
4a.1

CS103 Unit 4a – Linked Lists

CSCI 103L Teaching Team

4a.2

Unit 4 – Managing Data

• The course is broken into 6 units (spirals), each consisting of:

C++ Language
Syntax

1

Lectures

1

Algorithms and
Computational Thinking

2
Objects 1

3

Objects 2

4

Recursion

5

Homework(s)
(Formative programming

problems)

Project(s)
(Cumulative

programming problems)

Labs
(Tools + Practice +
small group Help)

6

Managing Data

4a.3

NULL Pointer

• Recall: Just like there was a null character in ASCII = '\0' whose
value was 0 there is a NULL pointer whose value is 0
– NULL is "keyword" you can use in C/C++ that is defined to be 0
– nullptr is an equivalent keyword in C++ version 11 and onward and has

some advantages best explained later…
• Requires special compile flags, so we may default to NULL for now

• Used to indicate that the pointer does NOT point at valid data
– Nothing ever lives at address 0 of memory so we can use it to mean

"INVALID" or "pointer to nothing"
– Often used as an "error" return value from functions returning pointers

(See http://www.cplusplus.com/reference/cstring/strchr/)
– char* ptr = strchr("Hello", 'h')

if(ptr != NULL){ … } // it's a good pointer

http://www.cplusplus.com/reference/cstring/strchr/

4a.4

Arrays Review
• Fast access: Because arrays are contiguous in

memory, we can jump straight to element i with
only the start address and data type
– Recall the formula: start_addr + i*data_size
– If we know integer element i is at location 7304, do

we know where element i+1 is?
• Can't grow (resize): Once we declare the array

(either statically on the stack or dynamically on the
heap) we cannot increase its size

#include<iostream>
using namespace std;

int main()
{
 int data[25];
 data[20] = 7;
 return 0;
}

#include<iostream>
using namespace std;

int main()
{
 int size;
 cout << "Enter size: ";
 cin >> size;
 int *ptr = new int[size];

 // What if we end up
 // needing more than size?
}

30 51 52 53 54
0 1 2 3 4 5

10
6 7 8 9 10 11

30 51 52 53 54
0 1 2 3 4 5

10

21

Old, full array

Copy over items
then add value

0 1 2 3 4 5 6 7 8 9 10 11
Allocate new
array

Add one more
value

103

7300
dat[0]

104

7304
dat[1]

170

7308
dat[2]

...

...
dat[]

4a.5

Analogy - Lists
• Natural strategy when we have a set

of items that can change is to create
a list
– Write down what you know now
– Can add more items later (usually to

the end of the list)
– Remove (cross off) others when done

with them
• Can only do this with an array if you

know max size of list ahead of time
(which is sometimes fine)
– We could track the start and end (aka

"head" and "tail") but only a portion
would be used at a time (wasteful!)

1. Do CS 103 HW

2. Join ACM or IEEE

3. Play Video Games

4. Watch a movie

1. Do CS 103 HW

2. Join ACM or IEEE

3. Play Video Games

4. Watch a movie

5. Exercise

6. Eat dinner

Do CS 103 HW

Join ACM or IEEE

Play Video Games

Watch a movie

4a.6

Linked Lists
• A linked list stores values in separate chunks of

memory (i.e. a dynamically allocated object)
• To know where the next one is, each one stores a

pointer to the next
• All we do is track where the first object is (i.e. the

head pointer)
• We can allocate more or delete old ones as needed

so we only use memory as needed, changing pointers
as we go

3

int
val

0x1c0

Item*
next0x148

9

int
val

0x164

Item*
next0x1c0

2

int
val

0x0
(NULL)

Item*
next0x164

0x148

Item*
head

struct Item {
 int val;
 Item* next;
};

struct Item
blueprint:

ne
xtva
l

int
val

Item*
next

4a.7

Linked Lists

• What is the order of values in this linked list?
• How would you insert 6 at the front of the list?
• How would you remove the value 4?

