
3a.1

CS 103 Unit 3a –
Objects Intro:

Structs and Strings

CSCI 103L Teaching Team

3a.2

Course Structure

• The course is broken into 6 units each consisting of:

Lectures

1

Homework(s)
(Formative programming

problems)

Project(s)
(Cumulative

programming problems)

Labs
(Tools + Practice +
small group Help)

C++ Language
Syntax

1
Pointers and Memory

2
Objects 1

3

4

Recursion

6

Managing Data Objects 2

5

3a.3

ENUMERATIONS
Make arbitrary integer codes more readable

3a.4

Enumerations

• Associates an integer (number)
with a symbolic name

• enum [optional_collection_name]
{Item1, Item2, … ItemN}
– Item1 = 0
– Item2 = 1
– …
– ItemN = N-1

• Use symbolic item names in your code
and compiler will replace the symbolic
names with corresponding integer
values

const int BLACK=0;
const int BROWN=1;
const int RED=2;

const int WHITE=7;

int pixela = RED;
int pixelb = BROWN;
...

// First enum item is associated with 0
enum Colors {BLACK,BROWN,RED,...,WHITE};

int pixela = RED; // pixela = 2;
int pixelb = BROWN; // pixelb = 1;

Hard coding symbolic names with given codes

Using enumeration to simplify

Use enumerations to make related
integer codes/constants more readable.

enum {CSCI, CSBA, CECS, CSGM, AMCM, QBIO};

int major = AMCM; // major = 4;

int minor = CSCI; // minor = 0;

3a.5

OBJECTS

3a.6

Review: Program Decomposition
• C is a procedural language

– A function or procedure is the primary
unit of code organization, problem
decomposition, and abstraction

– Functions can be reused across many
applications

• C++ is considered an object-oriented
language (adds objected-oriented
constructs to C) though still supports a
procedural approach
– A class or object is the primary unit of

code organization, problem
decomposition, and abstraction

– Can be reused

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/lego-png/download/52866
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

3a.7

Exercise

• To decompose a program into functions, try
listing the verbs or tasks that are performed to
solve the problem
–Model a card game as a series of tasks/procedures…

– A database representing a social network

• To decompose a program into objects, listen for
the nouns, objects, or agents that are interacting

3a.8

Object-Oriented Approach

• Model the application/software as a set of objects that interact
with each other

• Objects fuse data (i.e. variables) and functions (a.k.a methods)
that operate on that data into one entity

• Objects replace global-level functions as the primary method of
encapsulation and abstraction
– Encapsulation: Code + data together with controlled access

• Group data and code that operates on that data together into one unit
• Only expose a well-defined interface to control misuse of the code by other

programmers

– Abstraction
• Hiding of data and implementation details
• How we decompose the problem and think about our design at a higher level rather

than considering everything at the lower level

3a.9

Objects

• Often times we want to represent higher level concepts, objects,
or things (beyond an integer, character, or double)
– Examples: a pixel, a circle, a student, a file

• These "objects" can be represented as a collection of integers,
character arrays/strings, etc.
– A pixel (with R,G,B value)
– A circle (center_x, center_y, radius)
– A student (name, ID, major)

• Objects (embodied as 'structs' in C and later 'classes' in C++) allow
us to aggregate different type variables together to represent a
single larger 'thing' as well as supporting operations on that 'thing'
– Can reference the collection with a single name (myCircle, student1)
– Can access individual components (myCircle.radius, student1.id)

3a.10

Motivation for Objects

• When going to the airport, would you rather carry all
your luggage items piecemeal or pack everything in
one suitcase?

This Photo by Unknown Author is licensed under CC BY-NC
This Photo by Unknown Author is licensed under CC BY

void process(char name[], int id, int major)
{

}

void process(Student s1)
{

}

idna
m

e

m
aj

or

s1

http://www.pngall.com/suitcase-png
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
http://studentswithlearningdifficulties.blogspot.com/2010_09_01_archive.html
https://creativecommons.org/licenses/by/3.0/

3a.11

Object-Oriented Programming
• Objects contain:

– Data members
• Data needed to model the object and track its state/operation

(just like structs)

– Methods/Functions
• Code that operates on the object, modifies it, etc.

