I SCViterbi

School of Engineering

CSCI 103 — Unit 5d
Inheritance

CSCI 103L Teaching Team

S U§C¥i’$§§bi .
Recall: Constructor Initialization™™

Student: :Student() Student: :Student() :
{ name(), id(), scores()
name = "Tommy Trojan"; // calls to default constructors

id = 12313 {
scores.resize(10); name = "Tommy Trojan";
} id = 12313

scores.resize(10);

}
You can still assign data But any member not in the initialization list will
members in the {...} have its default constructor invoked before the

{..}
* You can still assign values in the constructor but realize that the
default constructors will have been called already

* So generally if you know what value you want to assign a data
member it's good practice to do it in the initialization list

Student: :Student() :

name("Tommy"), i1d(12313), scores(10)
{3

This would be the preferred approach especially for
© 2022 by Mark Redekopp. This content is protected and may@&I e mma,'lﬁsﬁla&mﬂﬂt\hers (le an Object)

I SCViterbi

School of Engineering

Object Oriented Design Concepts

* Encapsulation and Abstraction

— Combine data and operations on that data into a single
unit and only expose a desired public interface and
prevent modification/alteration of the implementation

* Inheritance

— Creating new objects (classes) from existing ones to specify
functional relationships and extend behavior

* Polymorphism

— Using the same expression to support different types with
different behavior for each type

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering
C | .

* Coupling refers to how much components depend on each
other's implementation details (i.e. how much work it is to
remove one component and drop in a new implementation of
it)

— Placing a new battery in your car vs. a new engine
— Adding a USB device vs. a new video adapter to your laptop

* OO Design seeks to reduce coupling as much as possible by

— Creating well-defined interfaces to update (write) or access (read) the
state of an object

— Allow alternate implementations that do NOT require interface
changes

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

Inheritance

* A way of defining interfaces, re-using classes and
extending original functionality

 Allows a new class to inherit all the data members and
member functions from a previously defined class

* Works from more general

More general

objects to more specific objects at the base
class (top of
— Defines an "is-a" relationship the hierarchy)

— Square is-a rectangle is-a shape

. . . More specific
— Square inherits from Rectangle which s you work to

. . lower/derived
inherits from Shape classes

Child /
Derived

— Similar to classification of organisms:

 Animal -> Vertebrate -> Mammals -> Primates

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCV1terb1
Base and Derived Classes

class Person {

* Derived classes inherit | i

Person(string n, int ident);
string get_name();

all data members and R

private:

functions of base class | strire nanes int ia;

class Student : public Person {
public:

o StUdent Class inherits: Student(string n, int ident, int mjr);

int get_major();

— get name() and double get gpa();
—. void set _gpa(double new _gpa);
get 1d () private:
- int major_; double gpa_;
— name__and id_ member)
Varlables class Person class Student
string name_ string name_
int id_ int id_
int major_
double gpa_

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCV1terb1
Base and Derived Classes

* Derived classes inherit | ks, rersn €

Person(string n, int ident);
all data members and string get rane();
functions of base class | i e s snt 10

class Student : public Person {

e Student class inherits: public:

Student(string n, int ident, int mjr);
int get_major();

- get_name() and get_|d() double get_gpa();
void set _gpa(double new _gpa);
— name_and id_member private:
- - int major_; double gpa_;
variables b
int main()
{
Student s1("Tommy", 1, 9);
class Person class Student // Student has Person functionality
. . // as if it was written as part of
string name_ string name_
// Student
int id_ int id_ cout << sl.get name() << endl;
int major_ }
double gpa_

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

] USCViterbi .
Inheritance Example
Inheritance Diagrams

Component (arrows show derived
to base class

* Component relationships)
— Draw()
_ onClick() ‘ Window H ListBox
* Window
— Minimize()
— Maximize() ScrollBox DropDown
: Box
* ListBox
— Get_Selection() od r - f’-’ E]
* ScrollBox R 3 o
b \abnkam)
—_ OnScro”() yellow http-'.r',-'nwr.-.mcrowftcom
orange __:’““M“g 1
* DropDownBox white - IR ey s e’ -
— onDropDown() >

