CS103 Unit 5b —
Copy Semantics
(Copy constructors and
Assignment Operators)

CSCI 103L Teaching Team

School of Engineering

School of Engineering

this pointer

SIDE TOPIC: HOW DOES AN OBJECT

REFER TO ITSELF FROM INSIDE A
MEMBER?

- USC\[itgrbi .
this Pointer

* How do member functions know which
object’s data to be operating on? (d1 or d2) cards[52] 137121| 4 | 9 |16|43|20|39

 d1isimplicitly passed via a special pointer top_index [d2
call the 'this' pointer

#include<iostream> 0x720
#include Tdeck-n” 3 cards[52] |41(27| 8 |39(25| 4 11|17
— int main(int argc, char *argv[]) { f:Dr tob index d1
o O Deck d1, d2; 8 = 1
= & dl.shuffle(); T
€y = =
L £ SN~ th'S int main() {
o v : : — Deck di;
& 8 #include<iostream> d1.shuffle();
; s #include “deck.h” }) ’
: 3 void Deck: :shuffle() void Deck::shuffle(Deck *this)
T D { {
© .
o cut(); // calls cut() this->cut(); // calls cut()
// for this object // for this object
for(i=0; i < 52; i++){ for(i=0; i < 52; i++){ S
int r = rand() % (52-i); o int r = rand() % (52-i); >
int temp = cards[r]; Q int temp = this->cards[r]; '8
cards[r] = cards[i]; o this->cards[r] = this->cards[i]; o
cards[i] = temp; = this->cards[i] = temp;
} }
} Actual code you write }

Compiler-generated code

- USCViterbi
The Same Names

School of Engineering

class Student {

e If arguments and public:
Student(string name, int id, double gpa);
data members have
. ~Student(); // Destructor
the same name it private:

string name;

will use the 'closest' int id;
. . double gpa;
defined variable };

Student: :Student(string name, int id, double gpa)
Object Data Ctor { // which is the member and which is the arg?

Members A ¢ name = name;
(this->) rguments id = id;

name C\name) gpa = gpa;
?2?7? "Tina"

id C\ id
?? 123
gpa @ gpa
?? 3.8

One Place You Can Use 'this"

e this can be used to
resolve scoping
issues with similar
named variables
— Exercise: this_scope

Object Data

Ctor
Members Arguments
(this->) 9
name name
"Tina" <:I "Tina"
id id
123 <:I 123
gpa gpa
3.8 < :_I 3.8

class Student {
public:
Student(string name, int id, double gpa);

~Student();
private:

string name;

int id;

double gpa;
}s

// Destructor

Student: :Student(string name, int id, double gpa)
{ // Now it's clear

this->name = name;

this->id = id;

this->gpa = gpa;
}

WHAT WE CURRENTLY KNOW
ABOUT COPYING OBIJECTS

School of Engineering

i, IS Viterbi

Object assignment

* Assigning one object to another will perform a
member-by-member copy of the entire

Address Memory Data

source object to the destination object 300 |[[4311
[S1TeD (7]
#include<iostream> | 7304 0 ? ?°?
using namespace std;
enum {CSCI=1, CECS }; n
struct student { 7378 2 s?l.id? ?
char name[80]; 7380 6 !
int id; sl.major
int major; 7384
}s 2)[30=- | —
7388] 11
int main(int argc, char *argv[]) ([4]) (5116
{ 7392 \@ ? ??
student sl1,s2;
strncpy(sl.name,"Jill",80); 7396
2§.idsz-5; sl.major = CECS; s2 2400 > ?.? > (¥}
return é; Normally, C/C++ perform only one operation at 7408 éz'ld a
} a time, and make you write code if you want to ST
do more. But object assignment is an 7412
exception (probably because we can't "loop -

through" the different members of a struct).

