
2a.1

CS103 Unit 2a –
Pointers and

Pass by Reference

CSCI 103L Teaching Team

2a.2

Unit 2 – Pointers and Memory

• The course is broken into 6 units (spirals), each consisting of:

Lectures

1

Homework(s)
(Formative programming

problems)

Project(s)
(Cumulative

programming problems)

Labs
(Tools + Practice +
small group Help)

C++ Language
Syntax

1
Pointers and Memory

2
Objects 1

3

4

Recursion

6

Managing Data Objects 2

5

2a.3

INTRODUCTION TO POINTERS

2a.4

Recall: Pass-by-Reference Pros/Cons
• Scenario: You write a paper and include a lot of LARGE images. You need

to send it to your teammates. You can
– As a Google doc and simply e-mail the URL or
– Attach the document/file in the e-mail or

• What are the pros of each approach?
• Google Doc

– Less info to send (send link, not all data)
– Reference to original (i.e. if original changes, you’ll see it)

• Email Attachment
– Can treat the copy as a scratch copy and modify freely

2a.5

Use Pointers when…

• We need pass-by-reference (as opposed to pass-by-value), either
to:
– Change a variable (or variables) local to one function in some other

function
• Analogy: a Google-doc link with "Can Edit" permission

– Avoid making needless copies of data which wastes time
• Analogy: A Google-doc link with "Can View" permission (think large arrays)

• We need to perform dynamic memory allocation
• We need to access a specific location in the computer (i.e.

hardware devices) [Not covered in this class, but EE 109/CS 356]
– Useful for embedded systems and device programming

All of these will be explained in the following slides.

2a.6

Pointer Analogy
• Imagine a set of lockers or safe deposit boxes

each with a number (just like memory locations
have an address)

• There are some boxes with gold jewelry and
others that do not contain gold but simply hold a
piece of paper with another box number written
on it (i.e. a pointer to another box)

• What is stored in one box might be:
– [Box 7]: Gold (i.e. data / something valuable like an int,

double, etc.)
– [Box 9]: The number of another box which contains gold

(i.e. box 9 holds a pointer-to some other data)
– [Box 16]: The number of another box which contains a

number of a box containing gold (i.e. box 16 holds a
pointer-to a pointer-to data)

0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11
8 15 3

711

1 9 3

34

• The value of (i.e. what is in) one box might be the address of
(pointer-to) another box.

• By changing the number in a box (i.e. the value of a pointer), we can
have one location refer to many different locations, in succession.

Each box has a number to identify it (i.e. an
address) and a value inside of it. So do

variables in memory.

2a.7

Pointer Analogy

• But what if rather than gold or other
obviously valuable objects, the "valuable
objects" were simply slips of papers with
numbers.
– Would you be able to distinguish whether a box is

storing data or storing a pointer?
– And if it is storing a pointer, would you know

whether it is pointing at just 1 data element or an
array of data elements?

• No! This is why we need:
– Pointer types (e.g. int* or char*) to tell us that

what's in this variable is a pointer as well as what
kind of data we'll find when we follow
(dereference) the pointer (e.g. int or char) .

– To remember context on our own (as the
programmer)

0 1 2 3 4 5

12 13 14 15 16 17

6 7 8 9 10 11
8 15 3

711

1 9 3

34

7 9 15

186

12 4

2a.8

Pointers
• Pointers are variables that store the address of some

other variable in memory
• More abstractly, pointers are references to other

"things" which can be:
– data (i.e. ints, chars, doubles) or
– other pointers

• The concept of a pointer is very common and used in
many places in everyday life
– Phone numbers or mailing addresses are references or

“pointers” to your physical phone or location
– Excel workbook has cell names we can use to reference

the data (=A1 means get data in A1)
– URLs (www.usc.edu is a pointer to a physical HTML file on

some server) and can be used in any other page to "point
to" USC’s website

00000000

000073b8

00000000

000073bc

 108

 -2.25

73a8

73ac

73b0

73b4

73b8

73bc

73c0

Address Memory Data
ptr1

ptr2

int a

double z

http://www.usc.edu/

2a.9

POINTER BASICS
Prerequisites: Data Sizes, Computer Memory

2a.10

Steps To Using Pointers

• Variable
– You can't use pointers without something to

point to (create a variable of some type, T var)
• Note: We use T as a placeholder for ANY type

