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Recall: Pass-by-Reference Pros/Cons

* Scenario: You write a paper and include a lot of LARGE images. You need
to send it to your teammates. You can

— As a Google doc and simply e-mail the URL or
— Attach the document/file in the e-mail or
 What are the pros of each approach?

* Google Doc

— Less info to send (send link, not all data)

— Reference to original (i.e. if original changes, you’ll see it)
* Email Attachment

— Can treat the copy as a scratch copy and modify freely

File Edit View Insert Format Tools Extensions Help Lastedit was seconds ago

General access

Restricted ~

Only people with access can open with the link




Use Pointers when...

 We need pass-by-reference (as opposed to pass-by-value), either
to:

— Change a variable (or variables) local to one function in some other
function

* Analogy: a Google-doc link with "Can Edit" permission

— Avoid making needless copies of data which wastes time
* Analogy: A Google-doc link with "Can View" permission (think large arrays)

* We need to perform dynamic memory allocation

 We need to access a specific location in the computer (i.e.
hardware devices) [Not covered in this class, but EE 109/CS 356]

— Useful for embedded systems and device programming

O

All of these will be explained in the following slides. |
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Pointer Analogy

* Imagine a set of lockers or safe deposit boxes
each with a number (just like memory locations
have an address)

 There are some boxes with gold jewelry and
others that do not contain gold but simply hold a
piece of paper with another box number written

on it (i.e. a pointer to another box)
 What s stored in one box might be:

Each box has a number to identify it (i.e. an
— [Box 7]: Gold (i.e. data / something valuable like an int, address) and a value inside of it. So do

variables in memory.
double, etc.)

— [Box 9]: The number of another box which contains gold O8 1 |2 - 3 |4 53
(i.e. box 9 holds a pointer-to some other data)

— [Box 16]: The number of another box which contains a 6 11 / 84 97 19 11
number of a box containing gold (i.e. box 16 holds a
pointer-to a pointer-to data) 12 131 14115 169 1 73
[+ The value of (i.e. what is in) one box might be the address of O

* By changing the number in a box (i.e. the value of a pointer), we can

(pointer-to) another box.
have one location refer to many different locations, in succession.
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 But what if rather than gold or other
obviously valuable objects, the "valuable
objects" were simply slips of papers with
numbers.

— Would you be able to distinguish whether a box is
storing data or storing a pointer?

— And if it is storing a pointer, would you know
whether it is pointing at just 1 data element or an
array of data elements?

y 0.11.|2,]3.14 |5

* No! Thisis why we need:

— Pointer types (e.g. int* or char*) to tell us that
what's in this variable is a pointer as well as what 12113114 115116 | 17

kind of data we'll find when we follow
(dereference) the pointer (e.g. int or char).

— To remember context on our own (as the
programmer)

1M 12124 | 77| '3 | 4
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Pointers

e Pointers are variables that store the address of some

other variable in memory

. Add
e More abstractly, pointers are references to other ressw

"things" which can be: /328 || 000060000

— data (i.e. ints, chars, doubles) or 73ac |06e0073b8

— other pointers /3b0 || 086600606
73b4 || 0000873bc

* The concept of a pointer is very common and used in
. . 73b8 108
many places in everyday life
- 73bc
— Phone numbers or mailing addresses are references or H
“pointers” to your physical phone or location /3¢c6 2-2°

— Excel workbook has cell names we can use to reference
the data ( =A1 means get data in Al)

— URLs (www.usc.edu is a pointer to a physical HTML file on
some server) and can be used in any other page to "point
to" USC’s website



http://www.usc.edu/

Prerequisites: Data Sizes, Computer Memory

POINTER BASICS
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e Variable

— You can't use pointers without something to
point to (create a variable of some type, T var)

* Note: We use T as a placeholder for ANY type
* Pointer ( i

— Declare a pointer variable or argument (declare a
variable of type T* pvar)

e Link

[ @ Copylink |
— Generate the pointer/link to the variable using & /
operator (&var)
docs.google.com/al12f7¢
« Dereference (Use) s

el o all &~ |

— Follow the link to view or edit the variable using
the * operator (*pvar) L



C++ Pointer Operators

e 2 operators used to manipulate pointers (i.e. addresses)
in C/C++: & (address-of op) and * (dereference op)