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering

CONSTRUCTORS AND INHERITANCE

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering

Constructors and Inheritance

class Person {

e How do we initialize base oblic
class data members? Person(string n, int ident);

private:

 (Can't assign base class string name_;
int id_;
members if they are private | 1

class Student : public Person {
public:
Student(string n, int ident, int mjr);

private:
int major_;
double gpa_;

}s
Student::Student(string n, int ident, int mjr)
{
name_ = n; // can we access name_ and id_?
id_ = ident;
major_ = mjr;
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering

Constructors and Inheritance

class Person {

e Constructors are only called when | public:
a variable is created and cannot Person(string n, int ident);

be called directly from another private:
string name_;
constructor int id_;
: ¥
— How to deal with base class Student : public Person {
constructors? public:

Student(string n, int ident, int mjr);

* Also want/need base class or

private:

other members to be initialized int major ;

before we perform this object's };d"“ble gpa_;

constructor code Student::Student(string n, int ident, int mjr)
* Use initializer format instead {// How to initialize Base class members?

Person(n, ident); // No! can’t call Construc.

— See example below 77 as a function

}

Student::Student(string n, int ident, int mjr) :
Person(n, ident)

{
cout << "Constructing student: " << name_ << endl;
major_ = mjr; gpa_ = 0.0;

}

© 2022 by Mark Redekopp. This content is protected and may not b

I SCViterbi

Constructors & Destructors

e Constructors

School of Engineering

— A Derived class will automatically call its Base class

constructor BEFORE it's own constructor executes,
either:

* Explicitly calling a specified base class constructor in the
initialization list

* Implicitly calling the default base class constructor if no
base class constructor is called in the initialization list

Constructor call ordering
* Destructors

— The derived class will call the Base class destructor
automatically AFTER it's own destructor executes

e Generalidea

— Constructors get called from base->derived (smaller to
larger)

— Destructors get called from derived->base (larger to
smaller)

Destructor call ordering

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering

Constructor & Destructor Ordering

class A { int main()
int a; {
public: cout << "Allocating a B object" << endl;
A() { a=0; cout << "A:" << a << endl; } B bl;
~A() { cout << "~A" << endl; } cout << "Allocating 1st C object" << endl;
A(int mya) { a = mya; C* cl = new C;
cout << "A:" << a << endl; } cout << "Allocating 2nd C object" << endl;
}s C c2(4,5);
cout << "Deleting cl1 object" << endl;
class B : public A { delete c1;
int b; cout << "Quitting" << endl;
public: return 0;
B() { b =9; cout << "B:" << b << endl; } } Test Program
~B() { cout << "~B "; }
B(int myb) { b = myb; Allocating a B object
cout << "B:" << b << endl; } A:0
5
Allocating 1st C object
class C : public B { A:0
int c; B:0 d
public: c:0
C() { c =0; cout << "C:" << c << endl; } Allocating 2nd C object Constructor call ordering
~C() { cout << "~C "; } A:0
C(int myb, int myc) : B(myb) { B:4
C = myc; C:5
cout << "C:" << ¢ << endl; } Deleting cl1 object
}; ~C ~B ~A
Quitting
~C ~B ~A
Sample Classes ~B A OUtpUt Destructor call ordering

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed-

I SCViterbi

School of Engineering

PUBLIC, PRIVATE, PROTECTED

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

School of Engineering

Protected Members

Private members of a base
class can not be accessed
directly by a derived class

member function

— Code for print_grade_report()
would not compile since ‘name_
private to class Person

’

is

Base class can declare
variables with protected
storage class which means:

— Private to any object or code not
inheriting from the base (i.e.
private to any 3™ party)

— Public to any derived (child) class
can access directly

class Person {

public:
private:
string name_; int id_;
}s
class Student : public Person {
public:
void print_grade_report();
private:
int major_; double gpa_;
}s5
void Student::print_grade_report()
{
cout << “Student “ << name_ << ...)(
}

class Person {
public:

protected:
string name_; int id_;

