
3b.1

CS 103 Unit 3b – Classes

CSCI 103L Teaching Team

3b.2

Object-Oriented Approach

• Model the application/software as a set of objects that interact
with each other

• Objects fuse data (i.e. variables) and functions (a.k.a methods)
that operate on that data into one item (i.e. object)

• Objects replace global-level functions as the primary method of
encapsulation and abstraction
– Encapsulation: Hiding implementation and controlling access

• Group data and code that operates on that data together into one unit
• Only expose a well-defined interface to control misuse of the code by other

programmers

– Abstraction
• Hiding of data and implementation details
• How we decompose the problem and think about our design at a higher level rather

than considering everything at the lower level

3b.3

Object-Oriented Programming
• Objects contain:

– Data members
• Data needed to model the object and track its state/operation (just

like structs)

– Methods/Functions
• Code that operates on the object, modifies it, etc.

• Example: Deck of cards
– Data members:

• Array of 52 entries (one for each card) indicating their ordering (for
our purposes we'll just use integers 0-51 to represent the 52 cards)

• Top index

– Methods/Functions
• shuffle(), cut(int where), get_top_card()

0 1 2 3 4 5 6 Idx

0 1 2 3 4 5 6 Val

2♣ 2♠ 2♥ 2♦ 3♣ 3♠ 3♥ Card

3b.4

Visualizing What Objects Do

• An object has
– Internal state (data members)
– And functions that allow you to update the state, perform

operations on the object, and retrieve data or results from
the object

shuffle()

0top_index

int cards[52] 0 … 51

Deck

d

This Photo by Unknown Author is licensed under CC BY

26

cut(int) get_top_card()

d.shuffle(); d.cut(26); int card = d.get_top_card();

Calls from
main() after
declarding:
Deck d;

0
1

http://flickr.com/photos/sparkfun/9465865873
https://creativecommons.org/licenses/by/3.0/

3b.5

C++ Classes
• Classes are the programming construct used

to define objects, their data members, and
methods/functions

• Similar idea to structs
• Steps:

1. Define the class’ data members and
function/method prototypes

#include <iostream>
using namespace std;
class Deck {
 public:

 void shuffle();
 void cut(int where);
 int get_top_card();
 private:
 int cards[52];
 int top_index;
};

cardgam
e.cpp

1

3b.6

C++ Classes
• Classes are the programming construct used

to define objects, their data members, and
methods/functions

• Similar idea to structs
• Steps:

1. Define the class’ data members and
function/method prototypes

2. Write the function/method implementations
3.

• Terminology:
– Class = Definition/Blueprint of an object

#include <iostream>
using namespace std;
class Deck {
 public:

 void shuffle();
 void cut(int where);
 int get_top_card();
 private:
 int cards[52];
 int top_index;
};
// member function implementation
void Deck::shuffle() {
 for(int i=51; i > 0; i--){
 int r = rand() % i;
 swap(cards[i], cards[r]);
 }
}
int Deck::get_top_card()
{ return cards[top_index++]; }

cardgam
e.cpp

1

2

3b.7

C++ Classes
• Classes are the programming construct used

to define objects, their data members, and
methods/functions

• Similar idea to structs
• Steps:

1. Define the class’ data members and
function/method prototypes

2. Write the function/method implementations
3. Instantiate/Declare object variables and use

them by calling their methods

• Terminology:
– Class = Definition/Blueprint of an object
– Object = Instance of the class, actual

allocation of memory, variable, etc.

#include <iostream>
using namespace std;
class Deck {
 public:

 void shuffle();
 void cut(int where);
 int get_top_card();
 private:
 int cards[52];
 int top_index;
};
// member function implementation
void Deck::shuffle() {
 for(int i=51; i > 0; i--){
 int r = rand() % i;
 swap(cards[i], cards[r]);
 }
}
int Deck::get_top_card()
{ return cards[top_index++]; }

// Main application
int main(int argc, char *argv[]) {
 Deck d;
 int hand[5];
 d.shuffle();
 d.cut();
 for(int i=0; i < 5; i++){
 hand[i] = d.get_top_card();
 }...
}

cardgam
e.cpp

1

top_index

cardsd

2

3

3b.8

Common Class Structure – Split Files
• Common to separate class into separate

source code files so it can easily be reused
in different applications

• 1) In a header (.h) file, define the class':
– 1.) data members and
– 2.) function/method prototypes

