CSCI 104 Unit 5c -
Polymorphism

CSCI 103L Teaching Team

. S Viterbi (52

School of Engineering

Base and Derived Type Compatibility

* Are base and derived objects SllEss PErsen |
type compatible? Put another way, psgﬁcépint_info(); // print name, ID
can we assign a derived object into a base string name; int id;
object? b

class Student : public Person {

 (Can we assign a base object into a derived? | public:
void print_info(); // print major too

— p-=s;//Base = Derived... __ int major; double gpa;

— s=p;//Derived = Base...__ }s
* Think hierarchy & animal classification? int main(){
_ Person p("Bill",1);
— Can any dog be (assigned as) a mammal Student s("Joe",2,5);

// Which assignment is plausible?

— Can any mammal be (assigned as) a dog b=s; //or

* We can only assign a derived into a base , s = p;
(since the derived has EVERYTHING the
base does)

Class Person Class Student

string name_ string name_

int id_ ' int id_
‘ int major_
double gpa_

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R, IS Viterbi (ee2

School of Engineering

Pointer & Reference Compatibility

* A pointer or reference to a derived class object
is type-compatible with (can be assigned to) a
base-class type pointer/reference

— A base class pointer or reference can point to or
reference a Derived object

— Derived d; Base* b = &d;

e But not vice versa

— Aderived class pointer or reference CANNOT point to
or reference a Base object

— Base b; Derived* d = &b; x
* And clearly a derived pointer or reference is

NOT type compatible with a different derived
type pointer/reference. X

Person* (Student* t

.

PFA"'X

Base pointer CAN point at any

publicly derived object. at base or "sibling" objects
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

class Person {
public:
void print_info() const; // print name, ID
string name; int id;
}s
class Student :
public:
void print_info() const; // print major too
int major; double gpa;
}s
class Faculty :
public:
void print_info() const; // print tenured
bool tenure;
}s
int main(){
Person *p = new Person("Bill",1);
Student *s = new Student("Joe",2,5);
Faculty *f = new Faculty("Ken",3,0);

public Person {

public Person {

Person *q;

q=p; // ok? q=s; // ok q-=+F; // ok?
Student *t = p; // ok?

Faculty *g = s; // ok?

Derived pointer CANNOT point

. S Viterbi

School of Engineering

Which Function Gets Called?

Person pointer or reference can also
point to Student or Faculty object (i.e.
a Student is a person)

— All methods known to Person are
supported by a Student object because it
was derived from Person

What happens if we use the base
pointer/reference to call a member
function that both base and derive
implement? Which version will get
invoked?

Will apply the function from the class

corresponding to the type of the
pointer used

Person* ¢

*

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

q
— P pr‘int_ini’o()| } // calls

class Person {
public:
void print_info() const; //
string name; int id;
}s
class Student :
public:
void print_info() const; //
too
int major; double gpa;
}s
class Faculty :
public:
void print_info() const; //
bool tenure;

};

int main(){

public Person

public Person

print name, ID

{

print major

{

print tenured

Person *p = new Person("Bill",1);

Student *s = new Student("Joe",2,5);
Faculty *f = new Faculty("Ken",3,0);
Person *q;

q p; q->print_info();

s; g->print_info();
f; g->print_info();

q

:, T *PS print_info()
Kl
P F print_info()

Name=Bill, ID=1

Name=Joe, ID=2
Name=Ken, ID=3

. S Viterbi (ee8

School of Engineering

Non-Virtual Functions: Base Pointer => Base Functions

class Person {

* For second and third call to print_info() public:

. . id print_inf t; // print , ID
we might like to have Ziiingrigmginiﬁi)ij‘;”s prant name
Student::print_info() and s

. o . . class Student : public Person {
Faculty::print_info() executed Sublic:
since the actual object pointed to is a void print_info() const; // print major too
int major; double gpa;
Student/Faculty };
° BUT...it WI” caII céizii?culty : public Person {
Per‘son: :pr'int_in'FO() void print_info() const; // print tenured
bool tenure;
 Thisis called 'static binding' (i.e. the)5
version of the function called is based int main(){ ,
. . . Person *p = new Person("Bill",1);
on the static type of the pointer belng Student *s = new Student("Joe",2,5);
used) Faculty *f = new Faculty("Mary",3,1);
Person *q;
1 g = p; gq->print_info(); // base ptr, base obj
No VIRT.UAL q = s; g->print_info(); // base ptr, derv obj
declaration... q = f; g->print_info(); // base ptr, derv obj
} // calls
print_info()
Person* q / P
...only functions from the e spS prinEl infa()

i s Name=Bill, ID=1
class type of the pointer “© F orint_info() N iy D=2
used can be called - ame=Joe, |ID=

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. Name=Ken, ID=3

R, IS Viterbi

School of Engineering

Virtual Functions: Base Ptr => Derived Functions

. class Person
* Member functions can be declared public: {

virtual virtual void print_info() const; // name, ID
string name; int id;