}s

I SCViterbi

School of Engineering

Public, Protected, & Private Access

1. Private Base Members

e Derived class sees base class
members using the base class’
specification

— If Base class said it was public or protected,
the derived class can access it directly

Base Class 3rd party class
private: or function
// members X

o _ _ Derived Class
— If Base class said it was private, the derived Regardless of public, protected,

class cannot access it directly private inheritance

2. Protected Base Members 3. Public Base Members

Base Class 3rd party class
public: or function
// members

Base Class 3" party class
protected: or function

// me‘nyer‘s X

Derived Class

Regardless of public, protected,
private inheritance

Derived Class

Regardless of public, protected,

private inheritance

© 2022 by Mark Redekopp. ploaded, or distributed.

: : e USCViterbi .
Public/Private/Protected Inheritancé™

class Person { Base Class
public:
* public/protected/private inheritance before base Person(string n, int ident);

string get_name();

class indicates HOW the public base class int got id();
members are viewed by clients (those outside) of private: // INACCESSIBLE TO DERIVED
. string name_; int id_;
the derived class s
¢ pUb'IC class Student : public Person {
. public:
— public and protected base class members are Student(string n, int ident, int mjr);
accessible to the child class and grandchild classes int get_major();

. . double get gpa();
— Only public base class members are accessible to void st m(detle ne mo):

3" party clients private:
int major_; double gpa_;

* protected }:
: 1 Faculty : private P
— public and protected base class members are cpa;iic?w y ¢ private person {
accessible to the child class and grandchild classes Faculty(string n, int ident, bool tnr);
. . bool t 5
— no base class members are accessible to 3" parties ool get_tenure()
private:
° private }.bool tenure_;
— public and protected base class members are
accessible to the child class int main(){
.) Student s1("Tommy", 73412, 1);
— No base class members are accessible to grandchild Faculty f1("Mark", 53201, 2);
classes or 3 party clients cout << sl.get_name() << endl; // works

cout << fl.get_name() << endl; // fails

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. }

— USCViterbi
Inheritance Access

* Derive as public if...

— You want users of your derived class to be
able to call base class functions/methods

e Derive as private if...

— You only want your internal workings to call
base class functions/methods

* Derive as protected more rearely

— Same reasons as private inheritance but also
allow grandchild classes to use Base class

School of Engineering

class Person {
public:

Person(string n, int ident);
string get _name();
int get_id();

private: // INACCESSIBLE TO DERIVED

}s

string name_; int id_;

class Student :

public Person {

public:

Student(string n, int ident, int mjr);
int get_major();

double get gpa();

void set gpa(double new _gpa);

private:

]
:lass Faculty :

int major_; double gpa_;

private Person {

public:

Faculty(string n, int ident, bool tnr);
bool get tenure();

private:
bool tenure_;

};

methods
Inherited Public Protected Private
Base
Public Public Protected Private
Protected Protected Protected Private
Private Private Private Private

External client access to Base class members
is always the more restrictive of either the base

02022 by mSi€GlArAtIoN Qr.how the base is inberited. . ssuibued.

nt main(){
Student s1("Tommy", 73412, 1);
Faculty fi1("Mark", 53201, 2);
cout << sl.get_name() << endl; // works
cout << fl.get_name() << endl; // fails

N (/S Viterbi &)
Public/Private/Protected Cases

Base Class
public: void f1();

protected: void f2();
private: void f3();

School of Engineering

How a grandchild class or 31
party sees what is inherited is
the MORE restrictive of the how
the base class declared it or
how the derived class inherited.

class ChildA : chid | class ChildB : class ChildC :
public Base protected Base private Base
{7%...% }; {7 . ..* } {7%...% };
Grandchild
class GCA : class GCB : class GCC :
public ChildA public ChildB public ChildcC
{ public: { public: { public:

void gi() void gi() void gi()

{ f1(); f2(); 3();} { f1(); f2(); £3(); } { f1(); f2(); £30); }
Y v v X Y} v v X Y x x X
int main() 3 Party int main() int main()