• Example: Deck of cards
– Data members:

• Array of 52 entries (one for each card) indicating their ordering
• Top index

– Methods/Functions
• shuffle(), cut(), get_top_card()

3a.12

C++ Objects: Structs vs. Classes

• Structs (originated in the C language) are the predecessors of
classes (C++ language)
– Though structs are still valid in C++ and now behave almost EXACTLY the

same as a class (i.e. struct/class are nearly interchangeable)

• Classes form the basis of object-oriented programming in the
C++ language

• Both are simply a way of grouping related data together and
related operations (functions or methods) to model some
'object'
– We'll look at structs now, and classes a bit later, but recall they are

interchangeable. So pay attention now to make subsequent lectures
easier.

3a.13

STRUCTS
Starting with data…

3a.14

Types and Instances

• A 'type' indicates how much memory will be
required, what the bits mean (i.e. integer, double,
pointer), and what operations can be performed
– int = 32-bits representing only integer values and

supporting +,-,*,/,=,==,<,>, etc.
– char* = 64-bits representing an address and supporting
* (dereference),&,+,- (but not multiply and divide)

– Types are like blueprints for what & how to make a
particular 'thing'

• A 'variable' or 'object' is an actual instantiation
(allocation of memory) for one of these types
– int x, double z, char *str;

3a.15

Definitions and Instances (Declarations)

• Objects must first be defined/declared
(as a 'struct' or 'class')
– The declaration is a blueprint that indicates

what any instance should look like
– Identifies the overall name of the struct and

its individual member types and names
– The declaration does not actually create a

variable (no memory is allocated)
– Usually appears outside any function

• Once declared, any number of instances
can be created/instantiated in your code
– Instances are actual objects (memory is

allocated for each) created from the
definition (blueprint)

– Declared like other variables

#include <iostream>

using namespace std;

// struct definition
struct pixel {
 unsigned char red;
 unsigned char green;
 unsigned char blue;
};
// 'pixel' is now a type
// just like 'int' is a type

int main(int argc, char *argv[])
{
 int i,j;
 // instantiations
 pixel p1;
 pixel image[256][256];
 // make p1 red
 p1.red = 255;
 p1.blue = p1.green = 0;
 // make a green image
 for(i=0; i < 256; i++){
 for(j=0; j < 256; j++){
 image[i][j].green = 255;
 image[i][j].blue = 0;
 image[i][j].red = 0;
 } }
 return 0;
}

0
25

5 0

p1

gr
ee

n
re

d

bl
ue

3a.16

Membership Operator (.)
• Each variable (and function) in an object

definition is called a member of the
object (i.e. struct or class)

• When declaring an instance/variable of
an object, we give the entire object a
name, but the individual members are
identified with the member names
provided earlier in the object definition

• We use the . (dot/membership) operator
to access that member in an instance of
the object
– Supply the name used in the definition above

so that code is in the form:
instance_name.member_name

#include <iostream>
using namespace std;

enum {CSCI=1, CECS=2};

struct student {
 char name[80];
 int id;
 int major;
};

int main(int argc, char *argv[])
{
 int i,j;
 // instantiations
 student my_student;

 // how would you set their name to
 // "Tina"

 my_student.id = 1682942;
 my_student.major = CSCI;
 ...
 return 0;
}

16
82

94
2

Ti
na 1

mystudent

idna
m

e

m
aj

or

3a.17

Memory View of Objects

• Each instantiation allocates memory for all the
members/components of the object (struct or class)

Memory

0x7401
0x7402
0x7403
0x7404
0x7405

0x7400 00
FF
00
FF
00
00

…

48
C9

0x7406
0x7407

170x7408
…

p1

image[0][0]

…

#include<iostream>

using namespace std;
// declaration (blueprint)
struct pixel {
 unsigned char red;
 unsigned char green;
 unsigned char blue;
};
int main(int argc, char *argv[])
{
 int i,j;
 // instantiations (object allocation)
 pixel p1;
 pixel image[256][256];
...
 return 0;
}

red
green
blue

image[0][1]

red
green
blue
red

green
blue

3a.18

Memory View of Objects

• Objects can have data members that are
arrays or even other objects

#include<iostream>
using namespace std;

// declaration (blueprint)
struct student {
 char name[80];
 int id;
 int major;
};
int main(int argc, char *argv[])
{
 int i,j;
 // instantiation (object allocation)
 student s1;
 ...
 return 0;
}

J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 1682942

 1

 ? ? ? ?

