |tlh|le|\n |ble
Iiiliiiiiil
OS

T T
This Photo by Unknown Author is licenséd urder. CC BY=NC

https://www.wisc-online.com/asset-repository/viewasset?id=472
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

USC Viterbi &'

School of Engineering

File Streams

 C++ leverages the SAME interface that cin and cout provide to:

— Read data IN from a file (like cin, but data comes from a file not the keyboard) and
— Write data OUT to a file (like cout, but data goes to a file not the terminal).

* The counterpartto cinisan ifstream object
 The counterpart to cout is an ofstream object

#include <iostream>

p 75 yes #lﬁclude <fstream>
~ | 23 no using namespace std;
-) int main() {
N

ofstream ofile("dat2.txt")
dat1.txt ofile << "Hi there" << endl;
ofile.close();
OS return 0;

##include <iostream>

#include <fstream> @ Hi there
input stream Using namespace std; output stream
memory: @ yi--- int main() { memory:
int x; : dat2.txt
ifstream ifile("datl.txt"); HIi| [t]hle|r|e] \n '

// use X
ifile.close(); OS
return 0;

} This Photo by Unknown Author is licensed under CC BY
This Photo bv Unknown Author is licensed under CC BY-SA

http://flickr.com/photos/intelfreepress/6345916908
https://creativecommons.org/licenses/by/3.0/
http://superuser.com/questions/349393/what-does-the-two-man-folder-icon-mean
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

R,]S Viterbi

School of Engineering

Relationship of Input & Output Streams

e Recall, file streams behaved the same as cin istream:~istream
. . istream::istream
and cout (which are iostreams)! S
. istream::sentry
¢ Why IS that? v member functions
. . istream::gcount
* Because they are related through inheritance. istream:get
. . istream::getline
* Where are getline() and operator>> defined? istream:ignore
. istream::operator»
— In the base class, std::istream istream:peek

istream::putback
istream::read
istream::readsome
std::istream std::ostream istream::seekg
istream::sync
istream::tellg

T T istream::unget

2 std::iostream
std::ifstream std 'O,S ARSI std::ofstream
(cin) (cout)

School of Engineering

CHECKING FOR INPUT ERRORS AND
THE END OF INPUT

R,]S Viterbi

School of Engineering

Input Stream Error Checking

#include <iostream>
* We can check errors when cin SR (RGPS SEek
receives unexpected data that ?nt main ()
can’t be converted to the given int x;
type cout << "Enter an int: " << endl;
. . cin >> x; // What if the user enters:
* Use the function fail() member 77 "abe
function (I'e' Cln'fall()) which // Check if we successfully read an int
returns true if anything went if(cin.fail()) {
. . cout << "Error: I said enter an int!";
wrong opening or reading data cout << " Now I must exit!™ << endl;
: : t 1;
in from the file yoo
. . cout << "You did it! You entered an int";
Interna”y; the Istream CIaSS cout << " with value: " << x << endl;
maintains 3 status bits: }"et“"” 0
— Fail . |@|bjc]\n
cin
— EOF (end-of-file / end-of-stream) ol lo!l |o
— Bad (ignore this one, it's rarely used) fail eof bad

Understanding Input Streams

User enters value “512 123" at the prompt

int x=0;
cout << "Enter x:

cin >> Xx;

int y = 0;
cout << "Enter y:

cin >> y;

J

J

X =

%)

512

stdin =

cin =

cin =

cin.fail() is false

%)

123

cin =

cin =

511 2 1/2(3|\n
1|2 n
\ . 1|2
cln
0| (0| |0
fail eof bad
1|2 \n
. [\n
cln
\n o/ |o| |0

cin.fail() is false

fail eof bad

User enters the following:

. i 23
int x=0; X = 5 cin = Hi @)
cout << "Enter x: "; . .
? X = 0 cin=|2|3|\n|H|1i : 1) [\n
cin >> Xx;]
X=] 23 cin= [\n|H|1i : 1) |\n

char y[80]; cin.fail() is false

cout << "Enter y: "; Y = cin =|\n H|i : 1) [\n
/®

cin.fail() is false

Warning: >> stopped before the "\n' and so getline will read that in and stop.

Solution (Use 2 Getlines?)

