© 2022 by Mark Redekopp. This content is

CS 103 Unit 5a —
Operator Overloading

CSCl 103L Teaching Team

protected and may not be shared, uploaded, or distributed.

USCVirerbi =
Unit 5 — Objects Part 2

* The course is broken into 6 units (spirals), each consisting of:

1.—= .
T X &S =

Lectures Lab Homework(s) Project(s)
abs (Formative programming (Cumulative programming
(Tools + Practice + problems) problems)
K small group Help) J
1 2 3
C++ Language Algorithms and Objects 1
Syntax Computational Thinking
4 @ 6
Managing Data Objects 2 Recursion

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Function Overloading

 What makes up a signature (uniqueness) of a function
— name
— number and type of arguments
* No two functions are allowed to have the same signature; the
following 4 functions are unique and allowable...
— void f1(int); void fl(double, int);
— void f1l(double); void fi1(int, int);
* We say that “f1” is overloaded 4 times
* Notes:

* Return type does NOT make signature unique
— int f1(); is considered the same as void f1();

 For member functions, 'const' make signature unique
— int& List::get() int const & List::get() const;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

School of Engineering

Operator Overloading

e C++ defines operators (+,*,-,==,etc.) that work
with basic data types like int, char, double, etc.

e C++ has no clue what classes we’ll define and what
those operators would mean for these "yet-to-be-
defined" classes

— class Complex {

private:
double real, imag;

}s

— Complex cl1,c2,c3;
// should add component-wise
c3 =cl + c2;

— class List {

}s
— List 11,12;
11 = 11 + 12; // should concatenate
// 12 items to 11
* We can write custom functions to tell the
compiler what to do when we use these
operators! Let us learn how...

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

class User{
public:
User(string n); // Constructor
string get _name();
private:
int id_;
string name_;

};

#include "user.h"

User::User(string n) {
name_ = n;

¥

string User::get _name(){
return name_;

}

##include<iostream>
#include ‘“user.h”

int main(int argc, char *argv[]) {
User ul("Bill"), u2("Jane");
// see if same username
// Option 1:
if(ul == u2) cout << "Same";

// Option 2:

if(ul.get _name() == u2.get_name())
{ cout << "Same" << endl; }

return O:

}

y-asn

ddo-iasn

ddo3sa) Jasn

Two Approaches

* There are two ways to specify an operator
overload function

— 1. Global level function (not a member of any
class)

— 2. As a member function of the class on which it
will operate

* Which should we choose?
— |t depends on the left-hand side operand
— Ex 1: iostream << Complex
— Ex 2: Complex + int

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

I (]S Viterbi .
Method 1: Global Functions

* Can define global functions i
with name "operator{+-..}" |1

int hour = 9;

taking two arguments string suffix = "p.m.";
- : : t string time = hour + suffix;
— LHS= Left Hand Slde Is 1° arg // WON'T COMPILE..doesn't know how to
— RTH = nght Hand side is znd arg // add an int and a string
return 0;

e When compiler encounters an |’

Operator Wlth ObjeCtS Of string operator+(int time, string suf)
{

specific types it will look for an | string res = to_string(time); // conv int to str

res += suf; // strings already support +

"operator" function to match , FRIIAD FES
and call it int main()
{

int hour = 9;

 But what if we need to access string suffix = "p.m.”;
private data of some object to
. . string time = hour + suffix;
implement our operation? 77 L CONPILE T

// string time = operator+(hour, suffix);

— A global (non-member) function
will not work. We need method 2 | | returm @

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

Method 2: Class Members

e C++ allows users to write class
member functions that define
what an operator should do for a
class

* Same naming convention:
function name starts with
‘operator’ and then the actual
operator

 Important: Left-hand side is the
implied calling object for which
the member function is called and
Right-hand side is passed as the
argument
— LHS-arg.operator+(RHS-arg);

School of Engineering

class Complex
{ public:
Complex();
Complex(double r, double i);
Complex operator+(const Complex &rhs) const;

private:
double real, imag;

};

Complex Complex::operator+(const Complex &rhs) const
{
Complex temp;
temp.real = real + rhs.real;
temp.imag = imag + rhs.imag;
return temp;
}
int main()
{
Complex c1(2,3);
Complex c2(4,5);
Complex c3 = cl1 + c2;
// Same as c3 = cl.operator+(c2);
cout << c3.real << "," << c3.imag << endl;
// can overload '<<' so we can write:
// cout << c3 << endl;
return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Overloading Notes

* You can overload any operator except the member
operator (.), the scope operator (::), and the ternary
operator (? :)

— Binary operators: +, -, *, /, ++, --
— Comparison operators: ==, !=, <, >, <=, >=
— Assignment: =, +=, -=, *=, /=, etc.