4

int
val

0x3e0

Item*
next0x240

8

int
val

0x0
(NULL)

Item*
next0x200

5

int
val

0x240

Item*
next0x360

1

int
val

0x200

Item*
next0x3e0

0x360

Item*
head

4a.8

Arrays vs. Linked List
• Recall: if we have the start address of an

array, we can get the i-th element quickly.
– Using: start_addr + i*data_size

• Question: If we have the start (head) pointer
to a linked list, can we find the i-th element
quickly?
– No!…Have to walk the linked list
– Items are NOT CONTIGUOUS

• Linked lists trade offs:
– Pro: the ability to resize (grow/shrink)
– Con: sacrifice speed of access when attempting to

get the element at an arbitrary location

Memory

100
45 31 21 04 98 73 …

104 108 112 116 120

data = 100

#include<iostream>
using namespace std;

int main()
{
 int data[25];
 data[20] = 7;
 return 0;
}

3
int
val

0x1c0
Item*
next

0x148

9
int
val

0x164
Item*
next

0x1c0

2
int
val

0x0
(NULL)
Item*
next

0x164

0x148

Item*
head

4a.9

In Class Coding

• EdStem/Codio Exercise – Writing a linked list

4a.10

Linked List Class Overview
• Use structures/classes and pointers to

make linked data structures
– Linked lists, trees, graphs, etc.

• List
– Arbitrarily sized collection of values

• Can add or remove any number of new
values

– Only REQUIRED data member: head
pointer

• Though we can add a few other members to
increase efficiency

– Usually supports following set of
operations:

• Append ("push_back")
• Prepend ("push_front")
• Remove back item ("pop_back")
• Remove front item ("pop_front")
• Find (look for particular value)

struct Item {
 int val;
 Item* next;
};

class List {
public:
 List();
 ~List();
 void push_back(int v); ...
private:
 Item* head;
};

struct Item
blueprint:

Rule of thumb: Still use ‘structs’ for objects that are
purely collections of data and don’t really have
operations associated with them. Use ‘classes’ when
data does have associated functions/methods.

ne
xtva
l

int
val

Item*
next

0x0

Item*
head

4a.11

Building A Linked List (1)

• How should we initialize our list
object?

Item*
head

#include<iostream>
using namespace std;

List::List()
{
 head = _______________;
}

int main()
{
 List mylist;

4a.12

Building A Linked List (2)

• How do we add an element?
• Anytime we code for a linked

data structure we should always
account for 2 cases:
– When the structure is EMPTY (and

thus head is NULL)
– When the structure is NON-EMPTY

• How should we allocate our
Item?
– On the stack or on the heap?

0x0

Item*
head

#include<iostream>
using namespace std;
List::List()
{
 head = NULL;
}
void List::push_back(int v){
 if(head == NULL){ // list is empty
 // How should we allocate
 Item newItem;
 head = &newItem;
 }
 else { ... }
}
int main()
{
 List mylist;
 mylist.push_back(3);
}

int
val

Item*
next

4a.13

Building A Linked List (3)

• ALL allocations SHOULD be
dynamic allocations on the heap
so they persist beyond the scope
of the push_back call.

0x148

Item*
head

#include<iostream>
using namespace std;
List::List()
{
 head = NULL;
}
void List::push_back(int v){
 if(head == NULL){ // list is empty
 head = new Item;
 head->val = v; head->next = NULL;
 }
 else { ... }
}
int main()
{
 List mylist;
 mylist.push_back(3);
}

3
int
val

0x0
(NULL)
Item*
next

0x148

4a.14

Building A Linked List (4)

• To insert a second item, what
would need to change in our
current list?

0x148

Item*
head

#include<iostream>
using namespace std;
List::List()
{
 head = NULL;
}
void List::push_back(int v){
 if(head == NULL){ ... }
 else {
 // Walk to the last element

 }
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
}

3
int
val

0x0
(NULL)
Item*
next

0x148

9
int
val

Item*
next

4a.15

Building A Linked List (5)

• To insert a second item, what
would need to change in our
current list?
– Answer: The last element in the list

• When the list is NON-EMPTY with
ONE or MANY element already in
the list, we must iterate to the
last element in the list to insert
our new Item

• Given that we only have the head
pointer, how do we step through
the list?

