School of Engineering

CS103 Unit 2a —
Pointers and
Pass by Reference

CSCI 103L Teaching Team

USCViterbi €

School of Engine

Unit 2 — Pointers and Memory

 The course is broken into 6 units (spirals), each consisting of:

NV N y o\
T S b [
Lectures Labs Homework(s) Project(s)
(Tools + Practice + (Formative programming (Cumulative
small group Help) problems) programming problems)
_
H D B
C++ Language Pointers and Memory Objects 1
Syntax
@ G/ (é)

Managing Data Objects 2 Recursion

School of Engineering

INTRODUCTION TO POINTERS

i, IS Viterbi

School of Engineering

Recall: Pass-by-Reference Pros/Cons

* Scenario: You write a paper and include a lot of LARGE images. You need
to send it to your teammates. You can

— As a Google doc and simply e-mail the URL or
— Attach the document/file in the e-mail or
 What are the pros of each approach?

* Google Doc

— Less info to send (send link, not all data)

— Reference to original (i.e. if original changes, you’ll see it)
* Email Attachment

— Can treat the copy as a scratch copy and modify freely

File Edit View Insert Format Tools Extensions Help Lastedit was seconds ago

General access

Restricted ~

Only people with access can open with the link

Use Pointers when...

 We need pass-by-reference (as opposed to pass-by-value), either
to:

— Change a variable (or variables) local to one function in some other
function

* Analogy: a Google-doc link with "Can Edit" permission

— Avoid making needless copies of data which wastes time
* Analogy: A Google-doc link with "Can View" permission (think large arrays)

* We need to perform dynamic memory allocation

 We need to access a specific location in the computer (i.e.
hardware devices) [Not covered in this class, but EE 109/CS 356]

— Useful for embedded systems and device programming

O

All of these will be explained in the following slides. |

i, IS Viterbi

School of Engineering

Pointer Analogy

* Imagine a set of lockers or safe deposit boxes
each with a number (just like memory locations
have an address)

 There are some boxes with gold jewelry and
others that do not contain gold but simply hold a
piece of paper with another box number written

on it (i.e. a pointer to another box)
 What s stored in one box might be:

Each box has a number to identify it (i.e. an
— [Box 7]: Gold (i.e. data / something valuable like an int, address) and a value inside of it. So do

variables in memory.
double, etc.)

— [Box 9]: The number of another box which contains gold O8 1 |2 - 3 |4 53
(i.e. box 9 holds a pointer-to some other data)

— [Box 16]: The number of another box which contains a 6 11 / 84 97 19 11
number of a box containing gold (i.e. box 16 holds a
pointer-to a pointer-to data) 12 131 14115 169 1 73
[+ The value of (i.e. what is in) one box might be the address of O

* By changing the number in a box (i.e. the value of a pointer), we can

(pointer-to) another box.
have one location refer to many different locations, in succession.

i, IS Viterbi

School of Engineering

 But what if rather than gold or other
obviously valuable objects, the "valuable
objects" were simply slips of papers with
numbers.

— Would you be able to distinguish whether a box is
storing data or storing a pointer?

— And if it is storing a pointer, would you know
whether it is pointing at just 1 data element or an
array of data elements?

y 0.11.|2,]3.14 |5

* No! Thisis why we need:

— Pointer types (e.g. int* or char*) to tell us that
what's in this variable is a pointer as well as what 12113114 115116 | 17

kind of data we'll find when we follow
(dereference) the pointer (e.g. int or char).

— To remember context on our own (as the
programmer)

1M 12124 | 77| '3 | 4

- USC\[itgrbi '
Pointers

e Pointers are variables that store the address of some

other variable in memory

. Add
e More abstractly, pointers are references to other ressw

"things" which can be: /328 || 000060000

— data (i.e. ints, chars, doubles) or 73ac |06e0073b8

— other pointers /3b0 || 086600606
73b4 || 0000873bc

* The concept of a pointer is very common and used in
. . 73b8 108
many places in everyday life
- 73bc
— Phone numbers or mailing addresses are references or H
“pointers” to your physical phone or location /3¢c6 2-2°

— Excel workbook has cell names we can use to reference
the data (=A1 means get data in Al)

— URLs (www.usc.edu is a pointer to a physical HTML file on
some server) and can be used in any other page to "point
to" USC’s website

http://www.usc.edu/

Prerequisites: Data Sizes, Computer Memory

POINTER BASICS

- /] USCViterbi
Steps To Using Pointers

School of Engineering

e Variable

— You can't use pointers without something to
point to (create a variable of some type, T var)

