School of Engineering

CS103 Unit 2b —
Dynamic Memory Allocation

CSCI 103L Teaching Team

School of Engineering

Memory that keeps on living!

DYNAMIC MEMORY ALLOCATION

A Motivating task

//;} return an integer array of size n with values 1 to n ‘\\
// stored in it
ordered_array(int n) {
// Your code here

return ;

¥

int main() {
// ... Call ordered _array
// ... Use ordered _array
return 0;

\J /

R,]S Viterbi

School of Engineering

Dynamic Memory Motivation (1)

 We want to allocate an array for student scores, but | don’t
know how many students exist until the user inputs it.

 What size should | use to declare my array?

— int scores[??]

* Doing the following is not supported by all C/C++ compilers and
considered bad practice (you may NOT do it in CS103/104):

int num;
cin >> num;

int scores[num]; // Instead, many compilers require the array size
// to be statically known

e Also, recall local variables die when a function returns

— What if we need that memory to KEEP LIVING even when our function
ends?

* Both problems are solved with dynamically-allocated (i.e. at
run-time) memory

USC \{111:erb1
f Dynamic Memory Motivation (2)

* There is ONE primary reason to use dynamic
memory allocation and ONE secondary reason

* Primary reason:

— If we want to allocate memory in a function and
have it STAY ALIVE even AFTER that function ends
(i.e. we want to manually control when memory is
allocated and DEALLOCATED)

* Secondary reason

— If we don't know how much memory we'll need
until run-time (i.e. a variable size array)

- /] USCVlterb1
Dynamic Memory Analogy

 Dynamic Memory is "On-Demand Memory"

* Analogy: Public storage rentals

— Need extra space, just ask for some storage (using a 'new' statement)
and indicate how much you need

— The system will allocate that memory
(if it is available) from the heap and
return the storage room number (i.e.
address of / pointer to the memory)
it allocated so you can access it

— Use the pointer to access the
storage/memory until you are
done with it

— Need to return it when done (using a 'delete’ statement) or else no
one else will ever be able to re-use it

USC Viterbi

School of Engineering

Dynamic Memory & the Heap

Code usually sits at low addresses
Global variables somewhere after code

System stack (memory for each function instance
that is alive)

— Local variables

— Return link (where to return)

— etc.
Heap: Area of memory that can be allocated and
de-allocated in chunks during program execution

(i.e. dynamically at run-time) based on the needs
of the program

Heap and stack grow toward each other...

— In rare cases of large memory usage, they could
collide and cause your program to fail or generate
an exception/error

OxXFFFFFFFf =
] 4GB-1
0Xx80000000

Heap

Global Data

0x18000000

Memory (RAM) Layout of Program

0x10000000

Code

0x0

R,]S Viterbi

School of Engineering

C (Pre-C++) Dynamic Allocation

 void* malloc(int num bytes) function in stdlib.h

— Allocates the number of bytes requested and returns a pointer to the block of
memory

« free(void * ptr) function

— Given the pointer to the (starting location of the) block of memory, free returns it to the
system for re-use by subsequent malloc calls

This slide is for completeness. We will
only use the C++ methods on the next
slide in this class!

USC Viterbi

School of Engineering

C++ new operator

OxFfffffff =
) 4GB-1
* new allocates memory from heap
— Replaced C'smalloc () function 0x80000000
— new should be followed with the type of the
variable (and, if allocating an array, the size)
dptr
 double *dptr = new double; 0x18097520
// allocates 1 double
. . scores
« int *scores = new int[n]; 0x18004200
// allocates n-integer array A 15007520

— new T or new T[n] returns a pointer of type T*

» if youask foranew int, yougetanint *inreturn 0x18000000

» if you ask fora new array (new int[n]), you still get

an int *inreturn] Global Data
0x10000000
Hard and Fast Rule of Dynamic Allocation:) _
If you dynamically allocate a single type T or even a
T array you will ALWAYS get back a pointer of type T*
L‘ new T; // yields a type T* 0x0

new T[n]; // yields a type T*)