0x148

Item*
head

#include<iostream>
using namespace std;
List::List()
{
 head = NULL;
}
void List::push_back(int v){
 if(head == NULL){ ... }
 else {
 // Walk to the last element

 }
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
}

3
int
val

0x1c0

Item*
next

0x148

9
int
val

0x0
(NULL)
Item*
next

0x1c0

2
int
val

0x0
(NULL)
Item*
next

0x164

4a.16

Building A Linked List (6)

• Given that we only have the head
pointer, how do we step through
the list?

• Would we even WANT TO use
head to step through the list?

• No!!!

#include<iostream>
using namespace std;
List::List() { ... }

void List::push_back(int v){
 if(head == NULL){ ... }
 else {
 // Iterate to last element
 while(/* TBD */) {

 head = _______________
 }
 }
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
}

0x148

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x0
(NULL)
Item*
next

0x1c0

BEFORE:

0x1c0

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x0
(NULL)
Item*
next

0x1c0

AFTER:

0x148
0x148

4a.17

Common Linked List Mistake 1

• If we change head we have no

– Once we take a step we have

"amnesia" and forget where we
came from and can't retrace our
steps

• Lesson: __________________!
• Solution: Do NOT change head

and use a temp pointer

#include<iostream>
using namespace std;
List::List() { ... }

void List::push_back(int v){
 if(head == NULL){ ... }
 else {
 // Iterate to last element
 while(/* TBD */) {

 head = _______________
 }
 }
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
}

0x148

Item*
temp

0x148

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x0
(NULL)
Item*
next

0x1c0

BEFORE:

0x1c0

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x0
(NULL)
Item*
next

0x1c0

AFTER:

0x148
0x148

4a.18

Building a Linked List (7)

• When the list is NOT EMPTY use
a temp pointer (initialized with
head) and then stepping through
the list to the last element

• Questions:
– What code would we use to "take a

step"?
– When would we want to stop (and

thus what condition would we use
in our while loop)?

#include<iostream>
using namespace std;
List::List() { ... }

void List::push_back(int v){
 if(head == NULL){ ... }
 else {
 // Iterate to last element
 Item* temp = head;
 while(/* when to stop? */) {
 temp = _______________ // take a step
 }
 }
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
}

0x148

Item*
temp

0x148

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x0
(NULL)
Item*
next

0x1c00x148

2
int
val

0x0
(NULL)
Item*
next

0x164

4a.19

Common LL Task: Taking a Step

• What is the C++ code to take a
step from one item to the next

• Answer:
– __________________________

• Lesson: To move a pointer to the
next item use:

#include<iostream>
using namespace std;
List::List() { ... }

void List::push_back(int v){
 if(head == NULL){ ... }
 else {
 // Iterate to last element
 Item* temp = head;
 while(/* when to stop? */) {
 temp = _______________ // take a step
 }
 }
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
}

0x148

Item*
temp

0x148

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x0
(NULL)
Item*
next

0x1c00x148

BEFORE: AFTER:

0x1c0

Item*
temp

4a.20

When Should We Stop

• Option 1:
When temp->next is NULL?

• Option 2:
When temp is NULL?

• We need to modify the LAST
element's next pointer, so we
must stop when temp->next is
NULL

#include<iostream>
using namespace std;
List::List() { ... }

void List::push_back(int v){
 if(head == NULL){ ... }
 else {
 // Iterate to last element
 Item* temp = head;
 while(/* when to stop? */) {
 temp = temp->next // take a step
 }
 }
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
}

0x148

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x0
(NULL)
Item*
next

0x1c00x148

Option 1 Option 2

0x1c0

Item*
temp

0x0
(NULL)

Item*
temp

4a.21

Building a Linked List (8)

• When the list is NOT EMPTY use
a temp pointer (initialized with
head) and then stepping through
the list to the last element

• Solution shown

List::List() { ... }

void List::push_back(int v){
 if(head == NULL){ ... }
 else {
 Item* temp = head;
 while(temp->next != NULL) {
 temp = temp->next // take a step
 }
 Item* newp = new Item;
 newp->val = v; newp->next = NULL;
 temp->next = newp;
 }
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
}

0x1c0

Item*
temp

0x148

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x0
0x164
Item*
next

0x1c00x148

2
int
val

0x0
(NULL)
Item*
next

0x164

0x164

Item*
newp

4a.22

Removing Items (e.g. the front) [1]

• Now let's look at removal
• What code is necessary to

remove the FRONT item?
– Modify the diagram below to show

what we would WANT to happen.

