School of Engineering

CS 103 Unit 4c —
Deque Implementation using
Doubly-Linked Lists

CSCI 103L Teaching Team

 Double-ended queues (like their name sounds) are the name
given to any data structure that allows fast (i.e. O(1)) insertion
and removal from BOTH SIDES (front and back) of the list
— push_front(): 0(1) push back(): 0(1)
— pop_front(): O(1) pop back(): o(1)
 There are several possible implementations of such a data
structure
— We will first explore a linked-list implementation for a deque

— C++ also provides an array-based deque implementation

(push_front) (push_back)

(pop_front)

N

(pop_back)

\ 4

School of Engineering

DOUBLY-LINKED LISTS

- USCViterbi
Singly-Linked List Review

* Use structures/classes and pointers
to make linked data structures

* Singly-linked Lists dynamically
allocates each item when the user
decides to add it

 Eachitem includes a next pointer
to the following item

* Traversal and iteration is only
easily achieved in one direction
(i.e. the forward direction)

School of Engineering

struct Item {
int val;
Item* next;

};

class List {
public:

List();

~List();

void push_back(int
private:

Item* head;

};

struct Item
blueprint:

Q: Given temp...could
you ever recover the
address of the previous
item?

- /] USCViterbi
Doubly-Linked Lists

Includes a previous
pointer in each item so
that we can
traverse/iterate
backwards or forward

First item's previous field
should be NULL

Last item's next field
should be NULL

DLitem*
head

0x148

#tinclude<iostream>

using namespace std;
struct DLItem {
int val;
DLItem* prev;
DLItem* next;

};

class DLList

{
public:

DLList();
~DLList();

void push_back(int v); ...

private:
DLItem* head;

};

0x148

0x1co

School of Engineering

struct DLItem
blueprint:

i i
i i I
1 1 1
1 B 1
DLIitem* || int || DLitem*
prev || val next

0x210

0x210

ox0

ox0
Ox1co |, | ox148
(nuLL)| 3 <
DLitem* || int || DLItem* DLitem* || int
prev val next | prev val

DLItem*
next

> ox1co
5 [(NULL)
‘DLitem* || int | DLItem*
) | prev val next |

USC Viterbi

School of Engineering

Doubly-Linked List Add Front

 Adding to the front requires you to update which pointers?

— Take care of the ORDER in which you update the pointers not to lose information you need

— Tip: Fill in the blank fields/pointers first before changing existing ones.

0x190

I
0x190 !
A 4

12

DLItem*
head DLItem*

int
val

i

DLitem*

next
J

re
ox148 prev

¢

0x148

head = p; // ??

0x1co 0x210
ox0 > > ox0
0x1co "] 6x148 0x210 "
(nuLL)| 3 « 9 0x1c8] 5 |(nuLL)
DLitem* || int || DLIitem* DLitem* || int || DLitem* | ‘DLitem* || int | DLitem*
prev val next | | prev val next prev val next

R,]S Viterbi

School of Engineering

Doubly-Linked List Add Front

 Adding to the front requires you to update which pointers?
— Head
— New front's next & previous

— Old front's previous p->prev = NULL;
p->next = head;
head->prev = p;

// or p->next->prev = p;

head = p;
0x190
DLitem* 1
head I
0x190 :
1
I
|
OXlQO% 0x148 0x1co 0x210
ox0 > > > ox0o
0x148 0x190 ox1co |, 0x148 Ox1co
(NULL) X - + (NULL)
DLitem* DLitem* DLitem* DLitem* DLitem*
prev J | prev) | prev | prev next |

i, IS Viterbi

School of Engineering

Doubly-Linked List Add Middle

 Adding to the middle requires you to update which pointers?

0x190 o0x190

|
____ 12
DLItem* -
m DLitem* || Int || DLItem*
prev val next
0x148 g
|

ox148
ox148 1 @ ox1co 0x210

A 4

ox0 > > ox0
0x1co 0x148 0x210 ~] 0x1co
(nuLL)| 3 p 9 5 |(nuLL)
DLitem* || int || DLItem* DLitem* || int |[DLitem* ‘DLitem* || int | DLitem*
prev val next | | prev val next prev val next

A

R,]S Viterbi

School of Engineering

Doubly-Linked List Add Middle

* Adding to the middle requires you to update which
pointers?

Previous item's next field

p->prev = curr,;
p->next curr->next;
curr->next->prev = p;

Next item's previous field
New item's next field

. , _ // or p->next->prev = p;
— New item's previous field curr-snext = p;
// or p->prev->next = p;

head 0x190

0x148
)
ox148 1 0x190¢ Ox1co 0x210
A 4
ox0 > > ox0
0x148 0x1co v v
(NULL) 3 0x190 | ¢ 12 0x190 9 0x210 Ox1co g (NULL)
DLitem* || int || DLIitem* DLitem* || int || DLItem* DLitem* || int | DLitem* ‘DLitem* || int | DLitem*
prev val next | | prev val next | prev val next | prev val next

0x148
|
|

Doubly-Linked List Remove IVIlddIe

 Removing from the middle requires you to update
which pointers?