- USCVitgrbi .
Multiple Constructors

. class Student {
* (Can have multiple constructors public:
with different argument lists to SRUCEmE()8 JY DETENIE Gl
. . . Student(string name, int id, double gpa);
provide options to client software // "Initializing" ctor .
. e ere qe ~Student(); // Destructor =~
object int get_id(); =
double get gpa(); =
— Constructor with NO ARGUMENTS is void set name(string name):
known as the DEFAULT constructor void set_id(int id); ’ dN(t)te. Ofte!;n nam;eh
void set_gpa(double gpa); ata mem ers wi
#include<iostream> private: special decorator
#include "student.h" std: :Stping name_; (|d_ or gpa_) tO make
int main() int id_; it obvious to other
/ double gpa_; programmers that
Student s1; // calls default ctor I3 this variable is a data
string myname; Student: :Student() member
cin >> myname; {
sl.setname_(myname); name_ = "", id_ = @; gpa_ = 2.0;
sl.setid (214952); } - - - o
sl.setgpa (3.67); g
Student: :Student(string name, int id, double gpa))
Student s2(myname, 32421, 4.0); { 3
} // calls "initializing" ctor } name_ = name; id_ = id; gpa_ = gpa; §

Copy constructors and assignment operators

COPY SEMANTICS

R,]S Viterbi

School of Engineering

Copy Constructors

« Write a prototype for the constructor that Elass Complex

would want to be called by the red line of | public:
Complex();

COde Complex(double r, double i);
* Realm of Reasonable Answers: // What constructor definition do I

// need for c3's declaration below

private:
double real, imag;

};

int main()

* We want a constructor that will build a (
new Complex object (c3) by making a
copy of another (c1)

Complex c1(2,3), c2(4,5)
Complex c3(cl);

i, IS Viterbi

School of Engineering

Copy Constructors

. 1 1
* Write a prototype for the [oss complex

constructor that would want to be | Promiexo.

called by the red line of code SR

// What constructor definition do I
i Realm Of Reasonable Answers: // need for c¢3's declaration below
— Complex(Complex); private:
ouble real, imag;
* We will see that this can't be right... }s

int main()

{
Complex c1(2,3), c2(4,5)
Complex c3(cl);

— Complex(const Complex &)

« Best! (Making a copy shouldn't
change the input argument, thus
"const')

* We want a constructor that will
build a new Complex object (c3) by
making a copy of another (c1)

R,]S Viterbi

School of Engineering

Assignment Operators

* The assignment operator fross complex
(operator=(..))is called when P o1ox();

an object that is ALREADY in-SCOpe | comioxiaony® os Souers 1)s
is reassigned.

private:

e It's signature is: | double real, inag;

Complex& operator=(const Complex& other) | int main()

{
Complex c1(2,3), c2(4,5)
Complex c3(cl1); // Copy ctor

* Why does it return by reference... c3 = c2; 7 e p——
. // translates to c3.operator=(c2);
we will see soon.

« Do we need to define this function |’
in our class?

R,]S Viterbi

School of Engineering

Assignment & Copy Constructors

class Complex

e C++ compiler automatically generates a

{
default copy constructor public:
. . Complex(int r, int i);
— Constructor called when an object is allocated // compiler will provide by default:
and initializes the object to be a copy of // Complex(const Complex&);
another object of the same type iéoigr;z)l(f’)‘& SIS S EESS (GUITALEYE
— Signature would look like private: '
Complex(const Complex &); }.d"“ble real, e lass Comple
— Called by either of the options shown in the double real_
code int main() double imag_
— S {
Simply performs an element by element copy A) O \/
e C++ compiler automatically generates a Complex c3(cl); // copy constructor
default assignment function Complex c4(5,7);
c4 = c2; // default assignment oper.
— Called when you assign to an object that is // c4.operator=(c2)
already allocated (memory already exists) }
— Simply performs an element by element copy m m
-— Complex& operator=(const Complex &); double real_ double real_

double imag_ ' double imag_

I

 What get's called when we |«

What Gets Called?

class Complex

use = when creating a
new object?

* It may look like an
assignment operator.

e But C++ will call the Copy
Constructor!!

public:
Complex(int r, int i);
// compiler will provide by default:
// Complex(const Complex&);
// Complex& operator=(const Complex&);
~Complex()
private:
double real, imag;

)s lass Comple

double real_

int main()

{

double imag_

~_

Complex c3(cl); // copy constructor
Complex c4 = cl;

Complex c1(2,3), c2(4,5)