(usually in a separate header file)
– Must define the class using the syntax:

• class name { ... };

• 2) In a corresponding .cpp file, write the
member functions/methods

• 3) In an application (usually separate .cpp
file), instantiate/Declare object variables
and use them by calling their methods

• How do you think you compile the
application at the command line?
– Must list all the .cpp files on the g++ command

class Deck {
 public:

 void shuffle();
 void cut(int where);
 int get_top_card();
 private:
 int cards[52];
 int top_index;
};

#include<iostream>
#include "deck.h"

// Code for each prototyped method

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
 Deck d;
 int hand[5];
 d.shuffle();
 d.cut();
 for(int i=0; i < 5; i++){
 hand[i] = d.get_top_card();
 }...
}

deck.h
deck.cpp

cardgam
e.cpp

top_index

cardsd

3

1

2

3b.9

Access Specifiers
• Each function or data member can be classified

as public, private, or protected
– These classifications support encapsulation by

ensuring that no other programmer writes code
that uses or modifies your object in an
unintended way.

– Makes private data/method members to be
INACCESSIBLE to non-member functions of the
class, forcing non-members to ONLY utilize the
PUBLIC interface

– Private: Can call or access only by
methods/functions that are part of that class

– Public: Can call or access by any other code
– Protected: More on this later

• Everything private by default so you must
use public: to make things visible

• Make the interface public and the
guts/inner-workings private

class Deck {
 public:
 Deck(); // Constructor
 ~Deck(); // Destructor (see next slide)
 void shuffle();
 void cut(int where);
 int get_top_card();
 private:
 int cards[52];
 int top_index;
};

#include<iostream>
#include "deck.h"

// Code for each prototyped method

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
 Deck d;
 int hand[5];

 d.shuffle();
 d.cut();

 d.cards[0] = ACE; //won't compile
 d.top_index = 5; //won't compile
}

deck.h
deck.cpp

cardgam
e.cpp

3b.10

Public / Private and Structs vs. Classes

• In C++ the ONLY difference between structs and classes is
that structs default to public access, classes default to
private access

• Thus, other code (non-member functions of the class) cannot
access private class members directly

class Student { // what's the difference
struct Student { // between these two

 Student(); // Constructor 1
 Student(string name, int id, double gpa);
 // Constructor 2
 ~Student(); // Destructor
 ...
 string name_;
 int id_;
 double gpa_;
};

student.h

#include<iostream>
#include "student.h"
int main()
{
 Student s1; string myname;
 cin >> myname;
 s1.name_ = myname;
 // compile error if 'class' but not
 // if 'struct'
 ...
}

grades.cpp

3b.11

Constructors / Destructors
• Question: What is the initial value of

the d.cards and d.top_index??

• When an object comes alive, we
need to have appropriate initial
values in our data members so that
future calls to member functions will
work appropriately…

• …and when an object dies (goes out
of scope or is deleted) we may need
to perform some cleanup operations

• To help us with these tasks C++
provides Constructor (ctor) and
Destructor (dtor) functions

class Deck {
 public:

 void shuffle();
 void cut();
 int get_top_card();
 private:
 int cards[52];
 int top_index;
};

#include<iostream>
#include "deck.h"

// Code for each prototyped method

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
 Deck d;
 int hand[5];
 d.shuffle();
 d.cut();
 for(int i=0; i < 5; i++){
 hand[i] = d.get_top_card();
 }...
}

deck.h
deck.cpp

cardgam
e.cpp

?
? ? ? ? ?

top_index

cardsd

3

1

2

3b.12

Constructors / Destructors
• Constructor (ctor for short) is a function of the

same name as the class itself (e.g. Deck())
– It is called automatically when the object is created

(either when declared or when allocated via new)
– Use to initialize your object's data members to

some desired or known initial state
– Returns nothing

• Destructor (dtor for short) is a function of the
same name as class itself with a ~ in front (e.g.
~Deck())
– Called automatically when object goes out of scope

(i.e. when it is deallocated by ‘delete’ or when
scope completes)

– Use to free/delete any memory allocated by the
object or close any open file streams, etc.