— &<variable> evaluates to the "address-of" <variable>
* Essentially, you get a pointer to a variable by writing &variable

— *<pointer> evaluates to the data pointed to by <pointer>
(data at the address given by <pointer>)

— & and * are inverse operations

« We say & returns the address/reference/link of some value while ,;h

* dereferences the address and returns the value

e &uvariable => address/pointer
e *pointer => variable value

o *(&uvariable) => variable

& = get a B8 unitia_CPP_Expr.pdf &%

®© Preview
m UnitO_FirstDayOverview.pdf <=

€» Open with

I i n k O+ Share
m Unit1b_CPP_ProgramFlow_v2.pdf <% & Getlink

* = follow
the link

docs.google.ccg [al12f7:
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Generating a Pointer

 When a variable is declared, memory is allocated for Address Memory Data
it. Its starting location in memory is its address. 87348
— int x = 30; y="a'
— chary = 'a'; [ p—— ] 73ac ||97 eez)eeee
— double z = 3.75; &z )73bo
— int dat[2] = {103,42}; 73b4 3.75
* To generate a pointer, use the & operator to get the 73b8
address of a variable in C/C++ Jape
(Tip: Read ‘&x’ as ‘address of x’) sco| seatomae
T 73c4 | e400cc33

- &y =>
— &z => Starting [ Individual addresses of ]
address

- each byte
A
— &dat[1] = : '
73ac § 73ad j 73ae j§ 73af
— dat => 73ac ‘97 00 ‘ 00 90\
* Great, but what should we do with these pointers and [Data va'uesbittzred in each]

where should we store them?
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Pointer Variables and their Declaration

e Data variable declarations:

. B . Address Memory Data
int x = 30;
— chary = 'a'; [ variable ] 73a8 _ 30
— double z = 3.75; 73ac ||97 |000000
— int dat[2] = {103,42}; 23b0 i
*  We can now declare pointer variables that don't store data
73b4 3.75
but the addresses of data
« To declare a pointer, include a * after the type [e.g. int¥*, ([dat J73b8
which is read "pointer to (an) int(s)"]. That variable can then 73bc 42

store pointers to (addresses of) the given type (e.g. int
P ( ) & yp ( & ) 73C0O [|00000000

— int *ptrl = &x; // ptrl = 0x73a8
— double* ptr2 = &z; // ptr2 = 0x73b0 73c4 ||00007/3a8

— int* ptr3 = &y; // Error! Type mismatch. 73c8 ||00000000
q 73cc ||000073b0
-
Notes: \_, 73d0 | 00000000
1. Pointers should ONLY store the addresses of variables of its
declared type (int* pointers should only point at ints, not chars) 73d4 | abababab

2. Best to immediately initialize a pointer with the address of some
variable, rather than leave it uninitialized.

3. Where the * is in the declaration (i.e. next to the type or variable
name) does not matter [e.g. int* ptrl ..or.. int *ptrl].

73d8 | abababab
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Dereferencing Pointer Variables

e Data variable declarations:

s _ . Address Memory Data
int x = 30;
— char y = "a'; [ variable ] 73a8 — 30
- double z = 3.75; 73ac |[97|eee000 |
— 1int dat[2] = {103,42},; —{_doublez 77 [y
i - 73be ptr
 We can declare pointer variables that store addresses of other »
i 73b4 || 3-75 2.5
variables
— int *ptrl = &x; // ptrl = @x73a8 ((dat J73b8 103 otr2
— double* ptr2 = &z; // ptr2 = 0x73bo m G- .
P = Gz, P - 73bc 42 35
. i i i —EI -
We. can access the data} whoseiaddress is stored |n*a pointer 23¢0 lop000000 /
variable by dereferencing it using the * operator. *ptr can be
read as, "get/set the data at the address stored in ptr") 73c4 9338
ptr2
— dat[1] = *ptrl + 5; // dat[1] = 35 ] 73c8 || 00000000
use J ]
73cc ||000073bo
_ ptr2 = *ptr2 - 1.25; // z = 2.5 [derEfere"ce

73d0 | 00000000

* It may be confusing but notice the * appears both in the 73d4 | abababab

declaration and in the dereference expression. Context is 73d8 | abababab
important to distinguish. More on the next slide...