 ? ? ? ?

7300

7304

...

7376

7380

7384

7388

7392

Address Memory Data

s1.name
[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

s1

3a.19

IMPORTANT NOTES ABOUT
OBJECTS

Assignment semantics and pointers to objects

3a.20

Object assignment

• Consider the following initialization of s1

#include<iostream>
using namespace std;

enum {CSCI=1, CECS};

struct student {
 char name[80];
 int id;
 int major;
};

int main(int argc, char *argv[])
{
 student s1,s2;
 strncpy(s1.name,"Jill",80);
 s1.id = 5; s1.major = CECS;

J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 5

 2

 ? ? ? ?

 ? ? ? ?

 ? ? ? ?

 ? ? ? ?

 ? ? ? ?

 ? ? ? ?

7300

7304

...

7376

7380

7384

7388

7392

7396

7400

7408

7412

Address Memory Data

s1.name
[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

s1

3a.21

Object assignment

• Assigning one object to another will perform a
member-by-member copy of the entire
source object to the destination object

s1

#include<iostream>
using namespace std;

enum {CSCI=1, CECS };

struct student {
 char name[80];
 int id;
 int major;
};

int main(int argc, char *argv[])
{
 student s1,s2;
 strncpy(s1.name,"Jill",80);
 s1.id = 5; s1.major = CECS;
 s2 = s1;
 return 0;
}

5

Ji
ll 2

idna
m

e

m
aj

or
5

Ji
ll 2

idna
m

e

m
aj

or
s2

Normally, C/C++ perform only one operation at
a time, and make you write code if you want to

do more. But object assignment is an
exception (probably because we can't "loop
through" the different members of a struct).

J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 1682942

 2

 J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 1682942

 2

7300

7304

...

7376

7380

7384

7388

7392

7396

7400

7408

7412

Address Memory Data

s1.name
[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

[0] [1] [2] [3]

[4] [5] [6] [7]

s2.id

S2.maajor

s1

s2.name

s2

3a.22

Pointers to Objects

• We can declare pointers to objects just as any other variable
• The address of a struct is just (you guessed it) its starting

address
#include<iostream>
using namespace std;
enum {CSCI=1, CECS };
struct student {
 char name[80];
 int id;
 int major;
};

int main(int argc, char *argv[])
{
 student s1;
 student *stu_ptr;
 strncpy(s1.name,"Jill",80);
 s1.id = 5; s1.major = CECS;
 stu_ptr = &s1;
 return 0;
}

J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 5

 2

 0 0 0 0

 7 3 0 0

7300

7304

...

7376

7380

7384

7388

7392

Address Memory Data

s1.name

[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

s1

stu_ptr

&s1

3a.23

Accessing members from a Pointer
• Can dereference the pointer first then use the dot operator
• Unfortunately . has higher precedence that * requiring you to use parenthesis

#include<iostream>
using namespace std;

enum {CSCI=1, CECS };

struct student {
 char name[80];
 int id;
 int major;
};

int main(int argc, char *argv[])
{
 student s1, *stu_ptr;
 strncpy(s1.name,"Jill",80);
 s1.id = 5; s1.major = CECS;
 stu_ptr = &s1;

 *stu_ptr.id = 4; // incorrect – derefs id
 (*stu_ptr).id = 4; // correct – derefs stu_ptr
 strncpy((*stu_ptr).name, "Tom",80);

 return 0;
}

J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 5

 2

 0 0 0 0

 7 3 0 0

7300

7304

...

7376

7380

7384

7388

7392

Address Memory Data

s1.name

[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

s1

stu_ptr

&s1 T o m \0

\0 ? ? ?

 ...

 ? ? ? ?

 4

 2

 0 0 0 0

 7 3 0 0

7300

7304

...