* virtual declaration allows derived 15
classes to redefine the function and class Student : public Person {
which version is called is determined by public: = , ,
. . void print_info() const; // print major too
the type of Ob.leCt p°|nt9d int major; double gpa;
to/referenced rather than the type of }s
pointer/reference c;jziiz?culty : public Person {
— Note: You do NOT have to override a virtual void print_info() const; // print tenured
function in the derived class...you can just bool tenure;
inherit and use the base class version }s
o - I . SR IR 2 int main(){
Th|§ is callgd o!ynamlc {omdmg (i.e. Person *p = new Person("Bill",1);
which version is called is based on the Student *s = new Student("Joe",2,5);

: : : Faculty *f = Faculty("Mary",3,1);
type of object being pointed to) PZizony*q, new Faculty("Mary)
q = p; g->print_info(); // base ptr, base obj
1) With VIRTUAL q = s; g->print_info(); // base ptr, derv obj
p * declaration... q = f; g->print_info(); // base ptr, derv obj
erson® q // calls print _info for objected pointed to
[P print_info() // not type of q
e }
*, ‘AP print_info() 2 -
om S ... function called is Name=Bill, ID=1
Pi_ print_info() based on the c|asstype Name=Joe, ID=2_, Major' =5

© 2022 by Mark Redekopp. This content is protected and may not be spodnted¢o. freferenced) Name=Mary, ID=3, Tenured=1

N (S Viterbi (=7
Polymorphism

Person* p[5]
 Can we have an array that store

}
multiple types (e.g. an array that g
stores both ints and doubles)? No!

N UV e
B —

. int main() F) P
* But we can use base pointers to { F
point at different types and have Person* p[5];

Ce .)) . p[@] = new Person("Bill",1);
their individual behavior invoked via p[1] = new Student("Joe",2,5);
virtual functions p[2] = new Faculty("Ken",3,0);

.)] . p[3] = new Student("Mary",4,2);
* Polymorphism via virtual functions p[4] = new Faculty("Jen",5,1);
allows one set of code to operate for(int 1i=0; 1 < 5; i++){

. | Il derived f p[i]->print_info();
appropriately on a erived types o // should print most specific info
objects // based on type of object

}
 One data structure can now }

reference many types and the code
. : Name = Bill, ID=1
can perform appropriate behavior on Name - Joe, ID=2, Major=s

each as you iterate over the structure Name = Ken, ID=3, Tenured=0
Name = Mary, ID=4, Major=2
Name = Jen, ID=5, Tenured=1
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R, IS Viterbi

School of Engineering

Pointers, References, and Objects

void fl(Person* p)

* To allow dynamic binding and |,
. p->print_info();
p0|ymorphlsm the base CIaSS // calls Student::print_info()

must specify the function as)
Virtual AND void f2(const Person& p)
{
* Then use a base class p.print_info();
// calls Student::print_info()
o POInter y Class Person
id f string name_
— Reference PR TN
. . p.print_info(); —
to the derived ObJeCtS // calls Person::print_info() on t

}

Class Student

* Copying a derived objecttoa |, . .
base object makes a copy and Student s("Joe",2,5);

string name_

int id_

N T

'Fl(&S)j int major_
so ho polymorphic behavior is JEyile
possible , return @
Name=Joe, ID=2, Major = 5
Name=Joe, ID=2, Major = 5

Name=Joe, ID=2
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary

e No virtual declaration:
— Member function that is called is based on the

— Static binding

 With virtual declaration:
— Member function that is called is based on the

— Dynamic Binding

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary

 No virtual declaration:

— Member function that is called is based on the
type of the pointer/reference

— Static binding
e With virtual declaration:

— Member function that is called is based on the
type of the object pointed at (referenced)

— Dynamic Binding

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

School of Engineering

Abstract Classes & Pure Virtuals

* In software development we may want to

class CollegeStudent {

create a base class that serves only as a public:
. . . string get _name();
requirement/interface that derived classes virtusl void take test():
must implement and adhere to virtual string play_sports();
protected:
o Examp|e: string name;
}s
— Suppose we want to create a CollegeStudent
class and ensure all derived objects implement Valid class. Objects of type
behavior for the student to take a test and play CollegeStudent can be declared.

sports

— But depending on which college you go to you
may do these activities differently. Until we

class CollegeStudent {
public:
string get _name();

know the university we don’t know how to virtual void take_test() = 0;

implement take_test() and play_sports()... pxz;zgiidft"i”g allely SPOFtal) = B2
— We can decide to NOT implement them in this string name;

class known as "pure" virtual functions }s

(indicated by setting their prototype =0;)

. . . Abstract base class with 2 pure virtual functions.
([]
A class with pure virtuals is called an No object of type CollegeStudent will be allowed.

abstract base class (i.e. interface for It only serves as an interface that derived
future derived classes) classes will have to implement.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

School of Engineering

Abstract Classes & Pure Virtuals

e An abstract base class is one that
defines at least 1 or more
pure virtual functions

— Prototype only

— Make function body
"oy

— Functions that are not
implemented by the base class
but must be implemented by the
derived class to be able to create
an instance of the derived object

