School of Engineering

CS103 Unit 4a — Linked Lists

CSCI 103L Teaching Team

USC\@ggbl
Unit 4 — Managing Data

 The course is broken into 6 units (spirals), each consisting of:

S NS N y o\
T S b [
Lectures Labs Homework(s) Project(s)
(Tools + Practice + (Formative programming (Cumulative
small group Help) problems) programming problems)
_
D))
C++ Language Algorithms and Objects 1
Syntax Computational Thinking

® © &

Managing Data Objects 2 Recursion

NULL Pointer

e Recall: Just like there was a null character in ASCll = '\@"' whose
value was 0 there is a NULL pointer whose value is 0

NULL is "keyword" you can use in C/C++ that is defined to be 0

nullptr is an equivalent keyword in C++ version 11 and onward and has
some advantages best explained later...
* Requires special compile flags, so we may default to NULL for now

* Used to indicate that the pointer does NOT point at valid data

Nothing ever lives at address O of memory so we can use it to mean
"INVALID" or "pointer to nothing"

Often used as an "error" return value from functions returning pointers
(See http://www.cplusplus.com/reference/cstring/strchr/)

char* ptr = strchr("Hello", 'h')
if(ptr !'= NULL){ .. } // it's a good pointer

http://www.cplusplus.com/reference/cstring/strchr/

R,]S Viterbi

School of Engineering

Arrays Review

#include<iostream>
* Fast access: Because arrays are contiguous in using namespace std;
memory, we can jump straight to element i with o main()
only the start address and data type (ijnt ?atz]a[zs»];
ata[20] = 7;
— Recall the formula: start_addr + i*data_size return ©;
. .. : ¥
— If we know integer element i is at location 7304, do
we know where element i+1 is? 7300 7304 7308 ...
. dat[0] =y dat[1] }= dat[2] ;g dat[]
 Can't grow (resize): Once we declare the array r 1031 104| 170l ...
(either statically on the stack or dynamically on the
heap) we cannot increase its size
#include<iostream>
Add one more - using namespace std;
value 0 1 2 3 4 5 l/ int main()
Old, full array ~ [30|51|52|53|54(10 ® t
int size;
0 1 2 3 4 5 6 7 8 9 10 11 cout << "Enter size: ";
N IR N R R N N "'{"w cin >> size;
Allocate new i___J___JI___J___JI___J____E___J___J___JI___J___J____: int *ptr = new int[size];
array
0 1 2 3 4 5 6 7.8 9 101 // What if we end up
Copy over items |30(51(52 (53|54 (10 J | J L // needing more than size?
then add value mrmdmmdee et }

- /] USCVitcﬂ,)i .
Analogy - Lists

* Natural strategy when we have a set
of items that can change is to create
a list

. Do CS 103 HW |:> Do CS 103 HW

. Join ACM or IEEE Join ACM or |EEE

. Play Video Games

Play Video Games

A W N R

— Write down what you know now . Watch a movie

Watch a movie

— Can add more items later (usually to
the end of the list) I:>

— Remove (cross off) others when done
with them

1-Do £5 163 Hi

 (Can only do this with an array if you
know max size of list ahead of time
(which is sometimes fine)
— We could track the start and end (aka

"head" and "tail") but only a portion
would be used at a time (wasteful!)

Join ACM or IEEE

. Play Video Games

. Exercise

2.
3
4. Watch a movie
5
6

. Eat dinner

R,]S Viterbi

Linked Lists

* Alinked list stores values in separate chunks of
memory (i.e. a dynamically allocated object)

* To know where the next one is, each one stores a
pointer to the next

* All we dois track where the first object is (i.e. the et
head pointer)

e \We can allocate more or delete old ones as needed

so we only use memory as needed, changing pointers
as we go

[

9 |exie64 <)

Item* int Item* int Item* int Item* struct Item {
head 0x148| T Ox1co| 4 next | ©9X164| next int val;
ox0 * .

ox148 1, > Item* next
3 0x1co (NULL) 2

};

Linked Lists

 What is the order of values in this linked list?
* How would you insert 6 at the front of the list?
* How would you remove the value 47

int Item*
0x200 val next
ox0

8 |(NULL)

Item*
head

0x360 int Item*
0x360 val next

0x240

int Item*
0x240 val next
4 0x3e0

int Item*
ox3e0 val next
1 0x200

R,]S Viterbi

Arrays vs. Linked List *

#include<iostream>
* Recall: if we have the start address of an using namespace std;
array, we can get the i-th element quickly. ?”t main()
— Using: start addr + i*data size int data[25];
- - data[20] = 7;
* Question: If we have the start (head) pointer } return o;
to a linked list, can we find the i-th element
QUICkly? data =100

100 104 108 112 116 120
45131(21|04|98 |73 ...

