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Object-Oriented Approach

• Model the application/software as a set of objects that interact 
with each other

• Objects fuse data (i.e. variables) and functions (a.k.a methods) 
that operate on that data into one item (i.e. object)

• Objects replace global-level functions as the primary method of 
encapsulation and abstraction
– Encapsulation: Hiding implementation and controlling access

• Group data and code that operates on that data together into one unit
• Only expose a well-defined interface to control misuse of the code by other 

programmers

– Abstraction
• Hiding of data and implementation details
• How we decompose the problem and think about our design at a higher level rather 

than considering everything at the lower level
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Object-Oriented Programming
• Objects contain:

– Data members
• Data needed to model the object and track its state/operation (just 

like structs)

– Methods/Functions
• Code that operates on the object, modifies it, etc.

• Example:  Deck of cards
– Data members:

• Array of 52 entries (one for each card) indicating their ordering (for 
our purposes we'll just use integers 0-51 to represent the 52 cards)

• Top index

– Methods/Functions
• shuffle(), cut(int where), get_top_card()

0 1 2 3 4 5 6 Idx

0 1 2 3 4 5 6 Val

2♣ 2♠ 2♥ 2♦ 3♣ 3♠ 3♥ Card
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Visualizing What Objects Do

• An object has
– Internal state (data members)
– And functions that allow you to update the state, perform 

operations on the object, and retrieve data or results from 
the object

shuffle()

0top_index

int cards[52] 0 … 51

Deck 

d

This Photo by Unknown Author is licensed under CC BY

26

cut(int) get_top_card()

d.shuffle(); d.cut(26); int card = d.get_top_card();

Calls from 
main() after 
declarding:
Deck d;

0
1

http://flickr.com/photos/sparkfun/9465865873
https://creativecommons.org/licenses/by/3.0/
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C++ Classes
• Classes are the programming construct used 

to define objects, their data members, and 
methods/functions

• Similar idea to structs
• Steps:

1. Define the class’ data members and 
function/method prototypes 

#include <iostream>
using namespace std;
class Deck {
 public:

   void shuffle();
   void cut(int where);
   int get_top_card();
 private:
   int cards[52];
   int top_index;
};

cardgam
e.cpp

1
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C++ Classes
• Classes are the programming construct used 

to define objects, their data members, and 
methods/functions

• Similar idea to structs
• Steps:

1. Define the class’ data members and 
function/method prototypes 

2. Write the function/method implementations
3.  

• Terminology:
– Class = Definition/Blueprint of an object

#include <iostream>
using namespace std;
class Deck {
 public:

   void shuffle();
   void cut(int where);
   int get_top_card();
 private:
   int cards[52];
   int top_index;
};
// member function implementation
void Deck::shuffle() {
  for(int i=51; i > 0; i--){
    int r = rand() % i;
    swap(cards[i], cards[r]);
  }
}
int Deck::get_top_card() 
{ return cards[top_index++]; }

cardgam
e.cpp

1

2
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C++ Classes
• Classes are the programming construct used 

to define objects, their data members, and 
methods/functions

• Similar idea to structs
• Steps:

1. Define the class’ data members and 
function/method prototypes 

2. Write the function/method implementations
3. Instantiate/Declare object variables and use 

them by calling their methods 

• Terminology:
– Class = Definition/Blueprint of an object
– Object = Instance of the class, actual 

allocation of memory, variable, etc.

#include <iostream>
using namespace std;
class Deck {
 public:

   void shuffle();
   void cut(int where);
   int get_top_card();
 private:
   int cards[52];
   int top_index;
};
// member function implementation
void Deck::shuffle() {
  for(int i=51; i > 0; i--){
    int r = rand() % i;
    swap(cards[i], cards[r]);
  }
}
int Deck::get_top_card() 
{ return cards[top_index++]; }

// Main application
int main(int argc, char *argv[]) {
  Deck d;
  int hand[5];
  d.shuffle();
  d.cut();
  for(int i=0; i < 5; i++){
    hand[i] = d.get_top_card();
  }...
}

cardgam
e.cpp

1

top_index

cardsd

2

3
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Common Class Structure – Split Files
• Common to separate class into separate 

source code files so it can easily be reused 
in different applications

• 1) In a header (.h) file, define the class': 
– 1.) data members and 
– 2.) function/method prototypes 

