
5c.1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CSCI 104 Unit 5c -
Polymorphism

CSCI 103L Teaching Team

5c.2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Base and Derived Type Compatibility
• Are base and derived objects

type compatible? Put another way,
can we assign a derived object into a base
object?

• Can we assign a base object into a derived?
– p = s; // Base = Derived…________
– s = p; // Derived = Base…________

• Think hierarchy & animal classification?
– Can any dog be (assigned as) a mammal
– Can any mammal be (assigned as) a dog

• We can only assign a derived into a base
(since the derived has EVERYTHING the
base does)

Class Person

string name_

int id_

string name_

int id_

int major_

double gpa_

Class Student

class Person {
 public:
 void print_info(); // print name, ID
 string name; int id;
};

class Student : public Person {
 public:
 void print_info(); // print major too
 int major; double gpa;
};

int main(){
 Person p("Bill",1);
 Student s("Joe",2,5);
 // Which assignment is plausible?
 p = s; // or
 s = p;
}

5c.3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pointer & Reference Compatibility
• A pointer or reference to a derived class object

is type-compatible with (can be assigned to) a
base-class type pointer/reference
– A base class pointer or reference can point to or

reference a Derived object
– Derived d; Base* b = &d;

• But not vice versa
– A derived class pointer or reference CANNOT point to

or reference a Base object
– Base b; Derived* d = &b;

• And clearly a derived pointer or reference is
NOT type compatible with a different derived
type pointer/reference.

class Person {
 public:
 void print_info() const; // print name, ID
 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major too
 int major; double gpa;
};
class Faculty : public Person {
 public:
 void print_info() const; // print tenured
 bool tenure;
};
int main(){
 Person *p = new Person("Bill",1);
 Student *s = new Student("Joe",2,5);
 Faculty *f = new Faculty("Ken",3,0);
 Person *q;
 q = p; // ok? q = s; // ok? q = f; // ok?

 Student *t = p; // ok?
 Faculty *g = s; // ok?
}

✔

Person* q P
S

F

Student* t

Base pointer CAN point at any
publicly derived object.

Derived pointer CANNOT point
at base or "sibling" objects

✔
✔
✔
✔

P

P

5c.4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Which Function Gets Called?
• Person pointer or reference can also

point to Student or Faculty object (i.e.
a Student is a person)
– All methods known to Person are

supported by a Student object because it
was derived from Person

• What happens if we use the base
pointer/reference to call a member
function that both base and derive
implement? Which version will get
invoked?

• Will apply the function from the class
corresponding to the type of the
pointer used

class Person {
 public:
 void print_info() const; // print name, ID
 string name; int id;
};

class Student : public Person {
 public:
 void print_info() const; // print major
too
 int major; double gpa;
};

class Faculty : public Person {
 public:
 void print_info() const; // print tenured
 bool tenure;
};

int main(){
 Person *p = new Person("Bill",1);
 Student *s = new Student("Joe",2,5);
 Faculty *f = new Faculty("Ken",3,0);
 Person *q;
 q = p; q->print_info();
 q = s; q->print_info();
 q = f; q->print_info();
} // calls

Name=Bill, ID=1
Name=Joe, ID=2
Name=Ken, ID=3

Person* q
print_info()

print_info()

print_info()

P
S

F
P

P

5c.5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Non-Virtual Functions: Base Pointer => Base Functions

• For second and third call to print_info()
we might like to have
Student::print_info() and
Faculty::print_info() executed
since the actual object pointed to is a
Student/Faculty

• BUT…it will call
Person::print_info()

• This is called 'static binding' (i.e. the
version of the function called is based
on the static type of the pointer being
used)

class Person {
 public:
 void print_info() const; // print name, ID
 string name; int id;
};

class Student : public Person {
 public:
 void print_info() const; // print major too
 int major; double gpa;
};

class Faculty : public Person {
 public:
 void print_info() const; // print tenured
 bool tenure;
};

int main(){
 Person *p = new Person("Bill",1);
 Student *s = new Student("Joe",2,5);
 Faculty *f = new Faculty("Mary",3,1);
 Person *q;
 q = p; q->print_info(); // base ptr, base obj
 q = s; q->print_info(); // base ptr, derv obj
 q = f; q->print_info(); // base ptr, derv obj
} // calls

Person* q

Name=Bill, ID=1
Name=Joe, ID=2
Name=Ken, ID=3

print_info()

print_info()

print_info()

P
S

F

No VIRTUAL
declaration…

…only functions from the
class type of the pointer

used can be called

1

2
P

P

5c.6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Virtual Functions: Base Ptr => Derived Functions
• Member functions can be declared

virtual
• virtual declaration allows derived

classes to redefine the function and
which version is called is determined by
the type of object pointed
to/referenced rather than the type of
pointer/reference
– Note: You do NOT have to override a virtual

function in the derived class…you can just
inherit and use the base class version

• This is called 'dynamic binding' (i.e.
which version is called is based on the
type of object being pointed to)