— Nol...Have to walk the linked list

— Iltems are NOT CONTIGUOUS Memory
* Linked lists trade offs:

— Pro: the ability to resize (grow/shrink) e’

— Con: sacrifice speed of access when attempting to ox148

get the element at an arbitrary location

In Class Coding

* EdStem/Codio Exercise — Writing a linked list

R,]S Viterbi

Linked List Class Overview

struct Item { struct Item
* Use structures/classes and pointersto | 17t vali blueprint:
make linked data structures };
— Linked lists, trees, graphs, etc. class List {
. public:
_ . : : : ~List();
Arbitrarily sized collection of values void push back(int v); ...
* (Can add or remove any number of new private:
values Item* head;
¥
— Only REQUIRED data member: head
pointer

* Though we can add a few other members to
increase efficiency

— Usually supports following set of
operations:
* Append ("push_back")

* Prepend ("push_front")
* Remove back item ("pop_back")

Rule of thumb: Still use ‘structs’ for objects that are
purely collections of data and don’t really have

* Find (look for particular value) operations associated with them. Use ‘classes’ when
data does have associated functions/methods.

* Remove front item ("pop_front")

Building A Linked List (1)

#tinclude<iostream>

* How should we initialize our list | i nanespace std;
List::List()

object? {
head =
}

int main()

{
List mylist;

Item*
head

R,]S Viterbi

Building A Linked List (2)

#include<iostream>
. N
* How do we add an element? Fr e e
. , {
 Anytime we code for a linked | fhead = NULL;

data structure we should always void List::push_back(int v){
if(head == NULL){ // list is empty

account for 2 cases: // How should we allocate
Item newltem;
— When the structure is EMPTY (and , head = &newItem;
thus head is NULL) else { ... }
— When the structure is NON-EMPTY int main()
{
* How should we allocate our List mylist;
mylist.push back(3);
ITtem? }
— On the stack or on the heap? tem®
oxo

int
val

i, IS Viterbi

Building A Linked List (3)

#include<iostream>
0 1 d;
» ALL allocations SHOULD be LR vica
dynamic allocations on the heap | nead - wout,
}

so they persist beyond the scope void List::push back(int v){
Of the pUSh baCk Ca” if(head == NULL){ // list is empty

head = new Item;
head-»>val = v; head->next = NULL;

}
else { ... }

}
int main()

{
List mylist;
mylist.push_back(3);
}

Item*
head

0x148
0x148

ox0
NULL

3
int
val

i, IS Viterbi

Building A Linked List (4)

#include<iostream>
using namespace std;

e Toinsert a second item, what Lists:List()

would need to change in our " ead = NULL;

. }
Current IlSt? void List::push_back(int v){
if(head == NULL){ ... }
else {
// Walk to the last element

}

}

int main() {
List mylist;
mylist.push_back(3);
mylist.push back(9);

}
Item*
head
0x148
0x148

F====r===="3

R ox0 ' ! i

NULL I i]

R,]S Viterbi

Building A Linked List (5)

#include<iostream>
using namespace std;
List::List()

School of Engineering

* Toinsert a second item, what

{
would need to change in our | fead = NULL;
ict? void List::push_back(int v){
current list: if(head == NULL){ ... }
— Answer: The last element in the list else {

// Walk to the last element

* When the listis NON-EMPTY with
ONE or MANY element already in |’

int main() {

the list, we must iterate to the
last element in the list to insert

List mylist;

mylist.push_back(3);
mylist.push_back(9);
mylist.push back(2);

our new ltem)

* Given that we only have the head| %™
pointer, how do we step through
the list?