(usually in a separate header file)
– Must define the class using the syntax:

• class name { ... };

• 2) In a corresponding .cpp file, write the 
member functions/methods

• 3) In an application (usually separate .cpp 
file), instantiate/Declare object variables 
and use them by calling their methods 

• How do you think you compile the 
application at the command line?
– Must list all the .cpp files on the g++ command

class Deck {
 public:

   void shuffle();
   void cut(int where);
   int get_top_card();
 private:
   int cards[52];
   int top_index;
};

#include<iostream>
#include "deck.h"

// Code for each prototyped method

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
 Deck d;
  int hand[5];
  d.shuffle();
  d.cut();
  for(int i=0; i < 5; i++){
    hand[i] = d.get_top_card();
  }...
}

deck.h
deck.cpp

cardgam
e.cpp

top_index

cardsd
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1

2
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Access Specifiers
• Each function or data member can be classified 

as public, private, or protected
– These classifications support encapsulation by 

ensuring that no other programmer writes code 
that uses or modifies your object in an 
unintended way.

– Makes private data/method members to be 
INACCESSIBLE to non-member functions of the 
class, forcing non-members to ONLY utilize the 
PUBLIC interface

– Private: Can call or access only by 
methods/functions that are part of that class

– Public: Can call or access by any other code
– Protected:  More on this later

• Everything private by default so you must 
use public: to make things visible

• Make the interface public and the 
guts/inner-workings private

class Deck {
 public:
   Deck();   // Constructor
   ~Deck();  // Destructor (see next slide)
   void shuffle();
   void cut(int where);
   int get_top_card();
 private:
   int cards[52];
   int top_index;
};

#include<iostream>
#include "deck.h"

// Code for each prototyped method

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
  Deck d;
  int hand[5];

  d.shuffle();
  d.cut();

  d.cards[0] = ACE; //won't compile
  d.top_index = 5;  //won't compile
}

deck.h
deck.cpp

cardgam
e.cpp
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Public / Private and Structs vs. Classes

• In C++ the ONLY difference between structs and classes is 
that structs default to public access, classes default to 
private access

• Thus, other code (non-member functions of the class) cannot 
access private class members directly

class Student {  // what's the difference
struct Student { // between these two

   Student();   // Constructor 1
   Student(string name, int id, double gpa);
                // Constructor 2
   ~Student();  // Destructor
   ...
   string name_;
   int id_;
   double gpa_;
};

student.h

#include<iostream>
#include "student.h"
int main()
{
  Student s1;  string myname;
  cin >> myname;
  s1.name_ = myname;
    // compile error if 'class' but not 
    // if 'struct'
  ...
}

grades.cpp
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Constructors / Destructors
• Question: What is the initial value of 

the d.cards and d.top_index??

• When an object comes alive, we 
need to have appropriate initial 
values in our data members so that 
future calls to member functions will 
work appropriately…

• …and when an object dies (goes out 
of scope or is deleted) we may need 
to perform some cleanup operations

• To help us with these tasks C++ 
provides Constructor (ctor) and 
Destructor (dtor) functions

class Deck {
 public:

   void shuffle();
   void cut();
   int get_top_card();
 private:
   int cards[52];
   int top_index;
};

#include<iostream>
#include "deck.h"

// Code for each prototyped method

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
  Deck d;
  int hand[5];
  d.shuffle();
  d.cut();
  for(int i=0; i < 5; i++){
    hand[i] = d.get_top_card();
  }...
}

deck.h
deck.cpp

cardgam
e.cpp

?
? ? ? ? ?

top_index

cardsd

3

1

2
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Constructors / Destructors
• Constructor (ctor for short) is a function of the 

same name as the class itself (e.g. Deck())
– It is called automatically when the object is created 

(either when declared or when allocated via new)
– Use to initialize your object's data members to 

some desired or known initial state
– Returns nothing

• Destructor (dtor for short) is a function of the 
same name as class itself with a ~ in front (e.g. 
~Deck())
– Called automatically when object goes out of scope 

(i.e. when it is deallocated by ‘delete’ or when 
scope completes)

– Use to free/delete any memory allocated by the 
object or close any open file streams, etc.