7376

7380

7384

7388

7392

Address Memory Data

s1.name

[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

s1

stu_ptr

&s1

3a.24

Arrow (->) operator
• Save keystrokes & have cleaner looking code by using the arrow

(->) operator
– (*struct_ptr).member equivalent to struct_ptr->member
– Always of the form: ptr_to_struct->member

#include<iostream>
using namespace std;

enum {CSCI=1, CECS };

struct student {
 char name[80];
 int id;
 int major;
};

int main(int argc, char *argv[])
{
 student s1, *stu_ptr;
 strncpy(s1.name,"Jill",80);
 s1.id = 5; s1.major = CECS;
 stu_ptr = &s1;

 stu_ptr->id = 4; // same as (*stu_ptr).id=4;
 strncpy(stu_ptr->name, "Tom",80);

 return 0;
}

J i l l

\0 ? ? ?

 ...

 ? ? ? ?

 5

 2

 0 0 0 0

 7 3 0 0

7300

7304

...

7376

7380

7384

7388

7392

Address Memory Data

s1.name

[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

s1

stu_ptr

&s1 T o m \0

\0 ? ? ?

 ...

 ? ? ? ?

 4

 2

 0 0 0 0

 7 3 0 0

7300

7304

...

7376

7380

7384

7388

7392

Address Memory Data

s1.name

[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

s1

stu_ptr

&s1

3a.25

When Are Pointers To Objects Used?
• Pointers to objects occur

commonly when objects are
passed by reference or
dynamically allocated

#include<iostream>
using namespace std;
enum {CSCI=1, CECS };

struct student {
 char name[80];
 int id;
 int major;
};
student* makeStudent(const char* n, int i, int m)
{
 student* stuptr = new student;

 strncpy(stuptr->name, n, 80);
 stuptr->id = i; stuptr->major = m;
 return stuptr;
}

int main()
{
 student* stuptr =
 makeStudent("Jane Doe", 5, CECS);
 ...
 cout << stuptr->name << endl;
 // prints "Jane Doe"
 delete stuptr;
 return 0;
}

J a n e

 D o e

\0 ...

 ? ? ? ?

 5

 2

 0 0 0 0

 7 3 0 0

7300

7304

...

7376

7380

7384

7388

7392

Address Memory Data

name
[0] [1] [2] [3]

[4] [5] [6] [7]

s1.id

s1.major

new
 student

stuptr

3a.26

Passing Objects as Arguments
• In C, arguments must be a single

value [i.e. can’t pass an entire array
of data, instead pass a pointer]

• Objects are the exception…you can
pass an entire struct ‘by value’
– Will make a member-by-member

copy of the struct and pass it to the
function

• Of course, you can always pass a
pointer [especially for big objects
since pass by value means making a
copy of a large objects]

#include<iostream>

using namespace std;

struct Point {
 int x;
 int y;
};

void print_point(Point myp)
{
 cout << "(x,y)=" << myp.x << "," << myp.y;
 cout << endl;
}

int main(int argc, char *argv[])
{
 Point p1;
 p1.x = 2; p1.y = 5;
 print_point(p1);
 return 0;
}

3a.27

Returning Objects

• Can return a struct
from a function

• Will return a copy of
the struct indicated
– i.e. 'return-by-value'

#include<iostream>
using namespace std;

struct Point {
 int x;
 int y;
};
void print_point(Point *myp)
{
 cout << "(x,y)=" << myp->x << "," << myp->y;
 cout << endl;
}
Point make_point()
{
 Point temp;
 temp.x = 3; temp.y = -1;
 return temp;
}
int main(int argc, char *argv[])
{
 Point p1;
 p1 = make_point();
 print_point(&p1);
 return 0;
}

3a.28

C++ STRINGS

3a.29

Motivation

• Before we dive deeper into writing our OWN
objects…

• …Let's learn how to use objects (structs/classes) that
the C++ library already provides us.

• One of the most basic (and useful) objects in the C++
library is the string class.