* after a type = declare/allocate a pointer variable

*in an expression/assignment = dereference

Declaring a pointer

De-referencing a pointer

char *p

v

X ="*p +1

int* ptr

v

*ptr =5

(*ptr)++

WK

char* pl[10];

v

Helpful tip to understand syntax: We declare a pointer as:
int *ptr because when we dereference it as *ptr, we get an int
char *p is a declaration of a pointer and thus, *p yields a char
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Assigning to Pointer Variables

e Data variable declarations:
Address Memory Data

TNt X =30
— char y = 'a'; 73a8 || 30
j— . V=a
- double z = 3.75; 73ac |[97 |eee000
— 1int dat[2] = {103,42},; 30 —{double z_}
: : . : : : 7
e Declaring pointer variables and setting them with addresses (using &): -
— int *ptrl = &;  // ptrl = @x73a8 73b4 ey \
— double* ptr2 = &z; // ptr2 = @x73b@ (Cdat ]73b8 |23 _ [1]041\ Fptr2
= int dat[1] J=d
* Dereferencing pointer variables (using *) to get data pointed to: 73b 35{(+ptr1
*ptr1
— dat[1] = *ptrl + 5; // dat[1] = 35 2300 2308 ]
»

— *ptr2 = *ptr2 - 1.25; /J/ z = 2.5 I
P P ’ 73c4 || 723be 73b8

 We can change what variable the pointer references by assigning a new
address to it and dereference the pointer as many times as we like 73c8 ||00000000 | |
— ptrl = &dat[1]; 73cc ||000073b0
int a = *ptrl % 10; // a = 5 after exec. 23de @@ee"gges
— ptrl = dat; // why is & not needed?
_ kptrl 4= 1; // dat[e] = 104 73d4 | abababab

— *ptr\z = *ptr\l - *ptr\z; 73d8 abababab
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Skill: Drawing Data Diagrams

 Though painful, it is helpful to draw out relevant data diagrams, especially
when pointers are involved

— Draw a table with a column for each variable (or just a box for each variable)

— Label the column header with the variable name and a made-up address. Use
whatever number is easiest for your address: @100, @500, etc.)

— Annotate the variable values as you evaluate each line of code
DS Malik Textbook: Chapter 13, Question 6 | x@s00 || y@700 |

int x, y; [ variable ] | || |
int *p = &x;
—

int* q = &y;

X = 35; y = 46;

P =0Q,

*p = 78; [ use / dereference]
cout << x << " " << y << endl;

cout << *p << " " << *q << endl;
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Skill: Drawing Data Diagrams (Sol)

 Though painful, it is helpful to draw out relevant data diagrams, especially
when pointers are involved

— Draw a table with a column for each variable (or just a box for each variable)

— Label the column header with the variable name and a made-up address. Use
whatever number is easiest for your address: @100, @500, etc.)

— Annotate the variable values as you evaluate each line of code
DS Malik Textbook: Chapter 13, Question 6 | x@s00 || y@700 |

int x, y; [ variable ] | ?? l[ ?? ]
’ @ m 700

int* q = &y;

X = 35; y = 46; 35 46

P =20, 700
*p = 78; [use/dereference] 78

cout << x << " " <<y << endl; 35 78

cout << *p << " " << *q << endl; 78 78
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Pointer Summary

e To summarize:

int main(int argc, char *argv[])

— We can declare pointer variables to store {
addresses (not data) using the syntax T* int x = 103;
. . * char y = 'a’';
where T is some type (e.g. int *p) s 2 G

— We can get the address of some variable

using the & operator (e.g. &x, &y) int* p = &x;
h ¥ = .
* Most often, this would then be assigned to a char *q = &y;

pointer variable (e.g. p = &x) *p = 42;
— We can dereference a pointer (i.e. follow a cout << *p << endl;
pointer) to get the data from the address it b = 82;
stores by using the * operator
(e.g. cout << *p << endl) cout << *p << endl;
— We can change the address the pointer et B3

stores to have it reference some other }
variable (e.g. p = &z)

 But why do we need them?
— Can't we just access x, y, and z directly?