– Returns nothing
– [Note:  Currently we do not have occasion to use 

destructors; we will see reasons later on in the 
course]

class Deck {
 public:
   Deck();   // Constructor
   ~Deck();  // Destructor
   ...
};

#include<iostream>
#include "deck.h"

Deck::Deck() {
  top_index = 0;
  for(int i=0; i < 52; i++){
    cards[i] = i;
  }

}

Deck::~Deck() 
{ /* not needed for this class */ }

#include "deck.h"

int main() {
  Deck d;  // Deck() is called
  ...

  return 0;
  // ~Deck() is called since
} 

deck.h
deck.cpp

cardgam
e.cpp0

0 1 2 3 4
top_index

cardsd
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Multiple Constructors
• Can have multiple constructors 

with different argument lists to 
provide options to client software 
for how they'd like to initialize the 
object
– Constructor with NO ARGUMENTS is 

known as the DEFAULT constructor

class Student {
 public:
   Student();   // Default ctor
   Student(std::string name, int id, double gpa);
                // "Initializing" ctor
   ~Student();  // Destructor
   std::string get_name();
   int get_id();
   double get_gpa();

   void set_name(std::string name);
   void set_id(int id);
   void set_gpa(double gpa);
 private:
   std::string name_;
   int id_;
   double gpa_;
};

Student::Student()
{
  name_ = "Jane Doe"; id_ = 0; gpa_ = 2.0; 
}

Student::Student(string name, int id, double gpa)
{
  name_ = name; id_ = id; gpa_ = gpa;
}

student.h
student.cpp

#include<iostream>
#include "student.h"

int main()
{
  Student s1;  // calls default ctor
  string myname;
  cin >> myname;
  s1.set_name(myname);
  s1.set_id(214952);
  s1.set_gpa(3.67);

  Student s2(myname, 32421, 4.0);
              // calls "initializing" ctor

}

Note: Often name 
data members with 
special decorator 
(id_ or gpa_) to make 
it obvious to other 
programmers that 
this variable is a data 
member
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Accessor / Mutator Methods
• Define public "get" (accessor) and 

"set" (mutator) functions to let other 
code access desired private data 
members

• "Good practice": Use 'const' after 
argument list for functions that DON'T 
modify data members
– Ensures data members are not altered 

by this function

class Student {
 public:
   Student();   // Constructor 1
   Student(string name, int id, double gpa);
                // Constructor 2
   ~Student();  // Destructor
   std::string get_name() const;
   int get_id() const;
   double get_gpa() const;

   void set_name(string s);
   void set_gpa(double g);
 private:
   std::string name_;
   int id_;
   double gpa_;
};

#include "student.h"
using namespace std;

std::string Student::get_name() const
{   return name_; }
int Student::get_id() const
{   return id_; }
void Student::set_name(string s)
{  name_ = s;  }

void Student::set_gpa(double g)
{  gpa_ = g; }

student.h
student.cpp

#include<iostream>
#include "student.h"
using namespace std;
int main()
{
  Student s1;  
  string myname;
  cin >> myname;
  s1.set_name (myname);
  string name_copy;
  name_copy = s1.get_name();
  ...
}
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Writing Member Functions
• What's wrong with the code on the left vs. 

code on the right

• Compiler needs to know that a function is a 
member of a class

• Include the name of the class followed by 
'::' just before name of function

• This allows the compiler to check access to 
private/public variables
– Without the scope operator [i.e. 

int get_top_card() rather than 
int Deck::get_top_card()  ] the compiler 
would think that the function is some outside 
function (not a member of Deck) and thus generate 
an error when it tried to access the data members 
(i.e. cards array and top_index).

class Deck {
 public:
   Deck();   // Constructor
   ~Deck();  // Destructor
   void shuffle(); 
   ...
};

#include<iostream>
#include "deck.h"
Deck::Deck() {
  top_index = 0;
  for(int i=0; i < 52; i++){
    cards[i] = i;
  }
}
Deck::~Deck() 
{
}

void Deck::shuffle()
{
  cut(); //calls cut() for this object
  ...
}
int Deck::get_top_card()
{
  top_index++;
  return cards[top_index-1];
}

deck.h
deck.cpp

void f1()
{
  top_index = 0;
}

Deck::Deck() 
{
  top_index = 0;
}
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Calling Member Functions (1)

• When outside the class scope 
(i.e. in main() or some outside 
function)
– Must precede the member 

function call with the object name 
of the specific object that it 
should operate on and the dot 
operator (e.g. d1.shuffle())