* Note: We use T as a placeholder for ANY type
* Pointer (i

— Declare a pointer variable or argument (declare a
variable of type T* pvar)

e Link

[@ Copylink |
— Generate the pointer/link to the variable using & /
operator (&var)
docs.google.com/al12f7¢
« Dereference (Use) s

el o all &~ |

— Follow the link to view or edit the variable using
the * operator (*pvar) L

C++ Pointer Operators

e 2 operators used to manipulate pointers (i.e. addresses)
in C/C++: & (address-of op) and * (dereference op)

— &<variable> evaluates to the "address-of" <variable>
* Essentially, you get a pointer to a variable by writing &variable

— *<pointer> evaluates to the data pointed to by <pointer>
(data at the address given by <pointer>)

— & and * are inverse operations

« We say & returns the address/reference/link of some value while ,;h

* dereferences the address and returns the value

e &uvariable => address/pointer
e *pointer => variable value

o *(&uvariable) => variable

& = get a B8 unitia_CPP_Expr.pdf &%

®© Preview
m UnitO_FirstDayOverview.pdf <=

€» Open with

I i n k O+ Share
m Unit1b_CPP_ProgramFlow_v2.pdf <% & Getlink

* = follow
the link

docs.google.ccg [al12f7:

-1 USCViteﬂ?i .
Generating a Pointer

 When a variable is declared, memory is allocated for Address Memory Data
it. Its starting location in memory is its address. 87348
— int x = 30; y="a'
— chary = 'a'; [p——] 73ac ||97 eez)eeee
— double z = 3.75; &z)73bo
— int dat[2] = {103,42}; 73b4 3.75
* To generate a pointer, use the & operator to get the 73b8
address of a variable in C/C++ Jape
(Tip: Read ‘&x’ as ‘address of x’) sco| seatomae
T 73c4 | e400cc33

- &y =>
— &z => Starting [Individual addresses of]
address

- each byte
A
— &dat[1] = : '
73ac § 73ad j 73ae j§ 73af
— dat => 73ac ‘97 00 ‘ 00 90\
* Great, but what should we do with these pointers and [Data va'uesbittzred in each]

where should we store them?

R,]S Viterbi

School of Engineering

Pointer Variables and their Declaration

e Data variable declarations:

. B . Address Memory Data
int x = 30;
— chary = 'a'; [variable] 73a8 _ 30
— double z = 3.75; 73ac ||97 |000000
— int dat[2] = {103,42}; 23b0 i
* We can now declare pointer variables that don't store data
73b4 3.75
but the addresses of data
« To declare a pointer, include a * after the type [e.g. int¥*, ([dat J73b8
which is read "pointer to (an) int(s)"]. That variable can then 73bc 42

store pointers to (addresses of) the given type (e.g. int
P () & yp (&) 73C0O [|00000000

— int *ptrl = &x; // ptrl = 0x73a8
— double* ptr2 = &z; // ptr2 = 0x73b0 73c4 ||00007/3a8

— int* ptr3 = &y; // Error! Type mismatch. 73c8 ||00000000
q 73cc ||000073b0
-
Notes: _, 73d0 | 00000000
1. Pointers should ONLY store the addresses of variables of its
declared type (int* pointers should only point at ints, not chars) 73d4 | abababab

2. Best to immediately initialize a pointer with the address of some
variable, rather than leave it uninitialized.

3. Where the * is in the declaration (i.e. next to the type or variable
name) does not matter [e.g. int* ptrl ..or.. int *ptrl].

73d8 | abababab

i, IS Viterbi

School of Engineering

Dereferencing Pointer Variables

e Data variable declarations:

s _ . Address Memory Data
int x = 30;
— char y = "a'; [variable] 73a8 — 30
- double z = 3.75; 73ac |[97|eee000 |
— 1int dat[2] = {103,42},; —{_doublez 77 [y
i - 73be ptr
 We can declare pointer variables that store addresses of other »
i 73b4 || 3-75 2.5
variables
— int *ptrl = &x; // ptrl = @x73a8 ((dat J73b8 103 otr2
— double* ptr2 = &z; // ptr2 = 0x73bo m G- .
P = Gz, P - 73bc 42 35
. i i i —EI -
We. can access the data} whoseiaddress is stored |n*a pointer 23¢0 lop000000 /
variable by dereferencing it using the * operator. *ptr can be
read as, "get/set the data at the address stored in ptr") 73c4 9338
ptr2
— dat[1] = *ptrl + 5; // dat[1] = 35] 73c8 || 00000000
use J]
73cc ||000073bo
_ ptr2 = *ptr2 - 1.25; // z = 2.5 [derEfere"ce

73d0 | 00000000

* It may be confusing but notice the * appears both in the 73d4 | abababab

declaration and in the dereference expression. Context is 73d8 | abababab
important to distinguish. More on the next slide...