— 1/O stream operators: <<, >>

* You cannot change the operator's precedence

— Multiply must always come before addition

* More questions: https://isocpp.org/wiki/faq/operator-overloading

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

https://isocpp.org/wiki/faq/operator-overloading
https://isocpp.org/wiki/faq/operator-overloading
https://isocpp.org/wiki/faq/operator-overloading

. S Viterbi

School of Engineering

Binary Operator Overloading

* For binary operators, do the operation on a new
object's data members and return that object

— Don’t want to affect the input operands data members
* Difference between: x=y+12z; vs. x=x+72

* Normal order of operations and associativity apply
(can’t be changed)

* Can overload each operator with various RHS types...
— See next slide

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi

School of Engineering

Binary Operator Overloading

class Complex
{
public:
Complex();
Complex(double r, double i);
Complex operator+(const Complex &rhs) const;
Complex operator+(int real) const;
private:
double real, imag;
}s
Complex Complex: :operator+(const Complex &rhs) const
{
Complex temp;
temp.real = real + rhs.real;
temp.imag = imag + rhs.imag;
return temp;

}

Complex Complex::operator+(int real) const
{

Complex temp = *this;

temp.real += real;

return temp;

No special code is needed to add 3 or more
operands. The compiler chains multiple
calls to the binary operator in sequence.

/

int main()

{

Complex c1(2,3) 4 c2(4,5), c3(6,7);
Complex c4 = c1 + c2 + c3;

// (cl + c2) + c3

// c4 = cl.operator+(c2).operator+(c3)

// = anonymous-ret-val.operator+(c3)
c3 =cl + c2;
c3 =c3 + 5;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Adding different types
(Complex + Complex vs.
Complex + int)requires

different overloads

R, IS Viterbi

School of Engineering

Relational Operator Overloading

class Complex

e (Can overload

{
==, !:’ <’ <=’ >’ >= public:
Complex();
e Should return bool Complex(double r, double i);

Complex operator+(const Complex &rhs) const;
bool operator==(const Complex &rhs) const;
double real, imag;

¥
bool Complex: :operator==(const Complex &rhs) const
{
return (real == rhs.real && imag == rhs.imag);
}

int main()
{
Complex c1(2,3);
Complex c2(4,5);
// equiv. to cl.operator==(c2);
if(cl == c2)
cout << "Cl1l & C2 are equal!"™ << endl;

return 9;

Nothing will be displayed

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi .
Non-Member Functions

int main()

 What if the user changes the {

Complex c1(2,3);

order? Complex c2(4,5);
. Complex c3 = 5 + c1;
— int on LHS & Complex on RHS 77 99 B.epersssel) 23
— No match to a member // ?? int.operator+(cl) ??

// there is no int class we can

function b/c to call a member // change or write

function the LHS has to be an

instance of that class return 0;
}

e We can define a non-

i Doesn't work without a new operator+ overload
member function (global

Complex operator+(const int& lhs, const Complex &rhs)

scope function) that takes in {
Complex temp;
two parameters (bOth the temp.real = lhs + rhs.real; temp.imag = rhs.imag;
LHS & RHS) return temp;
}
— May need to declare it as a int main()
friend {

Complex c1(2,3);

Complex c2(4,5);

Complex c3 =5 + c1; // Calls operator+(5,cl)
return 9;

Still a problem with this code

Can operator+(...) access Complex's private data?
© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

Friend Functions

e A friend function is a class Silly
function that is not a t
public:
member of the class but Silly(int d) { dat = d };
. friend int inc_my_data(Silly &s);
has access to the private private:

data members of instances S EES

of that class

};

// don't put Silly:: in front of inc_my_data(...)

e Put keyword ‘“Friend’ in // since it is?'t a memt))er of Silly
. . int inc_my data(Silly &a
function prototype in class 0 .. .
definiti g yP { T Notice inc_my_data is NOT
etinition return s.dat; a member function of Silly.
 Don’t add scope to } It's a global scope function
function definition int main() bUt. it now can access the
{ private class members.

