CS 103 Unit 3b — Classes

CSCI 103L Teaching Team

—————(5 \ltcrbi (2>
Object-Oriented Approach

* Model the application/software as a set of objects that interact
with each other

 Objects fuse data (i.e. variables) and functions (a.k.a methods)
that operate on that data into one item (i.e. object)

* Objects replace global-level functions as the primary method of
encapsulation and abstraction

— Encapsulation: Hiding implementation and controlling access
* Group data and code that operates on that data together into one unit
* Only expose a well-defined interface to control misuse of the code by other
programmers
— Abstraction

* Hiding of data and implementation details

* How we decompose the problem and think about our design at a higher level rather
than considering everything at the lower level

R,]S Viterbi

School of Engineering

Object-Oriented Programming

* Objects contain:

— Data members

* Data needed to model the object and track its state/operation (just
like structs)

— Methods/Functions
* Code that operates on the object, modifies it, etc.

 Example: Deck of cards

— Data members:

* Array of 52 entries (one for each card) indicating their ordering (for
our purposes we'll just use integers ©-51 to represent the 52 cards)

* Top index 0 1 2 3 4 5 6 Idx
0 1 2 3 4 5 6 | val

_ MethOdS/FunCtionS 2% 24 29 24 3% 34 3v Card
 shuffle(), cut(int where), get top card()

Visualizing What Objects Do

* An object has
— Internal state (data members)

— And functions that allow you to update the state, perform
operations on the object, and retrieve data or results from

the object
Calls from
g |dshume(> 1| e @ R <>'\
Deck d;
shuffle() cut(int) get_top_card() (}(‘
<&
%
top_index
int cards[52] o 1 51
@ o

This Photo by Unknown Author is licensed under CC BY

http://flickr.com/photos/sparkfun/9465865873
https://creativecommons.org/licenses/by/3.0/

i, IS Viterbi

School of Engineering
‘ ++ ‘ I a Sses #include <iostream>
using namespace std;

class Deck {

public: c

e C(Classes are the programming construct used

to define objects, their data members, and void shuffle();
. void cut(int where);
methods/functlons int get_top_card();
L. . private:
 Similar idea to structs int cards[52];

int top_index;

* Steps: };

1. Define the class’ data members and
function/method prototypes

ddoawebpied

. UsViterbi
School of Engineering
C++ Classes e e o

class Deck {

public: c

e C(Classes are the programming construct used

to define objects, their data members, and void shuffle();
. void cut(int where);
methods/functlons int get_top_card();
L. . private:
 Similar idea to structs int cards[52];
int top_index;
* Steps: };
) , // member function implementation O
1. Define the class’ data members and void Deck: :shuffle() { Q§
function/method prototypes for(int 1=51; 1 > @; i--){ o
int r = rand() % 1i; g
2. Write the function/method implementations swap(cards[i], cards[r]); a
} I
3. }

int Deck::get_top_card()
{ return cards[top_index++]; }

 Terminology:

— Class = Definition/Blueprint of an object

. UsViterbi
School of Engineering
C++ Classes o s

class Deck {

public: c

e C(Classes are the programming construct used

to define objects, their data members, and void shuffle();
. void cut(int where);
methods/functlons int get_top_card();
L. . private:
e Similar idea to structs int cards[52];
int top_index;
* Steps: };
. , // member function implementation
1. Define the class’ data members and void Deck::shuffle() { e o
function/method prototypes for(int 1=51; 1 > @; i--){ 3
int r = rand() % 1i; Q
2. Write the function/method implementations swap(cards[i], cards[r]); 3
) i) } -
3. Instantiate/Declare object variables and use | §

int Deck::get_top_card()
{ return cards[top_index++]; }

them by calling their methods

° Termln0|0gy3 // Main application

— Class = Definition/Blueprint of an object I ERPES ergis, el Temgrill) ¢
— Object = Instance of the class, actual int hand[5]; CEIeE
: . d.shuffle(); top_index
allocation of memory, variable, etc. @)
for(int i=0; i < 5; i++){
hand[i] = d.get_top _card(); e
}...