List::List() { ... }
void List::push_back(int v) { ... }

void List::pop_front()
{
 // What code goes here

}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
 mylist.pop_front();
}

0x148

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x164

Item*
next

0x1c00x148

2
int
val

0x0
(NULL)
Item*
next

0x164

4a.23

Removing Items (e.g. the front) [2]

• Could we simply update head?

• Unfortunately, that causes a
problem.

List::List() { ... }
void List::push_back(int v) { ... }

void List::pop_front()
{
 // What code goes here
 head = head->next;

}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
 mylist.pop_front();
}

0x1c0

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x164

Item*
next

0x1c00x148

2
int
val

0x0
(NULL)
Item*
next

0x164

4a.24

Removing Items (e.g. the front) [3]

• To avoid a memory leak, we
CANNOT just change head.

• We need to free/delete the old
first item!

• But what is wrong with the given
code?

List::List() { ... }
void List::push_back(int v) { ... }

void List::pop_front()
{
 // What code goes here
 delete head;
 head = head->next;

}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
 mylist.pop_front();
}

0x148
0x1c0

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x164

Item*
next

0x1c00x148

2
int
val

0x0
(NULL)
Item*
next

0x164

4a.25

Removing Items (e.g. the front) [4]

• To avoid the chicken vs. egg
problem about deleting the first
time vs. using it to get the second
items address, let's introduce a
temp pointer

1. Introduce a temp pointer that is a
copy of head

2. Get the next pointer from the
first item to update head

3. Delete the old first item

List::List() { ... }
void List::push_back(int v) { ... }

void List::pop_front()
{
 // What code goes here
 Item* temp = head;
 head = temp->next;
 delete temp;
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
 mylist.pop_front();
}

0x148
0x1c0

Item*
head

3
int
val

0x1c0

Item*
next

9
int
val

0x164

Item*
next

0x1c00x148

2
int
val

0x0
(NULL)
Item*
next

0x164

0x148

Item*
temp

1

2
3

4a.26

Final Result After Remove

• After execution of pop_front()
List::List() { ... }
void List::push_back(int v) { ... }

void List::pop_front()
{
 // What code goes here
 Item* temp = head;
 head = temp->next;
 delete temp;
}
int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
 mylist.pop_front();
}

0x1c0

Item*
head

9
int
val

0x164

Item*
next

0x1c0

2
int
val

0x0
(NULL)
Item*
next

0x164

4a.27

Destructors
• Destructor (dtor for short) is a function of the

same name as class itself with a ~ in front (e.g.
~Deck())
– Called automatically when object goes out of scope

(i.e. when it is deallocated by ‘delete’ or when
scope completes)

– Use to free/delete any memory allocated by the
object or close any open file streams, etc.

– Returns nothing
– [Note: The Deck class did not require a

destructor]

class Deck {
 public:
 Deck(); // Constructor
 ~Deck(); // Destructor
 ...
};

#include<iostream>
#include "deck.h"

Deck::Deck() {
 ...

}

Deck::~Deck()
{ /* not needed for this class */ }

#include "deck.h"

int main() {
 Deck d; // Deck() is called
 ...

 return 0;
 // ~Deck() is called since
}

deck.h
deck.cpp

cardgam
e.cpp0

0 1 2 3 4
top_index

cardsd

4a.28

Need for Destructor
• Important: Data members of an object

are cleaned up / destroyed
automatically by the destructor
(without you adding any code).