USC Viterbi

School of Engineering

C++ delete operator

OxXFFFFFFFf =

4GB-1
* delete returns memory to heap

. 0x80000000
— Replaces C's free() function X

— Followed by the pointer to the data you want
to de-allocate

dptr
 delete dptr; 0x18097520
— use delete [] forarrays
scores
* delete [] scores; 0x18004200

0x17"14200
R | ox13000000

Global Data

0x10000000

0x0

N (]S C Viterbi @
Example of Variable Size Array with™

Dynamic Allocation

int main(int argc, char *argv[]) 0 Code

int num; Globals

cout << "How many students?" << endl;

cin >> num; new

int *scores = new int[num]; Heap allocates:
int[0]

// can now access scores[@..num-1] int[1]

for(int i=0; i < num; i++){ int[2]

cin >> scores[i];

} intfnum-1]

// Do more with scores
int* scores

// free up scores
delete [] scores;
return 0;

fffffffc

* Recall the two reasons to use dynamic allocation:

— Secondary reason: Variable size array [seen in this example] Memory

— Primary reason: Allocate memory that should not go out of
scope at the end of the function [seen in next example]

N (]S C Viterhi @12
Example of Variable Size Array with ==

Dynamic Allocation

int* getArray(int n) 0 Code

{
int *dat = new int[n]; // or int dat[n]; Globals
// can now access scores[0..n-1]
for(int i=0; i < n; i++){ Hea new

cin >> dat[i]; P allocates:

} int[0]
return dat; int[1]

} int[2]

. .. N

?nt main(int argc, char *argv[]) intfnum-1]
int num, sum = O;
cout << "How many students?" << endl; int” dat
cin >> num;
int* scores = getArray(num); Int” scores
for(int i=0; i < num; i++) // use the array

{ sum += scores[i]; } fffrffc

delete [] scores; // free up scores Memory
return 0;

}

Fill in the Blanks

. data
. data
. data
. data
. data
. data

new

new

new

new

new

new

int;

char;

char[100];
double[20];

string;

char*[10];

— int*®

— char*

— char*

— double*

— string*

— char**

Fill in the Blanks

data

data

data

data

data

data

new

new

new

new

new

new

int;

char;
char[100];
double[20];
string;

char*[10];

R,]S Viterbi

Correct Usage of Pointers

. . . // Computes the area of a rectangle
 Commonly functions will take some inputs and : o : , :
int areal(int w, int h);

produce some outputs void area2(int w, int h, int* a);

— We'll use a simple area' function for now even though
we can easily compute this without a function

_ . int main()
— We could use the return value but let's practice with | ¢

pointers and say mul() must return void int wid = 8, ht = 5, a;
area2(wid,len,&a);

e Can use a pointer to have a function modify the . o
cout << "Ans. 1s

) << a << endl;
variable of another

t 9;
Stack Area of RAM } rerurn
0x7be0 8 w int areal(int w, int h)
area | 0x7bed 5 h {
0x7be8 0x7bf8 out AR £

}

0x7bec | 004000ca0 | Retum

void area2(int w, int h, int* a)
0x7bf0 8 wid {

ES
main | 0x7bf4 5 ht) d

= w * h;

0x7bf8 L3 40 a

0x7bfc | oo4o0120 | Retur

- USCVitgrbi .
Pointer Mistake

// Computes rectangle area,

* Never return a pointer to a local [PUOIES BE & EEAS 2

int* area3(int, int);

variable
int main()
{
int wid = 8, len = 5, *a;
a = area3(wid,len);
cout << *a << endl;
return 0;
}
Stack Area of RAM Heap Area of RAM
int* area3(int w, int 1)
Oxbel {
xbe . ans int ans;
area | Oxbe4d 8 w ans = w * 1;
Oxbes E I } return &ans;x
Oxbec | 004000ca0 | "™
0xbf0 8 wid
main | Oxbf4 5 len
0xbf8 | .73249515 a

Oxbfc 00400120 Rﬂﬁ?