0x148
0x148

\ 4

3 Ox1co

int
val

BEFORE:

Building A Linked List (6)

Given that we only have the head
pointer, how do we step through
the list?

Would we even WANT TO use
head to step through the list?

No!ll

R,]S Viterbi

School of Engineering

#include<iostream>
using namespace std;
List::List() { ... }

void List::push_back(int v){
if(head == NULL){ ... }
else {

// Iterate to last element
while(/* TBD */) {

head =
}

}

}

int main() {
List mylist;
mylist.push_back(3);
mylist.push_back(9);
mylist.push back(2);

1
Item* AFTER: Item*
head)
head
0x148 ox1co
0x148 Ox1co ox148 Oxlcel

int
val

3 0x1co p—>!

i, IS Viterbi

School of Engineering

Common Linked List Mistake 1

#include<iostream>
using namespace std;
* If we change head we have no Listiilist(O) ...)
void List::push_back(int v){
if(head == NULL){ ... }
_ else {
Once We take a Step we have // Iterate to last element
"amnesia" and forget where we while(/* TBD */) {
came from and can't retrace our head =
steps ,)
. }
* Lesson: ! S s 4
i List mylist;
e Solution: Do NOT change head mylist.push_back(3);
. mylist.push_back(9);
and use a temp pointer mylist.push_back(2);
} Item*
temp
BEFORE: (e AFTER:
0x148 _l :
0x148 Ox1co 0x144-- Oxlcel
xe + 1 I 1T O rmmresooTh

1
1
1
int int
val val E 3 E

R,]S Viterbi

Building a Linked List (7)

#include<iostream>
using namespace std;

* When the listis NOT EMPTY use List::Llist() { ... 3

. « ege qe . id List:: h_back(int v){
a temp pointer (initialized with T o o

head) and then stepping through else {

// Iterate to last element

the list to the last element Item* temp = head;
while(/* when to stop? */) {
i = // tak
* Questions: , e take a step

— What code would we use to "take a }}

oy int main() {
step: List mylist;
mylist.push_back(3);

— When would we want to stop (and nylist.push back(9).

thus what condition would we use myllst push back(2);
. . Item*
in our while loop)? temp
Item*
0x148
0x148* Ox1co ox164

» 3 |ox1co[—» g

1
I i
! NULL)1 I 2 I(nuLL
int Item*
val next

R,]S Viterbi

School of Engineering

Common LL Task: Taking a Step

#include<iostream>
using namespace std;

* What is the C++ code to take a List::bist() { ...}

step from one item to the next void List::push_back(int v){
if(head == NULL){ ... }

else {

// Iterate to last element
Item* temp = head;
while(/* when to stop? */) {

. (7 (
* Lesson: To move a pointer to the , // take a step
next item use: }}

int main() {

List mylist;
BEFORE: m AFTER }
ltem*
[I
-

* Answer:

mylist.push_back(9);
mylist.push_back(2);

mylist.push_back(3);
0x148

0x148§ Oxlce;

\ 4

I
3 | 9x1co —>! 9

1 1 (NULL
int
val

i, IS Viterbi

When Should We Stop

#include<iostream>
using namespace std;
° Opt|on 1: List::List() { ... }
When temp_ snext is NULL? void List::push_back(int v){
if(head == NULL){ ... }
. . else {
° Opt|0n 2 // Iterate to last element
. Item* temp = head;
When temp is NULL? while(/* when to stop? */) {
. temp = temp->next // take a step
* We need to modify the LAST -
element's next pointer, so we }
. int main() {
must stop when temp->next is List mylist;
mylist.push_back(3);
NULL mylist.push_back(9);
Option 1 Option 2 mylist.push_back(2);
}
Item*
head
0x148
0x148
» 3 0x1co

int
val

i, IS Viterbi

Building a Linked List (8)

List::List() { ... }

* When the listis NOT EMPTY use void List::push_back(int v){

if(head == NULL){ ... }

a temp pointer (initialized with else {
Item* temp = head;

I while(temp->next != NULL) {
heac!) and then stepping through o S UGS LR
the list to the last element }