* Objects of the abstract class type
MAY NOT be
declared/instantiated

— Doing so would not be safe since

some functions are not
implemented

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distribu

class CollegeStudent {
public:
string get _name() { return name; }
virtual void take test() = 0;
virtual string play sports() = 0;
protected:
string name;
}s
class TrojanStudent :
public:
void take_test() { cout << "Got an A."; }
string play_sports(){return string("WIN!");}
}s
class BruinStudent :
public:
void take_test() { cout << "Uh..uh..C-."; }
string play_sports(){return string("LOSE");}
}s
int main() {
vector<CollegeStudent *> mylist;
mylist.push_back(new TrojanStudent);
mylist.push_back(new BruinStudent);
for(int i=0; i < 2; i++){
mylist[i]->take_test();
cout << mylist[i]->play_sports() << endl;
}
return 9; Output:
} Got an A. WIN!
Uh..uh..C-. LOSE

public CollegeStudent {

public CollegeStudent {

. S Viterbi

School of Engineering

How Long is a Class Abstract?

class CollegeStudent {
* Objects of the abstract class | P

string get _name() { return name; }

type MAY NOT be virtual void take_test() = @;

virtual string play sports() = 0;

. . protected:
declared/instantiated Cering none;
: }s
_ Domg SO WOUId not be Safe class TrojanStudent : public CollegeStudent {
since some functions are not public: ,
. string play_sports(){return string("WIN!");}
implemented };
. . class CSTrojanStudent : public TrojanStudent {
e Until each pure virtual public:

void take_test() { cout << "A...curved"; }

function has a definition, the |

int main() {

class stays abstract (see CollegeStudent csi;
. . // WON'T COMPILE
TrOJanStUdent to the rlght) // CollegeStudent is abstract

TrojanStudent tsi;

// WON'T COMPILE

// TrojanStudent is still abstract
CSTrojanStudent cs1;
return 0;

Output:
Got an A. WIN!
Uh..uh..C-. LOSE

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distribu _

. S Viterbi

When to Use Inheritance

##tinclude "student.h"

* Main use Of inheritance is to void sports_simulator(CollegeStudent *stu){
setup interfaces (abstract o e SO
classes) that allow for new, };
derived classes to be written in g++ -c sportsim.cpp
the future that provide outputs sportsim.o (10 years ago)
additional functionality but still #include "student.h"”
WOI’kS seamlessly Wlth original c;j;iil\é\fTStudent : public CollegeStudent {
code void take_test() { cout << "Got an A+."; }

string play_sports()
{ return string("What are sports?!?"); }

};

int main() {
vector<CollegeStudent *> mylist;
mylist.push_back(new TrojanStudent);
mylist.push_back(new MITStudent);
for(int i=0; i < 2; i++){
sports_simulator(mylist[i]);
}

return 0;

g++ main.cpp sportsim.o
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. prog ram WI" run fine today Wlth new MITStudent

i (/5 Vierbi ">
Abstract Classes

* An abstract base class can lass Aninal {
still define common Animal(string c) : color(c) { }
virtual ~Animal()
functionsl have data string get color() { return c; }
virtual void make sound() = ©;
members, etc. that all protected:
.] string color;
derived classes can use via i o
. . class.Dog : public Animal {
inheritance public: N
void make sound() { cout << "Bark"; }
— Ex. 'color' of the Animal 35 o
class Cat : public Animal {
public:
void make sound() { cout << "Meow"; }
}s
class Fox : public Animal {
public:
void make sound() { cout << "???"; }
}s

int main(){
Animal* a[3];
a[@] = new Animal;
// WON'T COMPILE...abstract class
a[1] = new Dog("brown");
a[2] = new Cat("calico");
cout << a[1]->get_color() << endl; Output:
cout << a[2]->make_sound() << endl;

brown
meow

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distribute

P (]S Viterbi
Ex 1 - A Queue Interface

* We have learned that a queue can | #ifndef INTQUEUE_H
. . #define INTQUEUE H
be implemented using a

— Singly Linked List w/ tail pointer class IntQueue {
public:

virtual bool empty() const = 0;
— And other methods we haven't learned virtual int size() const = 0;

— Doubly linked List w/ tail pointer

such as a circular array or an approach virtual void push_back(int new_val) = 0;
similar to the Maze Queue with head virtual int front() const = 0;
and tail indexes virtual void pop_front() = 0;
: }s
* Let's make a generic Queue #endif

interface that can then be inherited
by specific implementations
* Any derived implementation will

have to conform to these public
member functions

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

Ex1 - Derived Implementations

Derived implementation can
freely implement the queue
however they like but MUST
adhere to the interface
specified by IntQueue

One implementation could use
a SINGLY LINKED LIST approach
— Add to back quickly using the tail

pointer

Remove from front using the head
pointer

Another implementation could
use an array with a front and
back index to know where to
add new items and where to
remove old items (similar to
PR3 Maze search queue)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded,

| of Engineering

#ifndef INTQUEUE_H
#define INTQUEUE _H

class IntQueue {
public:

virtual bool empty() const = 9;
virtual int size() const = 9;
}s :
intqueue.h
#endif
#include "intqueue.h"
class SLIntQueue : public IntQueue {
public:
bool empty() const { return head_ == NULL; }
int size() const { ... }
private:
Item* head; Item* tail; slintqueue.h
}s
#include "ilistint.h"
class ArrayIntQueue : public IntQueue {
public:

bool empty() const { return size_
int size() const { return size ;

private:
int size_;
int* arrPtr_;
int front_, back_;

};