User enters the following:

. _ 23
int x=0; X=| o cin = Hi :)
cout << "Enter x: "; X=| o cin=12|3|\n|H|i 2 1) [\n
cin >> X; .

X=| 23 cin= |\n|H|i :) |\n
char y[80]; cin.fail() is false
cout << "Enter y: "; Y = cin =/\n|lH| i : 1) [\n
cin.getline(y, 80); Y = [\9] .. cin=/H|i : 1) [\n

cin.getline(y, 80); Y=|H|1i : 1) [\o cin =

cin.fail() is false
1st getline() gets the rest of what's on the line with 23, second gets the next line.

Use std: :ws to advance to the next NON-WHITESPACE character in the stream.

int x=0;

cout << "Enter x: ";

cin >> Xx;

char y[80];

cout << "Enter y: ";

cin >> ws;

cin.getline(y, 80);

J

J

User enters the following:

i 23
(%) cin=1{2|3|\n H|i) |\n
23 cin= |\n| |H|i) |\n
Before cin >> ws
cin =|\n| |H|i) |\n
After cin >> ws
\9]| .. cin=|H|i) |\n
H) |\@ cin =

cin.fail() is false

- USC\ﬁtgrbi .
When Does It Fail

. User enters value “23abc” at 1st prompt, 2"9 prompt fails

int x=0; X=| o | cin=
cout << "Enter x: "; .
X = 0 cin=|2|3|a|b|c]\n
cin >> X;] b
X = 23 cin= |a|b|c|\n||cin ° ¢
[[J [J e e e
cin.fail() is false fail eof bad
int = 0; .
y) Y = %) cin=|a|b|c]|\n
cout << "Enter y: ";
Y = 0 cin=l|2a|b|c|\n
cin >> y; _ |a|b|c
cin
Y=| ?? cin=|a|b|c|\n 1| (0| |0

° ° ° fai f
cin.fail() is true 21 cof Pod

USCViterbi €

School of Engine

File Streams and EOF

fp
 Your ifstreamobject implicitly
keeps track of where you are in the o|n|c

file using a "file pointer" (fp)

Hard Drive

e| [u|p|o|n| [af... |

char c; ifile >> c;

 EOF (end-of-file) or other error fp
means no more data can be read. :
Use the fail () function to ensure Fﬁ
the file is okay for reading/writing

Hard Drive

e| |ulplo|n| |af...

char c; ifile >> c;

* Input streams also allow you to
check if you've read the EOF
character by calling
an eof () function, but
fail will be set when eof is and so 11l 1o
it's easier to just use fail() ‘ g 0

Tlhie E(n|d|!|EOF
fail eof bad

‘ ol o] |0

char c; ifile >> c; fp

fail eof bad

fp

R,]S Viterbi

When Does It Fail *

char buf[40]; fp

ifstream inf(argv[1]); Fietext [t|nle] [e[n]d].|\n]EoF
[fp

inf >> buf; }

File text |[T|hle| [e[n|d|.|\n]|EOF

For filestreams &

soon stringstreams buf Tnlel\e 0| |o]| |0
the stream does fail eof bad
NOT fail until you inf >> buf; fp 1
read PAST the EOF. File text [TInle] Telnld].[\n] oF
Reading something
that stops ON or buf eind|-|\e 0| 0|0
AT the EOF will VER GOIF LR
NOT cause fail()or ~ inf >> buf; p 1
eof() to return true File text |T|h|e| |e[n|d]|.|\n|EOF
buf e|n|d|.|\©O 1 1 o

fail eof bad

School of Engineering

e Step 1: Try to read data (>> or getline)
e Step 2: Check if you succeeded or failed

e Step 3: Only use the data read from step 1 if
you succeeded

* |f you read from a stream and then blindly use
the data you read without checking for failure,
vou will likely get one BOGUS data value at
the end!