Item* newp = new Item;
: ->val = v; - = ;
* Solution shown fomanoxt - et o T N
}
}

int main() {
List mylist;
mylist.push_back(3);
mylist.push_back(9);
mylist.push back(2);

Item*
head

0x148

R,]S Viterbi

School of Engineering

Removing Items (e.g. the front) [1]

List::List() { ... }
void List::push back(int v) { ... }

e Now let's look at removal

void List::pop_front()
{

* What code is necessary to // What code goes here
remove the FRONT item?
— Modify the diagram below to show)
what we would WANT to happen. int main() {

List mylist;

mylist.push_back(3);
mylist.push_back(9);
mylist.push_back(2);
mylist.pop front();

}
Item*
head
0x148
0x148 Ox1co 0x164
_ 0x0
> 3 Ox1co » 9 0x164 " 2 NULL

int Item* int int
val next val val

i, IS Viterbi

School of Engineering

Removing Items (e.g. the front) [2]

List::List() { ... }
void List::push back(int v) { ... }

 Could we simply update head?

void List::pop_front()

{
// What code goes here
head = head->next;

 Unfortunately, that causes a
problem. }

int main() {

List mylist;
mylist.push_back(3);
mylist.push_back(9);
mylist.push_back(2);
mylist.pop front();

0x0
NULL

2
int
val

R,]S Viterbi

School of Engineering

Removing Items (e.g. the front) [3]

List::List() { ... }
void List::push back(int v) { ... }
 To avoid a memory leak, we .
) void List::pop_front()
CANNOT just change head. {
// What code goes here
del head;
e We need to free/delete the old o e et
first item! y
.] . int main() {
* But what is wrong with the given List mylist;
mylist.push_back(3);
COde? mylist.push_back(9);
mylist.push_back(2);
mylist.pop front();
}
Item*
head.
0x1co
0x148 Oxlcel 0x164
<EE;> ox0

3 Ox1co » 9 0x164 " 2 NULL

Item* int int
next val val

R,]S Viterbi

School of Engineering

Removing Items (e.g. the front) [4]

List::List() { ... }
void List::push back(int v) { ... }

* To avoid the chicken vs. egg .
void List::pop_front()
] : {
problem about deleting the first) et code soes hore
time vs. using it to get the second SEE) O e

head = temp->next;

items address, let's introduce a } delete temp;

temp pointer int main() {
List mylist;
. . list. h_back 5
1. Introduce a temp pointer thatisa | i b oackis).

mylist.push_back(2);
Copy Of head mylist.pop front();

2. Get the next pointer from the
first item to update head

3. Delete the old first item

0x0
NULL

2
int
val

e — ()5 Viterbi
Final Result After Remove

List::List() { ... }
void List::push back(int v) { ... }

» After execution of pop front()

void List::pop_front()

{
// What code goes here
Item* temp = head;
head = temp->next;
delete temp;

}

int main() {
List mylist;
mylist.push_back(3);
mylist.push_back(9);
mylist.push_back(2);
mylist.pop front();

- USCVitgrbi .
Destructors

class Deck {
public: S
. . Deck(); // Constructor Q
e Destructor (dtor for short) is a function of the ~Deck(); // Destructor al
same name as class itself with a ~ in front (e.g. 0
~Deck()) :
— Called automatically when object goes out of scope E:21332<%322EeET>
(i.e. when it is deallocated by ‘delete’ or when '
scope completes) Deck: :Deck() {
— Use to free/delete any memory allocated by the
object or close any open file streams, etc. } §
— Returns nothing Deck: :~Deck() E
. . /* not needed for this class */
— [Note: The Deck class did not require a g i ©
destructor]
#include "deck.h"
X
int main() { a
Deck d; // Deck() is called <
. 3
cards |0]1]2]31]4 2
top_index O g
return 0;
// ~Deck() is called since
}

- USC\h/iF%[zid
Need for Destructor

List::List() { ... }

 Important: Data members of an object | List::~List() {

// Do we need code to clean up

are CIeaned up / dESthYEd // what our members refer to

automatically by the destructor }

(without you adding any code). void List::push_back(int v) { ... }
void List::pop front() { ... }

* Implication:

int main() {

— Your destructor does NOT need to worry List mylist;
about deallocation or cleaning up your data mylist.push_back(3);
mylist.push_back(9);
members... mylist.push_back(2);
— Your destructor NEEDS to clean up things mylist.pop_front();
that your data members POINT TO or return @; // ~List() is called on mylist

REFERENCE that won't be cleaned up if your
data member(s) die

 So, we'd need to deallocate each item ®@X1c@
« ® . . (.
remaining in the list.