Silly cat(5);
//cat.dat = 8
// WON'T COMPILE ince dat is private

int x = inc_my_data(cat);
cout << x << endl;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViterbi .
Non-Member Functions

class Complex

* Revisiting the previous {
public:

problem Complex();

Complex(double r, double i);

// this is not a member function

friend Complex operator+(const int&, const Complex&);
private:

double real, imag;

};

Complex operator+(const int& 1lhs, const Complex &rhs)
{
Complex temp;
temp.real = lhs + rhs.real; temp.imag = rhs.imag;
return temp;
¥
int main()
{
Complex c1(2,3);
Complex c2(4,5);
Complex ¢c3 =5 + c1; // Calls operator+(5,cl)
return 0;

Now things work!

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- /] USCViterbi
Why Friend Functions?

e Canldo the following?

. error: no match for 'operator<<'in 'std::cout << c1'

. Jusr/include/c++/4.4/ostream:108: note:
candidates are: /usr/include/c++/4.4/ostream:165:
note: std::basic_ostream<_CharT,
_Traits>& std::basic_ostream<_CharT,
_Traits>::operator<<(long int) [with _CharT = char,
_Traits = std::char_traits<char>]

. Jusr/include/c++/4.4/ostream:169: note:
std::basic_ostream<_CharT, Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(long unsigned int) [with
_CharT = char, _Traits = std::char_traits<char>]

. Jusr/include/c++/4.4/ostream:173: note:
std::basic_ostream<_CharT, Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(bool) [with _CharT = char,
_Traits = std::char_traits<char>]

. Jusr/include/c++/4.4/bits/ostream.tcc:91: note:
std::basic_ostream<_CharT, Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(short int) [with _CharT = char,
_Traits = std::char_traits<char>]

School of Engineering

class Complex

{
public:

Complex();

Complex(double r, double i);

Complex operator+(const Complex &rhs) const;
private:

double real, imag;

Ik

int main()
{
Complex c1(2,3);
cout << cl; // equiv. to cout.operator<<(cl);
cout << endl;
return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. (SC V1terb1
Why Friend Functions?

e cout is an object of type ‘ostream’ ‘{?1355 ECNELE
* << isjust an operator public:
. . Complex();

 But we call it with cout on the Complex(double r, double i);

LHS which would make Complex operator+(const Complex &rhs) const;

. private:

operator<< a member function double real, imag;

of class ostream b
* Ostream class can’t define these int main()

member functions to print out complex ¢1(2,3);

user defined classes because they cout << "cl = " << cl;

// cout.operator<<("cl = ").operator<<(cl);

haven’t been created

. . o . *k .

o Slmllarly, ostream class doesn’t // ostream::operator<<(const char *str);
] // ostream::operator<<(Complex &src);

have access to private members

// Using global scope (friend) functions
of Complex // operator<<(operator<<(cout,"cl = "), cl);

cout << endl;
// operator<<(cout,endl);
return 0;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- /] USCViterbi .
Ostream Overloading

class Complex

* (Can define operator {public,
functions as friend Complex();
; Complex(double r, double i);
functions Complex operator+(const Complex &rhs) const;
. friend ostream& operator<<(ostream&, const Complex &c);
o LHS IS lst arg. pr-j_vate:
. int real, imag;
* RHSis 2" arg. }; ;
* USE frlend functlon S0 LHS ostream& operator<<(ostream &os, const Complex &c)
can be different type but { o , o
. . 0s << c.real << "," << c.imag << "j";
still access prlvate data //cout.operater<<(c.real).operator<<(",").operator<<...
return os;
e Return the ostream& (i.e. }
os which is really cout) so int main()
you can chain calls to {
: : Complex c1(2,3), c2(4,5);
operator<<' and because cout << cl << c2;

// operator<<(operator<<(cout, cl), c2);
cout << endl;
return 0;

cout/os object has changed

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

School of Engineering

Implicit Type Conversion

* Would the following if condition
make sense?

e No! If statements want Boolean
variables

 Butyou've done things like this
before

Operator>> returns an ifstream&

e So how does ifstream do it?