Prerequisites: Pointer Basics

PASS BY REFERENCE
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Recall: Pass-by-Value

// Prototype

e Each function has its own memory on the the . /
void dec(int);

system stack where all data related to the

function is stored including: int main()

{
— Local variables int y = 3;
. dec(y);
— Arguments to the function coriige v <k @iy ff mEmes
— Return link (where to return) to the calling <
code

* When parameters are passed, a copy is made
of the argument from the caller's area of the
stack to a new location in the callee's area of
the stack (aka pass-by-value)

— This prevents one function from modifying the

variables of another Stack Area of RAM

* But what if we want a function to modify the g 0x7bf0 2 y
ec
data from another? 0x7bf4 | 00400ca0 | Retum
link
* We can use pointers!!! (aka pass-by- 0x7bf8 3 Y
reference main
) 0x7bfc | 00400120 | RGm"
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Pass-by-(Pointer) Reference

// Prototype
void dec(int*);

 We can now pass a pointer to a local
variable from the caller function as an

int main() // caller

argument to the callee function. {
. . int y = 3;
 The pointer argument lives on the stack dec(&y);
of the callee function but can be used (by cout <<y << endli // prints 2
dereferencing it) to access the local }
variable from the caller and modify its void dec(int* ptr) // callee
{
data. *ptr = *ptr - 1; // or (*ptr)--;
* When the callee finishes and returns, the }
pointer argument dies, but the caller will
now see the updated value of its local Stack Area of RAM
variable.
0x7b%0—
* Can you follow the syntax of the code to dec | 7ot ptr
17 x7bf4 00400ca0 Return
the right? *ptr =2 link
-~ O —s1 = 1y
T 1 ox7bfc | 00400120 Returm
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Swap Two Variables — (PB-Value Blank)

. . . #include <iostream>
* C(Classic example of issues with local using namespace std;

variables: void swap2(int x, int y);

— Write a function to swap two variables e R

* Pass-by-value doesn’t work {
] . int x=5,y=7;
— Copy is made of x,y from main and passed swap2(x,y);
to x,y of sawpit cout << " x=" << X;
. . cout << " y=" << y << endl;
— Swap is performed on the copies }
void swap2(int x, int y)
Stack Area of RAM {
int temp = x;
Can you make X =Y;
a memory y = temp;
diagram of swap2 }
what is on the
stack for
swap2()?
0x7bf0 5 X
main 0x7bf4 7 y
0x7bf8 | 00400120 Return
link
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Swap Two Variables — (PB-Value)

##include <iostream>

* Classic example of issues with local B N ——

variables: void swap2(int x, int y);
— Write a function to swap two variables it En
* Pass-by-value doesn’t work {
] . int x=5,y=7;
— Copy is made of x,y from main and passed swap2(x,y);
to x,y of sawpit cout << " x=" << X;
. . cout << " y=" << y << endl;
— Swap is performed on the copies }
void swap2(int x, int y)
Stack Area of RAM {
int temp = x;
0x7be0 5 temp X =Y,
y = temp;
swap2 0x7be4 5 7 X }
0x7be8 7| 5 |y

0x7bec | 004000ca0 | RS

0x7bf0 5 X
main 0x7bf4 7 y

0x7bf8 | 00400120 Return
link
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Swap Two Variables — (PB-Ref Blank)

. . . #include <iostream>
* C(Classic example of issues with local using namespace std;

variables: void swap2(int* x, int* y);

— Write a function to swap two variables e R

* Pass-by-reference (pointers) does work { ¢ ves v
: : : 1Nt X=5,y=/5
— Addresses of the actual x,y variables in main swap2(&x, &y);

are passed cout << " x=" << X;

cout << =" << << endl;
— Use those address to change those physical } Y Y

memory locations void swap2(int* x, int* y)
Stack Area of RAM {
int temp = *x;
0X7be0 5 temp *X = *y;
A *y = temp;
Canyoufillin |gyap2| 0x7be4 X }
the values for x
. 0x7be8 y
andy in
swap2()? 0x7bec | 004000ca0 | RS™"
0X7bf0 5 X
main 0x7bf4 7 y
0x7bf8 | 00400120 Return
link




R, ]S Viterbi

School of Engineering

Swap Two Variables — (PB-Ref)

. . . #include <iostream>
* C(Classic example of issues with local using namespace std;

variables: void swap2(int* x, int* y);