DLItem*
head

0x148

|
ox1ch ® 0x210
A 4

0x148
ox0 > > ox0
0x1co "] 6x148 0x210 "
(nuLL)| 3 « 9 0x1c8] 5 |(nuLL)
DLitem* || int || DLitem* DLitem* || int |[DLitem* DLitem* || int || DLIitem*
prev val next | | prev val next | pre val next

Doubly-Linked List Remove IVIlddIe

 Removing from the middle requires you to update
which pointers?

— Previous item's next field

— Next item's previous field

— Delete the item object

ox0
(NULL
DLItem*

prev

curr->next->prev
curr->prev->next

curr->prev;
curr->next;

) 3
int
val

0x210 |,
DLItem*
next)

* ox148
DLItem
| prev

int
val

ox0
(NULL)
DLitem*
next)

School of Engineering

Using a Doubly-Linked List to Implement a Deque

DEQUES AND THEIR
IMPLEMENTATION

Deque Implementation

e Let's consider how we can implement a
deque

* Question for exploration:

Could we use a singly-linked list and still get fast
i.e. O(1)] insertion/removal from both front and
pack?

-or various implementations, analyze the runtime
for each operation:

 push front(), pop front(), push back(),
pop back()

Singly-Linked List Deque?

* With our singly-linked list, which operation are O(1)
vs. O(n)

— push_front(): O()
— pop_front(): O()
— push_back(): O()
— pop_back(): 0O()
3 | 0x1co —>| g |ox164 > 5 NeUXLeL

<
L=
—_

R,]S Viterbi

School of Engineering

Singly-Linked List With Tail Pointer

* Suppose we keep a second pointer (aka a tail pointer) to
always point at the LAST element.

— head points at the FIRST element; tail points at the LAST
element

— Which operations are O(1) vs. O(n)?
— push_front(): O(1) pop front(): O(1)
— push_back(): O()

Item* Item*
head tail
0x148 ox164

0x148 Ox1co 0x164l

ox0
——— 3 |oxico|—| g |exi64 " 2 |woLe

int int int
val val val
————

R,]S Viterbi

School of Engineering

Singly-Linked List With Tail Pointer

* Suppose we keep a second pointer (aka a tail pointer) to
always point at the LAST element.

— head points at the FIRST element; tail points at the LAST
element

— Which operations are O(1) vs. O(n)?
— push_front(): O(1) pop front(): O(1)
— push_back(): O(1) pop back(): O()

Item* Item*
head tail
0x148 ox164

0x148 0x290 0x1co Ox164l

ox@
——— 3 |ex290 |— o |exice o o |exiea " 2 |woLe

int int int Item* int Item
val val val next val next
————

R,]S Viterbi

School of Engineering

Singly-Linked List With Tail Pointer

* Singly Linked Lists w/ Tail Pointer:
— push_front(): O(1) pop front(): O(1)
— push_back(): O(1) pop back(): O(n)
* So even with a tail pointer a singly-linked list CANNOT
remove from the back in O(1)!

— We have to update the 2" to last item, and we can't find that
quickly (i.e. without walking the list).

Item* Item*
head tail
0x148 ox164

0x148 0x290 0x1co Ox164l

o0x0
— > > >
3 ©x290 9 0x1co 9 0x164 2 NULL
—\
int int int int
val val val val
N———

e USCViterbi

School of Engine

Doubly-Linked List With Tail Pointer

 Since removal from the back needs to move the tail BACK
1 step to the previous item, let's use a doubly-linked list!

— push_front(): O(1) pop front(): O(1)
— push_back(): O(1) pop back(): O()
.
ox148 | |ex210
0x148 0x190 Ox1co
> (NGUXLGL) 3 |ex19e [] ex148| 15 |ex1ce [| ex190 | o |ex210 [5 (NOU"LOL)
DLitem* ntI DLItem* DLitem* intl DLItem* DLItem* intI DLItem* ntI DLIitem*
| prev va next | prev va next | prev va next | va next

e USCVlterbl

School of Engine

Doubly-Linked List With Tail Pointer

e Since removal from the back needs to move the tail BACK
1 step to the previous item, let's use a doubly-linked list!
— push_front(): O(1) pop front(): O(1)
— push_back(): O(1) pop back(): o(1)
 We can update the tail pointer with the tail item's
previous pointer before we delete the tail item

Item* ltem* tail = tail->prev;
head tail

0x148 oxice| | OO TTTTmmm=mmmT :

1

ox148 0x190 Ox1co elee;
ox0 > 2210 > (2) (%]

P 0x190 |4 0x148 Ox1co v g

(NULL) 3 X < 12 — 0x190 9 Ox0 0x1co g (NULL)
‘DLitem*][int |[DLitem* DLitem* || in int |[DLitem* DLitem* || in int || DLitem* ‘DLitem* || int |[DLitem*
| prev val next | | prev val next | prev val next | prev val next

e We've
or bac
— pus
— pus

e So asi

Success

done it! We can insert and remove from the front
< quickly (in O(1))!

n_front(): 0(1) pop front(): O(1)
n_back(): 0(1) pop back(): o(1)
ngly-linked list CANNOT serve as a deque!