* after a type = declare/allocate a pointer variable

*in an expression/assignment = dereference

Declaring a pointer

De-referencing a pointer

char *p

v

X ="*p +1

int* ptr

v

*ptr =5

(*ptr)++

WK

char* pl[10];

v

Helpful tip to understand syntax: We declare a pointer as:
int *ptr because when we dereference it as *ptr, we get an int
char *p is a declaration of a pointer and thus, *p yields a char

i, IS Viterbi

School of Engineering

Assigning to Pointer Variables

e Data variable declarations:
Address Memory Data

TNt X =30
— char y = 'a'; 73a8 || 30
j— . V=a
- double z = 3.75; 73ac |[97 |eee000
— 1int dat[2] = {103,42},; 30 —{double z_}
: : . : : : 7
e Declaring pointer variables and setting them with addresses (using &): -
— int *ptrl = &; // ptrl = @x73a8 73b4 ey \
— double* ptr2 = &z; // ptr2 = @x73b@ (Cdat]73b8 |23 _ [1]041\ Fptr2
= int dat[1] J=d
* Dereferencing pointer variables (using *) to get data pointed to: 73b 35{(+ptr1
*ptr1
— dat[1] = *ptrl + 5; // dat[1] = 35 2300 2308]
»

— *ptr2 = *ptr2 - 1.25; /J/ z = 2.5 I
P P ’ 73c4 || 723be 73b8

 We can change what variable the pointer references by assigning a new
address to it and dereference the pointer as many times as we like 73c8 ||00000000 | |
— ptrl = &dat[1]; 73cc ||000073b0
int a = *ptrl % 10; // a = 5 after exec. 23de @@ee"gges
— ptrl = dat; // why is & not needed?
_ kptrl 4= 1; // dat[e] = 104 73d4 | abababab

— *ptr\z = *ptr\l - *ptr\z; 73d8 abababab

R,]S Viterbi

School of Engineering

Skill: Drawing Data Diagrams

 Though painful, it is helpful to draw out relevant data diagrams, especially
when pointers are involved

— Draw a table with a column for each variable (or just a box for each variable)

— Label the column header with the variable name and a made-up address. Use
whatever number is easiest for your address: @100, @500, etc.)

— Annotate the variable values as you evaluate each line of code
DS Malik Textbook: Chapter 13, Question 6 | x@s00 || y@700 |

int x, y; [variable] | || |
int *p = &x;
—

int* q = &y;

X = 35; y = 46;

P =0Q,

*p = 78; [use / dereference]
cout << x << " " << y << endl;

cout << *p << " " << *q << endl;

R,]S Viterbi

School of Engineering

Skill: Drawing Data Diagrams (Sol)

 Though painful, it is helpful to draw out relevant data diagrams, especially
when pointers are involved

— Draw a table with a column for each variable (or just a box for each variable)

— Label the column header with the variable name and a made-up address. Use
whatever number is easiest for your address: @100, @500, etc.)

— Annotate the variable values as you evaluate each line of code
DS Malik Textbook: Chapter 13, Question 6 | x@s00 || y@700 |

int x, y; [variable] | ?? l[??]
’ @ m 700

int* q = &y;

X = 35; y = 46; 35 46

P =20, 700
*p = 78; [use/dereference] 78

cout << x << " " <<y << endl; 35 78

cout << *p << " " << *q << endl; 78 78

-1 USCVite?ﬂ?i .
Pointer Summary

e To summarize:

int main(int argc, char *argv[])

— We can declare pointer variables to store {
addresses (not data) using the syntax T* int x = 103;
. . * char y = 'a’';
where T is some type (e.g. int *p) s 2 G

— We can get the address of some variable

using the & operator (e.g. &x, &y) int* p = &x;
h ¥ = .
* Most often, this would then be assigned to a char *q = &y;

pointer variable (e.g. p = &x) *p = 42;
— We can dereference a pointer (i.e. follow a cout << *p << endl;
pointer) to get the data from the address it b = 82;
stores by using the * operator
(e.g. cout << *p << endl) cout << *p << endl;
— We can change the address the pointer et B3

stores to have it reference some other }
variable (e.g. p = &z)

 But why do we need them?
— Can't we just access x, y, and z directly?

