
5a.1

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

CS 103 Unit 5a –
Operator Overloading

CSCI 103L Teaching Team

5a.2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Unit 5 – Objects Part 2

• The course is broken into 6 units (spirals), each consisting of:

C++ Language
Syntax

1

Lectures

1

Algorithms and
Computational Thinking

2
Objects 1

3

Objects 2

4

Recursion

5

Homework(s)
(Formative programming

problems)

Project(s)
(Cumulative programming

problems)
Labs

(Tools + Practice +
small group Help)

6

Managing Data

5a.3

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Function Overloading
• What makes up a signature (uniqueness) of a function

– name
– number and type of arguments

• No two functions are allowed to have the same signature; the
following 4 functions are unique and allowable…
– void f1(int); void f1(double, int);
– void f1(double); void f1(int, int);

• We say that “f1” is overloaded 4 times
• Notes:
• Return type does NOT make signature unique

– int f1(); is considered the same as void f1();

• For member functions, 'const' make signature unique
– int& List::get() int const & List::get() const;

5a.4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operator Overloading
• C++ defines operators (+,*,-,==,etc.) that work

with basic data types like int, char, double, etc.
• C++ has no clue what classes we’ll define and what

those operators would mean for these "yet-to-be-
defined" classes
– class Complex {

private:
double real, imag;

};
– Complex c1,c2,c3;

// should add component-wise
c3 = c1 + c2;

– class List {
...

};
– List l1,l2;

l1 = l1 + l2; // should concatenate
// l2 items to l1

• We can write custom functions to tell the
compiler what to do when we use these
operators! Let us learn how…

class User{
public:

User(string n); // Constructor
string get_name();

private:
int id_;
string name_;

};

#include "user.h"
User::User(string n) {

name_ = n;
}
string User::get_name(){

return name_;
}

#include<iostream>
#include “user.h”

int main(int argc, char *argv[]) {
User u1("Bill"), u2("Jane");
// see if same username
// Option 1:
if(u1 == u2) cout << "Same";

// Option 2:
if(u1.get_name() == u2.get_name())

{ cout << "Same" << endl; }
return 0:
}

user.h
user.cpp

user_test.cpp

5a.5

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Two Approaches

• There are two ways to specify an operator
overload function
– 1. Global level function (not a member of any

class)
– 2. As a member function of the class on which it

will operate
• Which should we choose?
– It depends on the left-hand side operand
– Ex 1: iostream << Complex
– Ex 2: Complex + int

5a.6

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Method 1: Global Functions
• Can define global functions

with name "operator{+-…}"
taking two arguments
– LHS = Left Hand side is 1st arg
– RTH = Right Hand side is 2nd arg

• When compiler encounters an
operator with objects of
specific types it will look for an
"operator" function to match
and call it

• But what if we need to access
private data of some object to
implement our operation?
– A global (non-member) function

will not work. We need method 2

int main()
{

int hour = 9;
string suffix = "p.m.";

string time = hour + suffix;
// WON'T COMPILE…doesn't know how to
// add an int and a string
return 0;

}

string operator+(int time, string suf)
{

string res = to_string(time); // conv int to str
res += suf; // strings already support +
return res;

}
int main()
{

int hour = 9;
string suffix = "p.m.";

string time = hour + suffix;
// WILL COMPILE TO:
// string time = operator+(hour, suffix);

return 0;
}

5a.7

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Method 2: Class Members
• C++ allows users to write class

member functions that define
what an operator should do for a
class

• Same naming convention:
function name starts with
‘operator’ and then the actual
operator

• Important: Left-hand side is the
implied calling object for which
the member function is called and
Right-hand side is passed as the
argument
– LHS-arg.operator+(RHS-arg);

class Complex
{ public:

Complex();
Complex(double r, double i);
Complex operator+(const Complex &rhs) const;

private:
double real, imag;

};

Complex Complex::operator+(const Complex &rhs) const
{

Complex temp;
temp.real = real + rhs.real;
temp.imag = imag + rhs.imag;
return temp;

}
int main()
{

Complex c1(2,3);
Complex c2(4,5);
Complex c3 = c1 + c2;
// Same as c3 = c1.operator+(c2);
cout << c3.real << "," << c3.imag << endl;
// can overload '<<' so we can write:
// cout << c3 << endl;
return 0;