Name=Bill, ID=1
Name=Joe, ID=2, Major = 5
Name=Mary, ID=3, Tenured=1

class Person {
 public:
virtual void print_info() const; // name, ID

 string name; int id;
};

class Student : public Person {
 public:
 void print_info() const; // print major too
 int major; double gpa;
};

class Faculty : public Person {
 public:
 void print_info() const; // print tenured
 bool tenure;
};

int main(){
 Person *p = new Person("Bill",1);
 Student *s = new Student("Joe",2,5);
 Faculty *f = new Faculty("Mary",3,1);
 Person *q;
 q = p; q->print_info(); // base ptr, base obj
 q = s; q->print_info(); // base ptr, derv obj
 q = f; q->print_info(); // base ptr, derv obj
 // calls print_info for objected pointed to
 // not type of q

}

Person* q
print_info()

print_info()

print_info()

P
S

F

With VIRTUAL
declaration…

… function called is
based on the class type
pointed to (referenced)

1

2P

P

5c.7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Polymorphism
• Can we have an array that store

multiple types (e.g. an array that
stores both ints and doubles)? No!

• But we can use base pointers to
point at different types and have
their individual behavior invoked via
virtual functions

• Polymorphism via virtual functions
allows one set of code to operate
appropriately on all derived types of
objects

• One data structure can now
reference many types and the code
can perform appropriate behavior on
each as you iterate over the structure

int main()
{
 Person* p[5];
 p[0] = new Person("Bill",1);
 p[1] = new Student("Joe",2,5);
 p[2] = new Faculty("Ken",3,0);
 p[3] = new Student("Mary",4,2);
 p[4] = new Faculty("Jen",5,1);
 for(int i=0; i < 5; i++){
 p[i]->print_info();
 // should print most specific info
 // based on type of object
 }
}

Name = Bill, ID=1
Name = Joe, ID=2, Major=5
Name = Ken, ID=3, Tenured=0
Name = Mary, ID=4, Major=2
Name = Jen, ID=5, Tenured=1

Person* p[5]

P

P
S

P

P P
S

F F

5c.8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Pointers, References, and Objects
• To allow dynamic binding and

polymorphism the base class
must specify the function as
virtual AND

• Then use a base class
– Pointer
– Reference
to the derived objects

• Copying a derived object to a
base object makes a copy and
so no polymorphic behavior is
possible

Name=Joe, ID=2, Major = 5
Name=Joe, ID=2, Major = 5
Name=Joe, ID=2

void f1(Person* p)
{
 p->print_info();
 // calls Student::print_info()
}

void f2(const Person& p)
{
 p.print_info();
 // calls Student::print_info()
}

void f3(Person p)
{
 p.print_info();
 // calls Person::print_info() on the copy
}

int main(){
 Student s("Joe",2,5);
 f1(&s);
 f2(s);
 f3(s);
 return 0;
}

P
S

P

5c.9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary

• No virtual declaration:
– Member function that is called is based on the

– Static binding

• With virtual declaration:
– Member function that is called is based on the

– Dynamic Binding

5c.10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary

• No virtual declaration:
–Member function that is called is based on the

type of the pointer/reference
– Static binding

• With virtual declaration:
–Member function that is called is based on the

type of the object pointed at (referenced)
– Dynamic Binding

5c.11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Abstract Classes & Pure Virtuals
• In software development we may want to

create a base class that serves only as a
requirement/interface that derived classes
must implement and adhere to

• Example:
– Suppose we want to create a CollegeStudent

class and ensure all derived objects implement
behavior for the student to take a test and play
sports

– But depending on which college you go to you
may do these activities differently. Until we
know the university we don’t know how to
implement take_test() and play_sports()…

– We can decide to NOT implement them in this
class known as "pure" virtual functions
(indicated by setting their prototype =0;)

• A class with pure virtuals is called an
abstract base class (i.e. interface for
future derived classes)

class CollegeStudent {
 public:
 string get_name();
 virtual void take_test();
 virtual string play_sports();
 protected:
 string name;
};

class CollegeStudent {
 public:
 string get_name();
 virtual void take_test() = 0;
 virtual string play_sports() = 0;
 protected:
 string name;
};

Abstract base class with 2 pure virtual functions.
No object of type CollegeStudent will be allowed.

It only serves as an interface that derived
classes will have to implement.

Valid class. Objects of type
CollegeStudent can be declared.

5c.12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Abstract Classes & Pure Virtuals
• An abstract base class is one that

defines at least 1 or more
 pure virtual functions
– Prototype only
– Make function body

" = 0; "
– Functions that are not

implemented by the base class
but must be implemented by the
derived class to be able to create
an instance of the derived object

• Objects of the abstract class type
MAY NOT be
declared/instantiated
– Doing so would not be safe since

some functions are not
implemented

class CollegeStudent {
 public:
 string get_name() { return name; }
 virtual void take_test() = 0;
 virtual string play_sports() = 0;
 protected:
 string name;
};

class TrojanStudent : public CollegeStudent {
 public:
 void take_test() { cout << "Got an A."; }
 string play_sports(){return string("WIN!");}
};

class BruinStudent : public CollegeStudent {
 public:
 void take_test() { cout << "Uh..uh..C-."; }
 string play_sports(){return string("LOSE");}
};

int main() {
 vector<CollegeStudent *> mylist;
 mylist.push_back(new TrojanStudent);
 mylist.push_back(new BruinStudent);
 for(int i=0; i < 2; i++){
 mylist[i]->take_test();
 cout << mylist[i]->play_sports() << endl;
 }
 return 0;
}