– Returns nothing
– [Note: Currently we do not have occasion to use

destructors; we will see reasons later on in the
course]

class Deck {
 public:
 Deck(); // Constructor
 ~Deck(); // Destructor
 ...
};

#include<iostream>
#include "deck.h"

Deck::Deck() {
 top_index = 0;
 for(int i=0; i < 52; i++){
 cards[i] = i;
 }

}

Deck::~Deck()
{ /* not needed for this class */ }

#include "deck.h"

int main() {
 Deck d; // Deck() is called
 ...

 return 0;
 // ~Deck() is called since
}

deck.h
deck.cpp

cardgam
e.cpp0

0 1 2 3 4
top_index

cardsd

3b.13

Multiple Constructors
• Can have multiple constructors

with different argument lists to
provide options to client software
for how they'd like to initialize the
object
– Constructor with NO ARGUMENTS is

known as the DEFAULT constructor

class Student {
 public:
 Student(); // Default ctor
 Student(std::string name, int id, double gpa);
 // "Initializing" ctor
 ~Student(); // Destructor
 std::string get_name();
 int get_id();
 double get_gpa();

 void set_name(std::string name);
 void set_id(int id);
 void set_gpa(double gpa);
 private:
 std::string name_;
 int id_;
 double gpa_;
};

Student::Student()
{
 name_ = "Jane Doe"; id_ = 0; gpa_ = 2.0;
}

Student::Student(string name, int id, double gpa)
{
 name_ = name; id_ = id; gpa_ = gpa;
}

student.h
student.cpp

#include<iostream>
#include "student.h"

int main()
{
 Student s1; // calls default ctor
 string myname;
 cin >> myname;
 s1.set_name(myname);
 s1.set_id(214952);
 s1.set_gpa(3.67);

 Student s2(myname, 32421, 4.0);
 // calls "initializing" ctor

}

Note: Often name
data members with
special decorator
(id_ or gpa_) to make
it obvious to other
programmers that
this variable is a data
member

3b.14

Accessor / Mutator Methods
• Define public "get" (accessor) and

"set" (mutator) functions to let other
code access desired private data
members

• "Good practice": Use 'const' after
argument list for functions that DON'T
modify data members
– Ensures data members are not altered

by this function

class Student {
 public:
 Student(); // Constructor 1
 Student(string name, int id, double gpa);
 // Constructor 2
 ~Student(); // Destructor
 std::string get_name() const;
 int get_id() const;
 double get_gpa() const;

 void set_name(string s);
 void set_gpa(double g);
 private:
 std::string name_;
 int id_;
 double gpa_;
};

#include "student.h"
using namespace std;

std::string Student::get_name() const
{ return name_; }
int Student::get_id() const
{ return id_; }
void Student::set_name(string s)
{ name_ = s; }

void Student::set_gpa(double g)
{ gpa_ = g; }

student.h
student.cpp

#include<iostream>
#include "student.h"
using namespace std;
int main()
{
 Student s1;
 string myname;
 cin >> myname;
 s1.set_name (myname);
 string name_copy;
 name_copy = s1.get_name();
 ...
}

3b.15

Writing Member Functions
• What's wrong with the code on the left vs.

code on the right

• Compiler needs to know that a function is a
member of a class

• Include the name of the class followed by
'::' just before name of function

• This allows the compiler to check access to
private/public variables
– Without the scope operator [i.e.

int get_top_card() rather than
int Deck::get_top_card()] the compiler
would think that the function is some outside
function (not a member of Deck) and thus generate
an error when it tried to access the data members
(i.e. cards array and top_index).

class Deck {
 public:
 Deck(); // Constructor
 ~Deck(); // Destructor
 void shuffle();
 ...
};

#include<iostream>
#include "deck.h"
Deck::Deck() {
 top_index = 0;
 for(int i=0; i < 52; i++){
 cards[i] = i;
 }
}
Deck::~Deck()
{
}

void Deck::shuffle()
{
 cut(); //calls cut() for this object
 ...
}
int Deck::get_top_card()
{
 top_index++;
 return cards[top_index-1];
}

deck.h
deck.cpp

void f1()
{
 top_index = 0;
}

Deck::Deck()
{
 top_index = 0;
}

3b.16

Calling Member Functions (1)