Getting the order right

int main () Correct Approach
* Be sure you CHECK S PP

whether the input failed cout << "Enter an int: " << endl;
bEfOre you USE the // Check if we successfully read an int

while(! cin.fail()) {
result! sum += X;

cin >> x; // What if the user enters abc
— See top example }))
cout << "sum = << sum << endl;

* |f you don't CHECK and y e

the input fails, you will

int main ()

{
use a garbage value int x, sum = o;
while(! cin.fail()) {
— See bottom example cout << "Enter an int: " << endl;

cin >> x; // What if the user enters: abc

3 Step Process , sum += x; // May use BAD value
1. TI_'M cout << "sum = " << sum << endl;
eo
2. Check return 9;
f —— }
3. Use Incorrect Approach

R, IS Viterbi

Which Option Works? =

#include<iostream> data.txt #include<iostream>
#include<fstream> #include<fstream>
using namespace std; 7 8 EOF using namespace std;
int main() int main()
{ {
vector<int> nums; vector<int> nums;
ifstream ifile("data.txt"); ifstream ifile("data.txt");
int x; int x;
while(!ifile.fail()){ nums while(true){
ifile >> x; ifile >> x;
nums.push_back(x); i Sl S S if(ifile.fail()) break;
} nums.push_back(x);
. }
} e
}
Remember:
3 Step Process

1T Goal is to read all integers
- Y from the file into a vector.

2. Check .

3 —Use Which of these works?

R,]S Viterbi

School of Engineering

A Tangent: Implicit Type Conversion

 Would the following if condition
make sense?

e No! If statements want Boolean
variables, not objects

 Butlet's go back to "operator

overloading". C++ provides type-
conversion operators.

— operator <type>()
 Student::operator bool()

— Code to specify how to convert a
Student to a bool

 Student::operator int()

— Code to specify how to convert a
Student to an int

class Student {

private: int id; double gpa;
}s5
int main()
{
Student s1;
if(s1){ cout << "Hi" << endl; }
return 0;
}
class Student {
private:
int id; double gpa;
public:

operator bool() { return gpa >= 2.0;}
operator int() { return id; }

}s

Student s1;
if(s1){ // calls operator bool() and
int x = s1; // calls operator int()

}

R,]S Viterbi

Getting All The Inputs *

e The istreamclass defines an
. ##tinclude <iostream>
operator bool() which returns true | <ing namespace std;

if the stream didn't fail int main()
{

int val, sum = 0;
// reads until user hits Ctrl-D

— 1istream: :operator bool()
{ return !fail(); }

* So we can combine the TRY and /! ‘zhiCh"éStknown as End-of;F%li(EOF)"
. . . . cout << nter a sequence of integers"”;
CHECK into a single if/while cout << " or Ctrl-D (EOF) to quit: ";
statement cout << endl;
if/while(cin >> val) while(cin >> val){
{ /* process val */ '} sum += val; // we know val is good
* Inthis approach cin does two things)
— It does try to extract input into the cout << "Sum is " << sum << endl;
variable 'val' return 0;

— It returns 'true' if it successfully got
input, 'false' otherwise

* Keeps grabbing values one at a time
until the user types Ctrl-D

i, IS Viterbi

A More Compact Way

#include<iostream> data.txt #include<iostream>
#include<fstream> #include<fstream>
using namespace std; 7 8 EOF using namespace std;
int main() int main()
{ {
vector<int> nums; vector<int> nums;
ifstream ifile("data.txt"); ifstream ifile("data.txt");
int x; int x;
while(lifile.fail()){ nums while(true){
ifile >> x; ifile >»> x;
nums.push_back(x); i Sl S S if(ifile.fail()) break;
} nums.push_back(x);
® |
} ce
}

int x;
while(ifile >> x){
nums.push_back(x);

Calling >> on an input
stream will essentially
return a Boolean:
e true =success
e false = failure

R,]S Viterbi

School of Engineering

Getline() for char* (C-Strings)

#tinclude <iostream>

 We can get a whole line of text (including | #inciude <fstreams
Spaces) with get“ne() using namespace std;

. . . int main ()
— istream& |stream::getllne(

{
%k H H .
char *buf, int bufsize); char myline[100]; int i = 1;
— Reads through a newline OR a max of ifstream ifile ("input.txt");
bufsize-1 characters and then adds the if(ifile.fail()){ // can't open?
null character to the end of the given return 1;
character array)
* But getline() uses char* (C-Strings)... while (ifile.getline(myline, 100)) {
. . cout << i++ << ": " << myline << endl;
what if we want to use C++ strings??? }
ifile.close();
return 9;
}
input.txt
The fox jumped over the log. 1: The fox jumped over the log.

N

: The bear ate some honey.

