
4f.1

CS 103 Unit 4f –
File I/O and File Streams

CSCI 103L Teaching Team

4f.2

SIMPLE FILE I/O USING FILESTREAM
OBJECTS

Getting data into and out of files stored on disk using ifstream and
ofstream objects

4f.3

getline() Member Function and
Lines of Text

• cin stops reading at
whitespace
– If you want to read a

whole line of text use
cin.getline()
• It will read spaces and tabs

but STOPS at '\n'
– cin.getline(char *buffer,

 int max_chars)

• Reads max_chars-1 leaving
space for the null character

#include <iostream>
using namespace std;

int main ()
{
 char mytext[80];
 cout << "Enter your full name" << endl;
 cin.getline(mytext, 80);
 // vs. cin >> mytext;

 int last=0;
 for(int i=0; i<80; i++){
 if(mytext[i] == ' '){
 last = i+1;
 break;
 }
 }
 cout << "Last name starts at index: ";
 cout << last << endl;
 return 0;
 }

Enter your full name
Tommy Trojan
Last name starts at index 6.

4f.4

Input Stream Error Checking
• We can check errors when cin

receives unexpected data that
can’t be converted to the
given type

• Use the function fail() member
function (i.e. cin.fail()) which
returns true if anything went
wrong opening or reading data
in from the file (will continue
to return true from then on
until you perform cin.clear())

• For now (in CS103), print an
error and exit.

#include <iostream>
using namespace std;

int main ()
{
 int x, y;
 cout << "Enter an int: " << endl;

 cin >> x; // What if the user enters:
 // "abc"

 // Check if we successfully read an int
 if(cin.fail()) {
 cout << "Error: I said enter an int!";
 cout << " Now I must exit!" << endl;
 return 1;
 } else {
 cout << "You did it! You entered an int";
 cout << " with value: " << x << endl;
 }

 cin >> y; // Will fail regardless
 if(cin.fail()) { ... } // always true
 return 0;
}

4f.5

File I/O Intro

• What methods does a user have to provide a program
input:
– cin
– Command line (argc, argv)

• Now a third method: File I/O (accessing data in files)
• Primary method for a program to read/write files:

– File streams [Main subject of our lecture]
– I/O Redirection [Subject of a later lecture] which uses the OS

to "redirect" input and output from cin and cout to files
instead of the keyboard and monitor.

4f.6

I/O redirection via the OS

Overview

• Two methods for file I/O
– File streams (ifstream and

ofstream) are part of the C++
library and perform file I/O
directly through a cin- and
cout-like interface

– I/O redirection: [More on this
later]
• The OS reads or writes data

to/from a file by controlling cin
& cout

• The program just performs
normal cin and cout
commands

2 1

cin

\n

input stream:

input stream:

\n

DISK

15 21
 hello

data.txt

Your program variables:
15x

cin >> x >> y

1 5

21y

ifstream

ifstream ifile;
ifile >> x >> y

./app1

$./app1 < data.txt
./app1

4f.7

Recall: I/O Streams
• C++ and the OS use the notion of streams to temporarily store (aka buffer)

data to be input or output and then uses the cin and cout objects (from
the <iostream> library) to access those streams. (These objects have
internal data members and member functions).

• While cin has a stream that receives input from the keyboard and cout has
a stream that outputs to the terminal, the same stream abstraction could
be applied to files!

7 5 y ... #include<iostream>
int main()
{
 int x;
 std::cin >> x;
 return 0;
}

I t w a s t h e

output stream
memory (aka stdout):

#include<iostream>
int main()
{
 std::cout << "It was the" << std::endl;
 std::cout << "best of times.";
 return 0;
}

b\n
It was the

This Photo by Unknown Author is licensed under CC BY-NC

OS

cin

OS

e

cout
input stream
memory (aka stdin):

https://www.wisc-online.com/asset-repository/viewasset?id=472
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

4f.8

File Streams
• C++ leverages the SAME interface that cin and cout provide to:

– Read data IN from a file (like cin, but data comes from a file not the keyboard) and
– Write data OUT to a file (like cout, but data goes to a file not the terminal).

• The counterpart to cin is an ifstream object
• The counterpart to cout is an ofstream object

7 5 y ...

#include <iostream>
#include <fstream>
Using namespace std;
int main() {
 int x;
 ifstream ifile("dat1.txt");
 ifile >> x;
 // use x
 ifile.close();
 return 0;
}

H i t h e r e

output stream
memory:

#include <iostream>
#include <fstream>
using namespace std;
int main() {
 ofstream ofile("dat2.txt")
 ofile << "Hi there" << std::endl;
 ofile.close();
 return 0;
}

EOF\n

OS

ifstream

OS

ofstream
input stream
memory:

This Photo by Unknown Author is licensed under CC BY
This Photo by Unknown Author is licensed under CC BY-SA

dat1.txt

75 yes
23 no

Hi there

dat2.txt

http://flickr.com/photos/intelfreepress/6345916908
https://creativecommons.org/licenses/by/3.0/
http://superuser.com/questions/349393/what-does-the-two-man-folder-icon-mean
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