* But a double-linked list with tail pointer CAN!

l

Item* Item*
head tail
ox148 | | 9x210

0x148 0x190 0x1co 0X2101

ox0 > > ox0
> 0x190 | ¢ 0x148 Ox1co "] 6x190 0x210 "

(nuLL)| 3 « 12 — 9 Ox1co| 5 1(nuLL)
‘DLitem*]| int | DLitem* DLitem* || int || DLitem* DLitem* || int || DLItem* ‘DLitem* || int | DLitem*
| prev val next | | prev val next | prev val next | | prev val next |

A Thought Experiment

* Do we really need the tail pointer to achieve O(1) insert
and removal from the end?
— Seemingly yes. How else would we know where the end is?

* Is there a way we could structure our linked list to make
finding the last item easy and fast but by only using a
head pointer?

0x190 0x1co 0x2101

ox0 > > ox0
0x190 |4 0x148 0x1co "] 0x190 0x210 "
(NULL) 3 X < 12 — | 9% 9 X ox1co| g (NULL)
DLitem* || int || DLItem* DLitem* || int || DLitem* DLitem* || int | DLItem* ‘DLitem* || int |[DLitem*
prev val next | | prev val next | prev val next | | prev val next |

R,]S Viterbi

Circular Linked List

School of Engineering

 Though there's no great benefit over just using a tail pointer, we
can implement a deque as a doubly-linked list with only a head
pointer by making the first and last item point at each other
— This effectively creates a circular linked list.

* What expression would yield a pointer to the tail item?

* |t saves a pointer, but is harder to code/implement

— Let's just stick with the tail pointer implementation ©

Item*
head

0x148
0x148l 0x190 Ox1co 0x210

o [
0x210 3 0x190 < 0x148 12 0x1co 0x190 9 0x210 Ox1co g 0x148)
DLitem* || int || DLitem* ‘DLitem* || int |[DLitem* DLitem* | | int || DLitem* | ‘DLitem*][int |[DLitem*
prev val next | prev val next | | prev val next | prev val next

C++ DEQUE CLASS

- USCVitf?fbi .
C++ Deque Class

* Pros: Similar to vector but allows for efficient s el UEE CABSTERERITS

(O(1)) push_front() and pop_front() #include <deque>

options gsing ?amespace std;

. ‘ int main()

e Cons: Slightly slower random access (i.e. {

accessing the i-th element / data[i]) deque<int> mydeq;

. . for(int i=0; i < 3; i++){

* Useful when we want to put things in one 1 mydeq.push_back(i+50);

end of the list and take them out of the other mydeq.push_front(i);

}
;Z cout << "At loc. 2 is: "
0o 1 << my_deq[2] << endl;

my_deq | ¢ |50 after 1st iteration
for(int i=0; i < mydeq.size(); i++){

int x = my_deq.front();
my_deq.push_back(x+10);

my_dea | 5|1 | o |50]|51]52 .f::ﬁ:.i'r:s my_deq.pop_front();
3|
while(! my deqg.empty()){
my_dea [15111 11016061162 ‘l cout << my_deq.front() << 3
my_deq.pop_front();
}

my_deq cout << endl;

D O =

USC Viterbi

School of Engineering

Array-Based Deque Implementation

Take an array but imagine it wrapping into 0 1 2 3 4 5 6 7
a circle to implement a deque Actual
o array...
Setup a head and tail pointer
— Head points at first occupied item, tail at ..visualized
first free location as a circular . ‘
arra
— Push_front() and pop_front() update the y
head pointer
front
— Push_back() and pop_back() update the -
tail pointer
To overcome discontinuity from index O to 1.) Push_back()
2.) Push_back() 3.) Push_front()

MAX-1, use modulo operation
— Cannot just use back++; to move back ptr ‘. ot ‘.
— Instead, use back = (back + 1) % MAX; . ‘ \‘ ‘
Get item at index i
— Must be relative to the front pointer f ' ‘ '
ront (I
’\
back

back

C++ Deque Class

e Performance:

— Slightly slower at random access (i.e. array style
indexing access such as: data[3]) than vector

— Fast at adding or removing items at front or back

Summary

* Multiple possible implementations of Deque's exist
— Array based
— Doubly-linked list (recall a singly-linked list can't
pop_back() in O(1))
* The implementation will determine the runtime of
various operations:

— Can a doubly-linked list support O(1) access to a random
element (i.e. Can you access list[i] quickly for any i)?

— No!ll Still need to traverse the list

* The only thing a deque guarantees is O(1) access to
add/remove from either the front or back

