
5b.1

CS103 Unit 5b –
Copy Semantics

(Copy constructors and
Assignment Operators)

CSCI 103L Teaching Team

5b.2

SIDE TOPIC: HOW DOES AN OBJECT
REFER TO ITSELF FROM INSIDE A
MEMBER?

this pointer

5b.3

this Pointer
• How do member functions know which

object’s data to be operating on? (d1 or d2)
• d1 is implicitly passed via a special pointer

call the 'this' pointer

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
 Deck d1, d2;
 d1.shuffle();

 d1.shuffle();
 ...
}

#include<iostream>
#include “deck.h”

void Deck::shuffle()
{
 cut(); // calls cut()
 // for this object
 for(i=0; i < 52; i++){
 int r = rand() % (52-i);
 int temp = cards[r];
 cards[r] = cards[i];
 cards[i] = temp;
 }
}

deck.cpp
poker.cpp

d1
 is

 im
pl

ic
itl

y
pa

ss
ed

 to
 s

hu
ffl

e(
)

41 27 8 39 25 4 11 17cards[52]

1top_index d1

0x720

int main() {
 Deck d1;
 d1.shuffle();
}
void Deck::shuffle(Deck *this)
{
 this->cut(); // calls cut()
 // for this object
 for(i=0; i < 52; i++){
 int r = rand() % (52-i);
 int temp = this->cards[r];
 this->cards[r] = this->cards[i];
 this->cards[i] = temp;
 }
}

deck.cpp

Compiler-generated code
Actual code you write

0x720

d2
37 21 4 9 16 43 20 39cards[52]

0top_index

0x7e0

this

5b.4

The Same Names

• If arguments and
data members have
the same name it
will use the 'closest'
defined variable

class Student {
 public:
 Student(string name, int id, double gpa);

 ~Student(); // Destructor
private:
 string name;
 int id;
 double gpa;
};

Student::Student(string name, int id, double gpa)
{ // which is the member and which is the arg?
 name = name;
 id = id;
 gpa = gpa;
}

name

"Tina"

id

123

gpa

3.8

name

???

id

??

gpa

??

Object Data
Members
(this->)

Ctor
Arguments

5b.5

One Place You Can Use 'this'

• this can be used to
resolve scoping
issues with similar
named variables
– Exercise: this_scope

class Student {
 public:
 Student(string name, int id, double gpa);

 ~Student(); // Destructor
private:
 string name;
 int id;
 double gpa;
};

Student::Student(string name, int id, double gpa)
{ // Now it's clear
 this->name = name;
 this->id = id;
 this->gpa = gpa;
}

name

id

gpa

name

"Tina"

id

123

gpa

3.8

Object Data
Members
(this->)

Ctor
Arguments

"Tina"

123

3.8

5b.6

WHAT WE CURRENTLY KNOW
ABOUT COPYING OBJECTS

5b.7

Object assignment

• Assigning one object to another will perform a
member-by-member copy of the entire
source object to the destination object

s1

#include<iostream>
using namespace std;

enum {CSCI=1, CECS };

struct student {
 char name[80];
 int id;
 int major;
};

int main(int argc, char *argv[])
{
 student s1,s2;
 strncpy(s1.name,"Jill",80);
 s1.id = 5; s1.major = CECS;
 s2 = s1;
 return 0;
}

5

Ji
ll 2

idna
m

e

m
aj

or
5

Ji
ll 2

idna
m

e

m
aj

or
s2

Normally, C/C++ perform only one operation at
a time, and make you write code if you want to

do more. But object assignment is an
exception (probably because we can't "loop
through" the different members of a struct).

J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 1682942

 1

 J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 1682942

 1

7300

7304

...