• Implication:
– Your destructor does NOT need to worry

about deallocation or cleaning up your data
members…

– Your destructor NEEDS to clean up things
that your data members POINT TO or
REFERENCE that won't be cleaned up if your
data member(s) die

• So, we'd need to deallocate each item
remaining in the list.

List::List() { ... }

List::~List() {
 // Do we need code to clean up
 // what our members refer to
}

void List::push_back(int v) { ... }
void List::pop_front() { ... }

int main() {
 List mylist;
 mylist.push_back(3);
 mylist.push_back(9);
 mylist.push_back(2);
 mylist.pop_front();
 return 0; // ~List() is called on mylist
}

0x1c0

Item*
head

9
int
val

0x164

Item*
next

0x1c0

2
int
val

0x0
(NULL)
Item*
next

0x164

4a.29

Destructors: Another Example
• The LinkedList object is allocated as a

static/local variable
– But each element is allocated on the heap

• When y goes out of scope only the data
members are deallocated
– You may have a memory leak

struct Item {
 int val; Item* next;
};
class LinkedList {
 public:
 // create a new item
 // in the list
 void push_back(int v);
 private:
 Item* head;
};

int main()
{
 doTask();
}

void doTask()
{
 LinkedList y;
 y.push_back(3);
 y.push_back(5);
 /* other stuff */
}

Stack Area of RAM

main

00400120 Return
link0xbfc

doTask

0x93c y0xbe8

004000ca0 Return
link0xbec

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

4a.30

Destructors: Another Example
• The LinkedList object is allocated as a static/local

variable
– But each element is allocated on the heap

• When y goes out of scope only the data members
are deallocated
– You may have a memory leak

struct Item {
 int val; Item* next;
};
class LinkedList {
 public:
 // create a new item
 // in the list
 void push_back(int v);
 private:
 Item* head;
};

int main()
{
 doTask();
}

void doTask()
{
 LinkedList y;
 y.push_back(3);
 y.push_back(5);
 /* other stuff */
}

Stack Area of RAM

main

00400120 Return
link0xbfc

Heap Area of RAM

3
0x93c

0x748

50x748

0

MEMORY LEAK

When y is deallocated we have
no pointer to the data

An Appropriate Destructor Will Help Solve This

4a.31

Comparing Performance

Arrays
• Go to element at index i

– O(___)

• Add something to the tail
(assume you have a tail
index)
– O(___)

• Adding something to the
front of the list after there
are already n elements
– O(___)

Linked Lists
• Go to element at index i

– O(__)

• Add something to the tail
(assume you have only head
pointer and n elements in
the list)
– O(__)

• Adding something to the
front of the list after there
are already n elements
– O(__)

4a.32

ODDS AND ENDS

4a.33

Common Linked Task/Mistake 1
• What code will give us a pointer to the beginning

item in the list?
• Mistake: Many students think head->next is

how you get a pointer to the first item:
– Item* temp = head->next;

• Just use head to get the pointer to the beginning
item.

• head is special! It is NOT an actual ITEM struct
– head is just a pointer that points to the beginning

(data-filled) item struct
– head->next actually points to the 2nd item, not

the 1st because head already points to the 1st item
• Lesson: To get a pointer to the FIRST item, just use

val next

3 0x1c0

val next

9 0x0
NULL

0x148

head

0x148 0x1c0

Before taking step

0x1c0

temp
Mistake: Thinking

head->next is a pointer
to the first Item

? 0x148

Mistake: Students
think head is an Item

head

Item* temp=
head->next

Each car = "Item"Engine = "head"

4a.34

Common Linked Task/Mistake 2
• Common errors we see is that to create a

temporary pointer students also dynamically
allocate an item and then immediately point
it at something else causing a memory leak
– Item* temp = _______________;
– temp = head; or temp = head->next;

• You may declare pointers w/o having to
allocate anything

– Item* temp;
– Item* temp = NULL;
– Item* temp = head;

• Lesson: Only use 'new' when you really
want a new Item to come alive

val next

3 0x1c0

val next

9 0x0
NULL

0x148

head

0x148 0x1c0

Before taking step After taking step

1c0

head

0x2a0

temp

Mistake: Allocating an
item when you declare

a temporary pointer

? ???