The bear ate some honey. [::::::>

The CS student solved a hard problem.

w

: The CS student solved a hard problem.

R,]S Viterbi

School of Engineering

Getline() for std::string (C++ strings)

e C++ string library (#include <string> defines a global function (not a
member of istream) that can read a line of text into a C++ string

* Prototype: istream& getline(istream &is, string &str, char delim="'\n');
— 1s =any input stream (ifstream, cin), etc.)
— str = A C++ string that it will fill in with text
— delim= A char to stop on (by default it is "\n') which is why it's called getline
— Returns the updated istream (the 'is' object you passed in as the 1%t arg)

 The text from the input stream will be read up through the first occurrence
of 'delim' (defaults to "\n') and placed into str. The delimiter will be stripped
from the end of str and the input stream will be pointing at the first
character after 'delim’.

int line no = 0;
ifstream myfile(argv[1l]);
string myline;

ifstream myfile(argv([1l]);
string myline;
// Not a member function

myfile.getline(myline); // doesn't work dle (@ EREbnEl M7Ras, WAkdne))

cout << "Line: " << myline << endl;

}

// global scope function...correct
getline(myfile, myline);

School of Engineering

STRINGSTREAMS

Introducing...Stringstreams

* |/O streams
— Keyboard (cin) and terminal (cout)

* File streams — Contents of file are the stream of data
— #tinclude <fstream> and #include <iostream>
— ifstreamand ofstream objects

* Stringstreams — Contents of a string are the stream

of data
— #tinclude <sstream> and #include <iostream>

— stringstream objects

C++ String Stream

* If streams are just sequences of characters, aren't
strings themselves like a stream?

— The <sstream> library lets you treat C++ string objects like
they were streams

* Why would you want to treat a string as a stream?
— Parse out (break up) the pieces of a string
— Buffer up output for later display
— Data type conversions

* Very useful in conjunction with string's
getline(...)

R,]S Viterbi

School of Engineering

C++ Stringstream: Application 1

e Can parse (split) a string of many values into
separate variables

Getp stands for "get
pointer" and is the
placeholder where

. the next >> or
#include <sstream> getp _‘l' getline will start
using namespace std;

e et P cor| | extracting / getting
{ data

stringstream ss; —
ss << "2.0 35 a"; __ getp =3
—
double x, int y; char z; SS 2|.1@| |3|5| |a| EOF

SS >> X >> y >> Z; \\\\\\\\\
return @; \\\\\\‘\5;

’ et
} 2.0 IeP v

SS 2|.10| [3|5| |a| EOF

sstream_test3.cpp z ‘a’

R,]S Viterbi

School of Engineering

C++ Stringstream: Application 2

* Usethe.str() member function to create a large string from

many values (i.e. return a string with the contents of whatever
is in the stream)

— Alternative is to use to_string and the string + operator:

to_string(2.0) + " " + to_string(35) + " a";
#include<sstream>
et
using namespace std; 9etp w
int main() / SS EOF
{ P
stringstream ss;
SS << 2.8 << " " << 35; getp —
ss << " " k< 'a';
—> gg 2|.|@e| |3|5| |a| EOF
string s = ss.str();
return 0; \\\\\\\\\\\
’ et
} \ S 2.0 35 a" 9etp v

SS 2|.19| |3|5| |a| EOF
sstream_test4.cpp

R,]S Viterbi

School of Engineering

C++ Stringstream: Application 3a

e Can be used as an alternative to to_string()

* Use << and >> to convert numbers into strings
(i.e. 12345 =>"12345")

— Same result as to_string(12345)

#include<sstream>

using namespace std;
int main()

{
stringstream ss;

int num = 12345; getp j

/ num | 12345

SS << num; R
—2> SS 1|2(3|4|5| EOF
string strNum;
Ss >> strNum;
et
return 0; getp ‘1’

} strNum | "12345" SS 1(2|3|4|5| EOF

R,]S Viterbi

School of Engineering

C++ Stringstream: Application 3b

* Can be used as an alternative to stoi() or stod()

* Use << and >> to convert strings into numbers
(i.e."12345" => 12345)

— Same result as stoi("12345")

#include<sstream> getp

using namespace std; strNum "19345" l

int main() //ﬂ SS EOF

{

stringstream ss;

string strNum = "12345"; getp _‘l,

Ss << strNum;

—> gS 1(2|3|4|5| EOF

int num;

SS >> num;
return 0;
> et

T um 12345 SS 1(2|3|4|s| EOF

C++ Stringstream Reuse

* Beware of re-using the same stringstream object for
multiple conversions. It can be weird.