7376

7380

7384

7388

7392

7396

7400

7408

7412

Address Memory Data

s1.name
[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

[0] [1] [2] [3]

[4] [5] [6] [7]

s2.id

S2.maajor

s1

s2.name

s2

5b.8

Multiple Constructors
• Can have multiple constructors

with different argument lists to
provide options to client software
for how they'd like to initialize the
object
– Constructor with NO ARGUMENTS is

known as the DEFAULT constructor

class Student {
 public:
 Student(); // Default ctor
 Student(string name, int id, double gpa);
 // "Initializing" ctor
 ~Student(); // Destructor
 string get_name();
 int get_id();
 double get_gpa();

 void set_name(string name);
 void set_id(int id);
 void set_gpa(double gpa);
 private:
 std::string name_;
 int id_;
 double gpa_;
};

Student::Student()
{
 name_ = "", id_ = 0; gpa_ = 2.0;
}

Student::Student(string name, int id, double gpa)
{
 name_ = name; id_ = id; gpa_ = gpa;
}

student.h
student.cpp

#include<iostream>
#include "student.h"

int main()
{
 Student s1; // calls default ctor
 string myname;
 cin >> myname;
 s1.setname_(myname);
 s1.setid_(214952);
 s1.setgpa_(3.67);

 Student s2(myname, 32421, 4.0);
 // calls "initializing" ctor

}

Note: Often name
data members with
special decorator

(id_ or gpa_) to make
it obvious to other
programmers that

this variable is a data
member

5b.9

COPY SEMANTICS
Copy constructors and assignment operators

5b.10

Copy Constructors
• Write a prototype for the constructor that

would want to be called by the red line of
code

• Realm of Reasonable Answers:

• We want a constructor that will build a
new Complex object (c3) by making a
copy of another (c1)

class Complex
{
 public:
 Complex();
 Complex(double r, double i);

 // What constructor definition do I
 // need for c3's declaration below

 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)
 Complex c3(c1);

}

5b.11

Copy Constructors
• Write a prototype for the

constructor that would want to be
called by the red line of code

• Realm of Reasonable Answers:
– Complex(Complex);

• We will see that this can't be right…
– Complex(Complex &)

• Possible
– Complex(const Complex &)

• Best! (Making a copy shouldn't
change the input argument, thus
'const')

• We want a constructor that will
build a new Complex object (c3) by
making a copy of another (c1)

class Complex
{
 public:
 Complex();
 Complex(double r, double i);

 // What constructor definition do I
 // need for c3's declaration below

 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)
 Complex c3(c1);

}

5b.12

Assignment Operators
• The assignment operator

(operator=(…)) is called when
an object that is ALREADY in-scope
is reassigned.

• It's signature is:

• Why does it return by reference…
we will see soon.

• Do we need to define this function
in our class?

class Complex
{
 public:
 Complex();
 Complex(double r, double i);
 Complex(const Complex&);

 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)
 Complex c3(c1); // Copy ctor
 c3 = c2; // Assignment op.
 // translates to c3.operator=(c2);

}

Complex& operator=(const Complex& other);

5b.13

Assignment & Copy Constructors

• C++ compiler automatically generates a
default copy constructor
– Constructor called when an object is allocated

and initializes the object to be a copy of
another object of the same type

– Signature would look like
Complex(const Complex &);

– Called by either of the options shown in the
code

– Simply performs an element by element copy

• C++ compiler automatically generates a
default assignment function
– Called when you assign to an object that is

already allocated (memory already exists)
– Simply performs an element by element copy
– Complex& operator=(const Complex &);

class Complex
{
 public:
 Complex(int r, int i);
 // compiler will provide by default:
 // Complex(const Complex&);
 // Complex& operator=(const Complex&);
 ~Complex()
 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)

 Complex c3(c1); // copy constructor
 Complex c4(5,7);
 c4 = c2; // default assignment oper.
 // c4.operator=(c2)

}

Class Complex
double real_

double imag_

c4
double real_

double imag_

c2
double real_

double imag_

5b.14

What Gets Called?

• What get's called when we
use `=` when creating a
new object?

• It may look like an
assignment operator.

• But C++ will call the Copy
Constructor!!

class Complex
{
 public:
 Complex(int r, int i);
 // compiler will provide by default:
 // Complex(const Complex&);
 // Complex& operator=(const Complex&);
 ~Complex()
 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)

 Complex c3(c1); // copy constructor
 Complex c4 = c1;

}

Class Complex
double real_

double imag_

5b.15

Assignment & Copy Constructors

• C++ compiler automatically generates a
default copy constructor

• C++ compiler automatically generates a
default assignment function

• See picture below of what a1 looks like as
it is constructed

class MyArray
{
 public:
 MyArray(int d[], int num); //normal
 ~MyArray();
private:
 int len; int *dat;