• Pointer
– Declare a pointer variable or argument (declare a

variable of type T* pvar)

• Link
– Generate the pointer/link to the variable using &

operator (&var)

• Dereference (Use)
– Follow the link to view or edit the variable using

the * operator (*pvar)

2a.11

C++ Pointer Operators
• 2 operators used to manipulate pointers (i.e. addresses)

in C/C++: & (address-of op) and * (dereference op)
– &<variable> evaluates to the "address-of" <variable>

• Essentially, you get a pointer to a variable by writing &variable

– *<pointer> evaluates to the data pointed to by <pointer>
(data at the address given by <pointer>)

– & and * are inverse operations
• We say & returns the address/reference/link of some value while

* dereferences the address and returns the value

• &variable => address/pointer

• *pointer => variable value

• *(&variable) => variable

& = get a
link

* = follow
the link

2a.12

Generating a Pointer

30

97 000000

 3.75

 103

 42

5621930c

e400cc33

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

Address Memory Data

dat[0]

• When a variable is declared, memory is allocated for
it. Its starting location in memory is its address.
– int x = 30;
– char y = 'a';
– double z = 3.75;
– int dat[2] = {103,42};

• To generate a pointer, use the & operator to get the
address of a variable in C/C++
(Tip: Read ‘&x’ as ‘address of x’)
– &x => _________

– &y => _________

– &z => _________

– &dat[1] = _________

– dat => _________

• Great, but what should we do with these pointers and
where should we store them?

x

y='a'

z

dat[1]

dat /
&dat[0]

73ac 97
73ac

00 00 00
73ad 73ae 73af

Starting
address

Individual addresses of
each byte

Data values stored in each
byte

&x

&y

&z

&dat[1]

variable

link

2a.13

Pointer Variables and their Declaration

30

97 000000

 3.75

 103

 42

00000000

000073a8

00000000

000073b0

00000000

abababab

abababab

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

Address Memory Data

dat[0]

• Data variable declarations:
– int x = 30;
– char y = 'a';
– double z = 3.75;
– int dat[2] = {103,42};

• We can now declare pointer variables that don't store data
but the addresses of data

• To declare a pointer, include a * after the type [e.g. int*,
which is read "pointer to (an) int(s)"]. That variable can then
store pointers to (addresses of) the given type (e.g. int)
– int *ptr1 = &x; // ptr1 = 0x73a8
– double* ptr2 = &z; // ptr2 = 0x73b0
– int* ptr3 = &y; // Error! Type mismatch.

x

y='a'

z

dat[1]
dat

ptr1

ptr2

Notes:
1. Pointers should ONLY store the addresses of variables of its

declared type (int* pointers should only point at ints, not chars)
2. Best to immediately initialize a pointer with the address of some

variable, rather than leave it uninitialized.
3. Where the * is in the declaration (i.e. next to the type or variable

name) does not matter [e.g. int* ptr1 ..or.. int *ptr1].

variable

pointer link

2a.14

Dereferencing Pointer Variables

30

97 000000

 3.75 2.5

 103

 42 35

00000000

000073a8

00000000

000073b0

00000000

abababab

abababab

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

Address Memory Data

int dat[0]

• Data variable declarations:
– int x = 30;
– char y = 'a';
– double z = 3.75;
– int dat[2] = {103,42};

• We can declare pointer variables that store addresses of other
variables
– int *ptr1 = &x; // ptr1 = 0x73a8
– double* ptr2 = &z; // ptr2 = 0x73b0

• We can access the data whose address is stored in a pointer
variable by dereferencing it using the * operator. *ptr can be
read as, "get/set the data at the address stored in ptr")
– dat[1] = *ptr1 + 5; // dat[1] = 35

– *ptr2 = *ptr2 – 1.25; // z = 2.5

• It may be confusing but notice the * appears both in the
declaration and in the dereference expression. Context is
important to distinguish. More on the next slide…

int x

y='a'

double z

int dat[1]
dat

int* ptr1

double* ptr2

*ptr1

*ptr2

variable

pointer link

use /
dereference

2a.15

Cutting through the Syntax

• * after a type = declare/allocate a pointer variable
• * in an expression/assignment = dereference

Declaring a pointer De-referencing a pointer

char *p

x = *p + 1

int* ptr

*ptr = 5

(*ptr)++

char* p1[10];