Prerequisites: Pointer Basics

PASS BY REFERENCE

B (5" Viterbi &
Recall: Pass-by-Value

// Prototype

e Each function has its own memory on the the . /
void dec(int);

system stack where all data related to the

function is stored including: int main()

{
— Local variables int y = 3;
. dec(y);
— Arguments to the function coriige v <k @iy ff mEmes
— Return link (where to return) to the calling <
code

* When parameters are passed, a copy is made
of the argument from the caller's area of the
stack to a new location in the callee's area of
the stack (aka pass-by-value)

— This prevents one function from modifying the

variables of another Stack Area of RAM

* But what if we want a function to modify the g 0x7bf0 2 y
ec
data from another? 0x7bf4 | 00400ca0 | Retum
link
* We can use pointers!!! (aka pass-by- 0x7bf8 3 Y
reference main
) 0x7bfc | 00400120 | RGm"

R,]S Viterbi

School of Engineering

Pass-by-(Pointer) Reference

// Prototype
void dec(int*);

 We can now pass a pointer to a local
variable from the caller function as an

int main() // caller

argument to the callee function. {
. . int y = 3;
 The pointer argument lives on the stack dec(&y);
of the callee function but can be used (by cout <<y << endli // prints 2
dereferencing it) to access the local }
variable from the caller and modify its void dec(int* ptr) // callee
{
data. *ptr = *ptr - 1; // or (*ptr)--;
* When the callee finishes and returns, the }
pointer argument dies, but the caller will
now see the updated value of its local Stack Area of RAM
variable.
0x7b%0—
* Can you follow the syntax of the code to dec | 7ot ptr
17 x7bf4 00400ca0 Return
the right? *ptr =2 link
-~ O —s1 = 1y
T 1 ox7bfc | 00400120 Returm

R,]S Viterbi

School of Engineering

Swap Two Variables — (PB-Value Blank)

. . . #include <iostream>
* C(Classic example of issues with local using namespace std;

variables: void swap2(int x, int y);

— Write a function to swap two variables e R

* Pass-by-value doesn’t work {
] . int x=5,y=7;
— Copy is made of x,y from main and passed swap2(x,y);
to x,y of sawpit cout << " x=" << X;
. . cout << " y=" << y << endl;
— Swap is performed on the copies }
void swap2(int x, int y)
Stack Area of RAM {
int temp = x;
Can you make X =Y;
a memory y = temp;
diagram of swap2 }
what is on the
stack for
swap2()?
0x7bf0 5 X
main 0x7bf4 7 y
0x7bf8 | 00400120 Return
link

R,]S Viterbi

School of Engineering

Swap Two Variables — (PB-Value)

##include <iostream>

* Classic example of issues with local B N ——

variables: void swap2(int x, int y);
— Write a function to swap two variables it En
* Pass-by-value doesn’t work {
] . int x=5,y=7;
— Copy is made of x,y from main and passed swap2(x,y);
to x,y of sawpit cout << " x=" << X;
. . cout << " y=" << y << endl;
— Swap is performed on the copies }
void swap2(int x, int y)
Stack Area of RAM {
int temp = x;
0x7be0 5 temp X =Y,
y = temp;
swap2 0x7be4 5 7 X }
0x7be8 7| 5 |y

0x7bec | 004000ca0 | RS

0x7bf0 5 X
main 0x7bf4 7 y

0x7bf8 | 00400120 Return
link

R,]S Viterbi

School of Engineering

Swap Two Variables — (PB-Ref Blank)

. . . #include <iostream>
* C(Classic example of issues with local using namespace std;

variables: void swap2(int* x, int* y);

— Write a function to swap two variables e R

* Pass-by-reference (pointers) does work { ¢ ves v
: : : 1Nt X=5,y=/5
— Addresses of the actual x,y variables in main swap2(&x, &y);

are passed cout << " x=" << X;

cout << =" << << endl;
— Use those address to change those physical } Y Y

memory locations void swap2(int* x, int* y)
Stack Area of RAM {
int temp = *x;
0X7be0 5 temp *X = *y;
A *y = temp;
Canyoufillin |gyap2| 0x7be4 X }
the values for x
. 0x7be8 y
andy in
swap2()? 0x7bec | 004000ca0 | RS™"
0X7bf0 5 X
main 0x7bf4 7 y
0x7bf8 | 00400120 Return
link