}

5a.8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Overloading Notes

• You can overload any operator except the member
operator (.), the scope operator (::), and the ternary
operator (? :)
– Binary operators: +, -, *, /, ++, --
– Comparison operators: ==, !=, <, >, <=, >=
– Assignment: =, +=, -=, *=, /=, etc.
– I/O stream operators: <<, >>

• You cannot change the operator's precedence
– Multiply must always come before addition

• More questions: https://isocpp.org/wiki/faq/operator-overloading

https://isocpp.org/wiki/faq/operator-overloading
https://isocpp.org/wiki/faq/operator-overloading
https://isocpp.org/wiki/faq/operator-overloading

5a.9

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Binary Operator Overloading

• For binary operators, do the operation on a new
object's data members and return that object
– Don’t want to affect the input operands data members

• Difference between: x = y + z; vs. x = x + z;

• Normal order of operations and associativity apply
(can’t be changed)

• Can overload each operator with various RHS types…
– See next slide

5a.10

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Binary Operator Overloading

int main()
{
Complex c1(2,3), c2(4,5), c3(6,7);

Complex c4 = c1 + c2 + c3;
// (c1 + c2) + c3
// c4 = c1.operator+(c2).operator+(c3)
// = anonymous-ret-val.operator+(c3)

c3 = c1 + c2;
c3 = c3 + 5;

}

class Complex
{
public:
Complex();
Complex(double r, double i);
Complex operator+(const Complex &rhs) const;
Complex operator+(int real) const;

private:
double real, imag;

};
Complex Complex::operator+(const Complex &rhs) const
{

Complex temp;
temp.real = real + rhs.real;
temp.imag = imag + rhs.imag;
return temp;

}

Complex Complex::operator+(int real) const
{

Complex temp = *this;
temp.real += real;
return temp;

} Adding different types
(Complex + Complex vs.
Complex + int) requires

different overloads

No special code is needed to add 3 or more
operands. The compiler chains multiple
calls to the binary operator in sequence.

5a.11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Relational Operator Overloading
• Can overload

==, !=, <, <=, >, >=
• Should return bool

class Complex
{
public:
Complex();
Complex(double r, double i);
Complex operator+(const Complex &rhs) const;
bool operator==(const Complex &rhs) const;
double real, imag;

};

bool Complex::operator==(const Complex &rhs) const
{

return (real == rhs.real && imag == rhs.imag);
}

int main()
{

Complex c1(2,3);
Complex c2(4,5);
// equiv. to c1.operator==(c2);
if(c1 == c2)

cout << "C1 & C2 are equal!" << endl;

return 0;
}

Nothing will be displayed

5a.12

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Non-Member Functions
• What if the user changes the

order?
– int on LHS & Complex on RHS
– No match to a member

function b/c to call a member
function the LHS has to be an
instance of that class

• We can define a non-
member function (global
scope function) that takes in
two parameters (both the
LHS & RHS)
– May need to declare it as a

friend

int main()
{

Complex c1(2,3);
Complex c2(4,5);
Complex c3 = 5 + c1;

// ?? 5.operator+(c1) ??
// ?? int.operator+(c1) ??
// there is no int class we can
// change or write

return 0;
}

Still a problem with this code
Can operator+(…) access Complex's private data?

Complex operator+(const int& lhs, const Complex &rhs)
{

Complex temp;
temp.real = lhs + rhs.real; temp.imag = rhs.imag;
return temp;

}
int main()
{

Complex c1(2,3);
Complex c2(4,5);
Complex c3 = 5 + c1; // Calls operator+(5,c1)
return 0;

}

Doesn't work without a new operator+ overload

5a.13

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

class Silly
{

public:
Silly(int d) { dat = d };
friend int inc_my_data(Silly &s);

private:
int dat;

};

// don't put Silly:: in front of inc_my_data(...)
// since it isn't a member of Silly
int inc_my_data(Silly &a)
{

s.dat++;
return s.dat;

}

int main()
{

Silly cat(5);
//cat.dat = 8
// WON'T COMPILE since dat is private

int x = inc_my_data(cat);
cout << x << endl;

}

Friend Functions
• A friend function is a

function that is not a
member of the class but
has access to the private
data members of instances
of that class

• Put keyword ‘friend’ in
function prototype in class
definition

• Don’t add scope to
function definition

Notice inc_my_data is NOT
a member function of Silly.
It's a global scope function
but it now can access the
private class members.