Output:
Got an A. WIN!
Uh..uh..C-. LOSE

5c.13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

How Long is a Class Abstract?
• Objects of the abstract class

type MAY NOT be
declared/instantiated
– Doing so would not be safe

since some functions are not
implemented

• Until each pure virtual
function has a definition, the
class stays abstract (see
TrojanStudent to the right)

class CollegeStudent {
 public:
 string get_name() { return name; }
 virtual void take_test() = 0;
 virtual string play_sports() = 0;
 protected:
 string name;
};
class TrojanStudent : public CollegeStudent {
 public:
 string play_sports(){return string("WIN!");}
};
class CSTrojanStudent : public TrojanStudent {
 public:
 void take_test() { cout << "A...curved"; }
};
int main() {

CollegeStudent cs1;
 // WON'T COMPILE
 // CollegeStudent is abstract

TrojanStudent ts1;
 // WON'T COMPILE
 // TrojanStudent is still abstract
 CSTrojanStudent cs1;
 return 0;
}

Output:
Got an A. WIN!
Uh..uh..C-. LOSE

5c.14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

When to Use Inheritance
• Main use of inheritance is to

setup interfaces (abstract
classes) that allow for new,
derived classes to be written in
the future that provide
additional functionality but still
works seamlessly with original
code

#include "student.h"
class MITStudent : public CollegeStudent {
 public:
 void take_test() { cout << "Got an A+."; }
 string play_sports()
 { return string("What are sports?!?"); }
};

int main() {
 vector<CollegeStudent *> mylist;
 mylist.push_back(new TrojanStudent);
 mylist.push_back(new MITStudent);
 for(int i=0; i < 2; i++){
 sports_simulator(mylist[i]);
 }
 return 0;
}

#include "student.h"
void sports_simulator(CollegeStudent *stu){
 ...
 stu->play_sports();
};

g++ -c sportsim.cpp
outputs sportsim.o (10 years ago)

g++ main.cpp sportsim.o
program will run fine today with new MITStudent

5c.15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Abstract Classes
• An abstract base class can

still define common
functions, have data
members, etc. that all
derived classes can use via
inheritance
– Ex. 'color' of the Animal

class Animal {
 public:
 Animal(string c) : color(c) { }
 virtual ~Animal()
 string get_color() { return c; }
 virtual void make_sound() = 0;
 protected:
 string color;
};
class Dog : public Animal {
 public:
 void make_sound() { cout << "Bark"; }
};
class Cat : public Animal {
 public:
 void make_sound() { cout << "Meow"; }
};
class Fox : public Animal {
 public:
 void make_sound() { cout << "???"; }
};
int main(){
 Animal* a[3];
 a[0] = new Animal;
 // WON'T COMPILE...abstract class
 a[1] = new Dog("brown");
 a[2] = new Cat("calico");
 cout << a[1]->get_color() << endl;
 cout << a[2]->make_sound() << endl;
}

Output:
brown
meow

5c.16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Ex 1 - A Queue Interface
• We have learned that a queue can

be implemented using a
– Singly Linked List w/ tail pointer
– Doubly linked List w/ tail pointer
– And other methods we haven't learned

such as a circular array or an approach
similar to the Maze Queue with head
and tail indexes

• Let's make a generic Queue
interface that can then be inherited
by specific implementations

• Any derived implementation will
have to conform to these public
member functions

#ifndef INTQUEUE_H
#define INTQUEUE _H

class IntQueue {
public:
 virtual bool empty() const = 0;
 virtual int size() const = 0;
 virtual void push_back(int new_val) = 0;
 virtual int front() const = 0;
 virtual void pop_front() = 0;
};
#endif

5c.17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Ex1 - Derived Implementations
• Derived implementation can

freely implement the queue
however they like but MUST
adhere to the interface
specified by IntQueue

• One implementation could use
a SINGLY LINKED LIST approach
– Add to back quickly using the tail

pointer
– Remove from front using the head

pointer

• Another implementation could
use an array with a front and
back index to know where to
add new items and where to
remove old items (similar to
PR3 Maze search queue)

#ifndef INTQUEUE_H
#define INTQUEUE _H

class IntQueue {
 public:
 virtual bool empty() const = 0;
 virtual int size() const = 0;
 ...
};

#endif
intqueue.h

#include "intqueue.h"
class SLIntQueue : public IntQueue {
 public:
 bool empty() const { return head_ == NULL; }
 int size() const { ... }
 ...
 private:
 Item* head; Item* tail;
};

slintqueue.h

#include "ilistint.h"
class ArrayIntQueue : public IntQueue {
public:
 bool empty() const { return size_ == 0; }
 int size() const { return size_; }
 ...
private:
 int size_;
 int* arrPtr_;
 int front_, back_;
};

arrintqueue.h

5c.18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Ex 1 - Usage
• Recall that to take

advantage of dynamic
binding you must use a
base-class pointer or
reference that points-to
or references a derived
object

• What's the benefit of
this?