Helpful tip to understand syntax: We declare a pointer as:
• int *ptr because when we dereference it as *ptr, we get an int
• char *p is a declaration of a pointer and thus, *p yields a char

2a.16

Assigning to Pointer Variables

30

97 000000

2.5 101.5

103 104

 35

73a8

73bc 73b8

00000000

000073b0

00000005

abababab

abababab

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

73d8

Address Memory Data

int dat[0]

• Data variable declarations:
– int x = 30;
– char y = 'a';
– double z = 3.75;
– int dat[2] = {103,42};

• Declaring pointer variables and setting them with addresses (using &):
– int *ptr1 = &x; // ptr1 = 0x73a8
– double* ptr2 = &z; // ptr2 = 0x73b0

• Dereferencing pointer variables (using *) to get data pointed to:
– dat[1] = *ptr1 + 5; // dat[1] = 35
– *ptr2 = *ptr2 – 1.25; // z = 2.5

• We can change what variable the pointer references by assigning a new
address to it and dereference the pointer as many times as we like
– ptr1 = &dat[1];

int a = *ptr1 % 10; // a = 5 after exec.
– ptr1 = dat; // why is & not needed?
– *ptr1 += 1; // dat[0] = 104
– *ptr2 = *ptr1 - *ptr2;

int x

y='a'

double z

int dat[1]
dat

int* ptr1

double* ptr2

int a

*ptr1

*ptr2

*ptr1

2a.17

Skill: Drawing Data Diagrams
• Though painful, it is helpful to draw out relevant data diagrams, especially

when pointers are involved
– Draw a table with a column for each variable (or just a box for each variable)
– Label the column header with the variable name and a made-up address. Use

whatever number is easiest for your address: @100, @500, etc.)
– Annotate the variable values as you evaluate each line of code

• DS Malik Textbook: Chapter 13, Question 6
int x, y;
int *p = &x;
int* q = &y;
x = 35; y = 46;
p = q;
*p = 78;
cout << x << " " << y << endl;
cout << *p << " " << *q << endl;

x @ 600 y @ 700

p @ 800

q @ 900

variable

pointer link

use / dereference

2a.18

Skill: Drawing Data Diagrams (Sol)
• Though painful, it is helpful to draw out relevant data diagrams, especially

when pointers are involved
– Draw a table with a column for each variable (or just a box for each variable)
– Label the column header with the variable name and a made-up address. Use

whatever number is easiest for your address: @100, @500, etc.)
– Annotate the variable values as you evaluate each line of code

• DS Malik Textbook: Chapter 13, Question 6
int x, y;
int* p = &x;
int* q = &y;
x = 35; y = 46;
p = q;
*p = 78;
cout << x << " " << y << endl;
cout << *p << " " << *q << endl;

??

x @ 600

??

y @ 700

600

p @ 800

700

q @ 900

35 46

700

78

35 78

78 78

variable

pointer link

use / dereference

2a.19

Pointer Summary
• To summarize:

– We can declare pointer variables to store
addresses (not data) using the syntax T*
where T is some type (e.g. int *p)

– We can get the address of some variable
using the & operator (e.g. &x, &y)
• Most often, this would then be assigned to a

pointer variable (e.g. p = &x)
– We can dereference a pointer (i.e. follow a

pointer) to get the data from the address it
stores by using the * operator
(e.g. cout << *p << endl)

– We can change the address the pointer
stores to have it reference some other
variable (e.g. p = &z)

• But why do we need them?
– Can't we just access x, y, and z directly?

int main(int argc, char *argv[])
{
 int x = 103;
 char y = 'a';
 int z = 42;

 int* p = &x;
 char *q = &y;

 *p = 42;
 cout << *p << endl;

 p = &z;

 cout << *p << endl;

 return 0;
}

2a.20

PASS BY REFERENCE
Prerequisites: Pointer Basics

2a.21

Recall: Pass-by-Value
• Each function has its own memory on the the

system stack where all data related to the
function is stored including:
– Local variables
– Arguments to the function
– Return link (where to return) to the calling

code
• When parameters are passed, a copy is made

of the argument from the caller's area of the
stack to a new location in the callee's area of
the stack (aka pass-by-value)
– This prevents one function from modifying the

variables of another
• But what if we want a function to modify the

data from another?
• We can use pointers!!! (aka pass-by-

reference)

// Prototype
void dec(int);

int main()
{
 int y = 3;
 dec(y);
 cout << y << endl; // prints ___
 return 0;
}

void dec(int y)
{
 y--;
}

Stack Area of RAM

main
3 y0x7bf8

00400120 Return
link0x7bfc

dec 3 y0x7bf0

00400ca0 Return
link0x7bf4

2

2a.22

Pass-by-(Pointer) Reference
• We can now pass a pointer to a local

variable from the caller function as an
argument to the callee function.