}

= 0; }

arrintqueue.h

. S Viterbi

E X 1 - U S a g e Sthodlol Engineeting

#tinclude <iostream>

 Recall that to take #include "intqueue.h”
advantage of dynamic |0l i
binding you must use a void fill with_data(IntQueue* q)
base-class pOinter or { for(int i=@; i < 1@; i++){ g->push_back(i); }
reference that points-to J
or references a derived yoid prat_and_pop(intQueucs @)
object i 4 o ol @ oot
* What's the benefit of y O apepTTontl;
this? %nt main()

IntQueue* myq = new SLIntQueue;
fill with_data(myq);
print_and_pop(*myq);

return 9;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

—_- = i hs§S§ew_ —_--=ILr USCViterbi
Ex 1 — Reduced Coupling and Increased™ "

Flexibility

e What's the benefit of this? | #inciude vircqoene.ne

#include "arrintqueue.h"

— We can drop in a different derived | using namespace std;

implementation WITHOUT void fill with_data(IntQueue* q)
i {
Changmg.any Otl:\@lj code other for(int i=0; i < 10; i++){ gq->push_back(i); }
than the instantiation!!! }
— Years later | can write a new void print_and_pop(IntQueue& q)
. . {
Queue implementation that for(int i=0; i < mylist.size(); i++){
conforms to the IntQueue cout << q.front() << endl;
] L cout << g.pop_front();
interface and drop it in and the }
}

subsystems [e.g. fill_with_data() int main()
and print_and_pop()] should work | {
// IntQueue* myq = new SLIntQueue;

as is. IntQueue* myq = new ArrayIntQueue;
fill with_data(myq);
print_and_pop(*myq);

return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BEST PRACTICES AND OTHER
DETAILS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

General OO Design Goal

* Loose Coupling: Arelationship between objects where
changes in one component do not require (or reduced
the need for) changes in others.

* Examples:

— A USB device is loosely coupled with your laptop whereas
your processor is tightly coupled

— A car's battery is loosely coupled with the vehicle whereas
the engine is tightly coupled

* To achieve loose coupling we have principles that we often try
to follow in our software design.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

OO Design Principles

* Single-Responsibility

— A class (or even a function) should generally have only one responsibility
(e.g. a product, a user, a quadrilateral, a linked list, etc.)

* Open/closed rule:

— A class should be open to extension but closed to modification. A class
should be designed so that its behavior can be changed through
inheritance/polymorphism, not modification.

 These are a few principles from what some developers refer to
as the 5 SOLID principles

— Feel free to search online for more readings. There's not one agreed
upon set of principles and even how various principles are applied may
be a subject of debate.

For C++ OO implementation guidelines:
— https://isocpp.org/fag — Scroll to "Classes and Inheritance" section

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

https://isocpp.org/faq
https://isocpp.org/faq

R, IS Viterbi

School of Engineering

Virtual Destructors

class Student{
~Student() { }
string major();

}...

class StudentWithGrades : public Student

{
public:

StudentWithGrades(...)
{ grades = new int[10]; }
~StudentWithGrades { delete [] grades; }
int *grades;

}

int main()

{
Student *s = new StudentWithGrades(...);

delete s; // Which destructor gets called?
return 0;

class Student{
virtual ~Student() { }
string major();

}...

class StudentWithGrades : public Student

{

public:
StudentWithGrades(...)
{ grades = new int[10]; }
~StudentWithGrades { delete [] grades; }
int *grades;

}

int main()

{
Student *s = new StudentWithGrades(...);
delete s; // Which destructor gets called?
return 0;

}

Due to static binding (no virtual decl.)
~Student() gets called and doesn’t delete
grades array

Due to dynamic binding (virtual decl.)
~StudentWithGrades() gets called and does
delete grades array

 Classes that have at least 1 virtual function should have a virtual destructor
(http://www.parashift.com/c++-fag-lite/virtual-functions.html#faq-20.7)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html

. S Viterbi

School of Engineering

Polymorphism & Private Inheritance

Warning: If private or protected
inheritance is used, the derived
class is no longer type-compatible
with base class

— Can't have a base class pointer

reference a derived object

Example to the right

— Person™* can no longer point at Faculty

Another example

— Given: class Queue
LinkedList

— Can NOT do the following:
— LinkedList * p = new Queue();

private

class Person {
public:
virtual void print_info();
string name; int id;
}s
class Student :
public:
void print_info(); // print major too
int major; double gpa;
}s
// if we use private inheritance
// for some reason
class Faculty : private Person {
public:
void print_info(); // print tenured
bool tenure;

public Person {

}s

int main()

{
Person *q;
Student* s = new Student("Joe",2,5);
Faculty* f = new Faculty("Ken",3,0);
g = s; g->print_info(); // works
q = f; g->print_info(); // won't work!!!
f->print_info(); // works

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R, IS Viterbi

School of Engineering

How polymorphism works under the hood

VTABLES AND VPTRS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R, IS Viterbi

VTables

Class
CollegeStudent
vtable ptr

string name;

Class TrojanStudent

vtable ptr
string name;

Trojan members

Class
CSTrojanStudent

vtable ptr fp==""

string name;

Trojan members

CSTrojan members

CollegeStudent

vtable
take test Ox0
play_sports ox0
TrojanStudent
vtable
take_test 0x4001c0 =" "
play sports | ©x400284 &t =*""
CSTrojanStudent
vtable

.
.

fake fest | ox403e78 b+ .°

*

play_sports 0x400284 ¢

School of Engineering

class CollegeStudent {

public:

string get _name() { return name; }

virtual void take test() = 0;

virtual string play sports() =
protected:

string name;
}s
class TrojanStudent :
public:

void take_test(.)- # cout << "Got an A."; }

. string play sports(){return string("WIN!");}

L]
mn "
llll ¢
a ®

public CollegeStudent {

},
: public TrojanStudent {
public: .

void take tESt() i cout << "A..