R,]S Viterbi

School of Engineering

Assignment & Copy Constructors

e C++ compiler automatically generates a class MyArray

{
default copy constructor public:
_] MyArray(int d[], int num); //normal
e C++ compiler automatically generates a ~MyArray () ;
. . private:
default assignment function S Tems e SR
* See picture below of what al looks like as |,
A // Normal constructor
it is constructed / MyArray: :MyArray(int d[], int num)
{
dat = new int[num]; len = num;

for(int i=0; i < len; i++){
dat[i] = d[i];
}
}

int main()
vals 0 1 2 3 {

int vals[] = {9,3,7,5};

MyArray al(vals,4);

MyArray a2(al); // calls default copy
al.dat | 0x200 al.len 4 MyArray a3 = al; // calls default copy
MyArray a4;

OXZOOF_QHTJ_T_?_ _§“] 0x200 0 1 2 3 a4 = al; // calls default assignment
i i i I | 913|715 // how are the contents of a2, a3, a4
RIS AR I AU // related to al
After 'new’ After constructor }

R,]S Viterbi

School of Engineering

Assignment & Copy Constructors

vals 0 1 2 3 class MyArray
{
e d = public:
MyArray(int d[], int num); //normal
~MyArray () ;
A1 al.len 4 int len; int *dat;
al.dat | 0x200 0x200
0 1 2 3 35
// Normal constructor
9(3|[71I5 MyArray: :MyArray(int d[], int num)
{
A2 a2len 4 After constructor dat = new int[num]; len = num;
B for(int i=0; i < len; i++){
a2.dat 0x200 dat[i] - d[i];
}
A3 a3.len 4 ;
a3.dat | 0x200 int main()
{
Ad a4 2 Default copy constructor int vals[] = §9,3,7,5};
ad.len . MyA 1 »4);
and assignment operator yArray al(vals,4)
ad1.dat! 0x200 MyArray a2(al); // calls default copy
make a SHALLOW COPY MyArray a3 = al; // calls default copy
(data members only) MyArray a4;
a4 = al; // calls default assignment
rather than a DEEP copy // how are the contents of a2, a3, a4
(data members + what // related to al
they point at) }

Default copy constructor and assignment operator ONLY
perform SHALLOW copies

— SHALLOW COPY (data members only)
— DEEP copy (data members + what they point at)

— [Like saving a webpage to your HD...it makes a shallow copy and
doesn't copy the pages linked to]

* You SHOULD/MUST define your own copy constructor and
assignment operator when a DEEP copy is needed

— When you have pointer data members that point to data that should
be copied when a new object is made

— Often times, if your data members are pointing to dynamically
allocated data, you need a DEEP copy

Corollary: If a Shallow copy is acceptable, then you do NOT
need to define a copy constructor

- /] USCVlterb1
Defining Copy Constructors

class MyArray

{public:
e Same name as MyArray(int d[], int num);
MyArray(const MyArray& rhs);
normal constructor | -warayo;

but should take in an |, i " i den

// Normal constructor

argument Of the MyArray: :MyArray(int d[], int num)
{
ObJeCt type' dat = new int[num]; len = num;
’ // copy values from d to dat
}
- USLIa”y d ConSt // Copy constructor
MyArray: :MyArray(const MyArray &rhs){
reference (
len = rhs.len; dat = new int[len];
e MyArray(const MyArray&); // copy from rhs.dat to dat
}

int main()
{
intvals[] = {9,3,7,5};
MyArray al(vals,4);
MyArray a2(al);
MyArray a3 = al;
// how are the contents of a2 and al related?

e USCViterbi

School of Engineering

Implicit Calls to Copy Constructor

class Complex

* Recall pass-by-value |

public:

passes a copy of an Complex(); |
. . Complex(double r, double i); .
ObJeCt If deﬂned Eggﬁéizxg?Tplex(const Complex &rhs);

the COpy ConStrUCtor };double real, imag;

// Copy constructor

Wl I aUtomat|Ca”y be Eomplex::Complex(const Complex &c)

cout << "In copy constructor" << endl;
Ca Ied to make thls real = c.real; imag = c.imag;

CO Dy OtherW|Se the }/ ** Copy constructor called for pass-by-value

int dummy(Complex rhs)

default copy will {
perform a shallow }

intmain()

cCopy {

cout << "In dummy" << endl;

Complex c1(2,3), c2(4,5);
int x = dummy(cl);
// ** Copy Constructor called on cl **