• The pointer argument lives on the stack
of the callee function but can be used (by
dereferencing it) to access the local
variable from the caller and modify its
data.

• When the callee finishes and returns, the
pointer argument dies, but the caller will
now see the updated value of its local
variable.

• Can you follow the syntax of the code to
the right?

// Prototype
void dec(int*);

int main() // caller
{
 int y = 3;
 dec(&y);
 cout << y << endl; // prints 2
 return 0;
}

void dec(int* ptr) // callee
{
 *ptr = *ptr – 1; // or (*ptr)--;
}

Stack Area of RAM

main
3 y0x7bf8

00400120 Return
link0x7bfc

dec 7bf8 ptr0x7bf0

00400ca0 Return
link0x7bf4

2
*ptr

2a.23

Swap Two Variables – (PB-Value Blank)
• Classic example of issues with local

variables:
– Write a function to swap two variables

• Pass-by-value doesn’t work
– Copy is made of x,y from main and passed

to x,y of sawpit
– Swap is performed on the copies

#include <iostream>
using namespace std;
void swap2(int x, int y);

int main()
{
 int x=5,y=7;
 swap2(x,y);
 cout << " x=" << x;
 cout << " y=" << y << endl;
}
void swap2(int x, int y)
{
 int temp = x;
 x = y;
 y = temp;
}

Stack Area of RAM

5 x0x7bf0

main 7 y0x7bf4

00400120 Return
link

0x7bf8

swap2

Can you make
a memory
diagram of

what is on the
stack for
swap2()?

2a.24

Swap Two Variables – (PB-Value)
• Classic example of issues with local

variables:
– Write a function to swap two variables

• Pass-by-value doesn’t work
– Copy is made of x,y from main and passed

to x,y of sawpit
– Swap is performed on the copies

#include <iostream>
using namespace std;
void swap2(int x, int y);

int main()
{
 int x=5,y=7;
 swap2(x,y);
 cout << " x=" << x;
 cout << " y=" << y << endl;
}
void swap2(int x, int y)
{
 int temp = x;
 x = y;
 y = temp;
}

Stack Area of RAM

5 x0x7bf0

main 7 y0x7bf4

00400120 Return
link

0x7bf8

swap2 5 x0x7be4

7 y0x7be8

004000ca0 Return
link0x7bec

5 temp0x7be0
7

5

2a.25

Swap Two Variables – (PB-Ref Blank)
• Classic example of issues with local

variables:
– Write a function to swap two variables

• Pass-by-reference (pointers) does work
– Addresses of the actual x,y variables in main

are passed
– Use those address to change those physical

memory locations

#include <iostream>
using namespace std;
void swap2(int* x, int* y);

int main()
{
 int x=5,y=7;
 swap2(&x, &y);
 cout << " x=" << x;
 cout << " y=" << y << endl;
}
void swap2(int* x, int* y)
{
 int temp = *x;
 *x = *y;
 *y = temp;
}

Stack Area of RAM

5 x0x7bf0

main 7 y0x7bf4

00400120 Return
link

0x7bf8

swap2 x0x7be4

y0x7be8

004000ca0 Return
link0x7bec

5 temp0x7be0
Can you fill in

the values for x
and y in

swap2()?

2a.26

Swap Two Variables – (PB-Ref)
• Classic example of issues with local

variables:
– Write a function to swap two variables

• Pass-by-reference (pointers) does work
– Addresses of the actual x,y variables in main

are passed
– Use those address to change those physical

memory locations

#include <iostream>
using namespace std;
void swap2(int* x, int* y);

int main()
{
 int x=5,y=7;
 swap2(&x, &y);
 cout << " x=" << x;
 cout << " y=" << y << endl;
}
void swap2(int* px, int* py)
{
 int temp = *px;
 *px = *py;
 *py = temp;
}