— Write a function to swap two variables e R

* Pass-by-reference (pointers) does work { ¢ ves v
: : : 1Nt X=5,y=/5
— Addresses of the actual x,y variables in main swap2(&x, &y);

are passed cout << " x=" << X;

cout << =" << << endl;
— Use those address to change those physical } Y Y

memory locations void swap2(int* px, int* py)
Stack Area of RAM {
int temp = *px;
* = Xk .
5 tem px= "PY;
P *py = temp;
0x7bf0 pX }
0x7bf4 py
004000ca0 | "Stum

5 ! X

7 S y

0x7bf8 | 00400120 Return
link
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Correct Usage of Pointers

. . . // Computes the product of inl & in2
* Commonly functions will take some inputs and o muil(int inl? int in2);

produce some outputs void mul2(int in1, int in2, int* out);

— We'll use a simple 'multiply' function for now even
though we can easily compute this without a function int main()

: . {
— We could use the return value but let's practice with int wid = 8, len = 5, a;
pointers and say mul() must return void mul2(wid,len, )
] . . cout << "Ans. is " << a << endl;
* Can use a pointer to have a function modify the return 0;
variable of another }

Stack Area of RAM

int mull(int inl, int in2)

] {
0x7be0 8 in1 return inl * in2;
mul | 0x7bed 5 in2 }
0Ox7be8 0x7bf8 out void mul2(int in1, int in2, )
{
0x7bec | 004000ca0 | ReM™ - = inl * in2;
}
0x7bf0 8 wid
main 0X7bf4 B |en

0x7bf8 L3 40 a

0x7bfc | oo4o0120 | Retur
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Correct Usage of Pointers

. . . // Computes the product of inl & in2
* Commonly functions will take some inputs and o muil(int inl? int in2);

produce some outputs void mul2(int in1, int in2, int* out);

— We'll use a simple 'multiply' function for now even
though we can easily compute this without a function int main()

. . {
— We could use the return value but let's practice with int wid = 8, len = 5, a;
pointers and say mul() must return void mul2(wid,len,&a);
) ) ) cout << "Ans. is " << a << endl;
* Can use a pointer to have a function modify the return 0;
variable of another }

Stack Area of RAM

int mull(int inl, int in2)

0x7bel 8 in1 { return inl * in2;
mul | 0x7bed [ s in2 !
0x7be8 0x7bf8 out void mul2(int in1l, int in2, int* out)
Ox7bec | 004000ca0 | RS { *out = inl * in2;
0x7bf0 8 wid }
main | 0x7bf4 5 len

0x7bf8 L3 40 a

0x7bfc | oo4o0120 | Retur
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Pass-by-Reference Template __

ey

— Pass &var in the caller function to create and send a pointer to the function.

 To modify a type T variable named var:
— Set the function to take a T* varptr

— In the calling function, dereference the pointer and assign:
*varptr = value

// here T = int*
void f2(int dat[], int len, int** pptr)
{

int maxidx = 0;
// loop to find the index of max

// here T = double *pptr = &dat[maxidx];
void fl(double* pvar) }

{ *pvar = 3.9; } 700 720

int main() {

int main() { int dat[10] = { .. };

double var; int* ptr; 800

f1(&var); f2(dat, 10, &ptr);

cout << var << endl; cout << "Max: " << *ptr << endl;

return 0; return 0;
} }
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Misuse of Pointers

// Computes the product of inl & in2
int* badmull(int inl, int in2);

 Make sure you don't return a pointer to a
dead variable

* You might get lucky and find that old value int main()

. . {

still there, but likely you won't int wid = 8, len = 5;

int *a = badmull(wid,len);

cout << "Ans. is " << *a << endl;
return 9;

}
Stack Area of RAM

// Bad! Returns a pointer to a var.
// that will go out of scope
int* badmull(int inl, int in2)

0x7be0 40 out ;

i = 7 * 0

badmul1 | 0x7be4 8 in1 ;L‘Zzuﬁ:t&ouirjl in2;
0x7be8 5 in2 }

0x7bec | 004000ca0 | Retum

0x7bf0 8 wid
main 0X7bf4 LN |en
0x7bf8 ’_Ba.0x7be0 a

0x7bfc | oo4o0120 | Retur
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Prerequisites: Pointer Basics, Data Sizes

POINTER ARITHMETIC AND ARRAYS



Review Questions

* The size of an 'int' is how many bytes?

