School of Engineering

CS 103 Unit 3a —
Objects Intro:
Structs and Strings

CSCI 103L Teaching Team

USCViterbi €

School of Engin
 The course is broken into 6 units each consisting of:
@ = 0\ A
T X &]
Lectures Labs Homework(s) Project(s)
(Tools + Practice + (Formative programming (Cumulative
small group Help) problems) programming problems)
_
ONRS o
C++ Language Pointers and Memory Objects 1
Syntax

3

Managing Data Objects 2 Recursion

Make arbitrary integer codes more readable

ENUMERATIONS

R,]S Viterbi

School of Engineering

Enumerations

const int BLACK=0;
. . const int BROWN=1;
* Associates an integer (number) | const int rReD=2;
with a symbolic name const int WHITE=7;
e enum [optional collection name]
{Iteml, I‘temZ, ItemN} int pj_xela = RED;
— ltem1=0 int pixelb = BROWN;
— ltem2=1

— . Hard coding symbolic names with given codes

— JltemN = N-1

oo) // First enum item is associated with ©
 Use symbolic item names in your code | enum Colors {BLACK,BROWN,RED,...,WHITE};

and compiler will replace the symbolic | int pixela

= RED; // pixela = 2;
names with corresponding integer int pixelb = BROWN; // pixelb = 1;
values Using enumeration to simplify

<::> enum {CSCI, CSBA, CECS, CSGM, AMCM, QBIO};
Use enumerations to make related

integer codes/constants more readable. ‘

int major = AMCM; // major = 4;

int minor

CSCI; // minor = 0;

OBIJECTS

Review: Program Decomposition

 Cisa procedural language

— A function or procedure is the primary
unit of code organization, problem
decomposition, and abstraction

— Functions can be reused across many
applications

e C++is considered an object-oriented
language (adds objected-oriented
constructs to C) though still supports a
procedural approach

This Photo by Unknown Author is licensed under CC BY-NC

— A class or object is the primary unit of
code organization, problem
decomposition, and abstraction

— Can be reused

https://www.pngall.com/lego-png/download/52866
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Exercise

* To decompose a program into functions, try
listing the verbs or tasks that are performed to

solve the problem
— Model a card game as a series of tasks/procedures...

— A database representing a social network

* To decompose a program into objects, listen for
the nouns, objects, or agents that are interacting

———————(5 \ltcrbi >
Object-Oriented Approach

* Model the application/software as a set of objects that interact
with each other

 Objects fuse data (i.e. variables) and functions (a.k.a methods)
that operate on that data into one entity

* Objects replace global-level functions as the primary method of
encapsulation and abstraction

— Encapsulation: Code + data together with controlled access
* Group data and code that operates on that data together into one unit
* Only expose a well-defined interface to control misuse of the code by other
programmers
— Abstraction

* Hiding of data and implementation details

* How we decompose the problem and think about our design at a higher level rather
than considering everything at the lower level

Objects

 Often times we want to represent higher level concepts, objects,
or things (beyond an integer, character, or double)

— Examples: a pixel, a circle, a student, a file

 These "objects" can be represented as a collection of integers,
character arrays/strings, etc.
— A pixel (with R,G,B value)
— Acircle (center_x, center_y, radius)
— A student (name, ID, major)

 Objects (embodied as 'structs' in C and later 'classes' in C++) allow
us to aggregate different type variables together to represent a
single larger 'thing' as well as supporting operations on that 'thing'
— Can reference the collection with a single name (myCircle, studentl)
— Can access individual components (myCircle.radius, studentl.id)

USC Viterbi &>
Motivation for Objects

 When going to the airport, would you rather carry all
your luggage items piecemeal or pack everything in
one suitcase?

void process(char name[], int id, int major) void process(Student s1)

{ {
} }

This Photo by Unknown Author is licensed under CC BY-NC
This Photo by Unknown Author is licensed under CC BY

http://www.pngall.com/suitcase-png
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
http://studentswithlearningdifficulties.blogspot.com/2010_09_01_archive.html
https://creativecommons.org/licenses/by/3.0/

R,]S Viterbi

School of Engineering

Object-Oriented Programming

* Objects contain:

— Data members

* Data needed to model the object and track its state/operation
(just like structs)

— Methods/Functions
* Code that operates on the object, modifies it, etc.