#include <iostream>
#include "intqueue.h"
#include "slintqueue.h"
using namespace std;

void fill_with_data(IntQueue* q)
{
 for(int i=0; i < 10; i++){ q->push_back(i); }
}

void print_and_pop(IntQueue& q)
{
 for(int i=0; i < mylist.size(); i++){
 cout << q.front() << endl;
 cout << q.pop_front();
 }
}
int main()
{
 IntQueue* myq = new SLIntQueue;

 fill_with_data(myq);

 print_and_pop(*myq);

 return 0;
}

5c.19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Ex 1 – Reduced Coupling and Increased
Flexibility

• What's the benefit of this?
– We can drop in a different derived

implementation WITHOUT
changing any other code other
than the instantiation!!!

– Years later I can write a new
Queue implementation that
conforms to the IntQueue
interface and drop it in and the
subsystems [e.g. fill_with_data()
and print_and_pop()] should work
as is.

#include <iostream>
#include "intqueue.h"
#include "arrintqueue.h"
using namespace std;

void fill_with_data(IntQueue* q)
{
 for(int i=0; i < 10; i++){ q->push_back(i); }
}

void print_and_pop(IntQueue& q)
{
 for(int i=0; i < mylist.size(); i++){
 cout << q.front() << endl;
 cout << q.pop_front();
 }
}
int main()
{
 // IntQueue* myq = new SLIntQueue;
 IntQueue* myq = new ArrayIntQueue;

 fill_with_data(myq);

 print_and_pop(*myq);

 return 0;
}

5c.20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

BEST PRACTICES AND OTHER
DETAILS

5c.21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

General OO Design Goal

• Loose Coupling: A relationship between objects where
changes in one component do not require (or reduced
the need for) changes in others.

• Examples:
– A USB device is loosely coupled with your laptop whereas

your processor is tightly coupled
– A car's battery is loosely coupled with the vehicle whereas

the engine is tightly coupled

• To achieve loose coupling we have principles that we often try
to follow in our software design.

5c.22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OO Design Principles

• Single-Responsibility
– A class (or even a function) should generally have only one responsibility

(e.g. a product, a user, a quadrilateral, a linked list, etc.)

• Open/closed rule:
– A class should be open to extension but closed to modification. A class

should be designed so that its behavior can be changed through
inheritance/polymorphism, not modification.

• These are a few principles from what some developers refer to
as the 5 SOLID principles
– Feel free to search online for more readings. There's not one agreed

upon set of principles and even how various principles are applied may
be a subject of debate.

• For C++ OO implementation guidelines:
– https://isocpp.org/faq – Scroll to "Classes and Inheritance" section

https://isocpp.org/faq
https://isocpp.org/faq

5c.23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Virtual Destructors

• Classes that have at least 1 virtual function should have a virtual destructor
(http://www.parashift.com/c++-faq-lite/virtual-functions.html#faq-20.7)

class Student{
 virtual ~Student() { }
 string major();
 ...
}

class StudentWithGrades : public Student
{
 public:
 StudentWithGrades(...)
 { grades = new int[10]; }
 ~StudentWithGrades { delete [] grades; }
 int *grades;
}

int main()
{
 Student *s = new StudentWithGrades(...);
 ...
 delete s; // Which destructor gets called?
 return 0;
}

class Student{
 ~Student() { }
 string major();
 ...
}

class StudentWithGrades : public Student
{
 public:
 StudentWithGrades(...)
 { grades = new int[10]; }
 ~StudentWithGrades { delete [] grades; }
 int *grades;
}

int main()
{
 Student *s = new StudentWithGrades(...);
 ...
 delete s; // Which destructor gets called?
 return 0;
}

Due to static binding (no virtual decl.)
~Student() gets called and doesn’t delete

grades array

Due to dynamic binding (virtual decl.)
~StudentWithGrades() gets called and does

delete grades array

http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html
http://www.parashift.com/c++-faq-lite/virtual-functions.html

5c.24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Polymorphism & Private Inheritance

• Warning: If private or protected
inheritance is used, the derived
class is no longer type-compatible
with base class
– Can't have a base class pointer

reference a derived object

• Example to the right
– Person* can no longer point at Faculty

• Another example
– Given: class Queue : private

LinkedList
– Can NOT do the following:
– LinkedList * p = new Queue();

class Person {
 public:
 virtual void print_info();
 string name; int id;
};
class Student : public Person {
 public:
 void print_info(); // print major too
 int major; double gpa;
};
// if we use private inheritance
// for some reason
class Faculty : private Person {
 public:
 void print_info(); // print tenured
 bool tenure;
};
int main()
{
 Person *q;
 Student* s = new Student("Joe",2,5);
 Faculty* f = new Faculty("Ken",3,0);
 q = s; q->print_info(); // works
 q = f; q->print_info(); // won't work!!!
 f->print_info(); // works
}

5c.25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

VTABLES AND VPTRS
How polymorphism works under the hood

5c.26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

VTables
class CollegeStudent {
 public:
 string get_name() { return name; }
 virtual void take_test() = 0;
 virtual string play_sports() = 0;
 protected:
 string name;
};
class TrojanStudent : public CollegeStudent {
 public:
 void take_test() { cout << "Got an A."; }
 string play_sports(){return string("WIN!");}
};
class CSTrojanStudent : public TrojanStudent {
 public:
 void take_test() { cout << "A...curved"; }
};