¥ :
J . .

.curved"; }

Compiler creates a table for each class with
an entry for each virtual function (aka vtable).

Each entry points to the appropriate function
code to call

Each object has an extra data member (vptr)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. th at pOI nts to the Vta ble for |tS CI dass.

R, IS Viterbi

School of Engineering
* Calling a non-virtual function, always goes to class CollegeStudent {
. public:
t.he same Fode (known at compile string get name() { return name; }
time/statically) virtual void take test() = 0;
Calling a virtual function, requires following p‘;;,’;;giid?t“”g DUER] SEOFES) = (F
the vtable ptr at runtime (dynamically) to find string name;
the correct function to call }s
class TrojanStudent : public CollegeStudent {
S 0x5510 public:
vtable ptr n void take_test() { cout << "Got an A."; }
Bob e string play_sports(){return string("WIN!");}
O L4
e }s
Trojan Members ".,‘ class CSTrojanStudent : public TrojanStudent {
take test | ©x4001cO public:
cs1 0x5530 void take_test() { cout << "A...curved"; }
vtable ptr 1 play_sports 0x400284 }s
Alice . void f1(CollegeStudent* s) {
. .. cout << s->get name() << " test result: ";
Trojan members '.. s->take test();
CSTrojan members 8 } s->play_sports();
take, test 0x403e78 . .
cs2 0x5570 P int main()
| .* " play_sports 0x400284 {
vtable_ptr TrojanStudent s("Bob"); f1(&s);
Charlie CSTrojanStudent cs1("Alice"); f1(&csl);
CSTrojanStudent cs2("Charlie"); f1(&cs2);
Trojan members return 0;
: }
© 2022 bHy %&%J%pﬂ.‘%?@ﬁem is protected and may not be shared, uploaded, or distribu

R, IS Viterbi

School of Engineering

ANOTHER EXAMPLE

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Game of Monsters

* Consider a video game with a heroine who has a score and
fights 3 different types of monsters {A, B, C}

 Upon slaying a monster you get a different point value:
— 10 pts. = monster A
— 20 pts. = monster B
— 30 pts. = monster C

* You can check if you've slayed a monster via an 'isDead()' call
on a monster and then get the value to be added to the
heroine's score via 'getScore()’

* The game keeps objects for the heroine and the monsters

 How would you organize your Monster class(es) and its data
members?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

Using Type Data Member

class Player {
public:
int addToScore(int val) { _score += val; }

* Canusea'type'data | eiee
member and code ;

class Monster {
public:

¢ COnZ Adding neW Monster(int type) : _type(type) {}

bool isDead(); // returns true if the monster is dead

monSter types int getValue() {

if(_type == @) return 10;

. . . else if(_type == 1) return 20;
requires modifying else retirn 30;
}

Monster class code as | P o n 1o 2c
. . ¥

does changing point |’ .

total {

Player p;

int numMonsters = 10;

Monster** monsters = new Monster*[numMonsters];
// init monsters of various types

while(1){
// Player action occurs here
for(int i=0; i < numMonsters; i++){
if(monsters[i]->isDead())
p.addToScore(monserts[i]->getValue())

© 2022 by Mark Redekopp. This content is protected and may not be shared, upload }

— USC\ﬁtlglziﬂ
Using Score Data Member

class Player {
public:
int addToScore(int val) { _score += val; }

e Can use a 'value' data L
int _score;
member and code };

class Monster {

. public: .
* Pro: Monster class is oSt 31 vatue(val))
int getValue() {

now decoupled from et _value

new types or changesto | i

int _value;
oint values §
F) int main()
{
Player p;
int numMonsters = 10;
Monster** monsters = new Monster*[numMonsters];
monsters[@®] = new Monster(10); // Type A Monster

monsters[1] = new Monster(20); // Type B Monster

while(1){
// Player action occurs here
for(int i=0; i < numMonsters; i++){
if(monsters[i]->isDead())
p.addToScore(monserts[i]->getValue())

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distribute

— USCViterbi .
Using Inheritance o

* Go back to the requirements: oot e
— "Consider a video game with a Monster*(int(\)/al) : _value(val) { }
bool isDead();
heroine who has a score and inz g:tvzlue() {
fights 3 different types of . return _value;
monsters {A, B, C}" private:
H 1 LI N P ! i t —_ 1 ;

— Anytime you see 'types', 'kinds', };m vatue
etc. an inheritance hierarchy is -
probably a viable and good zn rat)
solution Player p;

.) . int numMonsters = 10;

— Anytime you find yourself writing Monster** monsters = new Monster*[numMonsters];
big if..elseif...else statement to monsters[@] = new Monster(10); // Type A Monster
determine the type of Something monsters[1] = new Monster(20); // Type B Monster
inheritance hierarchy is probably while(1){

d luti // Player action occurs here
a good solution for(int i=0; i < numMonsters; i++){
HP : if(monsters[i]->isDead())
* Usua”y prefer to dIStIngUISh p.addToScore(monserts[i]->getValue())
types at creation and not in } }
the class itself }
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distribu

P 15\ &
Is Polymorphism Needed?