{ ChildA a; { ChildB b; { ChildC c;
a.f1(); a.f2();a.f3(); b.f1(); b.f2(); b.f3(); b.f1(); b.f2(); b.f3();
Y XX}X)b(dX Y X X X
' ' hot be shared. uploaded. or distribute

] USCV1terb1
When to Inherit Privately

class List{
. . public:
* If public: Outside user can call the List();
base List functions and break the ‘i’;’idsi;Zf;‘f(i”t 198, At VL)
Queue order int get(int loc); // get value at loc
))] void erase(int loc;)
* |f private: hide the base class public private:
. Item* _head;
function, so users can only call };
derived class interface
e |If protected: hide the base class Base Class
public and protected functions class Queue : public List // or private List
. . ublic:
except to derived and friend classes g gueue();
. . . ush back(int val
* For protected or private inheritance, P { ;nsepé(size()f val); }
ns _an : : int front();
(implemented) as-a" relationship 7 o s T
— Queue "implemented as-a" List void pop_front();
{ erase(9); }
s
Derived Class
Queue q1;

gl.push _back(7); qgl.push_back(8);
gl.insert(0,9) // is it good this is allowed?

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering

ODDS AND ENDS OF INHERITANCE

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering

Overloading Base Functions

A derived class may want to
redefined the behavior of a
member function of the
base class

A base member function can
be overloaded in the derived
class

When derived objects call
that function the derived
version will be executed

When a base objects call
that function the base
version will be executed

class Car{
public:

double compute_mpg();
private:

string model; int speed;

};

double Car::compute_mpg()

{
if(speed > 55) return 30.90;
else return 20.0;

}

class Hybrid : public Car {
public:

void drive_w _battery();

double compute_mpg();
private:

string batteryType;

}s

double Hybrid::compute _mpg()
{

string model

int speed

m

string model

int speed

string battery

if(speed <= 15) return 45; // hybrid mode

else if(speed > 55) return 30.90;

else return 20.0;

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

——(()5 Vitcrbi
Scoping Base Functions

class Car{

* We can still call the base function e .
ouble compute_mpg();

version by using the scope operator | private:

() string make; string model;
.. };

— base_class _name::function_name()
- - - double Car::compute_mpg()

{
if(speed > 55) return 30.9;
else return 20.0;

}

class Hybrid : public Car {
public:
void drive_w_battery();
double compute _mpg();
private:
string batteryType;
}s
double Hybrid::compute mpg()
{
if(speed <= 15) return 45; // hybrid mode
else return Car::compute _mpg();

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering

COMPOSITION VS. INHERITANCE

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- _00000000000___] USCViteﬂ?i .
Composition

class List{
* Code reuse is a common need in (object- plﬂﬁii)
oriented) programming void insert(int loc, int val);
]) int size();
— We could use a pre-written List class to make a int get(int loc);
Queue class void erase(int loc;)
. private:
* An easy and often preferable way is to Ttem* head_;
simply use the existing class as a data)
member Base Class
* Composition defines a "has-a" relationship class Queue
" Wt w e e . { private:
— A Queue "has-a" List in its implementation List mylist;
. i+ public:
* But could we inherit:)
— Public inheritance would mean a Queue "is-a" List PUSh_??Ck(?”t val) .
and a Queue should be able to do anything a List ir{]tmﬁréii;?sert(sue()’ val); 3
can do, but that's not the case { return mylist.get(@); }
— Private inheritance could be used but is not a V?lﬁyﬁgzgfgﬁgzézg);)
universal approach supported by other languages int size() // need to create wrapper
— Often programmers say "prefer composition s { FEEIAD Dt sizal)s i
rather than inheritance" when the goal is code ’

reuse

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed. Queue via ComPOSItlon

I SCViterbi

School of Engineering

Inheritance vs. Composition

class Car{
* Software engineers debate about public: @
double compute_mpg();

using inheritance (is-a) VS. private: string model

composition (has-a) T WEEIEE] S SpEEEy e —

e Rather than a Hybrid "is-a" Car we

double Car::compute_mpg()