 Example: Deck of cards

— Data members:
* Array of 52 entries (one for each card) indicating their ordering
* Top index

— Methods/Functions
 shuffle(), cut(), get top card()

R,]S Viterbi

School of Engineering

C++ Objects: Structs vs. Classes

e Structs (originated in the C language) are the predecessors of
classes (C++ language)

— Though structs are still valid in C++ and now behave almost EXACTLY the
same as a class (i.e. struct/class are nearly interchangeable)
e Classes form the basis of object-oriented programming in the
C++ language

* Both are simply a way of grouping related data together and
related operations (functions or methods) to model some
'object’

— We'll look at structs now, and classes a bit later, but recall they are

interchangeable. So pay attention now to make subsequent lectures
easier.

Starting with data...

STRUCTS

Types and Instances

* A'type'indicates how much memory will be
required, what the bits mean (i.e. integer, double,
pointer), and what operations can be performed

— int = 32-bits representing only integer values and
supporting +,-,*,/,=,==,<,>, etc.

— char* = 64-bits representing an address and supporting
* (dereference),&, +, - (but not multiply and divide)

— Types are like blueprints for what & how to make a
particular 'thing'
 A'variable' or 'object' is an actual instantiation
(allocation of memory) for one of these types
— int x, double z, char *str;

i, IS Viterbi

School of Engineering

Definitions and Instances (Declarations)

#include <iostream>

* QObjects must first be defined/declared

using namespace std;

(as a 'struct' or 'class’) // struct definition
. _ _ _ _ struct pixel {
— The declaration is a blueprint that indicates unsigned char red;
. . unsigned char green;
what any instance should look like efenad dier Bives
. }s
— ldentifies the overall name of the struct and | ;; ‘pixel' is now a type |°1
its individual member types and names // Just like "int® is a type
. int main(int argc, char *argv[])
— The declaration does not actually create a {
. . int 1i,3j;
variable (no memory is allocated) Y s
— Usually appears outsid functi omeall o
y app utside any runction pixel image[256][256]; gg% %
. // make pl red mmm m
* Once declared, any number of instances pl.red = 255; e =2
pl.blue = pl.green = 0; %gg g

can be created/instantiated in your code | // make a green inage

for(i=0; i < 256; i++){

— Instances are actual objects (memory is for(j=0; j < 256; j++){
allocated for each) created from the phacall b lu=insCiiss
definition (blueprint) , }image[i][j]~r‘ed =9

— Declared like other variables PRSI Gf

i, IS Viterbi

School of Engineering

Membership Operator (.)

#include <iostream>
using namespace std;

e Each variable (and function) in an object
definition is called a member of the

. . enum {CSCI=1, CECS=2};
object (i.e. struct or class)

struct student {

 When declaring an instance/variable of char name[80];
an object, we give the entire object a i :1:;-0.«;
name, but the individual members are }; mystudent
identified with the member names int main(int argc, char *argv[])

provided earlier in the object definition { e]
// instantiations

 We use the . (dot/membership) operator Studert myLstudent:

to access that member in an instance of
. // how would you set their name to
the object /7 "Tina"

— Supply the name used in the definition above
so that code is in the form:

instance_name.member_name my_student.id = 1682942;
my_student.major = CSCI;

return 0;

—————— (5 tcrbi &
Memory View of Objects

* Each instantiation allocates memory for all the
members/components of the object (struct or class)

#include<iostream> -
0x7400 00 red
using namespace std; 0Xx7401 FF green [~ p1
// declaration (blueprint)
Str‘uct pixel { 0X7402 00 blue :
unsigned char red; 0x7403 FF red
unsigned char green; 0x7404 00 green [image[0][0]
unsigned char blue; 0x7405 00 blue
}s =
int main(int argc, char *argv[]) 0x7406 48 red
{ 0x7407 C9 green [image[0][1]
int 1i,3; 0x7408 17 blue —
// instantiations (object allocation)
pixel p1l;
pixel image[256][256]; Memory
return 9;
}