}

Common to separate class into separate
source code files so it can easily be reused
in different applications

1) In a header (.h) file, define the class':
— 1.) data members and

— 2.) function/method prototypes
(usually in a separate header file)

— Must define the class using the syntax:
* class name { ... };

2) In a corresponding .cpp file, write the
member functions/methods

3) In an application (usually separate .cpp
file), instantiate/Declare object variables
and use them by calling their methods

How do you think you compile the
application at the command line?
— Must list all the .cpp files on the g++ command

i, IS Viterbi

School of Engineering

Common Class Structure — Split Files

class Deck {
public:

void shuffle();

void cut(int where);

int get_top_card();
private:

int cards[52];

int top_index;

}s

#tinclude<iostream>
#tinclude "deck.h"

// Code for each prototyped method

##include<iostream>
#tinclude "deck.h"

int main(int argc, char *argv[]) {

Deck d; ;
int hand[5]; caras
d.shuffle(); top_index

d.cut();
for(int i=0; i < 5; i++){
hand[i] = d.get_top _card();
}...
}

yyo8p

ddo-yoep

ddoawebpied

- ENg YIF%:rbl
Access Specifiers

class Deck {

 Each function or data member can be classified public:
Deck(); // Constructor

as pUb“C' private' or protected ~Deck(); // Destructor (see next slide)
— These classifications support encapsulation by void shuffle();
i) void cut(int where); o
ensuring that no other programmer writes code A G e o) 3
that uses or modifies your object in an private: 5
unintended way. int cards[52];
] int top_index;
— Makes private data/method members to be };
INACCESSIBLE to non-member functions of the
class, forcing non-members to ONLY utilize the #include<iostream> Q
PUBLIC interface #include “deck.h” §
(2)
— i . ©
Private: Can ca!l or access only by // Code for each prototyped method S
methods/functions that are part of that class
. . #include<iostream>
— Public: Can call or access by any other code ey
: More on this later
. . int main(int argc, char *argv[]) {
* Everything private by default so you must Deck d; |
. int hand[5]; Y
use public: to make things visible g
d.shuffle(); <
 Make the interface public and the d.cut(); 3
guts/inner-workings private d.cards[@] = ACE; //won't compile 3
d.top _index = 5; //won't compile

R,]S Viterbi

School of Engineering

Public / Private and Structs vs. Classes

* |n C++ the ONLY difference between structs and classes s
that structs default to public access, classes default to
private access

* Thus, other code (non-member functions of the class) cannot
access private class members directly

student.h grades.cpp
class Student { // what's the difference #include<iostream>
struct Student { // between these two #include "student.h"
int main()
Student(); // Constructor 1 {
Student(string name, int id, double gpa); Student s1; string myname;
// Constructor 2 cin >> myname;

~Student(); // Destructor sl.name_ = myname;

e // compile error if 'class' but not

string name_; // if 'struct’

int id_;

double gpa_; }
}s

R,]S Viterbi

School of Engineering

Constructors / Destructors

Question: What is the initial value of
the d.cards and d.top_index??

When an object comes alive, we
need to have appropriate initial
values in our data members so that
future calls to member functions will
work appropriately...

...and when an object dies (goes out
of scope or is deleted) we may need
to perform some cleanup operations

To help us with these tasks C++
provides Constructor (ctor) and
Destructor (dtor) functions

class Deck {
public:

void shuffle();

void cut();

int get_top_card();
private:

int cards[52];

int top_index;

};

#tinclude<iostream>
#tinclude "deck.h"

// Code for each prototyped method

##include<iostream>
#tinclude "deck.h"

int main(int argc, char *argv[]) {
Deck d; cards [2121217212

int hand[5];
top_index |

d.shuffle();
d.cut();
for(int i=0; i < 5; i++){
hand[i] = d.get_top_card();
}...
}

yyo8p

ddo-yoep

ddoawebpied

R (/5 Viterbi >
Constructors / Destructors

class Deck {
public: S
]] Deck(); // Constructor Q
* Constructor (ctor for short) is a function of the ~Deck(); // Destructor al
same name as the class itself (e.g. Deck()) O
— It is called automatically when the object is created
(either when declared or when allocated via new) | #include<iostream>
o L #include "deck.h"
— Use to initialize your object's data members to
some desired or known initial state Deck: :Deck() {
— Returns nothing top_index = 0; ,
. . for(int i=0; i < 52; i++){ %
* Destructor (dtor for short) is a function of the cards[i] = i; 2]
same name as class itself with a ~ in front (e.g. } §
~Deck()) }
. . Deck: :~Deck()
— Called automatically when object goes out of scope | ¢/ 1ot needed for this class */ }
(i.e. when it is deallocated by ‘delete’ or when :
scope completes) #include "deck.h .
— Use to free/delete any memory allocated by the int main() { 3
object or close any open file streams, etc. Deck d; // Deck() is called :
— Returns nothing dl @™ 011{2(314 E
top_index
— [Note: Currently we do not have occasion to use return 0 " 0 ©
destructors; we will see reasons later on in the // ~Deck() is called since
course] }