Class
CollegeStudent

vtable_ptr

string name;

CollegeStudent
vtable
0x0

0x0

take_test

play_sports

Class TrojanStudent

vtable_ptr

string name;

TrojanStudent
vtable
0x4001c0

0x400284

take_test

play_sports

Trojan members

vtable_ptr

string name;

CSTrojanStudent
vtable
0x403e78

0x400284

take_test

play_sports

Trojan members

Class
CSTrojanStudent

CSTrojan members

• Compiler creates a table for each class with
an entry for each virtual function (aka vtable).

• Each entry points to the appropriate function
code to call

• Each object has an extra data member (vptr)
that points to the vtable for its class.

5c.27

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Example of Calling Virtual Functions
• Calling a non-virtual function, always goes to

the same code (known at compile
time/statically)

• Calling a virtual function, requires following
the vtable ptr at runtime (dynamically) to find
the correct function to call

class CollegeStudent {
 public:
 string get_name() { return name; }
 virtual void take_test() = 0;
 virtual string play_sports() = 0;
 protected:
 string name;
};
class TrojanStudent : public CollegeStudent {
 public:
 void take_test() { cout << "Got an A."; }
 string play_sports(){return string("WIN!");}
};
class CSTrojanStudent : public TrojanStudent {
 public:
 void take_test() { cout << "A...curved"; }
};

void f1(CollegeStudent* s) {
 cout << s->get_name() << " test result: ";
 s->take_test();
 s->play_sports();
}
int main()
{
 TrojanStudent s("Bob"); f1(&s);
 CSTrojanStudent cs1("Alice"); f1(&cs1);
 CSTrojanStudent cs2("Charlie"); f1(&cs2);
 return 0;
}

vtable_ptr

Alice

0x403e78

0x400284

take_test

play_sports

Trojan members

cs1

CSTrojan members

s
vtable_ptr

Bob

0x4001c0

0x400284

take_test

play_sports

Trojan Members

vtable_ptr

Charlie

Trojan members

cs2

CSTrojan members

0x5530

0x5510

0x5570

5c.28

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ANOTHER EXAMPLE

5c.29

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

A Game of Monsters

• Consider a video game with a heroine who has a score and
fights 3 different types of monsters {A, B, C}

• Upon slaying a monster you get a different point value:
– 10 pts. = monster A
– 20 pts. = monster B
– 30 pts. = monster C

• You can check if you've slayed a monster via an 'isDead()' call
on a monster and then get the value to be added to the
heroine's score via 'getScore()'

• The game keeps objects for the heroine and the monsters
• How would you organize your Monster class(es) and its data

members?

5c.30

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Type Data Member
• Can use a 'type' data

member and code
• Con: Adding new

monster types
requires modifying
Monster class code as
does changing point
total

class Player {
 public:
 int addToScore(int val) { _score += val; }
 private:
 int _score;
};

class Monster {
 public:
 Monster(int type) : _type(type) {}
 bool isDead(); // returns true if the monster is dead
 int getValue() {
 if(_type == 0) return 10;
 else if(_type == 1) return 20;
 else return 30;
 }
 private:
 int _type; // 0 = A, 1 = B, 2 = C
};

int main()
{
 Player p;
 int numMonsters = 10;
 Monster** monsters = new Monster*[numMonsters];
 // init monsters of various types
 ...
 while(1){
 // Player action occurs here
 for(int i=0; i < numMonsters; i++){
 if(monsters[i]->isDead())
 p.addToScore(monserts[i]->getValue())
 }
 }
}

5c.31

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Score Data Member
• Can use a 'value' data

member and code
• Pro: Monster class is

now decoupled from
new types or changes to
point values

class Player {
 public:
 int addToScore(int val) { _score += val; }
 private:
 int _score;
};
class Monster {
 public:
 Monster(int val) : _value(val) { }
 bool isDead();
 int getValue() {
 return _value;
 }
 private:
 int _value;
};

int main()
{
 Player p;
 int numMonsters = 10;
 Monster** monsters = new Monster*[numMonsters];
 monsters[0] = new Monster(10); // Type A Monster
 monsters[1] = new Monster(20); // Type B Monster
 ...
 while(1){
 // Player action occurs here
 for(int i=0; i < numMonsters; i++){
 if(monsters[i]->isDead())
 p.addToScore(monserts[i]->getValue())
 }
 }
}

5c.32

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Inheritance
• Go back to the requirements:

– "Consider a video game with a
heroine who has a score and
fights 3 different types of
monsters {A, B, C}"

– Anytime you see 'types', 'kinds',
etc. an inheritance hierarchy is
probably a viable and good
solution

– Anytime you find yourself writing
big if..elseif…else statement to
determine the type of something,
inheritance hierarchy is probably
a good solution