* So sometimes seeding an object class Monster {
H 1 public:
with different (?Iata vaIu.es allows Monster(int val) : value(val) {)
the polymorphic behavior bool isDead();
int getValue() {
 Other times, data is not , FEELIT RIS
enough...code is needed private:
int _value;
* Consider if the score of a monsteris |1
not just hard coded based on type int main()
. {
but type and other data attributes Player p;
. . . . int numMonsters = 10;

— If Monster type Ais slain with a Smgle Monster** monsters = new Monster*[numMonsters];
shot your points are multiplied by the monsters[@] = new Monster(1@); // Type A Monster
base score and their amount of time monsters[1] = new Monster(20); // Type B Monster
they are running around on the screen while(1){

// Player action occurs here

— However, Monster type B alternates for(int i=0; i < numMonsters; i++){

between berserk mode and normal if(mogzteES[i]E>isDeag(E)] walue())
. . p.addToScore(monserts[i]->getValue
mode and you get different po.mts }
based on what mode they are in when }
}

you slay them

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributel

— USCViterbi .
Using Polymorphism o

 Canyou just create different Clazi_Monster‘A {
public:
classes? bool isDead();
int tVal
* Not really, can't store them e ue()
around in a single container/array // code for Monster A with multipliers & head shots
}
}s

class MonsterB {
public:

bool isDead();

int getValue()

{

}
};

// code for Monster B with berserker mode, etc.

int main()
{
Player p;
int numMonsters = 10;
// can't have a single array of "Monsters"
// Monster** monsters = new Monster*[numMonsters];

// Need separate arrays:
MonsterA* monsterAs = new MonsterA*[numMonsters];
MonsterB* monsterBs = new MonsterB*[numMonsters];

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or disiribuied.

. S Viterbi

School of Engineering
. . class Monster {
* Will this work? int getvelue()
. . . // generic code
* No, static binding!! "
) 1 MonsterA : public Monst
_ WI” only caII cpzts)iiccs)ns er public Monster {
Monster::getValue() and Tt el
{
never // code for Monster A with multipliers & head shots

MonsterA::getValue() or |,
MonsterB::getValue()

class MonsterB : public Monster {
public:

bool isDead();

int getValue()

// code for Monster B with berserker mode, etc.

}
};

int main()
{
Player p;
int numMonsters = 10;

Monster** monsters = new Monster*[numMonsters];
// now try to create and store MonsterA's and B's in this

// array
}s

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or disiribuied.

— USCViterbi .
Using Polymorphism o

. . class Monster {
¢ W|” th'S WOI’k? bool isDead(); // could be defined once for all monsters
virtual int getValue() = 0;

* Yes, Dynamic binding!! E
cl terA : public ter
e Now | can add new pubLis P tonster
int getValue()
Monster types w/o {
. // code for Monster A with multipliers & head shots
changing any Monster %
Classes class MonsterB : public Monster {
. public:
* Only the creation code L8 (L
need Change // code for Monster B with berserker mode, etc.
}
}s
int main()
{

Monster** monsters = new Monster*[numMonsters];

monsters[@] = new MonsterA; // Type A Monster
monsters[1] = new MonsterB; // Type B Monster
while(1){

// Player action occurs here
for(int i=0; i < numMonsters; i++){
if(monsters[i]->isDead())
p.addToScore(monserts[i]->getValue())

P}

return 9;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded

Deeper Investigation

* Designh patterns: Common OO structures and
uses of inheritance/polymorphism
— https://sourcemaking.com/design patterns

* Open/closed rule:

— http://butunclebob.com/ArticleS.UncleBob.Princi
plesOfOod

* General guidelines and FAQ

— https://isocpp.org/fag — Scroll to "Classes and
Inheritance" section

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

https://sourcemaking.com/design_patterns
https://sourcemaking.com/design_patterns
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://isocpp.org/faq
https://isocpp.org/faq

R, IS Viterbi

School of Engineering

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi
Review Questions 1

 As we call processPerson(&p) what
member functions will be called
(e.g. Person::print_info,
CSStudent::useComputer, etc.)

 As we call processPerson(&s)?

 As we call processPerson(&cs)?