R,]S Viterbi

School of Engineering

Swap Two Variables — (PB-Ref)

. . . #include <iostream>
* C(Classic example of issues with local using namespace std;

variables: void swap2(int* x, int* y);

— Write a function to swap two variables e R

* Pass-by-reference (pointers) does work { ¢ ves v
: : : 1Nt X=5,y=/5
— Addresses of the actual x,y variables in main swap2(&x, &y);

are passed cout << " x=" << X;

cout << =" << << endl;
— Use those address to change those physical } Y Y

memory locations void swap2(int* px, int* py)
Stack Area of RAM {
int temp = *px;
* = Xk .
5 tem px= "PY;
P *py = temp;
0x7bf0 pX }
0x7bf4 py
004000ca0 | "Stum

5 ! X

7 S y

0x7bf8 | 00400120 Return
link

R,]S Viterbi

Correct Usage of Pointers

. . . // Computes the product of inl & in2
* Commonly functions will take some inputs and o muil(int inl? int in2);

produce some outputs void mul2(int in1, int in2, int* out);

— We'll use a simple 'multiply' function for now even
though we can easily compute this without a function int main()

: . {
— We could use the return value but let's practice with int wid = 8, len = 5, a;
pointers and say mul() must return void mul2(wid,len,)
] . . cout << "Ans. is " << a << endl;
* Can use a pointer to have a function modify the return 0;
variable of another }

Stack Area of RAM

int mull(int inl, int in2)

] {
0x7be0 8 in1 return inl * in2;
mul | 0x7bed 5 in2 }
0Ox7be8 0x7bf8 out void mul2(int in1, int in2,)
{
0x7bec | 004000ca0 | ReM™ - = inl * in2;
}
0x7bf0 8 wid
main 0X7bf4 B |en

0x7bf8 L3 40 a

0x7bfc | oo4o0120 | Retur

R,]S Viterbi

Correct Usage of Pointers

. . . // Computes the product of inl & in2
* Commonly functions will take some inputs and o muil(int inl? int in2);

produce some outputs void mul2(int in1, int in2, int* out);

— We'll use a simple 'multiply' function for now even
though we can easily compute this without a function int main()

. . {
— We could use the return value but let's practice with int wid = 8, len = 5, a;
pointers and say mul() must return void mul2(wid,len,&a);
))) cout << "Ans. is " << a << endl;
* Can use a pointer to have a function modify the return 0;
variable of another }

Stack Area of RAM

int mull(int inl, int in2)

0x7bel 8 in1 { return inl * in2;
mul | 0x7bed [s in2 !
0x7be8 0x7bf8 out void mul2(int in1l, int in2, int* out)
Ox7bec | 004000ca0 | RS { *out = inl * in2;
0x7bf0 8 wid }
main | 0x7bf4 5 len

0x7bf8 L3 40 a

0x7bfc | oo4o0120 | Retur

R,]S Viterbi

Pass-by-Reference Template __

ey

— Pass &var in the caller function to create and send a pointer to the function.

 To modify a type T variable named var:
— Set the function to take a T* varptr

— In the calling function, dereference the pointer and assign:
*varptr = value

// here T = int*
void f2(int dat[], int len, int** pptr)
{

int maxidx = 0;
// loop to find the index of max

// here T = double *pptr = &dat[maxidx];
void fl(double* pvar) }

{ *pvar = 3.9; } 700 720

int main() {

int main() { int dat[10] = { .. };

double var; int* ptr; 800

f1(&var); f2(dat, 10, &ptr);

cout << var << endl; cout << "Max: " << *ptr << endl;

return 0; return 0;
} }

- USCVite;rbi .
Misuse of Pointers

// Computes the product of inl & in2
int* badmull(int inl, int in2);

 Make sure you don't return a pointer to a
dead variable

* You might get lucky and find that old value int main()

. . {

still there, but likely you won't int wid = 8, len = 5;

int *a = badmull(wid,len);

cout << "Ans. is " << *a << endl;
return 9;

}
Stack Area of RAM

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)

0x7be0 40 out ;

i = 7 * 0

badmul1 | 0x7be4 8 in1 ;L‘Zzuﬁ:t&ouirjl in2;
0x7be8 5 in2 }

0x7bec | 004000ca0 | Retum

0x7bf0 8 wid
main 0X7bf4 LN |en
0x7bf8 ’_Ba.0x7be0 a

0x7bfc | oo4o0120 | Retur

School of Engineering

Prerequisites: Pointer Basics, Data Sizes

POINTER ARITHMETIC AND ARRAYS

Review Questions

* The size of an 'int' is how many bytes?