• Usually prefer to distinguish
types at creation and not in
the class itself

class Monster {
 public:
 Monster(int val) : _value(val) { }
 bool isDead();
 int getValue() {
 return _value;
 }
 private:
 int _value;
};

int main()
{
 Player p;
 int numMonsters = 10;
 Monster** monsters = new Monster*[numMonsters];
 monsters[0] = new Monster(10); // Type A Monster
 monsters[1] = new Monster(20); // Type B Monster
 ...
 while(1){
 // Player action occurs here
 for(int i=0; i < numMonsters; i++){
 if(monsters[i]->isDead())
 p.addToScore(monserts[i]->getValue())
 }
 }
}

5c.33

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Is Polymorphism Needed?
• So sometimes seeding an object

with different data values allows
the polymorphic behavior

• Other times, data is not
enough…code is needed

• Consider if the score of a monster is
not just hard coded based on type
but type and other data attributes
– If Monster type A is slain with a single

shot your points are multiplied by the
base score and their amount of time
they are running around on the screen

– However, Monster type B alternates
between berserk mode and normal
mode and you get different points
based on what mode they are in when
you slay them

class Monster {
 public:
 Monster(int val) : _value(val) { }
 bool isDead();
 int getValue() {
 return _value;
 }
 private:
 int _value;
};

int main()
{
 Player p;
 int numMonsters = 10;
 Monster** monsters = new Monster*[numMonsters];
 monsters[0] = new Monster(10); // Type A Monster
 monsters[1] = new Monster(20); // Type B Monster
 ...
 while(1){
 // Player action occurs here
 for(int i=0; i < numMonsters; i++){
 if(monsters[i]->isDead())
 p.addToScore(monserts[i]->getValue())
 }
 }
}

5c.34

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Polymorphism
• Can you just create different

classes?
• Not really, can't store them

around in a single container/array

class MonsterA {
 public:
 bool isDead();
 int getValue()
 {
 // code for Monster A with multipliers & head shots
 }
};

class MonsterB {
 public:
 bool isDead();
 int getValue()
 {
 // code for Monster B with berserker mode, etc.
 }
};

int main()
{
 Player p;
 int numMonsters = 10;
 // can't have a single array of "Monsters"
 // Monster** monsters = new Monster*[numMonsters];

 // Need separate arrays:
 MonsterA* monsterAs = new MonsterA*[numMonsters];
 MonsterB* monsterBs = new MonsterB*[numMonsters];

5c.35

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Polymorphism
• Will this work?
• No, static binding!!

– Will only call
Monster::getValue() and
never
MonsterA::getValue() or
MonsterB::getValue()

class Monster {
 int getValue()
 {
 // generic code
 }
};
class MonsterA : public Monster {
 public:
 bool isDead();
 int getValue()
 {
 // code for Monster A with multipliers & head shots
 }
};

class MonsterB : public Monster {
 public:
 bool isDead();
 int getValue()
 {
 // code for Monster B with berserker mode, etc.
 }
};

int main()
{
 Player p;
 int numMonsters = 10;

 Monster** monsters = new Monster*[numMonsters];
 // now try to create and store MonsterA's and B's in this
 // array
};

5c.36

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Using Polymorphism
• Will this work?
• Yes, Dynamic binding!!
• Now I can add new

Monster types w/o
changing any Monster
classes

• Only the creation code
need change

class Monster {
 bool isDead(); // could be defined once for all monsters
 virtual int getValue() = 0;
};

class MonsterA : public Monster {
 public:
 int getValue()
 {
 // code for Monster A with multipliers & head shots
 }
};

class MonsterB : public Monster {
 public:
 int getValue()
 {
 // code for Monster B with berserker mode, etc.
 }
};
int main()
{
 Monster** monsters = new Monster*[numMonsters];
 monsters[0] = new MonsterA; // Type A Monster
 monsters[1] = new MonsterB; // Type B Monster
 ...
 while(1){
 // Player action occurs here
 for(int i=0; i < numMonsters; i++){
 if(monsters[i]->isDead())
 p.addToScore(monserts[i]->getValue())
 } }
 return 0;
}

5c.37

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Deeper Investigation

• Design patterns: Common OO structures and
uses of inheritance/polymorphism
– https://sourcemaking.com/design_patterns

• Open/closed rule:
– http://butunclebob.com/ArticleS.UncleBob.Princi

plesOfOod
• General guidelines and FAQ
– https://isocpp.org/faq – Scroll to "Classes and

Inheritance" section

https://sourcemaking.com/design_patterns
https://sourcemaking.com/design_patterns
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://isocpp.org/faq
https://isocpp.org/faq

5c.38

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

5c.39

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review Questions 1
• As we call processPerson(&p) what

member functions will be called
(e.g. Person::print_info,
CSStudent::useComputer, etc.)

• As we call processPerson(&s)?

• As we call processPerson(&cs)?

• We use the terms static and dynamic binding
when referring to which function will be
called when virtual is NOT or IS present.

class Person {
 public:
virtual void print_info() const; // name, ID

 void useComputer(); // stream a show
 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major
 void useComputer(); // write a paper
 int major; double gpa;
};
class CSStudent : public Student {
 public:
 void print_info() const; // print OH queue pos
 void useComputer(); // fight with Docker
};

void processPerson(Person* p)
{ p->print_info();
 p->useComputer(); }

int main(){
 Person p(...); processPerson(&p);
 Student s(...); processPerson(&s);
 CSStudent cs(...); processPerson(&cs);
 // more
}

5c.40

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review Questions 2
• What does "=0;" mean in the

declarations to the right?