• To understand what they do for you (and how they
provide "encapsulation" and "abstraction", let's
review how we dealt with strings in C (i.e. before the
string class existed)

3a.30

Review: C Strings

• In C, strings are:
– Character arrays (char mystring[80];)
– Terminated with a NULL character ('\0' ó 0)
– Passed by reference/pointer (char *) to

functions
– Require care when making copies

• Shallow (only copying the pointer) vs.
Deep (copying the entire array of characters)

– Processed using C String library (<cstring>)

3a.31

String Function/Library (cstring)

• int strlen(char *dest)
• int strcmp(char *str1, char *str2);

– Return 0 if equal, >0 if first non-equal char in str1 is alphanumerically
larger, <0 otherwise

• char *strcpy(char *dest, char *src);
– strncpy(char *dest, char *src, int n);
– Maximum of n characters copied

• char *strcat(char *dest, char *src);
– strncat(char *dest, char *src, int n);
– Maximum of n characters concatenated plus a NULL

• char *strchr(char *str, char c);
– Finds first occurrence of character ‘c’ in str returning a pointer to that

character or NULL if the character is not found

#include <cstring>
using namespace std;

int main() {
 char temp_buf[5];
 char str[] = "Too much";

 strcpy(temp_buf, str); // bad
 return 0;

}

In C, we have to pass the C-String
as an argument for the function

to operate on it

3a.32

Review: Shallow vs. Deep C-String Copy

• Recall our conversation of
shallow vs. deep copies

• Can we just use the
assignment operator, ‘=‘
with character arrays?
– No, must allocate new storage

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 // One "scratchpad" array for all inputs
 char temp_buf[40];

 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 names[i] = temp_buf;
 }
 // Do stuff with names

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }
 return 0;
}

names[0] ???

…

“Timothy” temp_buf

names[1] ???
???
???

0x1c0:

Assigning an array name just assigns a pointer and does
NOT make a copy of the array.

“Christopher”

3a.33

More Dealing with Text Strings
• Must allocate new storage

names[0] “Timothy”
0x8a4

“Christopher”
0x980

0x8a4
names[1] 0x980

…

“Christopher” temp_buf

strcpy()
???
???

0x1c0: i=1

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 // store 10 user names
 // names type is still char **
 char* names[10];

 char temp_buf[40];
 for(int i=0; i < 10; i++){
 cin >> temp_buf;
 // Find length of strings
 int len = strlen(temp_buf);
 names[i] = new char[len + 1];
 strcpy(names[i], temp_buf);

 }

 // Do stuff with names

 for(int i=0; i < 10; i++){
 delete [] names[i];
 }

 return 0;
}

3a.34

C++ Strings

• So you don't like remembering all these details?
– You can do it! Don't give up.

• C++ provides a 'string' class that abstracts all
those worrisome details and encapsulates all the
code to actually handle:
– Memory allocation and sizing
– Deep copy
– Concatenation, Comparison, Size information
– etc.

3a.35

C++ Strings
• In C++, the string class provides an

easier alternative to working with
plain-old character arrays

• Do's and Don'ts
– Do #include <string> and put

using namespace std;
– Do initialize using = or by giving an

initial value in parentheses (aka use
the "constructor" syntax)

– Don't need to declare the size (i.e.
[7]), just assign

– Do still use it like an array by using
[index] to get individual characters

– Do still use cin/cout with strings
– Don't worry about how many

characters the user types when
inputting to a C++ string

#include <iostream>
#include <string>
using namespace std;

int main()
{
 char str1[7] = "CS 103";
 /* Initializes the array to "CS 103" */
 string str2 = "CS 103";
 string str3("Hello"); // constructor
 /* Initializes str2 to "CS 103" &
 str3 to "Hello" */

 str2[5] = '4'; // now str2 = "CS 104"

 cout << str2 << endl;
 // prints "CS 104"

 cin >> str1; // If the user types more
 // than 6 chars..uh oh!
 cin >> str2; // str2 will adjust to
 // hold whatever the user
 // types
}

3a.36

What Happens Behind the Scenes
• Strings simply abstract character arrays
• Behind the scenes strings are just creating and manipulating character

arrays but giving you a simplified set of operators and functions
• Can concatenate (append) to a string with the + operator