Destructors: Another Example

The LinkedList object is allocated as a
static/local variable
— But each element is allocated on the heap

When y goes out of scope only the data
members are deallocated

— You may have a memory leak

Stack Area of RAM Heap Area of RAM
0x93c
> 3
doTask
0x748
Oxbe8 0x93c v I
Oxbec | 004000ca0 R?it:;" 0x748 5
0
main MEMORY LEAK
When vy is deallocated we have
Ret no pointer to the data
Oxbfc | oo400120 | ~{"

struct Item {
int val; Item* next;
}s
class LinkedList {
public:
// create a new item
// in the list
void push_back(int v);
private:
Item* head;

b

int main()

{
doTask();

}

void doTask()

{
LinkedList y;
y.push_back(3);
y.push_back(5);
/* other stuff */

}

USC Viterbi ¢=
School of Engineering *

USC Viterbi @

School of Engineering

Destructors: Another Example

The LinkedList object is allocated as a static/local
variable

— But each element is allocated on the heap
When y goes out of scope only the data members
are deallocated

— You may have a memory leak

An Appropriate Destructor Will Help Solve This

main

Stack Area of RAM Heap Area of RAM
0x93c
> 3
0x748
v
0x748 5
0
MEMORY LEAK
When vy is deallocated we have
Ret no pointer to the data
Oxbfc | oo400120 | ~{"

struct Item {
int val; Item* next;
}s
class LinkedList {
public:
// create a new item
// in the list
void push_back(int v);
private:
Item* head;

ks

int main()
{
doTask();

}

void doTask()

{
LinkedList y;
y.push_back(3);
y.push_back(5);
/* other stuff */

}

Comparing Performance

Arrays

e Gotoelement atindexi
- O(__)

 Add something to the talil
(assume you have a tail
index)
— O(__)

* Adding something to the
front of the list after there
are already n elements

— O(__)

Linked Lists

e Gotoelement atindexi
- 0(_)

 Add something to the tail
(assume you have only head
pointer and n elements in
the list)

- 0O(_)
* Adding something to the
front of the list after there

are already n elements
— O(_)

School of Engineering

ODDS AND ENDS

USC Viterbi

School of Engineering

Common Linked Task/Mistake 1

 What code will give us a pointer to the beginning
item in the list?

Before taking step F

R

 Mistake: Many students think head->next is
how you get a pointer to the first item: -E

A~AYAYCY)

— Item* temp = head->next;
* Just use head to get the pointer to the beginning g

. 0x0
item. 3 |Oxc0 9 |nuLL
 headis special! Itis NOT an actual ITEM struct val next val next
— head is just a pointer that points to the beginning T
(data-filled) item struct tem temp= [, —
— head->next actually points to the 2" item, not head->next ,
. . em
the 1t because head already points to the 15t item Mistake: :’hinking
* Lesson: To get a pointer to the FIRST item, just use hea‘f'>”e"t_ 's a pointer
o the first Item
head
_ﬁ 1
0x148

think head is an ltem

Engine = "head" Each car = "ltem"

R,]S Viterbi

School of Engineering

Common Linked Task/Mistake 2

« Common errors we see is that to create a Before taking step After taking step

temporary pointer students also dynamically head head
allocate an item and then immediately point 0x148 1c0
it at something else causing a memory leak
Ttem* t g g y 0x148 \ 0x1c0
— em emp = >
P ’ 3 | ox1co g |20
— temp = head; or temp = head->next; Ll
val next val next

* You may declare pointers w/o having to
allocate anything Ox148

y 4
- Ttem* temp; Ox o%» ? |
— Item* temp = NULL; 7

temp
— Item* temp = head;

Mistake: Allocating an

* Lesson: Only use 'new' when you really item when you declare
. a temporary pointer
want a new Item to come alive