————— (5 tcrbi >
Memory View of Objects

* Objects can have data members that are

#include<iostream>
using namespace std; Address Memory Data
[OTHIDI2I[3IY |
// declaration (blueprint) 3001 J 111
struct student {
char name[80]; 7364 |N@ 2 ?
int id;
int major; 0
}s 7376 PP P2
int main(int argc, char *argv[])
{ 7380 1682942
int 1,;
// instantiation (object allocation) /7384 1 =
student s1; 7388 > 2 ? ?
return 0; 7392 22?2
}

School of Engineering

Assignment semantics and pointers to objects

IMPORTANT NOTES ABOUT
OBJECTS

- USCVitcﬂ,)i .
Object assignment

* Consider the following initialization of s1

Address Memory Data

stname7300 (| J i 1 1
([4D (=106 ([
#include<iostream> 7304 |[\©@ ? ? °?

using namespace std;

enum {CSCI=1, CECS};

TS

7376 || 2 2 ? ?

struct student {
char name[80]; 7380 g
int id;
int major; 7384 2
s 7388 | ? ? ? ?
int main(int argc, char *argv[])
{ 7392 ? ? ? ?
student sl1,s2;
strncpy(sl.name,"Jill",80); 7396 P22

sl.id = 5; sl.major = CECS; 7400 5 5 > >

7408 | ? ? ? ?
7412 | ? ? ? ?

i, IS Viterbi

Object assignment

* Assigning one object to another will perform a
member-by-member copy of the entire

Address Memory Data

source object to the destination object se0 [315)1 1 ||
#include<iostream> g | 7304 ?5 ;
using namespace std;
enum {CSCI=1, CECS }; a

2 2 2 ?
struct student { 7376 LS S

sl.id
char name[80]; 7380 6 4
int id; s1.major
int major; 7384
> 2
i (s2.name | 7388 |31 ?@-]
int main(int argc, char *argv[]) ([41)([51([6
{ 7392 |[\@ ? ? ?
student sl1,s2;
strncpy(sl.name,"Jill",80); 7396

sl.id = 5; sl.major = CECS;
s2 = sl1;

ra

s2 7400 [\ ? ? ? ?

return 0; Normally, C/C++ perform only one operation at 7408 652'|d il
} a time, and make you write code if you want to S2.maaior
do more. But object assignment is an 7412
exception (probably because we can't "loop -

through" the different members of a struct).

R,]S Viterbi

Pointers to Objects *

* We can declare pointers to objects just as any other variable
 The address of a struct is just (you guessed it) its starting

address

#include<iostream>

using namespace std; Address Memory Data

enum {CSCI=1, CECS }; B

struct student {
char name[80]; \@ ?» ? ?
int id;
int major; o

}; PP ??

int main(int argc, char *argv[])

{ 2
student s1; 5000 B
student *stu_ptr; i
strncpy(sl.name,"Jill",80); 7 3 060
sl.id = 5; sl.major = CECS;

stu ptr = &s1;
return 0;

i, IS Viterbi

School of Engineering

Accessing members from a Pointer

 Can dereference the pointer first then use the dot operator
 Unfortunately . has higher precedence that * requiring you to use parenthesis

#include<iostream>

using namespace std;

enum {CSCI=1, CECS };

struct student { Address Memory Data Address Memory Data
char name[80]; ORI B | — OB |
int id; Jill T om\o
int major; 4D [ED1eD 7D (A e D

}s \@ ?» ? ? \@ ?» ? ?

int main(int argc, char *argv[])

{ : a
student s1, *stu_ptr; PP ?? PP PR
strncpy(sl.name,"Jill",80); ——m4
sl.id = 5; sl.major = CECS;
stu_ptr = &s1; 2 2
*stu ptr.id = 4; // incorrect - derefs id o -
(*stu_ptr).id = 4; // correct - derefs stu_ptr 9000 0000
strncpy((*stu_ptr).name, "Tom",80); 73921l 7 3 0 @ 7 300
return 0;

}

R,]S Viterbi

School of Engineering

Arrow (->) operator

* Save keystrokes & have cleaner looking code by using the arrow
(->) operator
— (*struct_ptr).member equivalent to struct_ptr->member
— Always of the form: ptr to struct->member

#include<iostream>

using namespace std;

enum {CSCI=1, CECS }; Address Memory Data Address Memory Data

struct student { B B
char name[80]; @) 6D 7D [4) [EDeD 7D
int 1id; \@ ? ? ? \@ ? ?°?
int major;

}; (7] (7]

= =)
int main(int argc, char *argv[]) PR 2?2 ?