* The size of a 'double' is how many bytes?

* T/F: The elements of an array are stored contiguously in
memory

* In an array of integers, if dat[0] lived at address 0x200,
dat[1] would live at...?

* |f ptr pointed to an int @0x200 what value for ptr++
makes sense?

* |If ptr pointed to a double @0x200 what value for ptr++
makes sense?

R,]S Viterbi

School of Engineering

Big Idea: Array Names < Pointers

* Bigidea: Array names and pointers are interchangeable
— An array name is a pointer and a pointer can be used as an array name!

 Why? Because an array name by itself evaluates to:

— An array name is simply a pointer to the 0" element of that data type (i.e.

an int*).
* Given the declaration int dat[10], datis an (type)
* Given the declaration char str[6], strisa (type)

— A pointer (i.e. 1nt* ptr;) can be used as an array name once you point it
to some location (see example below)

int dat[5] = {10,11,12,13,14};

*dat = 1; // array name as ptr: same as dat[@0] = 1;

int *p = dat; // array name as ptr: same as int* p = &dat[Q]
p[1] = p[2]-8; // ptr as array name: same as dat[l]=dat[2]-8

* Thisis possible through pointer arithmetic.

- USCVitf?rbi .
Pointer Arithmetic

* Logical Progression: Pointers are variables storing addresses => addresses
are just numbers => we can perform arithmetic on numbers => we should
be able to perform arithmetic on pointers!

 We can perform addition or subtraction on pointer variables (i.e.
addresses) just like any other variable. This is known as pointer arithmetic.

* Important Difference: The number added/subtracted is implicitly scaled
(multiplied) by the size of the type pointed to, ensuring the resulting
address points to a valid data item

B &0 &2

73a0 73a4 73a8 73ac 73b0O 73b4
int dat[6]; dat[0] J——_ dat[1] Jr—_ dat[2] }—y—_ dat[3] }—— dat[4]
103 170 104 270 350 360
int* ptr = &dat[2]; T T T T T
73a8

ptrl += <offset>; [ptr—Z] [ptr-l] W

Pointer Arithmetic

* Pointer arithmetic implicit scales the added value based

on the type of pointer
— For an int*, adding +2 really adds +2 * sizeof(int) =+2*4 = 8 so that
the pointer will point 2 integers away
— For a double*, adding +2 really adds +2 * sizeof(double) =+2*8 =16 so
that the pointer will point 2 doubles away

wousie) IR

73a0 73a8 73b0 73b8 73cO 73c8

|—l gpal0] }—7—_ sgpall] 1 gpal2] }—— gpal3] 7 gpald] }—
double gpa[6]; 3.5 2.9 3.7 3.9 2.6 3.2

double* p2 = gpa+2 T T 73b0 T T T
(=) (]

p2 += <offset>;

Pointer Arithmetic

* Pointer arithmetic implicit scales the added value based
on the type of pointer

— Forachar*, adding +2 really adds +2 * sizeof(char) =+2*1 =2 so that
the pointer will point 2 chars away

m (1) (o2)

7320 73al 73a2 73a3 7334 73a5
|—l gpal0] J—1—_ gpa[l] 1 sgpal2] }——{ gpal3] 71— sgpald] J

char 1ltr[6]; 2 b ¢ d © i

char* p3 = 1tr+2 T T T T T

73a2

EDlEn
p3 += <offset>; m

i, IS Viterbi

School of Engineering

Pointer Arithmetic Examples

 The number added/subtracted to the pointer is implicitly

scaled (multiplied) by the size of the type pointed to,
Address Memory Data

ensuring the resulting address points to a valid data item
(Cdat 7330 : [1193 «
. —_—_atl
int dat[] = {163, 5, 1} 73a4 5
int len=0; 73a8
.
double gpa[3] = {3.7, 3.5, 3.1}, 73ac 0
int *ptl"l = dat; (g2)73b0 —C el 1+
*ptrl = 104; 73b4 3.7 '\
ptrl = ptrl + 2; // addr. inc. by ___ (2*sizeof(int)) J3ps [\ ik
(*ptr‘l)++; // increment the dereferenced value 73bc 3.5
ptrl--; // addr. dec. by _ (1*sizeof(int)) 73¢c0 :
double *ptr2 = gpa; 73c4 3.1
— I
ptr2 += 2; // ptr2 addr. + ___ (2*sizeof dbl) 73c8 y
*ptr2++ = 4.0; // set dereferenced value to 4.0 then 73cc 7320 | |*ptr2
// increment addr. by (1*sizeof(double)) 73do /
// *ptr2 = 2.9; What if?? 23d4 73b0