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string str2 = "CS 103";
 // str2 stores 6 chars. = "CS 103"

 str2 = "Computer Science";
 // now str2 stores 16 characters

 // Can append using '+' or '+=' operator
 str2 = str2 + " is cool";
 // now str2 stores 24 characters
}

str2

CS 103

Computer Science

Computer Science is cool

Plain-old character array

Plain-old character array

Plain-old character array

61624 da
ta

si
ze

s2

data size

3a.37

String Comparison

• C++ strings will perform
lexicographic
(alphabetical)
comparison when
comparison operators
(<, >, ==, etc.) are
applied

• Comparison operators
do not work with plain
old character arrays

#include <iostream>
#include <string>
using namespace std;

int main()
{
 char str1[4] = "abc";
 string str2 = "abc";

 if(str1 == "abc") // doesn't work
 {...}
 if(str2 == "abc") // works..true
 {...}

 if(str1 < "aac") // doesn't work
 {...}
 if(str2 < "aac") // works..false
 {...}

 string str3 = "acb";

 if(str3 > str2) // works..true
 {...}
}

3a.38

Calling Member Functions (Methods)

• Use the dot operator to call an
operation (function) on an object
or access a data value

• Asking for the string size
– Call the .size() function on a string

to get the number of characters
stored in the string

• Can generate substrings
– Call either of the 2 versions:

.substr(start_index) or

.substr(start_index, length)
function on the string

• Many more member functions

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string mystr = "CS 103";
 cout << mystr.size() << endl; // 6

 string s = mystr.substr(3);
 // s = "103"

 mystr = "Computer Science";
 cout << mystr.size() << endl; // 16

 s = mystr.substr(9,2);
 // s = "Sc"

}

http://www.cplusplus.com/reference/string/string/

http://www.cplusplus.com/reference/string/string/

3a.39

Other Member Functions
• Get C String (char *) equiv.
• Find a substring

– Searches for occurrence of a substring
– Returns either the index where the

substring starts or string::npos
– std::npos is a constant meaning ‘just

beyond the end of the string’…it’s a
way of saying ‘Not found’

• Others: replace, rfind, etc.

#include <iostream>
#include <string>
#include <cstring>
using namespace std;
int main()
{
 string s1("abcdef");
 char my_c_str[80];

 strcpy(my_c_str, s1.c_str());
 cout << my_c_str << endl;

 size_t idx = s1.find("bcd");
 if(idx != string::npos){
 cout << "Found bcd starting at pos=":
 cout << idx << endl;
 }
 else {
 cout << "Not found" << endl;
 }
 return 0;
}

abcdef
Found bcd starting at pos=1

Output:

http://www.cplusplus.com/reference/string/string/

http://www.cplusplus.com/reference/string/string/

3a.40

String ó Number Conversion
• Recall: Casting does NOT work for

string ó numeric conversions.
• Instead, use functions defined in

<string>
• Conversion from number to string:

– string to_string(int);
– string to_string(double);
– ...

• Conversion from string to number:
– int stoi(string);
– unsigned int stoul(string);
– double stod(string);

#include <iostream>
#include <string>
using namespace std;
int main() {

 double a = 3.6;
 int b = static_cast<int>(a) / 2;
 // Works! b = 1 (casts 3.6 to 3)

 int c = 123;
 string d = static_cast<string>(c);
 // Error! Doesn't compile.
 string d = to_string(c);
 // Works! But only since C++11

 string e = "42";
 int f = static_cast<int>(e);
 // Error! Doesn't compile.
 int f = stoi(e); // string-to-int
 // Works! But only since C++11
 // use stod() for string-to-double
 return 0;
}

3a.41

Summary
• You've already used objects

– iostream (cin and cout)
– Now file streams and strings
– There will be many more objects we can use

from the C++ library

• Can initialize at declaration by passing
initial value in ()
– Known as a constructor

• Use the dot operator to call an operation
(function) on an object or access a data
value

• Some special operators can be used on
certain object types
(+, -, [], etc.) but you have to look them up

#include <iostream>
#include <fstream>
Using namespace std;

int main()
{
 int x; char line[80];
 ifstream myfile(argv[1]);
 if(! myfile.fail()){
 myfile >> x;
 }

 cin.getline(line, 80);
 cout << line << endl;

 return 0;
}

cin, cout, ifstreams,
and ofstreams are

examples of objects

3a.42

Exercises (If Time Allows)

• Palindrome
• Circular Shift