– d1.shuffle() indicates the 
code of shuffle() should be 
operating implicitly on d1's data 
member vs. d2 or any other Deck 
object

#include<iostream>
#include "deck.h"

int main() {
  Deck d1, d2;
  int hand[5];

  d1.shuffle();
  // not Deck.shuffle() nor
  // shuffle(d1), etc.

  for(int i=0; i < 5; i++){
    hand[i] = d1.get_top_card();
  }
}

d1

d2 0 1 2 3 4 5 6 7cards[52]

0top_index

41 27 8 39 25 4 11 17cards[52]

1top_index
d1

0 1 2 3 4 5 6 7cards[52]

0top_index
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Calling Member Functions
• When inside the class scope (i.e. in 

main or some outside function), no 
preceding object is necessary

• Within a member function we can just 
call other member functions directly.

#include<iostream>
#include "deck.h"

int main(int argc, char *argv[]) {
  Deck d1, d2;
  int hand[5];

  d1.shuffle();
  ...
}

#include<cstdlib>
#include "deck.h"

void Deck::shuffle()
{
  cut(); // calls cut() 
         // for this object
  for(i=0; i < 52; i++){
    int r = rand() % (52-i);
    int temp = cards[r];
    cards[r] = cards[i];
    cards[i] = temp;
  } 
}
void Deck::cut()
{
  // swap 1st half of deck w/ 2nd
}

deck.cpp
poker.cpp

41 27 8 39 25 4 11 17cards[52]

0top_index
d1

d2 0 1 2 3 4 5 6 7cards[52]

0top_index

d1 is implicitly 
passed to shuffle()

Since shuffle 
was implicitly 

working on d1’s 
data, d1 is 

again  implicitly 
passed to cut()

d1’s data will be modified 
(shuffled and cut)
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Big Picture
• Data members represent the "state" of the object 

– State = values that need to be remembered or retained across various function calls (for the 
lifetime of the object) to be able to perform appropriate tasks.

– Data members should be the information needed by / across multiple member functions 
(e.g. set then get, add_score then avg_scores(), etc.)

• Member functions:
– Modify or perform computation on that state
– Input arguments of member functions

should be values needed only DURING or 
FOR that particular function call timeline.

class Student {
 public:
   Student();   // Default ctor
   Student(string name, int id); // Init. ctor
   void set_name(std::string n);
   void add_score(int id, double score);
   double avg_scores() const; 
 private:
   std::string name_;
   int id_;
   double scores_[10];
};

int main()
{
  Student s1("Tommy Trojan", 12345);
  s1.set_name("CS Sandy");
  s1.add_score(0, 82.5);
  cout << s1.avg_scores() << endl;
  return 0;
}

Studen
t 

s1

s1.avg_scores()

82.5

Tommy Trojanname

12345id

scores 82.5 - -

s1.set_name("CS Sandy")

s1.add_score(0, 82.5)
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Class Pointers

• Can declare pointers to these 
new class types

• Use -> operator to access 
member functions or data

#include<iostream>
#include "deck.h"

Deck* makeDeck(){
  Deck* d1 = new Deck;
  d1->shuffle();
  d1->cut();
  return d1;
}
int main()
{
 int hand[5];
 Deck* myd = makeDeck();
 for(int i=0; i < 5; i++){
    hand[i] = myd->get_top_card();
 }
 // More code

 delete myd;
 return 0;
}

0 1 2 3 4 5 6 7cards[52]

0top_index

Heap

Stack of makeDeck()

d1 55512a8

55512a8:
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Class Pointers

• Can declare pointers to these 
new class types

• Use -> operator to access 
member functions or data

#include<iostream>
#include "deck.h"

Deck* makeDeck(){
  Deck* d1 = new Deck; // Ctor called
  d1->shuffle();
  d1->cut();
  return d1;
}
int main()
{
 int hand[5];
 Deck* myd = makeDeck();
 myd->shuffle();
 for(int i=0; i < 5; i++){
    hand[i] = myd->get_top_card();
 }
 // More code

 delete myd;  // Dtor called
 return 0;
}

cards[52]

5top_index

Heap

55512a8:

Stack of 
main()

myd 55512a8

41 27 8 39 25 4 11 17
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Exercises

• In-class Exercises