i, IS Viterbi

School of Engineering

Pointer Arithmetic Examples

 The number added/subtracted to the pointer is implicitly

scaled (multiplied) by the size of the type pointed to,
Address Memory Data

ensuring the resulting address points to a valid data item
(Cdat }73a0 }@%d [1]@4]
. —_—_atl
int dat[] = {163, 5, 1} 73a4 5
int len=0; 2348
.
double gpa[3] = {3.7, 3.5, 3.1}, 73ac °
. (gpalo]]
int *ptl"l = dat; (gpa) 73b0 =
*ptrl = 104; 73b4 3.7
(gpali]] *ptrl
ptrl = ptrl + 2; // addr. inc. by 2*4 (2*sizeof(int)) 73b8 —Ceelll M i
(*ptr‘l)++; // increment the dereferenced value 73bc 3.5
P={_gpal2] =
ptri--; // addr. dec. by 1*4 (1*sizeof(int)) 73c0 ;
double *ptr2 = gpa; 73c4|[3-2 4.0 [)
ptr2 += 2; // ptr2 addr. + 2*8 (2*sizeof dbl) 73c8 th |
*ptr2++ = 4.0; // set dereferenced value to 4.0 then 73cc || 2328 73a4| |*ptr2
// increment addr. by 1*8 (1*sizeof(double)) 73do //

// *ptr2 = 2.9; What if?? 73da | 23ee 73c8

R,]S Viterbi

School of Engineering

Pointer Arithmetic and Array Indexing

* Pointer arithmetic and array indexing are really the same!
* Array syntax: data[i]
— Says get the value of the i-th integer in the data array
* Pointer syntax vs. Array syntax: *(data + i) <=> data[i]
— (data + i) compute the address of the i-th value in an array and * operator gets its value

* We can use pointers and array names interchangeably (an array name is a pointer and a
pointer can be treated as an array name and [] applied)

— int data[6] = {10, 11, 12, 13, 14, 15}; // data = 73a0;
— *(data + 4) = 50; // treat data like a pointer and perform data[4] = 50;
— int* ptr = data; // ptr now points at 73a@ too

— ptr[l] = ptr[2] + ptr[3]; // treat ptr like array name (same as data[l]=data[2]+data[3])

| data+1 | | data+2 | data+4

73a0 73a4 73a8 73ac 73b0O 73b4

E data[0] J—p—{ data[1] }p—{ data[2] }—7—{ data[3] }—p—{ data[4] }—
.
ptr[0] ([ptr[1] i ([ptr[2] i [ptr3] ([ptr[4] I

7320 1 ‘
‘ ptr+l \ ‘ ptr+2 \ ptr+4

-1 USCVitqbi .
Arrays vs Pointers

* All 3 methods below perform the same task of initializing the array
— Which do you prefer?

— Remember, your goal is to make your code readable (option 1) but you
should understand all 3.

73a0 73a4 73a8 73ac 73b0o 73b4
dat[0] J=r— dat[1] Fr—{ dat[2] o dat3] 71— datg] F7—{ dat[5]
103 170 104 270 350 360

Common Array Syntax

Explicit pointer arithmetic

"Walking" Pointer

int main()
{
int dat[10];
int *ptrl = dat;
// initialize the array
for(int i=0; i < 10; i++)
{
ptri[i] = ©;
// equivalent to
// dat[i] = ©;
}

// use the array

int main()
{
int dat[10];
int *ptr2 = dat;
// initialize the array
for(int i=0; i < 10; i++)
{
*(ptr2+i) = 0;
}

// use the array

int main()
{
int dat[10];
int *ptr3 = dat;
// initialize the array
for(int i=0; i < 10; i++)
{
*ptr3 = 0;
ptr3++;
}

// use the array

R,]S Viterbi

School of Engineering

Recall: Passing Arrays as Arguments

¢ In funCt|On deCIarat|On / // Function that takes an array
int sum(int data[], int size);
prototype for the formal // or int sum(int* data, int size);
parameter use int sum(int data[], int si
o // or int sum(int* dafn!({ﬁ:%;;;;;\\\\\
— type [] or type * to indicate an { 7420

int total = ©;
for(int i=0; i < size; i++){
total += data[i];

array is being passed

 When calling the function,)
. . return total;
simply provide the name of }
the array as the actual int main()
{
argument int vals[100]; hT/
. /* some code to in: 7420 % vals */
— In C/C++ using an array name int mysum = sum(vals, 100);
. . cout << mysum << endl;
without any index evaluates to 7 IS Ui o AT s
the starting address of the array return ©;