— With an "implicit type conversion
operator overload"
— Student::operator bool()

* Code to specify how to convert a
Student to a bool

— Student::operator int()

* Code to specify how to convert a
Student to an int

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, o

class Student {

private: int id; double gpa;
}s
int main()
{
Student s1;
if(s1){ cout << "Hi" << endl; }
return 0O;
}

ifstream ifile(filename);

while(ifile >> x)

{ ... }

class Student {
private:
int id; double gpa;
public:
operator bool() { return gpa>= 2.0;}
operator int() { return id; }

}s

Student s1;
if(s1) // calls operator bool() and
int x = s1; // calls operator int()

- USCViterbi .
Member or Friend?

Should | make my operator overload be a member of a class, C17?

Ask yourself: Is the LHS an instance of C1?

YES NO

Cl objA; Cl objA;

objA << objB // or objB << objA // or

objA + int int + objA
YES the operator overload function NO the operator overload function
can be a member function of the should be a global level (maybe
C1 class since it will be translate to friend) function such as

objA.operator<<(...) operator<<(cout, objA). It cannot be a

member function since it will be
translate to objB.operator<<(..").

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

-1 USCViterbi .
Summary

* If the left hand side of the operator is an instance of that class

— Make the operator a member function of a class...
— The member function should only take in one argument which is the RHS

object
* If the left hand side of the operator is an instance of a different
class
— Make the operator a friend function of a class...

— This function requires two arguments, first is the LHS object and second is
the RHS object

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OPERATOR OVERLOADING REVIEW

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

. S Viterbi

School of Engineering

Operator Overloading Review

Member or Non-member?

© 2022 by

How do you decide if you can *

make the operator overload
function a member function
of the class?

When do you have to use a
non-member operator
function?

// arbitrary precision integer class
class BigInt {

Ii5

int main(){
BigInt x, y, z;
X =Y + 5;

}

Arguments

uted.

For member function
operator overloads, how
many input arguments are
needed for operator+? For
operator! ?

// arbitrary precision integer class
class BigInt {
__ operator+();
_____operator!();
}s
int main(){

BigInt w, x, y, z;

W =X+ YV;

bool flag = !w;
}

. S Viterbi

School of Engineering

Operator Overloading Review

Return types

* For class Bigint which
models an arbitrary
precision integer, what
should the return type be
for:

— QOperator+
— Operator==

class BigInt {

public:

operator+(const BigInt&);
operator==(const BigInt&);

}s

int main(){
BigInt w, X, y, z;
W=X+Y;

tributed.

st

Chaining
* Do we need operator
overload functions with 2-,

3-, 4-inputs, etc. to handle
various use cases?

class BigInt {

}s

int main(){
BigInt w, X, y, z;
W=X+Y + Z;
cout << w << "

}

is a bigint!" << endl;

R, IS Viterbi

School of Engineering

SOLUTION

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R, IS Viterbi

School of Engineering

Operator Overloading Review

Member or Non-member?

©2022 by

How do you decide if you can make
the operator overload function a
member function of the class?
— If the left-hand side operand is a class
instance
When do you have to use a non-
member operator function?

— If the left operand of an operator is
NOT an instance of the class, you
cannot use a member function

// arbitrary precision integer class
class BigInt {

Ii5

int main(){
BigInt x, y, z;
X =Yy + 5;

}

uted.

Arguments

For member function operator
overloads, how many input
arguments are needed for
operator+?

— Only 1, the left side operand is 'this'

for operator!

None, the left side operand is 'this’

// arbitrary precision integer class
class BigInt {
__ operator+(const BigInt& rhs);
_____operator!();
}s
int main(){
BigInt w, x, y, z;
W=X+Y;
bool flag = !w;
}

T g T T

. S Viterbi

School of Engineering

Operator Overloading Review

Return types Chaining

* For class BigIint which * Do we need operator overload
models an arbitrary functions with 2-, 3-, 4-inputs,
precision integer, what etc. to handle various use
should the return type be cases?
for: — No, this is why the return type should

be Biglnt to allow for chaining:

— Operator+: Bigint (by value
P gint (by) X.operator+(y).operator+(z), etc.

— Operator==: bool

class BigInt { // arbitrary precision integer class
public: class BigInt {
BigInt operator+(const BigInt&); .
bool operator==(const BigInt&); }s
}; int main(){
int main(){ BigInt w, x, y, zZ;
BigInt w, X, y, z; W=X+Y + zZ;
W=X+Y; cout << w << " 1is a bigint!" << endl;
©2 } - — — = — - tributed. }