{
student s1, *stu ptr; 5 4
strncpy(sl.name,"Jill",80);
sl.id = 5; sl.major = CECS; 2 - 2 -
S PER = LD 0000 0000
stu_ptr->id = 4; // same as (*stu_ptr).id=4; I 1
strncpy(stu_ptr->name, "Tom",80); 7392 7300 730080
return 9,

}

i, IS Viterbi

School of Engineering

When Are Pointers To Objects Used?

#include<iostream>
using namespace std;
enum {CSCI=1, CECS };

struct student {
char name[80];
int id;
int major;
}s
student* makeStudent(const char* n, int i, int m)

{

student* stuptr = new student;

strncpy(stuptr->name, n, 80);
stuptr->id = i; stuptr->major = m;
return stuptr;

}

int main()
{
student* stuptr =
makeStudent("Jane Doe", 5, CECS);

cout << stuptr->name << endl;
// prints "Jane Doe"

delete stuptr;

return 0;

}

Pointers to objects occur
commonly when objects are
passed by reference or
dynamically allocated

Address Memory Data

—POTIIRIGBIM |
Jane
2D [=DIED 7D
Doe

\0 ...

PP 2P
5

2

JU9pnls mau

0 000
7 3 00

R,]S Viterbi

School of Engineering

Passing Objects as Arguments

In C, arguments must be a single
value [i.e. can’t pass an entire array
of data, instead pass a pointer]

Objects are the exception...you can
pass an entire struct ‘by value’
— Will make a member-by-member

copy of the struct and pass it to the
function

Of course, you can always pass a
pointer [especially for big objects
since pass by value means making a
copy of a large objects]

#tinclude<iostream>

using namespace std;

struct Point {
int x;
int y;
¥
void print_point(Point myp)
{
cout << "(x,y)="
cout << endl;

}

int main(int argc, char *argv[])
{
Point pil;
pl.x = 2; pl.y = 5;
print_point(pl);
return 9;

<< myp.x << ","

)

<< myp.y;

R,]S Viterbi

Returning Objects

e (Canreturn a struct
from a function

* Will return a copy of
the struct indicated

— i.e. 'return-by-value’

School of Engineering

#include<iostream>
using namespace std;

struct Point {
int x;
int y;
}s
void print_point(Point *myp)
{

cout << "(x,y)=" << myp->x << ","

cout << endl;

}

Point make_point()
{
Point temp;
temp.x = 3; temp.y = -1;
return temp;
}
int main(int argc, char *argv[])
{
Point p1;
pl = make_point();
print_point(&pl);
return 0;

J

<< myp->y;

C++ STRINGS

Motivation

* Before we dive deeper into writing our OWN
objects...

» ..lLet'slearn how to use objects (structs/classes) that
the C++ library already provides us.

* One of the most basic (and useful) objects in the C++
library is the string class.

* To understand what they do for you (and how they
provide "encapsulation” and "abstraction”, let's
review how we dealt with strings in C (i.e. before the
string class existed)

Review: C Strings

* In C, strings are:
— Character arrays (char mystring[80];)
— Terminated with a NULL character (' \@' <~ 0)

— Passed by reference/pointer (char *)to
functions

— Require care when making copies

e Shallow (only copying the pointer) vs.
Deep (copying the entire array of characters)

— Processed using C String library (<cstring>)

R,]S Viterbi

School of Engineering

String Function/Library (cstring)

In C, we have to pass the C-String
as an argument for the function

* int strcmp(char *strl, char *str2); to operate on it

— Return O if equal, >0 if first non-equal char in strl is alphanumerically
larger, <0 otherwise

* int strlen(char *dest)

#include <cstring>

* char *strcpy(char *dest, char *src); |using namespace std;

int main() {

— strncpy(char *dest, char *src, int n); i SGeim. BUETE]:

— Maximum of n characters copied Sier Sirl) = TUee muens
strcpy(temp_buf, str); // bad
* char *strcat(char *dest, char *src); return ©;
— strncat(char *dest, char *src, int n); }

— Maximum of n characters concatenated plus a NULL

e char *strchr(char *str, char c);

— Finds first occurrence of character ‘c’ in str returning a pointer to that
character or NULL if the character is not found

R,]S Viterbi

Review: Shallow vs.