- /] USCViterbi
Copy Constructors

School of Engineering

. 1 1
e Write a prototype for the [oes o
constructor that would want to be | "romiex.
called by the red line of code o e e b e
. . // by value req. copy to be made
* Now we see why the first option // ...chicken/egg problem
: . Complex(const Complex &c); // Good
can't be right...because to pass cl ~Complex()

private:

by value requires a call to the copy | double real, inag;
constructor which we are just now |~ |
.. . . int main
defining (circular reference/logic) |«
Complex c1(2,3), c2(4,5)
— Complex(Complex) Complex c3(cl);
* We will see that this can't be right...
e The argument must be passed by
reference

— Complex(const Complex &)

.......................................l[ﬂK:Vﬁ@&ﬁqlbi

School of Engineering

Defining Copy Assignment Operator

operator=() is
called when an object
already exists and then
you assign to it

— Copy constructor called
when you assign during a
declaration:

— E.g. MyArray a2=al;

Can define operator for
'="to indicate how to
make a copy via
assignment

Gotchas?

class MyArray

{

public:
MyArray();
MyArray(int d[], int num);
MyArray(const MyArray& rhs);
MyArray& operator=(const MyArray& rhs);
~MyArray () ;
int*dat; intlen;

}

MyArray: :MyArray(const MyArray &rhs){
{
len = rhs.len; dat = new int[len];
// copy from rhs.dat to dat

}

MyArray& MyArray::operator=(const MyArray &rhs){
{

len = rhs.len; dat = new int[len];

// copy from rhs.dat to dat

}

int main()
{
intvals[] = {9,3,7,5};
MyArray al(vals,4);
MyArray a2;
a2 = al; // operator=() since a2 already exists

}

i, IS Viterbi

School of Engineering

Defining Copy Assighment Operator

class MyArray

{
* Gotchas? public:
) MyArray();
— Dest. ObJECt Mmay MyArray(int d[], int num);
e e e MyArray(const MyArray& rhs);
already be initialized MyArray& operator=(const MyArray& rhs);
i ~MyArray () ;
and Slmply int *dat; int len;
overwriting data }
members may lead MyArray: :MyArray(const MyArray &rhs){
to 3 memory |eak { len = rhs.len; dat = new int[len];

// copy from rhs.dat to dat

_ i }
Self assignment MyArray& MyArray: :operator=(const MyArray &rhs){

(which may also lead {
if(this == &rhs) return *this;

to memory Ieak or if(dat) delete dat;

len = rhs.len; dat = new int[len];
lost data) // copy from rhs.dat to dat
return *this;

}

int main()
{
int valsi[] = {9,3,7,5}, vals2[] = {8,3,4,1};
MyArray al(valsl,4);
MyArray a2(vals2,4);
al = al; a2 = al;

i, IS Viterbi

School of Engineering

Assignment Operator Practicals

e RHS should be a const Elass Complex
reference public:
. Complex(int r, int i);
— Const so we don't change it ~Complex()
| Complex operator+(Complex right _op);
— Reference so we don't Pass- Complex& operator=(const Complex &rhs);
by-value and make a copy private:

: int real, imag;
(which would actually calla |4,

copy constructor)
Complex& Complex::operator=(const Complex & rhs)

e Return value should be a q
reference real = rhs.real;
imag = rhs.imag;
— Allows for chained , return *this;
assignments
_ int main()
— Should return (*this) {
Complex c1(2,3), c2(4,5);
— Reference so another copy
isn't made Complex c3, c4;

c4 = c3 = c2;
// same as c4.operator=(c3.operator=(c2));

R,]S Viterbi

School of Engineering

Assignment Operator Overloading

class Complex

{
* If a different e e e
omplex(int r, int i);
~Complex();
type argument Complex operator+(const Complex &rhs);
Complex &operator=(const Complex &r);
can be acceptEd Complex &operator=(const int& r);
private:
we can overload | douwte real, ina;
the = Operator Complex& Complex::operator=(const int& r)
{

real = r; imag = O;
return *this;

}

int main()
{
Complex c1(3,5);
Complex c2,c3,c4;
c2 =¢c3 =c4 = 5;
// c2 = (c3 = (c4 =5));
// c4.operator=(5); // Complex::operator=(int&)
// c3.operator=(c4); // Complex::operator=(Complex&)
// c2.operator=(c3); // Complex::operator=(Complex&)
return 0;

o

Copy Constructor Summary

If you are okay with a shallow copy, you don’t need to define a
copy constructor or assignment operator