- USCVitf?fbi .
Multiple Constructors

. class Student {
* (Can have multiple constructors public:
with different argument lists to Student(); // Default ctor
. . . Student(std::string name, int id, double gpa);
provide options to client software // "Initializing" ctor .
. e ege qe ~Student(); // Destructor =2
for how they'd like to initialize the std::string get name(); S
object int get _id(); =
double get gpa(); =
— Constructor with NO ARGUMENTS is void set name(std::string name):
known as the DEFAULT constructor Vo%j SeE:id(igt ii); | Note: Often name
void set_gpa(double gpa); :
#include<iostream> private: data _members with
#tinclude "student.h" std: :Str\ing name_; SpeCIal decorator
int main() int id_;« _ (id_orgpa_)to make
{ double gpa_; it obvious to other
Student s1; // calls default ctor }s programmers that
string myname; Student: : Student () this variable is a data
cin >> myname; { member
sl.set_name(myname); name_ = "Jane Doe"; id_ = @; gpa_ = 2.0;
sl.set id(214952); } o
sl.set _gpa(3.67); g
Student: :Student(string name, int id, double gpa))
Student s2(myname, 32421, 4.0); { 3
// calls "initializing" ctor name_ = name; id = id; gpa_ = gpa; 9
N N N T
} }

Accessor / Mutator Methods

Define public "get" (accessor) and
"set" (mutator) functions to let other
code access desired private data
members

"Good practice": Use 'const' after

argument list for functions that DON'T
modify data members

— Ensures data members are not altered
by this function

#include<iostream>
#include "student.h"
using namespace std;
int main()
{
Student s1;
string myname;
cin >> myname;
sl.set name (myname);
string name_copy;
name_copy = sl.get name();

class Student {
public:
Student(); // Constructor 1
Student(string name, int id, double gpa);
// Constructor 2
~Student(); // Destructor
std::string get_name() const;
int get_id() const;
double get _gpa() const;

void set_name(string s);
void set_gpa(double g);
private:
std::string name_;
int id_;
double gpa_;
}s

#include "student.h"
using namespace std;

std::string Student::get_name() const
{ return name_; }

int Student::get_id() const

{ return id_; }

void Student::set_name(string s)

{ name_ = s; }

void Student::set_gpa(double g)
{ gpra_=2g8; }

R,]S Viterbi

School of Engineering

y-juapnis

ddo-juapnis

R,]S Viterbi

School of Engineering

Writing Member Functions

. class Deck {
* What's wrong with the code on the left vs. Subilias
: Deck(); // Constructor S
code on the rlght ~Deck(); // Destructor 9:
void f1() Deck: :Deck() void shuffle(); o
{ { .)
top_index = 0; top_index = 0; ¥
} ¥
#include<iostream>
. . #include "deck.h"
« Compiler needs to know that a function is a e) £
member of a class top_index = @; ,
for(int i=0; i < 52; i++){
* Include the name of the class followed by , sEres(] = i
': ' just before name of function }
. . Deck: :~Deck()
* This allows the compiler to check access to { -1
. : . } o
private/public variables E
— Without the scope operator [i.e. ‘{’Oid Deck: :shuffle() ©
:?-nt get_top_card() rather than cut(); //calls cut() for this object
int Deck::get top card()]the compiler
would think that the function is some outside int el S ()
function (not a member of Deck) and thus generate { FBETtOP-
an error when it tried to access the data members top_index++;
(i.e. cards array and top_index). , return cards[top_index-1];