— Make sure you clear it out between uses and re-init with
an empty string

* Or just make a new stringstream each time

stringstream ss; stringstream ssi;
//do something with ss //do something with ssil
ss.clear();

ss.str(""); // Just declare another stream
stringstream ss2;

// now you can reuse SssS

// do something with ss2

Option 1: Reuse
ptl u Option 2: Use new stringstream

Exercise

e What's in each variable after
execution?

string text;

— text int num;

double val;

— num ,
stringstream ss("Hello 103 2.0");
— val ss >> text >> num >> val;

Exercises

* |In class exercises

— Stringstream In

— Stringstream out

— Date

http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php
http://bits.usc.edu/websheets/index.php

Exercises

* Use the following in-class exercises to practice
the prior material and illustrate the next few
slides

— wordcount-all
— wordcount

— wordcount_parens

- USCViterbi
getline() and stringstreams

Imagine a file has a certain format
where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

Can we use >>?

— No it doesn't differentiate between
different whitespace (i.e.a''and a '\n'
look the same to >> and it will skip over
them)

We can use getline() to get the
whole line, then a stringstream with

>> to parse out the pieces

School of Engineering

int num_lines = 0O;

int total_words = 0; it was a
ifstream myfile(argv[1]); gOOd day in
 CS 103

string myline;
while(getline(myfile, myline)){

stringstream ss(myline);

string word;
while(ss >> word)

{ total words++; }
num_lines++;

}

double avg =
(double) total words / num_lines;

cout << "Avg. words per line: ";
cout << avg << endl;

The fox jumped over the log.
The bear ate some honey.
The CS student solved a hard problem.

- /] USC\ﬁtgrbi .
Using Delimeters

Text file:
¢ Imagine d f||e haS d Certain format garbage stuff (words I care about) junk

where you know related data is on a
single line of text but aren't sure
how many data items will be on that
line

vector<string> mywords;
ifstream myfile(argv[1]);

string myline;
getline(myfile, myline, '(');
i Can we use >>? // gets "garbage stuff "

— No it doesn't differentiate between AT RO LR

different whitespace (i.e.a''and a '\n' | getline(myfile, myline, *)");

// gets "words I care about"

look the same to >> and it will skip over | 7/ and throws away ')*

them) stringstream ss(myline);
. string word;
 We can use getline() to get the while(ss >> word) {

mywords .push_back(word) ;

whole line, then a stringstream with |
>> to parse out the pieces

mywordS llwor‘dsll III" "Car\e" Ilaboutll

|/O Decision Tree (1)

Where is my
data?
|
v | v
Keyboard File String
(use 1ostream [cin]) (use ifstream) (use stringstream)

Do | know how many
items to read?

' '
Yes, n items No, arbitrary
Use Usewhile(cin >> temp) or

for(i=0;i<n;i++) while(getline(cin,temp))

i, IS Viterbi

School of Engineering

getlineor >>

What type of
data?

'

Text
(getline or >>)
getline ALWAYS returns text

!
ints/doubles

(Use >> because it converts
text to the given type)

Is it delimited?

v

Yes at newlines
Use getline()

v v

Yes at special chars
(' or',)
Use getline with 3™
input parameter
(delimeter parameter)

No, stop on any
whitespace...use >>

i, IS Viterbi

Choosing an I/O Strategy

* |s my data delimited by particular characters?
— Yes, stop on newlines: Use getline()
— Yes, stop on other character: User getline() with optional 3™ character

— No, Use >> to skip all whitespaces and convert to a different data type
(int, double, etc.)

* If "yes" above, do | need to break data into smaller pieces (vs.
just wanting one large string)
— Yes, create a stringstream and extract using >>
— No, just keep the string returned by getline()
* |sthe number of items you need to read known as a constant
or a variable read in earlier?
— Yes, Use a loop and extract (>>) values placing them in array or vector

— No, Loop while extraction doesn't fail placing them in vector

Remember: getline() always gives text/string.
To convert to other types it is easiest to use >>