• When outside the class scope
(i.e. in main() or some outside
function)
– Must precede the member

function call with the object name
of the specific object that it
should operate on and the dot
operator (e.g. d1.shuffle())

– d1.shuffle() indicates the
code of shuffle() should be
operating implicitly on d1's data
member vs. d2 or any other Deck
object

#include<iostream>
#include "deck.h"

int main() {
 Deck d1, d2;
 int hand[5];

 d1.shuffle();
 // not Deck.shuffle() nor
 // shuffle(d1), etc.

 for(int i=0; i < 5; i++){
 hand[i] = d1.get_top_card();
 }
}

d1

d2 0 1 2 3 4 5 6 7cards[52]

0top_index

41 27 8 39 25 4 11 17cards[52]

1top_index
d1

0 1 2 3 4 5 6 7cards[52]

0top_index

3b.17

Calling Member Functions
• When inside the class scope (i.e. in

main or some outside function), no
preceding object is necessary

• Within a member function we can just
call other member functions directly.

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
 Deck d1, d2;
 int hand[5];

 d1.shuffle();
 ...
}

#include<cstdlib>
#include "deck.h"

void Deck::shuffle()
{
 cut(); // calls cut()
 // for this object
 for(i=0; i < 52; i++){
 int r = rand() % (52-i);
 int temp = cards[r];
 cards[r] = cards[i];
 cards[i] = temp;
 }
}
void Deck::cut()
{
 // swap 1st half of deck w/ 2nd
}

deck.cpp
poker.cpp

41 27 8 39 25 4 11 17cards[52]

0top_index
d1

d2 0 1 2 3 4 5 6 7cards[52]

0top_index

d1 is implicitly
passed to shuffle()

Since shuffle
was implicitly

working on d1’s
data, d1 is

again implicitly
passed to cut()

d1’s data will be modified
(shuffled and cut)

3b.18

Big Picture
• Data members represent the "state" of the object

– State = values that need to be remembered or retained across various function calls (for the
lifetime of the object) to be able to perform appropriate tasks.

– Data members should be the information needed by / across multiple member functions
(e.g. set then get, add_score then avg_scores(), etc.)

• Member functions:
– Modify or perform computation on that state
– Input arguments of member functions

should be values needed only DURING or
FOR that particular function call timeline.

class Student {
 public:
 Student(); // Default ctor
 Student(string name, int id); // Init. ctor
 void set_name(std::string n);
 void add_score(int id, double score);
 double avg_scores() const;
 private:
 std::string name_;
 int id_;
 double scores_[10];
};

int main()
{
 Student s1("Tommy Trojan", 12345);
 s1.set_name("CS Sandy");
 s1.add_score(0, 82.5);
 cout << s1.avg_scores() << endl;
 return 0;
}

Studen
t

s1

s1.avg_scores()

82.5

Tommy Trojanname

12345id

scores 82.5 - -

s1.set_name("CS Sandy")

s1.add_score(0, 82.5)

3b.19

Class Pointers

• Can declare pointers to these
new class types

• Use -> operator to access
member functions or data

#include<iostream>
#include "deck.h"

Deck* makeDeck(){
 Deck* d1 = new Deck;
 d1->shuffle();
 d1->cut();
 return d1;
}
int main()
{
 int hand[5];
 Deck* myd = makeDeck();
 for(int i=0; i < 5; i++){
 hand[i] = myd->get_top_card();
 }
 // More code

 delete myd;
 return 0;
}

0 1 2 3 4 5 6 7cards[52]

0top_index

Heap

Stack of makeDeck()

d1 55512a8

55512a8:

3b.20

Class Pointers

• Can declare pointers to these
new class types

• Use -> operator to access
member functions or data

#include<iostream>
#include "deck.h"

Deck* makeDeck(){
 Deck* d1 = new Deck; // Ctor called
 d1->shuffle();
 d1->cut();
 return d1;
}
int main()
{
 int hand[5];
 Deck* myd = makeDeck();
 myd->shuffle();
 for(int i=0; i < 5; i++){
 hand[i] = myd->get_top_card();
 }
 // More code

 delete myd; // Dtor called
 return 0;
}

cards[52]

5top_index

Heap

55512a8:

Stack of
main()

myd 55512a8

41 27 8 39 25 4 11 17

3b.21

Exercises

• In-class Exercises