* The size of a 'double' is how many bytes?

* T/F: The elements of an array are stored contiguously in
memory

* In an array of integers, if dat[0] lived at address 0x200,
dat[1] would live at...?

* |f ptr pointed to an int @0x200 what value for ptr++
makes sense?

* |If ptr pointed to a double @0x200 what value for ptr++
makes sense?
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Big Idea: Array Names < Pointers

* Bigidea: Array names and pointers are interchangeable
— An array name is a pointer and a pointer can be used as an array name!

 Why? Because an array name by itself evaluates to:

— An array name is simply a pointer to the 0" element of that data type (i.e.

an int*).
* Given the declaration int dat[10], datis an (type)
* Given the declaration char str[6], strisa (type)

— A pointer (i.e. 1nt* ptr;) can be used as an array name once you point it
to some location (see example below)

int dat[5] = {10,11,12,13,14};

*dat = 1; // array name as ptr: same as dat[@0] = 1;

int *p = dat; // array name as ptr: same as int* p = &dat[Q]
p[1] = p[2]-8; // ptr as array name: same as dat[l]=dat[2]-8

* Thisis possible through pointer arithmetic.
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Pointer Arithmetic

* Logical Progression: Pointers are variables storing addresses => addresses
are just numbers => we can perform arithmetic on numbers => we should
be able to perform arithmetic on pointers!

 We can perform addition or subtraction on pointer variables (i.e.
addresses) just like any other variable. This is known as pointer arithmetic.

* Important Difference: The number added/subtracted is implicitly scaled
(multiplied) by the size of the type pointed to, ensuring the resulting
address points to a valid data item

B &0 &2

73a0 73a4 73a8 73ac 73b0O 73b4
int dat[6]; dat[0] J——_ dat[1] Jr—_ dat[2] }—y—_ dat[3] }—— dat[4]
103 170 104 270 350 360
int* ptr = &dat[2]; T T T T T
73a8

ptrl += <offset>; [ptr—Z] [ptr-l] W




Pointer Arithmetic

* Pointer arithmetic implicit scales the added value based

on the type of pointer
— For an int*, adding +2 really adds +2 * sizeof(int) =+2*4 = 8 so that
the pointer will point 2 integers away
— For a double*, adding +2 really adds +2 * sizeof(double) =+2*8 =16 so
that the pointer will point 2 doubles away

wousie ) IR

73a0 73a8 73b0 73b8 73cO 73c8

|—l gpal0] }—7—_ sgpall] 1 gpal2] }—— gpal3] 7 gpald] }—
double gpa[6]; 3.5 2.9 3.7 3.9 2.6 3.2

double* p2 = gpa+2 T T 73b0 T T T
(=) (]

p2 += <offset>;




Pointer Arithmetic

* Pointer arithmetic implicit scales the added value based
on the type of pointer

— Forachar*, adding +2 really adds +2 * sizeof(char) =+2*1 =2 so that
the pointer will point 2 chars away

m (1) (o2)

7320 73al 73a2 73a3 7334 73a5
|—l gpal0] J—1—_ gpa[l] 1 sgpal2] }——{ gpal3] 71— sgpald] J

char 1ltr[6]; 2 b ¢ d © i

char* p3 = 1tr+2 T T T T T

73a2

EDlEn
p3 += <offset>; m
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Pointer Arithmetic Examples

 The number added/subtracted to the pointer is implicitly

scaled (multiplied) by the size of the type pointed to,
Address Memory Data

ensuring the resulting address points to a valid data item
(Cdat 7330 : [1193 «
. —_—_atl
int dat[] = {163, 5, 1} 73a4 5
int len=0; 73a8
.
double gpa[3] = {3.7, 3.5, 3.1}, 73ac 0
int *ptl"l = dat; (g2 )73b0 —C el 1+
*ptrl = 104; 73b4 3.7 '\
ptrl = ptrl + 2; // addr. inc. by ___ (2*sizeof(int)) J3ps [ \ ik
(*ptr‘l)++; // increment the dereferenced value 73bc 3.5
ptrl--; // addr. dec. by _ (1*sizeof(int)) 73¢c0 :
double *ptr2 = gpa; 73c4 3.1
— I
ptr2 += 2; // ptr2 addr. + ___ (2*sizeof dbl) 73c8 y
*ptr2++ = 4.0; // set dereferenced value to 4.0 then 73cc 7320 | |*ptr2
// increment addr. by  (1*sizeof(double)) 73do /
// *ptr2 = 2.9; What if?? 23d4 73b0
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Pointer Arithmetic Examples