 Recall our conversation of
shallow vs. deep copies

 Can we just use the
assignment operator, ‘=
with character arrays?

— No, must allocate new storage

0x1cO0:
“Christopher”

temp_bu

names[0] ?2??
names[1] ?2??
???
???

Assigning an array name just assigns a pointer and does
NOT make a copy of the array.

School of Engineering

Deep C-String Copy

#include <iostream>
#include <cstring>
using namespace std;

int main()

{
// store 10 user names
// names type is still char **
char* names[10];

// One "scratchpad" array for all inputs
char temp buf[40];

for(int i=0; i < 10; i++){
cin >> temp_buf;
names[i] = temp_buf;

}
// Do stuff with names

for(int i=0; i < 10; i++){
delete [] names[i];

}

return 0;

i, IS Viterbi

School of Engineering

More Dealing with Text Strings

#include <iostream>
#include <cstring>
using namespace std;

 Must allocate new storage

int main()

{
// store 10 user names
// names type is still char **
char* names[10];

char temp buf[40];
for(int i=0; i < 10; i++){
cin >> temp_buf;
// Find length of strings
0x1cO0: int len = strlen(temp_buf);

temp_buf | “Christopher” names[i] = new char[len + 1];
- strcpy(names[i], temp_buf);

I
-

}
0x8a // Do stuff with names
names|[0] 0x8a4 “Timothy”
1 0x980
names[1] :” 0x080)strcpy() for(int i=0; i < 10; i++){
: delete [] names[i];
??? “Christopher” }

return 0;

C++ Strings

* So you don't like remembering all these details?

— You can do it! Don't give up.

 C++ provides a 'string' class that abstracts all
those worrisome details and encapsulates all the
code to actually handle:
— Memory allocation and sizing
— Deep copy
— Concatenation, Comparison, Size information
— etc.

i, IS Viterbi

School of Engineering

C++ Strings

#include <iostream>
#include <string>
using namespace std;

In C++, the string class provides an
easier alternative to working with
plain-old character arrays

Do's and Don'ts

— Do #include <string> and put
using namespace std;

— Do initialize using = or by giving an
initial value in parentheses (aka use
the "constructor" syntax)

— Don't need to declare the size (i.e.
[7]), just assign

— Do still use it like an array by using
[index] to get individual characters

— Do still use cin/cout with strings

— Don't worry about how many
characters the user types when
inputting to a C++ string

int main()

{

char strl[7] = "CS 103";
/* Initializes the array to "CS 103" */
string str2 = "CS 103";
string str3("Hello"); // constructor
/* Initializes str2 to "CS 103" &

str3 to "Hello" */

str2[5] = '4'; // now str2 = "CS 104"

cout << str2 << endl;
// prints "CS 104"

cin >> strl; // If the user types more

// than 6 chars..uh oh!
cin >> str2; // str2 will adjust to

// hold whatever the user
// types

i, IS Viterbi

School of Engineering

What Happens Behind the Scenes

e Strings simply abstract character arrays

* Behind the scenes strings are just creating and manipulating character
arrays but giving you a simplified set of operators and functions

« Can concatenate (append) to a string with the + operator

#include <iostream>
#include <string>
using namespace std;

int main() Sh2 -
{ data 24 | size

string str2 = "CS 103";
// str2 stores 6 chars. = "CS 103"
CS 103
str2 = "Computer Science"; Plain-old character array
// now str2 stores 16 characters n
Computer Science
// Can append using '+' or '+=' operator Plain-old character array
str2 = str2 + " is cool";

— Computer Science is cool
// now str2 stores 24 characters

} Plain-old character array

String Comparison

* C++ strings will perform
lexicographic
(alphabetical)
comparison when
comparison operators
(<, >, ==, etc.) are
applied

 Comparison operators
do not work with plain
old character arrays

School of Eng
#include <iostream>
#include <string>
using namespace std;
int main()
{
char strl[4] = "abc";
string str2 = "abc";
if(strl == "abc") // doesn't work
{...}
if(str2 == "abc") // works..true
{...}
if(strl < "aac") // doesn't work
{...}
if(str2 < "aac") // works..false
{...}
string str3 = "acb";
if(str3 > str2) // works..true

{..