Item* temp=NULL; 0x00

Item* temp=head; 0x148

Item* temp; 77?7 temp = head; 0x148

- ENg Vite_l‘bi .
Exercises

* |n-class exercises:
— monkey_traverse
— monkey addstart

e Codio Exercise —
— Writing a linked list

Childs toy "Barrel of Monkeys" let's
children build a chain of monkeys that
can be linked arm in arm

http://www.toysrus.com/graphics/tru_prod_images/Barrel-of-Monkeys-Game----pTRU1-2907042dt.jpg

Other Functions

* Write a function to print all items in list

— Copy head to a temp pointer then use it to iterate over the items until
the next pointer is NULL

— Print each item as you iterate

* Find if anitem in the list (return address of struct if present or
NULL)

— Copy head to a temp pointer then use it to iterate over the items until
you find an item with the desired value or until next pointer is NULL

 Remove item with given value [i.e. find and remove]

— |If found, need to change the next link of the previous item to point at
the item after the item found

0x148 0x168

Remove 0x148 3 0)%0\
VAL=9 A

head val next

0x168

0x0
" 2 (Null)

val next

SOLUTIONS

i, IS Viterbi

School of Engineering

Common Linked Task/Mistake 1

e Whatis the C++ code to take a

step from one item to the next head
0x148
* Answer:
— temp = temp->next 0x148 0x1c0
: 3 |ox1co 9 |
* Lesson: To move a pointer to the —

next item use: 1 i
'ptr = ptr->next’

0x148 0x1c0

temp temp

Before taking step After taking step

R,]S Viterbi

School of Engineering

Common Linked Task/Mistake 2

* Why do we need a temp pointer?

Before taking step After taking step

Why can't we just use head to take head head
. 0x148 1c0
a step as in: \
— head = head->next; 0x148 0x1c0
0x0
* Because if we change head we 3 |®1011 9 | nuit
. val next val next
have no record of where the first
item is

— Once we take a step we have
"amnesia" and forget where we came
from and can't retrace our steps

* Lesson: Don't lose your head!

USC Viterbi

School of Engineering

Common Linked Task/Mistake 3

* Mistake: Many students use the following

code to get a pointer to the first item: Before taking step
head
— Item™* temp = head->next; E
o0 o
 head is special! Itis NOT an actual ITEM =
struct 0x148 0x1c0
0x0
— head is just a pointer 3 |0xe0 9 |nuiL
. . . . I t I t
— It just points at the first data-filled struct R R
— head->next actually points to the 2"? item, T
not the 1%t because head already points to the hondane 1210
15t item temp
]] Mistake: Thinking
* Lesson: To get a pointer to the FIRST item, head->next is a pointer

to the first ltem

just use 'head'
head

_ﬁ 1
qx148j

think head is an ltem

Engine = "head" Each car = "ltem"

R,]S Viterbi

School of Engineering

Common Linked Task/Mistake 4

e Common errors we see is that to create a Before taking step After taking step

temporary pointer students also dynamically head head
allocate an item and then immediately point 0x148 1c0
it at something else causing a memory leak
g g y 0x148 \ 0x1c0
— Item* temp = new Item; 50
3 |0x1co 9
— temp = head; or temp = head->next; Ll

val next val next

* You may declare pointers w/o having to
allocate anything Ox148

Vi
- Ttem* temp; Ox o%» ? |
— Item* temp = NULL; 7

temp
— Item* temp = head;

Mistake: Allocating an

* Lesson: Only use 'new' when you really item when you declare
. a temporary pointer
want a new Item to come alive

ltem* temp=NULL; 0x00

ltem* temp=head; 0x148

Item* temp; ??77? temp = head; 0x148

Comparing Performance

Arrays

e Gotoelementatindex |
— 0O(1)

 Add something to the talil
(assume you have a tail
index)

— 0O(1)

* Adding something to the
front of the list after there
are already n elements

— 0O(n)

Linked Lists

e Gotoelementatindexi
— Ofi)

 Add something to the tail
(assume you have only head
pointer and n elements in
the list)

— O(n)

* Adding something to the
front of the list after there
are already n elements

— 0(1)