might say Hybrid "has-a" car in it, {
if(speed > 55) return 30.9;
plUS other stuff else return 20.0;
g . }
* While it might not make complete
_ class Hybrid {
sense verbally, we could re-factor oie m
our code the following ways... pﬁ;ﬁg.compute_mpg(); g nodel
* Interesting article I'd recommend Car c_; // has-a relationship int c_.speed
string batteryType;
you read at least once: }; string battery
— https://www.thoughtworks.com/insights ?OUble Hybrid: : compute_mpg()
/blog/composition-vs-inheritance-how- if(speed <= 15) return 45; // hybrid mode
choose else return c_.compute _mpg();
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

Inheritance vs. Composition

USC Viterbi

School of Engineering

e Suppose we wanted to create a variation of the std: :string class that only
allows a fixed size specified at creation (no size alteration after creation)

— What is the best way to enforce this?

class FixedString : public string
{ public:
FixedString(size_t fixedSize) :
string(' ', fixedSize)

{}
}; Using Public Inheritance

»x

class FixedString : private std::string
{ public:
FixedString(size_t fixedSize) :
std::string(' ', fixedSize)
{3}

size t size() const { return string::size(); }
char const & operator[](size_t idx) const
{ return string::operator[idx]; } /
Which is/are reasonable choices?
Consider the code to the right in making your
decision?

}; Using Private Inheritance

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

class FixedString
{ private:
string str_;
public:
FixedString(size_t fixedSize) :
str_(' ', fixedSize)
{1}
size t size() const { return str_.size(); }
char const & operator[](size_t idx) const
{ return str_[idx]; }

N e /
Using Composition

FixedString s1(10);

sl[e] = 'a’';

// will the compiler allow these
sl = "abcdefghijklmnopgrstuvwxyz";
sl += "abc";

- _00000000000___] USCViterbi .
Summary o

* Summary:

— Public Inheritance =>
"is-a" relationship
— Composition =>
"has-a" relationship
— Private/Protected Inheritance =>
"as-a" relationship or
"implemented-as" or
"implemented-in-terms-of"
e Public inheritance mainly when
— We want to add or specialize behavior
— A true "is-a" relationship holds for the
relationship of base and derived
 Composition or private inheritance

— When reuse is the main desire

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

class List{
public:
List();
void insert(int loc, const int& val);
int size();
int& get(int loc);
void pop(int loc;)
private:
IntItem* _head;
s

Base Class

class Queue
{ private:
List mylist;
public:
Queue();
push_back(const int& val)
{ mylist.insert(size(), val); }
int& front();
{ return mylist.get(9); }
void pop_front();
{ mylist.pop(9); }
int size() // need to create wrapper
{ return mylist.size(); }

};

Queue via Composition

I SCViterbi

School of Engineering

Warning: Multiple Inheritance

Animal

e C++ allows multiple inheritance kg
int getWeight();

but it is not usually orivate:
recommended int weight;

 What happens for the following
code?

eritance Diagrams
(arrows shown base to
. . derived class relationships)
e Suppose in main()

— Liger x;

Tiger: public Animal Lion: public Animal

— int wt = x.getWeight();

Class Liger

int Tiger::weight

int Lion::weight Liger: public Tiger, public Lion

N

Examgle_ source: https://www.programmerinterview.com/index.php/c-cplusplus/diamond-problem
© 2022 by Mark Redekopp. This content is protected and may not be shared, Uploaded, or distributed.