Rule of Three:

— |If you need more than the default of any of the following: a copy
constructor, an assignment operator, and a destructor then you need
all 3 (i.e. if you need 1 you need all 3)

e Usually if you have dynamically allocated memory
Copy constructor should accept a const reference of the same
object type

Assignment operators should be careful to cleanup initialized
members and check for self-assignment

Assignment operators should return a reference type and
return *this

R,]S Viterbi

School of Engineering

Exercises For Home

Suppose you are given a class that
implements a singly-linked of
integers (with a head pointer data

member)

Write a '-=' operator that takes one
element and removes it from the
list if it exists

Write a '==' operator that checks
whether the contents and order of
one list matches another

Write a copy constructor and
assignment operator

#include <iostream>
#include "listint.h"
using namespace std;

int main()

{
IntList ml, m2;
ml.push _back(5);
m2.push _back(5);

if(ml == m2){
cout << "Should print!";
}
m2.push_back(7);
m2 -=5; // now m2 would just have [7]

if(ml == m2){
cout << "Should not print!"; << endl;

}

IntList m3(ml); // make a copy of ml
m3.push _back(8); // m3 should have [5,8]
m2 = ml;
if(ml == m2){

cout << "Should print!"; << endl;

}

return 9;

REVIEW

i, IS Viterbi

School of Engineering

Review [1]

class Complex

* What is the correct prototype for ¢

the copy constructor call when c3 | Peomiox;
is created in the code to the right? | Compiex(doudte ro double 1);
// What constructor definition do I
— CompleX(CompleX)3 // need for c3's declaration below
private:
doubl 1, i ;
— Complex(const Complex &) T

int main()

{
Complex c1(2,3), c2(4,5)
Complex c3(cl);

Review [2]
Which function? Default Versions
e For each of the following, What kind of copy does the
identify whether the copy default copy constructor
constructor is called or the and assignment operator
assignment operator perform?
— Complex c1;
Complex c2 = cl;
— Complex c1;
Complex CZ(C1); class MyArray
— Complex cl, c2; {
c2 = cl; pl;i\./ate:

int* data; // ptr to dynamic array
size t len;

}s

R,]S Viterbi

School of Engineering

Review [3]

State the Rule of 3 Assignment Operator Specifics?

e The rule of 3: What extra considerations does the
assignment operator need to handle
vs. the copy constructor?

* What should operator= return?

class MyArray
{

private:
int* data; // ptr to dynamic array

s

MyArray& operator=(const MyArray& other)
{

SOLUTIONS

i, IS Viterbi

School of Engineering

Review [1]

class Complex

* What is the correct prototype for ¢

the copy constructor call when c3 | Peomiox;
is created in the code to the right? | rpiex(double n double 1);
// What constructor definition do I
— CompleX(CompleX)3 // need for c3's declaration below
* We will see that this can't be right... orivate:
double real, imag;
¥
int main()
— {
Complex(const Complex &) e G S
 Best! (Making a copy shouldn't Complex c3(cl);

change the input argument, thus
"const') }

Review [2]

Which function? Default Versions

e For each of the following, What kind of copy does the
identify whether the copy default copy constructor
constructor is called or the and assignment operator
assignment operator perform?
— Complex c1; — Shallow copy (member by

Complex c2 = cl; member copy)

* Copy constructor

— Complex C1-; class MyArray
Complex c2(cl); {
 Copy constructor private:
int* data; // ptr to dynamic array
— Complex cl1, c2; size_t len;
c2 = cl; e

* Assignment operator

i, IS Viterbi

School of Engineering

Review [3]

State the Rule of 3 Assignment Operator Specifics?
* The rule of 3: What extra considerations
— If a class needs a user-defined does the assignment

version of any one of the 3: copy
constructor, assignment operator need to handle vs.

operator, or destructor, it needs the copy constructor?
ALL 3.

— Must clean up old resources

Elass ARETEY before copying
— Beware of self assignment
private: * What should operator=
int* data; // ptr to dynamic array
b return?
MyArray& operator=(const MyArray& other) — A reference to an instance of

¢ the class which should be

*this;