5a.14

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Non-Member Functions
• Revisiting the previous

problem

Now things work!

class Complex
{
public:
Complex();
Complex(double r, double i);
// this is not a member function
friend Complex operator+(const int&, const Complex&);

private:
double real, imag;

};

Complex operator+(const int& lhs, const Complex &rhs)
{

Complex temp;
temp.real = lhs + rhs.real; temp.imag = rhs.imag;
return temp;

}
int main()
{

Complex c1(2,3);
Complex c2(4,5);
Complex c3 = 5 + c1; // Calls operator+(5,c1)
return 0;

}

5a.15

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why Friend Functions?
• Can I do the following?
• error: no match for 'operator<<' in 'std::cout << c1'
• /usr/include/c++/4.4/ostream:108: note:

candidates are: /usr/include/c++/4.4/ostream:165:
note: std::basic_ostream<_CharT,
_Traits>& std::basic_ostream<_CharT,
_Traits>::operator<<(long int) [with _CharT = char,
_Traits = std::char_traits<char>]

• /usr/include/c++/4.4/ostream:169: note:
std::basic_ostream<_CharT, _Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(long unsigned int) [with
_CharT = char, _Traits = std::char_traits<char>]

• /usr/include/c++/4.4/ostream:173: note:
std::basic_ostream<_CharT, _Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(bool) [with _CharT = char,
_Traits = std::char_traits<char>]

• /usr/include/c++/4.4/bits/ostream.tcc:91: note:
std::basic_ostream<_CharT, _Traits>&
std::basic_ostream<_CharT,
_Traits>::operator<<(short int) [with _CharT = char,
_Traits = std::char_traits<char>]

class Complex
{
public:

Complex();
Complex(double r, double i);
Complex operator+(const Complex &rhs) const;

private:
double real, imag;

};

int main()
{

Complex c1(2,3);
cout << c1; // equiv. to cout.operator<<(c1);
cout << endl;
return 0;

}

5a.16

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Why Friend Functions?
• cout is an object of type ‘ostream’
• << is just an operator
• But we call it with cout on the

LHS which would make
operator<< a member function
of class ostream

• Ostream class can’t define these
member functions to print out
user defined classes because they
haven’t been created

• Similarly, ostream class doesn’t
have access to private members
of Complex

class Complex
{
public:
Complex();
Complex(double r, double i);
Complex operator+(const Complex &rhs) const;

private:
double real, imag;

};

int main()
{

Complex c1(2,3);
cout << "c1 = " << c1;
// cout.operator<<("c1 = ").operator<<(c1);

// ostream::operator<<(const char *str);
// ostream::operator<<(Complex &src);

// Using global scope (friend) functions
// operator<<(operator<<(cout,"c1 = "), c1);

cout << endl;
// operator<<(cout,endl);
return 0;

}

5a.17

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Ostream Overloading
• Can define operator

functions as friend
functions

• LHS is 1st arg.
• RHS is 2nd arg.
• Use friend function so LHS

can be different type but
still access private data

• Return the ostream& (i.e.
os which is really cout) so
you can chain calls to
'operator<<' and because
cout/os object has changed

class Complex
{
public:
Complex();
Complex(double r, double i);
Complex operator+(const Complex &rhs) const;
friend ostream& operator<<(ostream&, const Complex &c);

private:
int real, imag;

};

ostream& operator<<(ostream &os, const Complex &c)
{

os << c.real << "," << c.imag << "j";
//cout.operater<<(c.real).operator<<(",").operator<<...
return os;

}

int main()
{

Complex c1(2,3), c2(4,5);
cout << c1 << c2;
// operator<<(operator<<(cout, c1), c2);
cout << endl;
return 0;

}

5a.18

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Implicit Type Conversion
• Would the following if condition

make sense?
• No! If statements want Boolean

variables

• But you've done things like this
before
– Operator>> returns an ifstream&

• So how does ifstream do it?
– With an "implicit type conversion

operator overload"
– Student::operator bool()