 The number added/subtracted to the pointer is implicitly

scaled (multiplied) by the size of the type pointed to,
Address Memory Data

ensuring the resulting address points to a valid data item
(Cdat }73a0 }@%d [1]@4 ]
. —_—_atl
int dat[] = {163, 5, 1} 73a4 5
int len=0; 2348
.
double gpa[3] = {3.7, 3.5, 3.1}, 73ac °
. (gpalo] ]
int *ptl"l = dat; (gpa ) 73b0 =
*ptrl = 104; 73b4 3.7
(gpali] ] *ptrl
ptrl = ptrl + 2; // addr. inc. by 2*4 (2*sizeof(int)) 73b8 —Ceelll M i
(*ptr‘l)++; // increment the dereferenced value 73bc 3.5
P={_gpal2] =
ptri--; // addr. dec. by 1*4 (1*sizeof(int)) 73c0 ;
double *ptr2 = gpa; 73c4|[3-2 4.0 [)
ptr2 += 2; // ptr2 addr. + 2*8 (2*sizeof dbl) 73c8 th |
*ptr2++ = 4.0; // set dereferenced value to 4.0 then 73cc || 2328 73a4| |*ptr2
// increment addr. by 1*8 (1*sizeof(double)) 73do //

// *ptr2 = 2.9; What if?? 73da | 23ee 73c8
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Pointer Arithmetic and Array Indexing

* Pointer arithmetic and array indexing are really the same!
* Array syntax: data[i]
— Says get the value of the i-th integer in the data array
* Pointer syntax vs. Array syntax: *(data + i) <=> data[i]
— (data + i) compute the address of the i-th value in an array and * operator gets its value

* We can use pointers and array names interchangeably (an array name is a pointer and a
pointer can be treated as an array name and [ ] applied)

— int data[6] = {10, 11, 12, 13, 14, 15}; // data = 73a0;
— *(data + 4) = 50; // treat data like a pointer and perform data[4] = 50;
— int* ptr = data; // ptr now points at 73a@ too

— ptr[l] = ptr[2] + ptr[3]; // treat ptr like array name (same as data[l]=data[2]+data[3])

| data+1 | | data+2 | data+4

73a0 73a4 73a8 73ac 73b0O 73b4

E data[0] J—p—{ data[1] }p—{ data[2] }—7—{ data[3] }—p—{ data[4] }—
.
ptr[0] ([ ptr[1] i ([ ptr[2] i [ ptr3] ([ ptr[4] I

7320 1 ‘
‘ ptr+l \ ‘ ptr+2 \ ptr+4
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Arrays vs Pointers

* All 3 methods below perform the same task of initializing the array
— Which do you prefer?

— Remember, your goal is to make your code readable (option 1) but you
should understand all 3.

73a0 73a4 73a8 73ac 73b0o 73b4
dat[0] J=r— dat[1] Fr—{ dat[2] o dat3] 71— datg] F7—{ dat[5]
103 170 104 270 350 360

Common Array Syntax

Explicit pointer arithmetic

"Walking" Pointer

int main()
{
int dat[10];
int *ptrl = dat;
// initialize the array
for(int i=0; i < 10; i++)
{
ptri[i] = ©;
// equivalent to
// dat[i] = ©;
}

// use the array

int main()
{
int dat[10];
int *ptr2 = dat;
// initialize the array
for(int i=0; i < 10; i++)
{
*(ptr2+i) = 0;
}

// use the array

int main()
{
int dat[10];
int *ptr3 = dat;
// initialize the array
for(int i=0; i < 10; i++)
{
*ptr3 = 0;
ptr3++;
}

// use the array
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Recall: Passing Arrays as Arguments