Stack Area of RAM

5 x0x7bf0

main 7 y0x7bf4

00400120 Return
link

0x7bf8

swap2 0x7bf0 px0x7be4

0x7bf4 py0x7be8

004000ca0 Return
link0x7bec

5 temp0x7be0

7

5

*px

*py

2a.27

Correct Usage of Pointers
• Commonly functions will take some inputs and

produce some outputs
– We'll use a simple 'multiply' function for now even

though we can easily compute this without a function
– We could use the return value but let's practice with

pointers and say mul() must return void
• Can use a pointer to have a function modify the

variable of another

// Computes the product of in1 & in2
int mul1(int in1, int in2);
void mul2(int in1, int in2, int* out);

int main()
{
 int wid = 8, len = 5, a;

mul2(wid,len,_______);
 cout << "Ans. is " << a << endl;
 return 0;
}

int mul1(int in1, int in2)
{
 return in1 * in2;
}

void mul2(int in1, int in2, _______)
{
 ________ = in1 * in2;
}

Stack Area of RAM

8 wid0x7bf0

main 5 len0x7bf4

-73249515 a0x7bf8

00400120 Return
link0x7bfc

mul 5 in20x7be4

0x7bf8 out0x7be8

004000ca0 Return
link0x7bec

8 in10x7be0

40

2a.28

Correct Usage of Pointers
• Commonly functions will take some inputs and

produce some outputs
– We'll use a simple 'multiply' function for now even

though we can easily compute this without a function
– We could use the return value but let's practice with

pointers and say mul() must return void
• Can use a pointer to have a function modify the

variable of another

// Computes the product of in1 & in2
int mul1(int in1, int in2);
void mul2(int in1, int in2, int* out);

int main()
{
 int wid = 8, len = 5, a;

mul2(wid,len,&a);
 cout << "Ans. is " << a << endl;
 return 0;
}

int mul1(int in1, int in2)
{
 return in1 * in2;
}

void mul2(int in1, int in2, int* out)
{
 *out = in1 * in2;
}

Stack Area of RAM

8 wid0x7bf0

main 5 len0x7bf4

-73249515 a0x7bf8

00400120 Return
link0x7bfc

mul 5 in20x7be4

0x7bf8 out0x7be8

004000ca0 Return
link0x7bec

8 in10x7be0

40

2a.29

Pass-by-Reference Template

• To modify a type T variable named var:
– Set the function to take a T* varptr
– Pass &var in the caller function to create and send a pointer to the function.
– In the calling function, dereference the pointer and assign:

 *varptr = value

// here T = double
void f1(double* pvar)
 { *pvar = 3.9; }

int main() {
 double var;
 f1(&var);
 cout << var << endl;
 return 0;
}

// here T = int*
void f2(int dat[], int len, int** pptr)
{
 int maxidx = 0;
 // loop to find the index of max
 *pptr = &dat[maxidx];
}

int main() {
 int dat[10] = { … };
 int* ptr;
 f2(dat, 10, &ptr);
 cout << "Max: " << *ptr << endl;
 return 0;
}

720

800

700

2a.30

Misuse of Pointers
• Make sure you don't return a pointer to a

dead variable
• You might get lucky and find that old value

still there, but likely you won't

// Computes the product of in1 & in2
int* badmul1(int in1, int in2);

int main()
{
 int wid = 8, len = 5;

int *a = badmul1(wid,len);
 cout << "Ans. is " << *a << endl;
 return 0;
}

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmul1(int in1, int in2)
{
 int out = in1 * in2;
 return &out;
}

Stack Area of RAM

8 wid0x7bf0

main 5 len0x7bf4

-73249515 a0x7bf8

00400120 Return
link0x7bfc

badmul1 8 in10x7be4

5 in20x7be8

004000ca0 Return
link0x7bec

40 out0x7be0

0x7be0

2a.31

POINTER ARITHMETIC AND ARRAYS
Prerequisites: Pointer Basics, Data Sizes

2a.32

Review Questions
• The size of an 'int' is how many bytes?

– ____
• The size of a 'double' is how many bytes?

– ____
• T/F: The elements of an array are stored contiguously in

memory
– ______________

• In an array of integers, if dat[0] lived at address 0x200,
dat[1] would live at…?

• If ptr pointed to an int @0x200 what value for ptr++
makes sense?

• If ptr pointed to a double @0x200 what value for ptr++
makes sense?