};
// Normal constructor
MyArray::MyArray(int d[], int num)
{
 dat = new int[num]; len = num;
 for(int i=0; i < len; i++){
 dat[i] = d[i];
 }
}

int main()
{
 int vals[] = {9,3,7,5};
 MyArray a1(vals,4);
 MyArray a2(a1); // calls default copy
 MyArray a3 = a1; // calls default copy
 MyArray a4;
 a4 = a1; // calls default assignment
 // how are the contents of a2, a3, a4
 // related to a1
}

9 3 7 5

0 1 2 3vals

0 1 2 30x200 0 1 2 30x200

After constructor

9 3 7 5

a1.dat 0x200

After 'new'

a1.len 4

5b.16

Assignment & Copy Constructors

9 3 7 5

0 1 2 3vals

0 1 2 3
0x200

After constructor

9 3 7 5

a1.len 4
a1.dat 0x200

A1

a2.len 4
a2.dat 0x200

A2

a3.len 4
a3.dat 0x200

A3

a4.len 4
a41.dat 0x200

A4 Default copy constructor
and assignment operator
make a SHALLOW COPY

(data members only)
rather than a DEEP copy
(data members + what

they point at)

class MyArray
{
 public:
 MyArray(int d[], int num); //normal
 ~MyArray();
 int len; int *dat;

};
// Normal constructor
MyArray::MyArray(int d[], int num)
{
 dat = new int[num]; len = num;
 for(int i=0; i < len; i++){
 dat[i] = d[i];
 }
}

int main()
{
 int vals[] = {9,3,7,5};
 MyArray a1(vals,4);
 MyArray a2(a1); // calls default copy
 MyArray a3 = a1; // calls default copy
 MyArray a4;
 a4 = a1; // calls default assignment
 // how are the contents of a2, a3, a4
 // related to a1
}

5b.17

When to Write Copy Constructor

• Default copy constructor and assignment operator ONLY
perform SHALLOW copies
– SHALLOW COPY (data members only)
– DEEP copy (data members + what they point at)
– [Like saving a webpage to your HD…it makes a shallow copy and

doesn't copy the pages linked to]

• You SHOULD/MUST define your own copy constructor and
assignment operator when a DEEP copy is needed
– When you have pointer data members that point to data that should

be copied when a new object is made
– Often times, if your data members are pointing to dynamically

allocated data, you need a DEEP copy

• Corollary: If a Shallow copy is acceptable, then you do NOT
need to define a copy constructor

5b.18

Defining Copy Constructors
• Same name as

normal constructor
but should take in an
argument of the
object type:
– Usually a const

reference
• MyArray(const MyArray&);

class MyArray
{public:
 MyArray(int d[], int num);
 MyArray(const MyArray& rhs);
 ~MyArray();
 private:
 int *dat; int len;
}
// Normal constructor
MyArray::MyArray(int d[], int num)
{
 dat = new int[num]; len = num;
 // copy values from d to dat
}
// Copy constructor
MyArray::MyArray(const MyArray &rhs){
{
 len = rhs.len; dat = new int[len];
 // copy from rhs.dat to dat
}

int main()
{
 intvals[] = {9,3,7,5};
 MyArray a1(vals,4);
 MyArray a2(a1);
 MyArray a3 = a1;
 // how are the contents of a2 and a1 related?
}

5b.19

Implicit Calls to Copy Constructor
• Recall pass-by-value

passes a copy of an
object…If defined
the copy constructor
will automatically be
called to make this
copy otherwise the
default copy will
perform a shallow
copy

class Complex
{
 public:
 Complex();
 Complex(double r, double i);
 Complex Complex(const Complex &rhs);
 ~Complex();
 double real, imag;
};
// Copy constructor
Complex::Complex(const Complex &c)
{
 cout << "In copy constructor" << endl;
 real = c.real; imag = c.imag;
}
// ** Copy constructor called for pass-by-value
int dummy(Complex rhs)
{
 cout << "In dummy" << endl;
}

intmain()
{
 Complex c1(2,3), c2(4,5);
 int x = dummy(c1);
 // ** Copy Constructor called on c1 **

}

5b.20

Copy Constructors
• Write a prototype for the

constructor that would want to be
called by the red line of code

• Now we see why the first option
can't be right…because to pass c1
by value requires a call to the copy
constructor which we are just now
defining (circular reference/logic)
– Complex(Complex)