}

(a pointer to the 0" element)

Recall: To access an element in an array, we need 3 pieces of info:
1. Start address of the array
2. Index/offset

3. Type of elements in the array (really the size of that type)

USC Viterbi &2
School of Engineering *

Stack View of Passing Arrays

 Main point: A pointer and an array name are interchangeable!

sum

main

7396 |0.1....99100 i
7400 oL>% |total~
7404 7420 data
7407/ 100 size
Z44 00480294 | "

*(7420+4%)

J=| 500 |=mysum

7420 5
7424 5

5
7816 5
7820 | 00400120

vals[0]

vals[1]

vals[99]

Return
link

// Function that takes an array
int sum(int data[], int size);
// or int sum(int* data, int size);

int sum(int data[], int size)
// or int sum(int* data, int size)
{
int total = ©;
for(int i=0; i < size; i++){
total += data[i]; // *(data+i)
}

return total;

}

int main()
{
int vals[100];
/* some code to .ize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;
// prints sum of all numbers
return 0;

An int*

-1 USC\[itgrbi '
One or Many

. void fl(int* p)
* Strange question: { // does p point to one int

— |s 3240 McClintock Ave. the address of a A IR EITEIA b/ G T

single-family house or a large dormitory }
with many suites?

e We can't know.

// fl1 decrements the integer
* Inthe same way, C/C++ does not // pointed to by p
] .] void f1l(int* p)
differentiate whether a pointer {
. . . * . 1,
points to a single variable or an array |, P
(le it doesn't have additional Syntax) Pointer to a single variable

— It can only be determined based on how // f1 sets the array pointed to

. . . // by p to all zeros
the function uses the pointer (does it void 1(int* p)

treat the pointer as being to an array OR {

to a single value) for(int i=0; i < 10; i++)
. , { pl[i] =05 }
— Good commenting/documentation }

should describe this.

Pointer to an array

e USCViteﬂ,.)i .
const or non-const

. . int main() {
 The const modifier on a variable type const int size = 5;

. . C: // size cannot be modified
means it may not be modified or cize = 6; // Compile Error
changed after being initialized }

* Why would we want that? void fl(int* p, int size)
— Because YOU are your OWN WORST { L
] for(int i=0; 1 < size; i++)
ENEMY when programming! You make { p[i] = @; }
mistakes. The more we can enlist the }
compiler to help us catch mistakes, the Non-Const = "Can Edit"
better
— If our intention is for a variable not to void f1(const int* p, int size)
change, then declare it const. { Viewer -
e A const pointer means we can dereference for(int i=0; i < size; i++) {
the pointer to GET (view) the data but NOT cout << p[i] << endl;
)) p[i] = ©; // compile error
use the pointer to CHANGE (edit) the data }
— Similar to "Can View" vs. "Can Edit" ;

permission on a Google doc. Const = "Can View"

USC Viterbi

School of Engineer

Const or Non-Const Example

* Which parameters of the
functions should be
marked as const?

e Does size need to be
marked const?

— Would it make sense to try
to mark an email
attachment as "view
only"?

— No! Since it is already a
copy

D
Mg‘*r

void init(
// or void init(

{

// or int sum(___

{

}

int data[], int size)
int* data, int size)

for(int i=0; i < size; i++){
cin >> data[i];

int data[], int size)
_____int* data, int size)

int total = ©;

for(int i=0; i < size; i++){
total += data[i]; // *(data+i)

}

return total;

int main()

{

int vals[100];
init(vals, 100); Anint*
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 9;

R,]S Viterbi

School of Engineering

C (not C++) String Function/Library
(#include <cstring>)

 Alibrary of functions was provided to perform operations on
these character arrays representing strings (<cstring> in C++,
<string.h>in C)

— int strlen(const char *dest) / int strlen(const char dest[])

— int strcmp(const char *strl, const char *str2);

Return O if equal, >0 if first non-equal char in strl is alphanumerically larger, <0 otherwise
— char *strcpy(char *dest, const char *src);

— char *strcat(char *dest, const char *src);
e Concatenates src to the end of dest
— char *strchr(const char *str, char c);

Finds first occurrence of character ‘c’ in str returning a pointer to that character or NULL if the
character is not found

https://cplusplus.com/reference/cstring/