2a.33

Big Idea: Array Names ó Pointers

• Big idea: Array names and pointers are interchangeable
– An array name is a pointer and a pointer can be used as an array name!

• Why? Because an array name by itself evaluates to:
– _________________
– An array name is simply a pointer to the 0th element of that data type (i.e.

an int*).
• Given the declaration int dat[10], dat is an __________ (type)
• Given the declaration char str[6], str is a __________ (type)

– A pointer (i.e. int* ptr;) can be used as an array name once you point it
to some location (see example below)

• This is possible through pointer arithmetic.

int dat[5] = {10,11,12,13,14};
*dat = 1; // array name as ptr: same as dat[0] = 1;
int *p = dat; // array name as ptr: same as int* p = &dat[0]
p[1] = p[2]-8; // ptr as array name: same as dat[1]=dat[2]-8

2a.34

Pointer Arithmetic
• Logical Progression: Pointers are variables storing addresses => addresses

are just numbers => we can perform arithmetic on numbers => we should
be able to perform arithmetic on pointers!

• We can perform addition or subtraction on pointer variables (i.e.
addresses) just like any other variable. This is known as pointer arithmetic.

• Important Difference: The number added/subtracted is implicitly scaled
(multiplied) by the size of the type pointed to, ensuring the resulting
address points to a valid data item

103 170 104 270 350 360

73a0 73a4 73a8 73ac 73b0 73b4
dat[0] dat[1] dat[2] dat[3] dat[4] dat[5]int dat[6];

int* ptr = &dat[2];

ptr1 += <offset>;
73a8

int* ptr ptr+2ptr+1 ptr+3ptr-1ptr-2

dat
(int *)

dat+1 dat+2 dat+3 dat+4 dat+5

2a.35

Pointer Arithmetic
• Pointer arithmetic implicit scales the added value based

on the type of pointer
– For an int*, adding +2 really adds +2 * sizeof(int) = +2*4 = 8 so that

the pointer will point 2 integers away
– For a double*, adding +2 really adds +2 * sizeof(double) = +2*8 = 16 so

that the pointer will point 2 doubles away

3.5 2.9 3.7 3.9 2.6 3.2

73a0 73a8 73b0 73b8 73c0 73c8
gpa[0] gpa[1] gpa[2] gpa[3] gpa[4] gpa[5]

double gpa[6];

double* p2 = gpa+2

p2 += <offset>;

73b0
double* p2 p2+2p2+1 p2+3p2-1p2 - 2

gpa
(double *) gpa+1 gpa+2 gpa+3 gpa+4 gpa+5

2a.36

Pointer Arithmetic
• Pointer arithmetic implicit scales the added value based

on the type of pointer
– For a char*, adding +2 really adds +2 * sizeof(char) = +2*1 = 2 so that

the pointer will point 2 chars away

'a' 'b' 'c' 'd' 'e' 'f'

73a0 73a1 73a2 73a3 73a4 73a5
gpa[0] gpa[1] gpa[2] gpa[3] gpa[4] gpa[5]

char ltr[6];

char* p3 = ltr+2

p3 += <offset>;

73a2
char* p3 p3+2p3+1 p3+3p3-1p3 - 2

ltr
(char *) ltr+1 ltr+2 ltr+3 ltr+4 ltr+5

2a.37

Pointer Arithmetic Examples
• The number added/subtracted to the pointer is implicitly

scaled (multiplied) by the size of the type pointed to,
ensuring the resulting address points to a valid data item

103

 5

 1

 0

 3.7

 3.5

 3.1

 73a0

 73b0

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

Address Memory Data
dat[0]

gpa

*ptr1

*ptr2

dat[1]

dat[2]

dat

len

double* ptr2

int* ptr1

gpa[0]

gpa[1]

gpa[2]

int dat[] = {103, 5, 1}
int len=0;
double gpa[3] = {3.7, 3.5, 3.1};
int *ptr1 = dat;
*ptr1 = 104;
ptr1 = ptr1 + 2; // addr. inc. by ___ (2*sizeof(int))
(*ptr1)++; // increment the dereferenced value
ptr1--; // addr. dec. by ___ (1*sizeof(int))
double *ptr2 = gpa;
ptr2 += 2; // ptr2 addr. + ___ (2*sizeof dbl)
*ptr2++ = 4.0; // set dereferenced value to 4.0 then
 // increment addr. by ___ (1*sizeof(double))

// *ptr2 = 2.9; What if??