• We will see that this can't be right…

• The argument must be passed by
reference
– Complex(const Complex &)

class Complex
{
 public:
 Complex();
 Complex(double r, double i);
 Complex(Complex c); // Bad b/c pass
 // by value req. copy to be made
 // ...chicken/egg problem
 Complex(const Complex &c); // Good
 ~Complex()
 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)
 Complex c3(c1);

}

5b.21

Defining Copy Assignment Operator
• operator=() is

called when an object
already exists and then
you assign to it
– Copy constructor called

when you assign during a
declaration:

– E.g. MyArray a2=a1;

• Can define operator for
'=' to indicate how to
make a copy via
assignment

• Gotchas?

class MyArray
{
 public:
 MyArray();
 MyArray(int d[], int num);
 MyArray(const MyArray& rhs);
 MyArray& operator=(const MyArray& rhs);
 ~MyArray();
 int*dat; intlen;
}

MyArray::MyArray(const MyArray &rhs){
{
 len = rhs.len; dat = new int[len];
 // copy from rhs.dat to dat
}

MyArray& MyArray::operator=(const MyArray &rhs){
{
 len = rhs.len; dat = new int[len];
 // copy from rhs.dat to dat
}

int main()
{
 intvals[] = {9,3,7,5};
 MyArray a1(vals,4);
 MyArray a2;
 a2 = a1; // operator=() since a2 already exists
}

5b.22

Defining Copy Assignment Operator
• Gotchas?

– Dest. object may
already be initialized
and simply
overwriting data
members may lead
to a memory leak

– Self assignment
(which may also lead
to memory leak or
lost data)

class MyArray
{
 public:
 MyArray();
 MyArray(int d[], int num);
 MyArray(const MyArray& rhs);
 MyArray& operator=(const MyArray& rhs);
 ~MyArray();
 int *dat; int len;
}

MyArray::MyArray(const MyArray &rhs){
{ len = rhs.len; dat = new int[len];
 // copy from rhs.dat to dat
}
MyArray& MyArray::operator=(const MyArray &rhs){
{
 if(this == &rhs) return *this;
 if(dat) delete dat;
 len = rhs.len; dat = new int[len];
 // copy from rhs.dat to dat
 return *this;
}

int main()
{
 int vals1[] = {9,3,7,5}, vals2[] = {8,3,4,1};
 MyArray a1(vals1,4);
 MyArray a2(vals2,4);
 a1 = a1; a2 = a1;
}

5b.23

Assignment Operator Practicals
• RHS should be a const

reference
– Const so we don't change it
– Reference so we don't pass-

by-value and make a copy
(which would actually call a
copy constructor)

• Return value should be a
reference
– Allows for chained

assignments
– Should return (*this)
– Reference so another copy

isn't made

class Complex
{
 public:
 Complex(int r, int i);
 ~Complex()
 Complex operator+(Complex right_op);
 Complex& operator=(const Complex &rhs);
 private:
 int real, imag;
};

Complex& Complex::operator=(const Complex & rhs)
{
 real = rhs.real;
 imag = rhs.imag;
 return *this;
}

int main()
{
 Complex c1(2,3), c2(4,5);

 Complex c3, c4;
 c4 = c3 = c2;
 // same as c4.operator=(c3.operator=(c2));
}

5b.24

Assignment Operator Overloading

• If a different
type argument
can be accepted
we can overload
the = operator

class Complex
{
 public:
 Complex(int r, int i);
 ~Complex();
 Complex operator+(const Complex &rhs);
 Complex &operator=(const Complex &r);
 Complex &operator=(const int& r);
private:
 double real, imag;
};

Complex& Complex::operator=(const int& r)
{
 real = r; imag = 0;
 return *this;
}

int main()
{
 Complex c1(3,5);
 Complex c2,c3,c4;
 c2 = c3 = c4 = 5;
 // c2 = (c3 = (c4 = 5));
 // c4.operator=(5); // Complex::operator=(int&)
 // c3.operator=(c4); // Complex::operator=(Complex&)
 // c2.operator=(c3); // Complex::operator=(Complex&)
 return 0;
}

5b.25

Copy Constructor Summary
• If you are okay with a shallow copy, you don’t need to define a

copy constructor or assignment operator
• Rule of Three:

– If you need more than the default of any of the following: a copy
constructor, an assignment operator, and a destructor then you need
all 3 (i.e. if you need 1 you need all 3)
• Usually if you have dynamically allocated memory

• Copy constructor should accept a const reference of the same
object type

• Assignment operators should be careful to cleanup initialized
members and check for self-assignment

• Assignment operators should return a reference type and
return *this

5b.26

Exercises For Home
• Suppose you are given a class that

implements a singly-linked of
integers (with a head pointer data
member)

• Write a '-=' operator that takes one
element and removes it from the
list if it exists

• Write a '==' operator that checks
whether the contents and order of
one list matches another

• Write a copy constructor and
assignment operator

#include <iostream>
#include "listint.h"
using namespace std;

int main()
{
 IntList m1, m2;
 m1.push_back(5);
 m2.push_back(5);

 if(m1 == m2){
 cout << "Should print!";
 }
 m2.push_back(7);
 m2 -= 5; // now m2 would just have [7]

 if(m1 == m2){
 cout << "Should not print!"; << endl;
 }

 IntList m3(m1); // make a copy of m1
 m3.push_back(8); // m3 should have [5,8]
 m2 = m1;
 if(m1 == m2){
 cout << "Should print!"; << endl;
 }
 return 0;
}

5b.27

REVIEW

5b.28

Review [1]
• What is the correct prototype for

the copy constructor call when c3
is created in the code to the right?
– Complex(Complex);
– Complex(Complex &)
– Complex(const Complex &)

class Complex
{
 public:
 Complex();
 Complex(double r, double i);

 // What constructor definition do I
 // need for c3's declaration below

 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)
 Complex c3(c1);

}

5b.29

Review [2]

Which function?
• For each of the following,

identify whether the copy
constructor is called or the
assignment operator
– Complex c1;

Complex c2 = c1;
– Complex c1;

Complex c2(c1);
– Complex c1, c2;

c2 = c1;

Default Versions
• What kind of copy does the

default copy constructor
and assignment operator
perform?

class MyArray
{
 ...
 private:
 int* data; // ptr to dynamic array
 size_t len;
};

5b.30

Review [3]

State the Rule of 3
• The rule of 3:

Assignment Operator Specifics?
• What extra considerations does the

assignment operator need to handle
vs. the copy constructor?

• What should operator= return?

class MyArray
{

 private:
 int* data; // ptr to dynamic array
};

MyArray& operator=(const MyArray& other)
{

}

5b.31

SOLUTIONS

5b.32

Review [1]
• What is the correct prototype for

the copy constructor call when c3
is created in the code to the right?
– Complex(Complex);

• We will see that this can't be right…
– Complex(Complex &)

• Possible
– Complex(const Complex &)

• Best! (Making a copy shouldn't
change the input argument, thus
'const')

class Complex
{
 public:
 Complex();
 Complex(double r, double i);

 // What constructor definition do I
 // need for c3's declaration below

 private:
 double real, imag;
};

int main()
{
 Complex c1(2,3), c2(4,5)
 Complex c3(c1);

}

5b.33

Review [2]

Which function?
• For each of the following,

identify whether the copy
constructor is called or the
assignment operator
– Complex c1;

Complex c2 = c1;
• Copy constructor

– Complex c1;
Complex c2(c1);
• Copy constructor

– Complex c1, c2;
c2 = c1;
• Assignment operator

Default Versions
• What kind of copy does the

default copy constructor
and assignment operator
perform?
– Shallow copy (member by

member copy)

class MyArray
{
 ...
 private:
 int* data; // ptr to dynamic array
 size_t len;
};

5b.34

Review [3]

State the Rule of 3
• The rule of 3:

– If a class needs a user-defined
version of any one of the 3: copy
constructor, assignment
operator, or destructor, it needs
ALL 3.

Assignment Operator Specifics?
• What extra considerations

does the assignment
operator need to handle vs.
the copy constructor?
– Must clean up old resources

before copying
– Beware of self assignment

• What should operator=
return?
– A reference to an instance of

the class which should be
*this;

class MyArray
{

 private:
 int* data; // ptr to dynamic array
};

MyArray& operator=(const MyArray& other)
{

}