-

R,]S Viterbi

School of Engineering

Calling Member Functions (Methods)

##tinclude <iostream>

 Use the dot operator to call an - .
include <string>
operation (function) on an object | using namespace std;

or access a data value int main()

. .) {

e Asking for the string size string mystr = "CS 103";

.] cout << mystr.size() << endl; // 6
— Call the .size() function on a string

to get the number of characters string s = mystr.substr(3);
: : = "103"
stored in the string /s

mystr = "Computer Science";

* Can generate SUbStrlngS cout << mystr.size() << endl; // 16
— Call either of the 2 versions:
s = mystr.substr(9,2);
.substr(start_index) or // s = "Sc"

.substr(start_index, length)
function on the string

 Many more member functions

http://www.cplusplus.com/reference/string/string/

http://www.cplusplus.com/reference/string/string/

- USCVite’ﬂ?i .
Other Member Functions

#tinclude <iostream>
#include <string>

. %) #include <cstring>
 Get CString (char *) equiv. ISR NEEsEEE SEds

int main()

{
— Searches for occurrence of a substring string s1("abcdef");

char my _c str[80];

* Find a substring

— Returns either the index where the

substring starts or string::npos strcpy(my_c_str, sl.c_str());

— std::npos is a constant meaning ‘just SO <8 [MY_@ SR <L Emeds

beyond the end of the string’...it’s a Siem b Al = sl el b g
way of saying ‘Not found’ if(idx != string::npos){
) cout << "Found bcd starting at pos=":
* Others: replace, rfind, etc. cENTE Q< ek < Emdils
}
else {
cout << "Not found" << endl;
}
return 0;
}
Output:
abcdef

http://www.cplusplus.com/reference/string/string/ Found bcd starting at pos=1

http://www.cplusplus.com/reference/string/string/

i, IS Viterbi

School of Engineering

String < Number Conversion &

e Recall: Casting does NOT work for
string < numeric conversions.

* |nstead, use functions defined in — 3
#include <iostream>
<St r‘ing> #include <string>

using namespace std;

* Conversion from number to string: int main() {
1 3 * . double a = 3.6;
B Str\lng tO—Str‘lng(lnt)’ int b = static_cast<int>(a) / 2;

_ string to_string(double); // Works! b = 1 (casts 3.6 to 3)

int ¢ = 123;

string d = static_cast<string>(c);
// Error! Doesn't compile.

* Conversion from string to number: string d = to_string(c);

// Works! But only since C++11

— int stoi(string);

string e = "42";

— unsigned int stoul(string); int f = static_cast<int>(e);
. // Error! Doesn't compile.
— double StOd(Str'lng)s int f = stoi(e); // string-to-int

// Works! But only since C++11
// use stod() for string-to-double
return 0;

}

-1 USCViteﬂ?i '
Summary

* You've already used objects
#include <iostream>

— jostream (cin and cout) #include <fstream>

i) Usi td;
— Now file streams and strings =g TENiseprREs =

— There will be many more objects we can use int main()

- {
from the C++ library int x; char 1ine[80];

o e, . . . if fil ;
* Caninitialize at declaration by passing ;itﬁeﬁgf’;{effgﬁfg?Vg?)
initial value in () } myfile >> x;

— Known as a constructor
cin.getline(line, 80);

* Use the dot operator to call an operation cout << line << endl;
(function) on an object or access a data) O
value }

 Some special operators can be used on cin, cout, ifstreams,
certain object types and ofstreams are

les of object
(+, -, [1, etc.) but you have to look them up examples ot objects

School of Engineering

e Palindrome
e Circular Shift