• What do we call a class with 1 or
more of these kind of
declarations?

• Is it okay that Student doesn't
provide a useComputer()
implementation?

• Can we declare Person objects?
• Can we declare pointers or

references to Person objects?
• When should a class have a

virtual destructor?

class Person {
 public:
virtual void print_info() const = 0;
virtual void useComputer(); // stream a show

 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major
 int major; double gpa;
};
class CSStudent : public Student {
 public:
 void print_info() const; // print OH queue pos
 void useComputer(); // fight with Docker
};

void printPerson(Person* p) { p->print_info(); }
void compute(Person& p) { p.useComputer(); }

int main(){
 Person p(...); // Allowed?
 Student s(...); useComputer(s);
 CSStudent cs(...); printPerson(&cs);
 // more
}

5c.41

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SPECIFIC DESIGN PATTERNS
Class hierarchies with low coupling (if time permits)

5c.42

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Design Patterns
• Common software practices to create modular code

– Often using inheritance and polymorphism
• Researchers studied software development processes and actual code to see

if there were common patterns that were often used
– Most well-known study resulted in a book by four authors affectionately known

as the "Gang of Four" (or GoF)
• Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma,

Richard Helm, Ralph Johnson and John Vlissides

• Creational Patterns
– Singleton, Factory Method, Abstract Factory, Builder, Prototype

• Structural Patterns
– Adapter, Façade, Decorator, Bridge, Composite, Flyweight, Proxy

• Behavioral Patterns
– Iterator, Mediator, Chain of Responsibility, Command, State, Memento,

Observer, Template Method, Strategy, Visitor, Interpreter

5c.43

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Understanding UML Relationships
• UML (Unified Modeling Language) is often used to

depict software designs and object relationships
– https://www.visual-paradigm.com/guide/uml-unified-

modeling-language/uml-class-diagram-tutorial/
– UML can be very detailed and specific, whereas we may often

use a basic subset to communicate our SW design

• We'll generally just use generic inheritance and
composition relationships:

Client Interface

Concrete
ObjectA

Concrete
ObjectB

- Interface* if

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

5c.44

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Strategy
• Abstracting interface to allow alternative

approaches
• Fairly classic polymorphism idea
• In a video game the AI may take different

strategies
– Decouples AI logic from how moves are

chosen and provides for alternative
approaches to determine what move to
make

• Recall "Shapes" example/exercise from
class/lab
– Program that dealt with abstract shape

class rather than concrete rectangles,
circles, etc.

– The program could now deal with any new
shape provided it fit the interface

Client Interface

Concrete
ObjectA

Concrete
ObjectB

- Interface* if

AI
+ makeMove()

Aggressive
Behavior

Random
Behavior

- MoveBehavior* if

MoveBehavior

5c.45

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Your Search Engine
• Think about your class project and

where you might be able to use the
strategy pattern

• AND, OR, Normal Search
client

+ search()

ANDSearch ORSearch

- SearchMode* if

SearchMode

string searchType;
string searchWords;

cin >> sType;
SearchMode* s;
if(sType == "AND"){
 s = new ANDSearch;
}
else if(sType == "OR")
{
 s = new ORSearch;
}
else {
 s = new SingleSearch;
}

getline(cin, searchWords);
s->search(searchWords);

SingleSearch

Client

5c.46

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Factory Pattern
• A function, class, or static function of a class used to abstract

creation
• Rather than making your client construct objects (via 'new',

etc.), abstract that functionality so that it can be easily extended
without affecting the client

Client

Item

Concrete
ItemA

Concrete
ItemB

<< code >>

Factory

+ makeItem()

makeItem(int type)
{
 if(type==A)
 return new ItemA;
 else if(type == B)
 return new ItemB;
}

Item* i = factory.makeItem(type):

5c.47

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Factory Example
• We can pair up our search strategy objects with a factory to

allow for easy creation of new approaches

class SearchFactory{
 public:
 static SearchMode* create(string type)
 {
 if(type == "AND")
 return new ANDSearch;
 else if(type == "OR")
 return new ORSearch;
 else
 return new SingleSearch;
 }
};

string sType;
string searchWords;

cin >> sType;
SearchMode* s = SearchFactory::create(sType);

getline(cin, searchWords);
s->search(searchWords);

Concrete SearchSearch Interface
class SearchMode {
 public:
 virtual search(set<string> searchWords) = 0; ...
};

class AndSearch : public SearchMode
{
 public:
 search(set<string> searchWords){
 // perform AND search approach
 }
 ...
};

ClientFactory

5c.48

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Factory Example
• The benefit is now I can add new search modes without the client

changing or even recompiling
class SearchFactory{
 public:
 static SearchMode* create(string type)
 {
 if(type == "AND")
 return new ANDSearch;
 else if(type == "OR")
 return new ORSearch;
 else if(type == "DIFF")
 return new DIFFSearch;
 else
 return new SingleSearch;
 }
};

string sType;
string searchWords;

cin >> sType;
SearchMode* s = SearchFactory::create(sType);

getline(cin, searchWords);
s->search(searchWords);

class DIFFSearch : public SearchMode
{
 public:
 search(set<string> searchWords);
 ...
};