4f.9

Input & Output Streams
• To summarize, there are other types of input and

output streams other than cin and cout
• File streams gives the same capabilities as cin and
cout, except data is read/written from/to a file on
the hard drive
– Everything you do with cin using the '>>' operator you can

now use with an ifstream to access data from a file
– Everything you do with cout using the '<<' operator you

can now use with an ofstream to output data to a file

• Let's learn more about streams '>>'…we'll see it in
the context of cin and cout but realize it will apply
to other streams we'll learn about next

4f.10

Disk Access
• All code and data (variables) resides in

RAM
• Processor can ONLY talk directly to

RAM (memory)
– Cannot access files on disk directly

• Files on your disk require special OS
routines to access their data
– The OS provides routines to perform

the translation
• C++ provide file streams to abstract

those OS routines and help to
– Take data from a file and input it to

your variables or
– Take your variables and writes their

values to a file

!"#$%&

!

!

!

"#$%

C'()GH
,(-%(H.#-H

$('(H/#)(/H'#H
(H.01)'2#13

4/#5(/S

7

!

8%(9

.......)

Data files:
.ppt
.txt

.docx

110010101001…

4f.11

Important Fact

• For your program to operate on data in a file…
• …you must read it into a variable
• Everything we will see subsequently is simply

how to
– Get data from a file into a variable, or
– Take data from a variable and save it to a file

4f.12

Two Kinds of Files: Binary and Text

• We conceive of files as "streams" (1D arrays) of data
• Files are broken into two types based on how they represent

the given information:
– Text files: File is just a large sequence of ASCII characters (every piece of

data is just a byte)
– Binary files: Data in the file is just bits that can be retrieved in different

size chunks (4-byte int, 8-byte double, etc.)

• Example: Store the number 172 in a file:
– Text: Would store 3 ASCII chars '1','7','2' (ASCII 49, 55, 50) requiring 3

bytes (but the key is each digit or character is stored separately in ASCII)
– Binary: If 172 was in an 'int' variable we could store it as 4-bytes in

binary rather than separate ASCII characters.

In this unit, we will only focus on text file I/O

4f.13

Starting File I/O

• Just like document or image editor allows two
operations on files:
– Read info from the file (like 'Open' command)

• Use an 'ifstream' object to open the file
• Read data from the file
• Close it when you're done

–Write info to the file (like 'Save As' command)
• Use an 'ofstream' object
• Write the data to a file
• Close it when you're done

4f.14

TEXT FILE I/O

4f.15

Text File I/O - ifstream
• Must include <fstream>
• Use ifstream object/variable

for reading a file
– Can do anything 'cin' can do
– Must "open" the file (usually by

specifying the filename when you
create the ifstream

• Use '>>' operator, .fail(),
.getline() with the ifstream
object just as you would on cin
but realize operations are
happening on data from the file

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

 int x; double y;

 ifstream ifile ("input.txt");

 if(ifile.fail()){ // able to open file?
 cout << "Couldn't open file" << endl;
 return 1;
 }

 ifile >> x >> y;
 if (ifile.fail()){
 cout << "Unable to read int & double." << endl;
 return 1;
 }

 //...

 return 0;
 }

Input.txt

5 -3.5

4f.16

Text File I/O - ofstream
• Must include <fstream>
• Use ofstream object/variable

for writing to a file
– Can do anything 'cout' can do

• Use '>>' operator, I/O
manipulators, etc. on the
stream but realize operations
are happening on data form
the file

• Close all filestreams using the
.close() member function

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

 int x; double y;

 ifstream ifile ("input.txt");

 if(ifile.fail()){ // able to open file?
 cout << "Couldn't open file" << endl;
 return 1;
 }

 ifile >> x >> y;
 if (ifile.fail()){
 cout << "Unable to read int & double." << endl;
 return 1;
 }
 ofstream ofile("output.txt");

 ofile << "Int from file is " << x << endl;
 ofile << "Double from file is " << y << endl;

 ifile.close();
 ofile.close();

 return 0;
 }

Input.txt

5 -3.5 Int from file is 5
Double from file is -3.5

output.txt

4f.17

Getting Lines of Text
• Recall, using the >> operator to get an input

string of text (char * or char [] variable
passed to cin) implicitly stops at the first
whitespace

• To get a whole line of text (including spaces)
– cin.getline(char *buf, int bufsize);
– ifile.getline(char *buf, int bufsize);
– Reads max of bufsize-1 characters (including

newline)
• Reads and discards the newline and places NULL char

at the end of the string.

• This program reads all the lines of text from
a file and adds "line numbers".

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

 char myline[100]; int i = 1;

 ifstream ifile("input.txt");

 if(ifile.fail()){ // can't open?
 return 1;
 }

 ifile.getline(myline, 100);
 while (! ifile.fail()) {
 cout << i++ << ": " << myline << endl;
 ifile.getline(myline, 100);
 }

 ifile.close();
 return 0;
}

The fox jumped over the log.\n

The bear ate some honey.\n

The CS student solved a hard problem.\n

1: The fox jumped over the log.

2: The bear ate some honey.

3: The CS student solved a hard problem.

input.txt

4f.18

Activity

• File I/O Exercises