2a.38

Pointer Arithmetic Examples
• The number added/subtracted to the pointer is implicitly

scaled (multiplied) by the size of the type pointed to,
ensuring the resulting address points to a valid data item

103 104

 5

 1 2

 0

 3.7

 3.5

3.1 4.0

73a0

73a8 73a4

73b0

73c0 73c8

73a0

73a4

73a8

73ac

73b0

73b4

73b8

73bc

73c0

73c4

73c8

73cc

73d0

73d4

Address Memory Data
dat[0]

gpa

*ptr1

*ptr2

dat[1]

dat[2]

dat

len

double* ptr2

int* ptr1

gpa[0]

gpa[1]

gpa[2]

int dat[] = {103, 5, 1}
int len=0;
double gpa[3] = {3.7, 3.5, 3.1};
int *ptr1 = dat;
*ptr1 = 104;
ptr1 = ptr1 + 2; // addr. inc. by 2*4 (2*sizeof(int))
(*ptr1)++; // increment the dereferenced value
ptr1--; // addr. dec. by 1*4 (1*sizeof(int))
double *ptr2 = gpa;
ptr2 += 2; // ptr2 addr. + 2*8 (2*sizeof dbl)
*ptr2++ = 4.0; // set dereferenced value to 4.0 then
 // increment addr. by 1*8 (1*sizeof(double))

// *ptr2 = 2.9; What if??

2a.39

Pointer Arithmetic and Array Indexing
• Pointer arithmetic and array indexing are really the same!
• Array syntax: data[i]

– Says get the value of the i-th integer in the data array

• Pointer syntax vs. Array syntax: *(data + i) <=> data[i]
– (data + i) compute the address of the i-th value in an array and * operator gets its value

• We can use pointers and array names interchangeably (an array name is a pointer and a
pointer can be treated as an array name and [] applied)
– int data[6] = {10, 11, 12, 13, 14, 15}; // data = 73a0;
– *(data + 4) = 50; // treat data like a pointer and perform data[4] = 50;
– int* ptr = data; // ptr now points at 73a0 too
– ptr[1] = ptr[2] + ptr[3]; // treat ptr like array name (same as data[1]=data[2]+data[3])

10 11 25 12 13 14 50 15

73a0 73a4 73a8 73ac 73b0 73b4
data[0] data[1] data[2] data[3] data[4] data[5]

73a0
int* ptr ptr+2ptr+1 ptr+3

data data+1 data+2 data+3 data+4 data+5

ptr+5ptr+4

ptr[0] ptr[1] ptr[2] ptr[3] ptr[4] ptr[5]

2a.40

73a0

Arrays vs Pointers
• All 3 methods below perform the same task of initializing the array

– Which do you prefer?
– Remember, your goal is to make your code readable (option 1) but you

should understand all 3.

int main()
{
 int dat[10];
 int *ptr1 = dat;
 // initialize the array
 for(int i=0; i < 10; i++)
 {
 ptr1[i] = 0;
 // equivalent to
 // dat[i] = 0;
 }
 // use the array
}

int main()
{
 int dat[10];
 int *ptr2 = dat;
 // initialize the array
 for(int i=0; i < 10; i++)
 {
 *(ptr2+i) = 0;
 }
 // use the array
}

int main()
{
 int dat[10];
 int *ptr3 = dat;
 // initialize the array
 for(int i=0; i < 10; i++)
 {
 *ptr3 = 0;
 ptr3++;
 }
 // use the array
}

"Walking" PointerExplicit pointer arithmeticCommon Array Syntax
73a0int* ptr1/2/3

2a.41

// Function that takes an array
int sum(int data[], int size);
// or int sum(int* data, int size);

int sum(int data[], int size)
// or int sum(int* data, int size)
{
 int total = 0;
 for(int i=0; i < size; i++){
 total += data[i];
 }
 return total;
}

int main()
{
 int vals[100];
 /* some code to initialize vals */
 int mysum = sum(vals, 100);
 cout << mysum << endl;
 // prints sum of all numbers
 return 0;
}

Recall: Passing Arrays as Arguments
• In function declaration /

prototype for the formal
parameter use
– type [] or type * to indicate an

array is being passed

• When calling the function,
simply provide the name of
the array as the actual
argument
– In C/C++ using an array name

without any index evaluates to
the starting address of the array
(a pointer to the 0th element)