5c.49

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Iterator

• Decouples organization of data in a collection
from the client who wants to iterate over and
access just the data
– Data could be in a BST, linked list, or array
– Client just needs to…

• Allocate an iterator [it = collection.begin()]
• Dereferences the iterator to access data [*it]
• Increment/decrement the iterator [++it]

5c.50

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

On Your Own

• Design Patterns
– Observer
– Proxy
– Template Method
– Adapter

• Questions to try to answer
– How does it make the design more modular (loosely coupled)
– When/why would you use the pattern

• Resources
– http://sourcemaking.com/
– http://www.vincehuston.org/dp/
– http://www.oodesign.com/

http://sourcemaking.com/
http://sourcemaking.com/
http://www.vincehuston.org/dp/
http://www.vincehuston.org/dp/
http://www.oodesign.com/
http://www.oodesign.com/

5c.51

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTIONS

5c.52

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Assignment of Base/Derived
• Can we assign a derived object into a base

object?
• Can we assign a base object into a derived?
• Think hierarchy & animal classification?

– Can any dog be (assigned as) a mammal
– Can any mammal be (assigned as) a dog

• We can only assign a derived into a base
(since the derived has EVERYTHING the
base does)
– p = s; // Base = Derived…Good!
– s = p; // Derived = Base…Bad!

Class Person

string name_

int id_

string name_

int id_

int major_

double gpa_

Class Student

class Person {
 public:
 void print_info(); // print name, ID
 string name; int id;
};

class Student : public Person {
 public:
 void print_info(); // print major too
 int major; double gpa;
};

int main(){
 Person p("Bill",1);
 Student s("Joe",2,5);
 // Which assignment is plausible?
 p = s; // or
 s = p;
}

5c.53

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review Questions 1
• As we call processPerson(&p)

what member functions will be
called (e.g. Person::print_info,
CSStudent::useComputer, etc.)
– Person::print_info() /

Person::useComputer()

• As we call processPerson(&s)?
– Student::print_info() /

Person::useComputer()

• As we call processPerson(&cs)?
– CSStudent::print_info() /

Person::useComputer()
• We use the terms static and dynamic

binding when referring to which function
will be called when virtual is NOT or IS
present.

class Person {
 public:
virtual void print_info() const; // name, ID

 void useComputer(); // stream a show
 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major
 void useComputer(); // write a paper
 int major; double gpa;
};
class CSStudent : public Person {
 public:
 void print_info() const; // print OH queue pos
 void useComputer(); // fight with Docker
};

void processPerson(Person* p)
{ p->print_info();
 p->useComputer(); }

int main(){
 Person p(...); processPerson(&p);
 Student s(...); processPerson(&s);
 CSStudent cs(...); processPerson(&cs);
 // more
}

5c.54

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Review Questions 2
• What does "=0;" mean in the

declarations to the right?
– Pure virtual function

• What do we call a class with 1 or
more of these kind of declarations?
– Abstract class

• Is it okay that Student doesn't
provide a useComputer()
implementation?
– Yes, it inherits Person::useComputer()

• Can we declare Person objects? No
• Can we declare pointers or

references to Person objects? Yes
• When should a class have a virtual

destructor?
– When at least one other virtual function

is declared in the class

class Person {
 public:
virtual void print_info() const = 0;
virtual void useComputer(); // stream a show

 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major
 int major; double gpa;
};
class CSStudent : public Person {
 public:
 void print_info() const; // print OH queue pos
 void useComputer(); // fight with Docker
};

void printPerson(Person* p) { p->print_info(); }
void compute(Person& p) { p.useComputer(); }

int main(){
 Person p(...); // Allowed?
 Student s(...); useComputer(s);
 CSStudent cs(...); printPerson(&cs);
 // more
}

5c.55

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Polymorphism in 3 Steps
• Step 1: Determine what type of

pointer/reference is being used to call
the function

• Step 2: Go to the prototype of the
function in the class that matches the
type of pointer/reference and ask:
"Is it 'virtual'?" at that level in the
hierarchy

• Step 3a: If no, execute the function
from the class matching the pointer
type.

• Step 3b: If yes, execute the function
from the class matching the type of
object being pointed to or referenced

class Person {
 public:
 virtual void print_info() const;
 // print name
 void code(); // Uses scratch
 string name; int id;
};
class Student : public Person {
 public:
 void print_info() const; // print major too
 virtual void code(); // Uses python
 int major; double gpa;
};
class CSStudent : public Student {
 public:
 void print_info() const; // print tenured
 void code(); // uses C++ or Java
};
int main(){
 Person p("Bill",1);
 Student s("Jill",2,5);
 CSStudent cs("Cory",3,6);
 Person *q; Student* t;
 q = &s; q->print_info(); // calls: ________
 q->code(); // calls: ________
 q = &cs; q->code(); // calls: ________
 t = &cs; t->print_info(); // calls: ________
 t->code(); // calls: ________
}