• Code to specify how to convert a
Student to a bool

– Student::operator int()
• Code to specify how to convert a

Student to an int

class Student {
private: int id; double gpa;

};
int main()
{

Student s1;
if(s1){ cout << "Hi" << endl; }
return 0;

}

ifstream ifile(filename);
...
while(ifile >> x)
{ ... }

class Student {
private:
int id; double gpa;

public:
operator bool() { return gpa>= 2.0;}
operator int() { return id; }

};

Student s1;
if(s1) // calls operator bool() and

int x = s1; // calls operator int()

5a.19

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Member or Friend?
Should I make my operator overload be a member of a class, C1?

Ask yourself: Is the LHS an instance of C1?

C1 objA;
objA << objB // or
objA + int

YES the operator overload function
can be a member function of the
C1 class since it will be translate to

objA.operator<<(…)

C1 objA;
objB << objA // or
int + objA

NO the operator overload function
should be a global level (maybe

friend) function such as
operator<<(cout, objA). It cannot be a

member function since it will be
translate to objB.operator<<(…).

YES NO

5a.20

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Summary
• If the left hand side of the operator is an instance of that class

– Make the operator a member function of a class…
– The member function should only take in one argument which is the RHS

object

• If the left hand side of the operator is an instance of a different
class
– Make the operator a friend function of a class…
– This function requires two arguments, first is the LHS object and second is

the RHS object

5a.21

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

OPERATOR OVERLOADING REVIEW

5a.22

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operator Overloading Review

Member or Non-member?
• How do you decide if you can

make the operator overload
function a member function
of the class?

• When do you have to use a
non-member operator
function?

Arguments
• For member function

operator overloads, how
many input arguments are
needed for operator+? For
operator! ?

// arbitrary precision integer class
class BigInt {

...
};
int main(){

BigInt x, y, z;
x = y + 5;

}

// arbitrary precision integer class
class BigInt {

____ operator+();
____ operator!();

};
int main(){

BigInt w, x, y, z;
w = x + y;
bool flag = !w;

}

5a.23

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operator Overloading Review

Return types
• For class BigInt which

models an arbitrary
precision integer, what
should the return type be
for:
– Operator+
– Operator==

Chaining
• Do we need operator

overload functions with 2-,
3-, 4-inputs, etc. to handle
various use cases?

class BigInt {
public:

_________ operator+(const BigInt&);
_________ operator==(const BigInt&);

};
int main(){

BigInt w, x, y, z;
w = x + y;

}

class BigInt {
...

};
int main(){

BigInt w, x, y, z;
w = x + y + z;
cout << w << " is a bigint!" << endl;

}

5a.24

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

SOLUTION

5a.25

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operator Overloading Review

Member or Non-member?
• How do you decide if you can make

the operator overload function a
member function of the class?
– If the left-hand side operand is a class

instance
• When do you have to use a non-

member operator function?
– If the left operand of an operator is

NOT an instance of the class, you
cannot use a member function

Arguments
• For member function operator

overloads, how many input
arguments are needed for
operator+?
– Only 1, the left side operand is 'this'

• for operator!
– None, the left side operand is 'this'

// arbitrary precision integer class
class BigInt {

...
};
int main(){

BigInt x, y, z;
x = y + 5;

}

// arbitrary precision integer class
class BigInt {

____ operator+(const BigInt& rhs);
____ operator!();

};
int main(){

BigInt w, x, y, z;
w = x + y;
bool flag = !w;

}

5a.26

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Operator Overloading Review

Return types
• For class BigInt which

models an arbitrary
precision integer, what
should the return type be
for:
– Operator+: BigInt (by value)
– Operator==: bool

Chaining
• Do we need operator overload

functions with 2-, 3-, 4-inputs,
etc. to handle various use
cases?
– No, this is why the return type should

be BigInt to allow for chaining:
x.operator+(y).operator+(z), etc.

class BigInt {
public:

BigInt operator+(const BigInt&);
bool operator==(const BigInt&);

};
int main(){

BigInt w, x, y, z;
w = x + y;

}

// arbitrary precision integer class
class BigInt {

...
};
int main(){

BigInt w, x, y, z;
w = x + y + z;
cout << w << " is a bigint!" << endl;

}