7420

7420

Recall: To access an element in an array, we need 3 pieces of info:
1. Start address of the array
2. Index/offset
3. Type of elements in the array (really the size of that type)

2a.42

Stack View of Passing Arrays

• Main point: A pointer and an array name are interchangeable!
// Function that takes an array
int sum(int data[], int size);
// or int sum(int* data, int size);

int sum(int data[], int size)
// or int sum(int* data, int size)
{
 int total = 0;
 for(int i=0; i < size; i++){
 total += data[i]; // *(data+i)
 }
 return total;
}

int main()
{
 int vals[100];
 /* some code to initialize vals */
 int mysum = sum(vals, 100);
 cout << mysum << endl;
 // prints sum of all numbers
 return 0;
}

sum

00480a94 Return
link7412

100 size7408
7420 data7404

0 total7400
0, 1, …, 99,100 i7396

500

5 ……

main 5 vals[99]7816

00400120 Return
link7820

5 vals[0]
5 vals[1]7424

?? mysum7416
7420

500
*(7420+4*i)

An int*

2a.43

One or Many
• Strange question:

– Is 3240 McClintock Ave. the address of a
single-family house or a large dormitory
with many suites?

• We can't know.
• In the same way, C/C++ does not

differentiate whether a pointer
points to a single variable or an array
(i.e. it doesn't have additional syntax)
– It can only be determined based on how

the function uses the pointer (does it
treat the pointer as being to an array OR
to a single value)

– Good commenting/documentation
should describe this.

void f1(int* p)
{ // does p point to one int
 // or an array of ints?

}

// f1 sets the array pointed to
// by p to all zeros
void f1(int* p)
{
 for(int i=0; i < 10; i++)
 { p[i] = 0; }
}

// f1 decrements the integer
// pointed to by p
void f1(int* p)
{
 *p -= 1;
}

Pointer to an array

Pointer to a single variable

2a.44

const or non-const
• The const modifier on a variable type

means it may not be modified or
changed after being initialized

• Why would we want that?
– Because YOU are your OWN WORST

ENEMY when programming! You make
mistakes. The more we can enlist the
compiler to help us catch mistakes, the
better

– If our intention is for a variable not to
change, then declare it const.

• A const pointer means we can dereference
the pointer to GET (view) the data but NOT
use the pointer to CHANGE (edit) the data
– Similar to "Can View" vs. "Can Edit"

permission on a Google doc.

int main() {
 const int size = 5;
 // size cannot be modified
 size = 6; // Compile Error
}

void f1(const int* p, int size)
{

 for(int i=0; i < size; i++) {
 cout << p[i] << endl;
 p[i] = 0; // compile error
 }
}

void f1(int* p, int size)
{
 for(int i=0; i < size; i++)
 { p[i] = 0; }
}

Const = "Can View"

Non-Const = "Can Edit"

2a.45

Const or Non-Const Example

• Which parameters of the
functions should be
marked as const?

• Does size need to be
marked const?
– Would it make sense to try

to mark an email
attachment as "view
only"?

– No! Since it is already a
copy

void init(_________ int data[], int size)
// or void init(_________ int* data, int size)
{
 for(int i=0; i < size; i++){
 cin >> data[i];
 }
}
int sum(_________ int data[], int size)
// or int sum(_________ int* data, int size)
{
 int total = 0;
 for(int i=0; i < size; i++){
 total += data[i]; // *(data+i)
 }
 return total;
}

int main()
{
 int vals[100];
 init(vals, 100);
 int mysum = sum(vals, 100);
 cout << mysum << endl;
 // prints sum of all numbers
 return 0;
}

An int*

2a.46

C (not C++) String Function/Library
(#include <cstring>)

• A library of functions was provided to perform operations on
these character arrays representing strings (<cstring> in C++,
<string.h> in C)
– int strlen(const char *dest) / int strlen(const char dest[])

– int strcmp(const char *str1, const char *str2);

• Return 0 if equal, >0 if first non-equal char in str1 is alphanumerically larger, <0 otherwise

– char *strcpy(char *dest, const char *src);

– char *strcat(char *dest, const char *src);

• Concatenates src to the end of dest

– char *strchr(const char *str, char c);

• Finds first occurrence of character ‘c’ in str returning a pointer to that character or NULL if the
character is not found

https://cplusplus.com/reference/cstring/