0x148

0x00Item* temp=NULL;

0x148Item* temp=head;

???Item* temp; 0x148temp = head;

4a.35

Exercises

• In-class exercises:
– monkey_traverse
– monkey_addstart

• Codio Exercise –
– Writing a linked list

Childs toy "Barrel of Monkeys" let's
children build a chain of monkeys that

can be linked arm in arm

http://www.toysrus.com/graphics/tru_prod_images/Barrel-of-Monkeys-Game----pTRU1-2907042dt.jpg

4a.36

Other Functions

• Write a function to print all items in list
– Copy head to a temp pointer then use it to iterate over the items until

the next pointer is NULL
– Print each item as you iterate

• Find if an item in the list (return address of struct if present or
NULL)
– Copy head to a temp pointer then use it to iterate over the items until

you find an item with the desired value or until next pointer is NULL

• Remove item with given value [i.e. find and remove]
– If found, need to change the next link of the previous item to point at

the item after the item found

val next

3 0x1c0

val next

9 0x1680x148

head

0x148 0x1c0

val next

2 0x0
(Null)

0x168

Remove
VAL=9

0x168

4a.37

SOLUTIONS

4a.38

Common Linked Task/Mistake 1

• What is the C++ code to take a
step from one item to the next

• Answer:
– temp = temp->next

• Lesson: To move a pointer to the
next item use:
'ptr = ptr->next'

val next

3 0x1c0

val next

9 0x0
NULL

0x148

head

0x148 0x1c0

0x148

temp

Before taking step

0x1c0

temp

After taking step

4a.39

Common Linked Task/Mistake 2

• Why do we need a temp pointer?
Why can't we just use head to take
a step as in:
– head = head->next;

• Because if we change head we
have no record of where the first
item is
– Once we take a step we have

"amnesia" and forget where we came
from and can't retrace our steps

• Lesson: Don't lose your head!

val next

3 0x1c0

val next

9 0x0
NULL

0x148

head

0x148 0x1c0

Before taking step After taking step

1c0

head

4a.40

Common Linked Task/Mistake 3
• Mistake: Many students use the following

code to get a pointer to the first item:
– Item* temp = head->next;

• head is special! It is NOT an actual ITEM
struct
– head is just a pointer
– It just points at the first data-filled struct
– head->next actually points to the 2nd item,

not the 1st because head already points to the
1st item

• Lesson: To get a pointer to the FIRST item,
just use 'head'

val next

3 0x1c0

val next

9 0x0
NULL

0x148

head

0x148 0x1c0

Before taking step

0x1c0

temp
Mistake: Thinking

head->next is a pointer
to the first Item

? 0x148

Mistake: Students
think head is an Item

head

Item* temp=
head->next

Each car = "Item"Engine = "head"

4a.41

Common Linked Task/Mistake 4
• Common errors we see is that to create a

temporary pointer students also dynamically
allocate an item and then immediately point
it at something else causing a memory leak
– Item* temp = new Item;
– temp = head; or temp = head->next;

• You may declare pointers w/o having to
allocate anything

– Item* temp;
– Item* temp = NULL;
– Item* temp = head;

• Lesson: Only use 'new' when you really
want a new Item to come alive

val next

3 0x1c0

val next

9 0x0
NULL

0x148

head

0x148 0x1c0

Before taking step After taking step

1c0

head

0x2a0

temp

Mistake: Allocating an
item when you declare

a temporary pointer

? ???

0x148

0x00Item* temp=NULL;

0x148Item* temp=head;

???Item* temp; 0x148temp = head;

4a.42

Comparing Performance

Arrays
• Go to element at index I

– O(1)

• Add something to the tail
(assume you have a tail
index)
– O(1)

• Adding something to the
front of the list after there
are already n elements
– O(n)

Linked Lists
• Go to element at index i

– O(i)

• Add something to the tail
(assume you have only head
pointer and n elements in
the list)
– O(n)

• Adding something to the
front of the list after there
are already n elements
– O(1)