R,]S Viterbi

School of Engineering

Calling Member Functions (1)

dq | et |0]1]2|3]4]5|6]|7
* When outside the class scope top_index | ()
(i.e.inmain() or some outside
function) d2 | PH |0 1]2]3]4[5]6]|7
top_index 0
— Must precede the member
function call with the object name #include<iostreans
of the specific object that it #include “deck.h”
should operate on and the dot int main() {
operator (e.g. d1.shuffle()) ot handre]
— dl1.shuffle() indicates the di.shuffle();
code of shuffle() should be x Zﬁzfgi:tdi?utii() o
operating implicitly on d1's data for(int i=0; i < 5; i++){
member vs. d2 or any other Deck } nandli] = di-get topcard();
object ;
d1 cards[52] 141|27| 8 |39|25| 4 |11|17
top_index 1

- USCVitf?rbi .
Calling Member Functions

.. . . #include<iostream>
 When inside the class scope (i.e. in #include "deck.h”
main or some outside function), no int main(int argc, char *argv[]) {
preceding object is necessary Deck d1, d2; S
int hand[5]; 3
* Within a member function we can just d1.shuffle(); ko
. . T
call other member functions directly. ,
d1’s data will be modified TR
d1is implicitly #include<cstdlib>
(shuffled and cut) passed to shuffle() include "deck.h"
void Deck: :shuffle()
cards[52] {
d1 41|27| 8 |39(25| 4 |11 (17 cut(); // calls cut()
t ind // for this object
op_Index o Since shuffle [for(i=e; i < 52; i++){
was implicitly int r = rand() % (52-1); o
working on d1’s int temp = cards[r]; 13
cards[52] data, d1 is cards[r] = cards[i]; o
d2 01 1(2]3|4]5|6]7 again implicitly cards[i] = temp; S
top_index [passed to cut()}}
\‘ void Deck::cut()
{
// swap 15t half of deck w/ 2
}

-1 USCVitgrbi .
Big Picture *

* Data members represent the "state" of the object

— State = values that need to be remembered or retained across various function calls (for the
lifetime of the object) to be able to perform appropriate tasks.

— Data members should be the information needed by / across multiple member functions
(e.g. set then get, add_score then avg_scores(), etc.)

* Member functions: class Student {
. . public:
— Modify or perform computation on that state Student(); // Default ctor

Student(string name, int id); // Init. ctor

— Input arguments of member functions : i
void set_name(std::string n);

should be values needed only DURING or void add_score(int id, double score);
FOR that particular function call timeline. double avg_scores() const;
private:

/ / std::string name_;
s1.set_name("CS Sandy") int id_;

= [’ double scores [10];
s1.add_score(0, 82.5) }s
X
| E§§> int main()
name Tommy Trojan > N {
y ol "o\' 2] Student s1("Tommy Trojan", 12345);

sl.set_name("CS Sandy");
sl.add_score(9, 82.5);
- cout << sl.avg scores() << endl;

‘ 7 .
\ | 51-an_SCOI"eS() I } return 0,

id

scores

R,]S Viterbi

Class Pointers *

* Can declare pointers to these

new class types

Use -> operator to access
member functions or data

Stack of makeDeck()
d1 | 55512a8

55512a8:

cards[52] | 0|1 (2|3 |4|5(6/7

top_index 0

Heap

#tinclude<iostream>
#tinclude "deck.h"

Deck* makeDeck(){
Deck* dl1 = new Deck;
dl->shuffle();
dl->cut();
return di;

}

int main()
{
int hand[5];
Deck* myd = makeDeck();
for(int i=0; i < 5; i++){
hand[i] = myd->get top card();
}

// More code

delete myd;
return 0;

R,]S Viterbi

Class Pointers *

* Can declare pointers to these
new ClaSS typeS #include<iostream>

#include "deck.h"

* Use -> operator to access Deck* makeDeck (){

' Deck* dl = Deck; // Ct 1led
member functions or data e T e or calle
Stack of di->cut();
n1ain() return di;
}

myd | 55512a8 int main()

{
—_—___——_,4”// int hand[5];

Deck* myd = makeDeck();

myd->shuffle();
for(int i=0; i < 5; i++){
55512a8: hand[i] = myd->get_top_card();

cards[52] |41/27| 8 |39(25| 4 |11|17 }

// More code

top_index 5 delete myd; // Dtor called
return 0;

Heap

* |In-class Exercises

Exercises