- USCVite’ﬂ?i .
Pointer Mistake

* Never return a pointer to a local variable // Computes rectangle area,
// prints it, & returns it
* Pointer will now point to dead memory and int* area(int, int);

the value it was pointing at will be soon void print(int);

corrupted/overwritten int main()

{
 We call this a dangling pointer (i.e. a pointer to int wid = 8, len = 5, *a;

a = area(wid,len);
bad or dead memory) cout << *a << endl:

}
Stack Area of RAM Heap Area of RAM
int* area(int w, int 1)
{
int ans;
ans = w * 1;
return &ans; X
}
0xbf0 8 wid
main | Oxbf4 5 len
Oxbf8 0xbe0 a
Oxbfc | 00400120 | "§u"

- /] USCVite?ﬂ?i .
Dynamic Allocation

* Dynamic Allocation // Computes rectangle area,
// prints it, & returns it

int* area3(int, int);

— Lives on the heap
* Doesn't have a name, only pointer/address to it
— Lives until you 'delete’ it int main()

* Doesn't die at end of function (though pointer to it may) {
int wid = 8, len = 5, *a;

* You must keep at least 1 pointer to a dynamic a = area3(wid,len);
memory allocation at all times until it is cout << *a << endl; // 4@
delete 3;
deletEd return @;
Stack Area of RAM Heap Area of RAM }
/zx/beu_ 0x93c ans int* area3(int w, int 1)
{
area3 | /0xbe4 8 w 0x93c o int* ans = new int;
Oxbe8 5 I *ans = w * 1;

return ans;

Oxbec | 004000ca0 | "™ }
8 wid delete
5 len
0x93c a

Oxbfc 00400120 Rﬂﬁ?

- /] USCVitf?rbi .
Dynamic Allocation

* Dynamic Allocation // Computes rectangle area,
// prints it, & returns it
int* area3(int, int);

— Lives on the heap
* Doesn't have a name, only pointer/address to it
— Lives until you 'delete’ it int main()

* Doesn't die at end of function (though pointer to it may) {
int wid = 8, len = 5, *a;

* You should remember to delete the memory a = area3(wid,len);
you a”ocated cout << *a <« endl; // 40
// delete a;
Stack Area of RAM Heap Area of RAM } return 0;
int* area3(int w, int 1)
{
0x93c 40 int* ans = new int;
*ans = w * 1;
return ans;
}
0xbf0 - wid Memoy Leak!
main | Oxbf4 5 len
0xbf3 0x93c a
Oxbfc | 00400120 | "o

- /] USCVitf?rbi .
Dynamic Allocation

// Computes rectangle area,

° Dynamic A”ocation // pr‘ints it, & returns it
int* area3(int, int);

— Lives on the heap
* Doesn't have a name, only pointer/address to it int main()
— Lives until you 'delete’ it {

i i = = ke
* Doesn't die at end of function (though pointer to it may) int wid 8, len >, Fa;

) _ _ _ area3(wid,len);
e This code fails to save a pointer to the new int once cout << *a << endl; // crash

area() finishes return 9;
}
Stack Area of RAM Heap Area of RAM
int* area3(int w, int 1)
Oxbel {
0x93c ans int* ans = new int;
area | Oxbe4d 8 w 0%93 *ans = w * 1;
Oxbes p : XJs¢ 40 return ans;
}
Oxbec | 004000ca0 | "°™
MEMORY LEAK
0xbf0 8 wid No one saved a pointer to
main | Oxbf4 5 len this data
0xbf8 | .73249515 a
CRASH
Oxbfc | 00400120 | "

This Photo by Unknown Author is licensed under CC BY-SA

http://en.wikipedia.org/wiki/File:RedX.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Exercises