* We use the terms static and dynamic binding
when referring to which function will be
called when virtual is NOT or IS present.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

class Person {
public:
virtual void print_info() const; // name, ID
void useComputer(); // stream a show
string name; int id;
¥
class Student :
public:
void print_info() const; // print major
void useComputer(); // write a paper
int major; double gpa;
¥
class CSStudent :
public:
void print_info() const; // print OH queue pos
void useComputer(); // fight with Docker
¥

public Person {

public Student {

void processPerson(Person* p)
{ p->print_info();
p->useComputer(); }

int main(){
Person p(...); processPerson(&p);
Student s(...); processPerson(&s);
CSStudent cs(...); processPerson(&cs);
// more

- USCViterbi .
Review Questions 2

class Person {

e What does "=0;" mean in the S
public:

declarations to the right? virtual void print_info() const 28;

virtual void useComputer(); // stream a show
string name; int id;

};

* What do we call a class with 1 or class Student : public Person {
more of these kind of public: — . .
. void print_info() const; // print major
declarations? int major; double gpa;
}s
class CSStudent : public Student {
. | public:
e Isit okay that Student doesn't void print_info() const; // print OH queue pos
: id useComputer(); // fight with Dock
provide a useComputer() e ert)s // Fight with Docker

implementation?

void printPerson(Person* p) { p->print_info(); }

e Can we declare Person ijects? void compute(Person& p) { p.useComputer(); }
 (Can we declare pointers or int main(){
] Person p(...); // Allowed?
references to Person objects? Student s(...); useComputer(s);
CSStudent cs(...); printPerson(&cs);
* When should a class have a /7 more
virtual destructor? ¥

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Class hierarchies with low coupling (if time permits)

SPECIFIC DESIGN PATTERNS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- /] USCViterbi .
Design Patterns

« Common software practices to create modular code
— Often using inheritance and polymorphism

 Researchers studied software development processes and actual code to see
if there were common patterns that were often used
— Most well-known study resulted in a book by four authors affectionately known
as the "Gang of Four" (or GoF)

* Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides

* Creational Patterns

— Singleton, Factory Method, Abstract Factory, Builder, Prototype
e Structural Patterns

— Adapter, Facade, Decorator, Bridge, Composite, Flyweight, Proxy
* Behavioral Patterns

— Iterator, Mediator, Chain of Responsibility, Command, State, Memento,
Observer, Template Method, Strategy, Visitor, Interpreter

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. USC Viterbi

School of Engine

Understanding UML Relatlonshlps

 UML (Unified Modeling Language) is often used to
depict software designs and object relationships

— https://www.visual-paradigm.com/guide/uml-unified-
modeling-language/uml-class-diagram-tutorial/

— UML can be very detailed and specific, whereas we may often
use a basic subset to communicate our SW design

 We'll generally just use generic inheritance and
composition relationships:

Client Interface

--"

- Interface* if

A

Concrete Concrete
ObjectA ObjectB

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or disiribuied.

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

- /] USCViterbi '
Strategy

* Abstracting interface to allow alternative -
ient > Interface
approaches - Interface* if |-~~~
* Fairly classic polymorphism idea T

* In avideo game the Al may take different
Concrete Concrete

strategies ObjectA ObjectB

— Decouples Al logic from how moves are
chosen and provides for alternative
approaches to determine what move to

make AT MoveBehavior

] - MoveBehavior* if f-----7 g O R
* Recall "Shapes" example/exercise from 7y
class/lab
— Program that dealt with abstract shape
class rather than concrete rectangles, Aggressive Random
. Behavior Behavior
circles, etc.

— The program could now deal with any new
shape provided it fit the interface

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi .
Your Search Engine

 Think about your class project and
where you might be able to use the

string searchType;

Strategy pattern string searchWords;
cin >> sType;
e AND, OR, Normal Search SearchMode* s;
if(sType == "AND"){
client s = new ANDSearch;
- SearchMode* if }
else if(sType == "OR")
{
s = new ORSearch;
. SearchMode }
> + search() else {

s = new SingleSearch;

A }

getline(cin, searchWords);
s->search(searchiWords);

ANDSearch ORSearch SingleSearch

Client

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. (SC Wteiliid
Factory Pattern

* A function, class, or static function of a class used to abstract
creation

e Rather than making your client construct objects (via 'new’,
etc.), abstract that functionality so that it can be easily extended
without affecting the client

r-» Item* 1 = factory.makeItem(type):

Client
<< code >>
Factory é_i N Item
+ makeItem() 4
v
makeItem(int type) > C?;:Pi:e C%;fri:e
{ em em

if(type==A)
return new ItemA;
else if(type == B)
return new ItemB;

© 202 Dy VAR TRCUCRUPP-— TS CUTTTeT T TS protestea-arra ey NOot be shared, Uploaded, or distributed.

. S Viterbi

Factory Example

 We can pair up our search strategy objects with a factory to
allow for easy creation of new approaches

Factory Client
class SearchFactory{ string sType;
public: string searchWords;
static SearchMode* create(string type)
{ cin >> sType;
if(type == "AND") SearchMode* s = SearchFactory::create(sType);
return new ANDSearch;
else if(type == "OR") getline(cin, searchWords);
return new ORSearch; s->search(searchWords);
else
return new SingleSearch;
}
}s
Search Interface Concrete Search
class SearchMode { class AndSearch : public SearchMode
public: {
virtual search(set<string> searchWords) = 0; ... public:
}s search(set<string> searchWords){
// perform AND search approach
}
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. };

. S Viterbi

Factory Example

e The benefitis now | can add new search modes without the client
changing or even recompiling

class SearchFactory{

string sType;

public: string searchWords;
static SearchMode* create(string type)
{ cin >> sType;
if(type == "AND") SearchMode* s = SearchFactory::create(sType);

return new ANDSearch;

else if(type
return new
else if(type
return new
else
return new

}
};

== "OR")
ORSearch;
== "DIFF")
DIFFSearch;