I SCViterbi

School of Engineering

REVIEW QUESTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

Inheritance Review 1

class Person {
public:
Person(string n, int ident);

* T/F: A student object has a name_

i tri t_ OF
and id__ member it et 10
private:
 T/F: Code from the Student class } string name_; int id_;

can access name_and id_
class Student : public Person {
— What could you change to flip the T/F | public:

Student(string n, int ident, int mjr);

answer? int get_major();
. double get gpa();
* What would change if Student void set_gpa(double new_gpa);
. . . private:
inherited Person through private ,,int major_; double gpa_;
inheritance? int main()

Student s1("Amanda", 12345, 1);
cout << sl.get name() << endl;
return 0;

}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

] USCthrbi .
Inheritance Review 2

* Inheritance defines an relationship between classes
 Composition defines a relationship between two
objects

 Protected access makes members accessible to
but still not to

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

School of Engineering

Constructor & Destructor Ordering

class A { int main()
int a; {
public: cout << "Allocating a B object" << endl;
A() { a=0; cout << "A:" << a << endl; } B bl;
~A() { cout << "~A" << endl; } cout << "Allocating 1st C object" << endl;
A(int mya) { a = mya; C* cl = new C;
cout << "A:" << a << endl; } cout << "Allocating 2nd C object" << endl;
}s C c2(4,5);
cout << "Deleting cl1 object" << endl;
class B : public A { delete c1;
int b; cout << "Quitting" << endl;
public: return 0;
B() { b =9; cout << "B:" << b << endl; } } Test Program
~B() { cout << "~B "; }
B(int myb) { b = myb; Allocating a B object
cout << "B:" << b << endl; } A:0
5
Allocating 1st C object
class C : public B { A:0
int c; B:0 d
public: c:0
C() { c =0; cout << "C:" << c << endl; } Allocating 2nd C object Constructor call ordering
~C() { cout << "~C "; } A:0
C(int myb, int myc) : B(myb) { B:4
C = myc; C:5
cout << "C:" << ¢ << endl; } Deleting cl1 object
}; ~C ~B ~A
Quitting
~C ~B ~A
Sample Classes ~B A OUtpUt Destructor call ordering

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed-

I SCViterbi

School of Engineering

PRE-SUMMER 2021 INHERITANCE
SLIDES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Inheritance vs. Composition

USC Viterbi

School of Engineering

e Suppose we wanted to create a variation of the std: :string class that only
allows a fixed size specified at creation (no size alteration after creation)

— What is the best way to enforce this?

class FixedString : public string
{ public:
FixedString(size_t fixedSize) :
string(' ', fixedSize)

{}
}; Using Public Inheritance

»x

class FixedString : private std::string
{ public:
FixedString(size_t fixedSize) :
std::string(' ', fixedSize)
{3}

size t size() const { return string::size(); }
char const & operator[](size_t idx) const
{ return string::operator[idx]; } /
Which is/are reasonable choices?
Consider the code to the right in making your
decision?

}; Using Private Inheritance

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

class FixedString
{ private:
string str_;
public:
FixedString(size_t fixedSize) :
str_(' ', fixedSize)
{1}
size t size() const { return str_.size(); }
char const & operator[](size_t idx) const
{ return str_[idx]; }

N e /
Using Composition

FixedString s1(10);
sl[e] = 'a’';
S1 += "abc"; // will the compiler allow this

I SCViterbi

School of Engineering

SOLUTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I SCViterbi

Inheritance Review 1

class Person {

* T/F: A student object has a name_andid_ | public

Person(string n, int ident);

member string get_name();
int get_id();
* T/F: Code from the Student class can private: d
. string name_; int id_;
access name_ and id_ s
— What could you change to flip the T/F class Student : public Person {
answer? Changing Person's access public:

- : r ing n, int ident, i ir)s
specifier to protected or public. Regardless | 5re ZZEE;Z;;E%” int ident, int mjr)
of how Student inherits, name_and id_ double get_gpa();

: - id doubl ;
will be private to the Student class. p‘rf‘i)\llat(ift—gpa(ol Rl FER)
. . . i i ; d bl ;
* What would change if Student inherited | ,,*" "= @oubie &na
Person through private inheritance? ?nt main()
— External clients (like main) would not be able to Student s1("Amanda", 12345, 1);
access the inherited members (from Person) of Cozt <<6§1-89t_name() << endl;
a Student object. y FEEER

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

] USCViterbi .
Inheritance Review 2

* Inheritance defines an is-a relationship between classes
 Composition defines a has-a relationship between two objects

* Protected access makes members accessible to a derived/child
class but still not to external/3™-party clients

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