SingleSearch;

getline(cin, searchWords);
s->search(searchWords);

class DIFFSearch

{
public:

: public SearchMode

search(set<string> searchWords);

};

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

lterator

* Decouples organization of data in a collection
from the client who wants to iterate over and
access just the data

— Data could be in a BST, linked list, or array

— Client just needs to...
* Allocate an iterator [it = collection.begin()]
 Dereferences the iterator to access data [*it]
* Increment/decrement the iterator [++it]

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi .
On Your Own

* Design Patterns
— Observer
— Proxy
— Template Method
— Adapter

* Questions to try to answer
— How does it make the design more modular (loosely coupled)
— When/why would you use the pattern

* Resources
— http://sourcemaking.com/

— http://www.vincehuston.org/dp/
— http://www.oodesign.com/

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

http://sourcemaking.com/
http://sourcemaking.com/
http://www.vincehuston.org/dp/
http://www.vincehuston.org/dp/
http://www.oodesign.com/
http://www.oodesign.com/

R, IS Viterbi

School of Engineering

SOLUTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R, IS Viterbi

School of Engineering

Assignment of Base/Derived

* Can we assign a derived object into abase [1,55 person ¢

object? public:
)) .) void print_info(); // print name, ID
 Can we assign a base object into a derived? string name; int id;
}s

* Think hierarchy & animal classification? ,
class Student : public Person {

— Can any dog be (assigned as) a mammal public:
void print_info(); // print major too

— Can any mammal be (assigned as) a dog T nefers ceulie maes

* We can only assign a derived into a base }s
(since the derived has EVERYTHING the int main(){
Person p("Bill",1);
base does) Student s("Joe",2,5);
— p=s;//Base = Derived...Good! // Which assignment is plausible?

p=s; //or

— s=p;// Derived = Base...Bad! s = p;

Class Person Class Student
string name_ string name_
int id_ l int id_

0 int major_

double gpa_

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi
Review Questions 1

 As we call processPerson(&p)
what member functions will be
called (e.g. Person::print_info,

CSStudent::useComputer, etc.)

— Person::print_info() /
Person::useComputer()

 As we call processPerson(&s)?

— Student::print_info() /
Person::useComputer()

 As we call processPerson(&cs)?

— CSStudent::print_info() /
Person::useComputer()

* We use the terms static and dynamic
binding when referring to which function
will be called when virtual is NOT or IS
present.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

class Person {
public:
virtual void print_info() const; // name, ID
void useComputer(); // stream a show
string name; int id;
¥
class Student :
public:
void print_info() const; // print major
void useComputer(); // write a paper
int major; double gpa;
¥
class CSStudent :
public:
void print_info() const; // print OH queue pos
void useComputer(); // fight with Docker
¥

public Person {

public Person {

void processPerson(Person* p)
{ p->print_info();
p->useComputer(); }

int main(){
Person p(...); processPerson(&p);
Student s(...); processPerson(&s);
CSStudent cs(...); processPerson(&cs);
// more

- USCViterbi .
Review Questions 2

class Person {

e What does "=0;" mean in the S
public:

declarations to the right? virtual void print_info() const 28;

virtual void useComputer(); // stream a show
string name; int id;

— Pure virtual function

e What do we call a class with 1 or }s _
. . class Student : public Person {
more of these kind of declarations? public:

void print_info() const; // print major

— Abstract class int major; double gpa;

) i ' }s
Is it Okay that Student doesn’t class CSStudent : public Person {
provide a useComputer() public:
. . 3 void print_info() const; // print OH queue pos
lmplementatlon. void useComputer(); // fight with Docker
— Yes, it inherits Person::useComputer() ¥
e Can we declare Person objects? No void printPerson(Person* p) { p->print_info(); }
void compute(Person& p) { p.useComputer(); }

 Can we declare pointers or

int main(){

references to Person objects? Yes person p(...); // Allowed?
. Student s(...); useComputer(s);
* When should a class have a virtual csStudent cs(...); printPerson(&cs);
destructor? , //STONE

— When at least one other virtual function

is declared in the class
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

————— |5 \lcrbi &
Polymorphism in 3 Steps

class Person {

. public:
° StEP 1: Determine what type of virtual void print_info() const;
. t / f . b . d t ” // print name
pointer/rererence IS being used to Ca void code(); // Uses scratch
the function string name; int id;
}s
° Step 2: Go to the prototype of the class Student : public Person {
. . public:
function in the class that matches the void print_info() const; // print major too
. irtual id d ; U th
type of pointer/reference and ask: ot ;jjo:‘jldoﬁglg‘;pa; A
"Is it 'virtual'?" at that level in the }; _
. class CSStudent : public Student {
hierarchy public:
. void print_info() const; // print tenured
° Step 3a: If ., execute the function void code(); // uses C++ or Java
: }s
from the class matching the - int main(){
-. Person p("Bill",1);
] Student s("Jill",2,5);
* Step 3b: If yes, execute the function CSStudent cs("Cory",3,6);
] Person *qg; Student* t;
from the class matching the type of q = &s; g->print_info(); // calls:
. . - g->code(); // calls:
object being pointed to or referenced 0 = Bes; a-scode(): 17 calle T
t = &cs; t->print_info(); // calls:
t->code(); // calls:
¥

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