¢ In funCt|On deCIarat|On / // Function that takes an array
int sum(int data[], int size);
prototype for the formal // or int sum(int* data, int size);
parameter use int sum(int data[], int si
o // or int sum(int* dafn!({ﬁ:%;;;;;\\\\\
— type [] or type * to indicate an { 7420

int total = ©;
for(int i=0; i < size; i++){
total += data[i];

array is being passed

 When calling the function, )
. . return total;
simply provide the name of }
the array as the actual int main()
{
argument int vals[100]; hT/
. /* some code to in: 7420 % vals */
— In C/C++ using an array name int mysum = sum(vals, 100);
. . cout << mysum << endl;
without any index evaluates to 7 IS Ui o AT s
the starting address of the array return ©;

}

(a pointer to the 0" element)

Recall: To access an element in an array, we need 3 pieces of info:
1. Start address of the array
2. Index/offset

3. Type of elements in the array (really the size of that type)
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Stack View of Passing Arrays

 Main point: A pointer and an array name are interchangeable!

sum

main

7396 |0.1....99100 i
7400 oL>% |total~
7404 7420 data
7407/ 100 size
Z44 00480294 | "

*(7420+4%)

J=| 500 |=mysum

7420 5
7424 5

5
7816 5
7820 | 00400120

vals[0]

vals[1]

vals[99]

Return
link

// Function that takes an array
int sum(int data[], int size);
// or int sum(int* data, int size);

int sum(int data[], int size)
// or int sum(int* data, int size)
{
int total = ©;
for(int i=0; i < size; i++){
total += data[i]; // *(data+i)
}

return total;

}

int main()
{
int vals[100];
/* some code to .ize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;
// prints sum of all numbers
return 0;

An int*
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One or Many

. void fl(int* p)
* Strange question: { // does p point to one int

— |s 3240 McClintock Ave. the address of a A IR EITEIA b/ G T

single-family house or a large dormitory }
with many suites?

e We can't know.

// fl1 decrements the integer
* Inthe same way, C/C++ does not // pointed to by p
] . ] void f1l(int* p)
differentiate whether a pointer {
. . . * . 1,
points to a single variable or an array |, P
(le it doesn't have additional Syntax) Pointer to a single variable

— It can only be determined based on how // f1 sets the array pointed to

. . . // by p to all zeros
the function uses the pointer (does it void 1(int* p)

treat the pointer as being to an array OR {

to a single value) for(int i=0; i < 10; i++)
. , { pl[i] =05 }
— Good commenting/documentation }

should describe this.

Pointer to an array
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const or non-const

. . int main() {
 The const modifier on a variable type const int size = 5;

. . C: // size cannot be modified
means it may not be modified or cize = 6; // Compile Error
changed after being initialized }

* Why would we want that? void fl(int* p, int size)
— Because YOU are your OWN WORST { L
] for(int i=0; 1 < size; i++)
ENEMY when programming! You make { p[i] = @; }
mistakes. The more we can enlist the }
compiler to help us catch mistakes, the Non-Const = "Can Edit"
better
— If our intention is for a variable not to void f1(const int* p, int size)
change, then declare it const. { Viewer -
e A const pointer means we can dereference for(int i=0; i < size; i++) {
the pointer to GET (view) the data but NOT cout << p[i] << endl;
) ) p[i] = ©; // compile error
use the pointer to CHANGE (edit) the data }
— Similar to "Can View" vs. "Can Edit" ;

permission on a Google doc. Const = "Can View"
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Const or Non-Const Example

* Which parameters of the
functions should be
marked as const?

e Does size need to be
marked const?

— Would it make sense to try
to mark an email
attachment as "view
only"?

— No! Since it is already a
copy

D
Mg‘*r

void init(
// or void init(

{

// or int sum(___

{

}

int data[], int size)
int* data, int size)

for(int i=0; i < size; i++){
cin >> data[i];

int data[], int size)
_____int* data, int size)

int total = ©;

for(int i=0; i < size; i++){
total += data[i]; // *(data+i)

}

return total;

int main()

{

int vals[100];
init(vals, 100); Anint*
int mysum = sum(vals, 100);
cout << mysum << endl;

// prints sum of all numbers
return 9;
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C (not C++) String Function/Library
(#include <cstring>)

 Alibrary of functions was provided to perform operations on
these character arrays representing strings ( <cstring> in C++,
<string.h>in C)

— int strlen(const char *dest) / int strlen(const char dest[])

— int strcmp(const char *strl, const char *str2);

Return O if equal, >0 if first non-equal char in strl is alphanumerically larger, <0 otherwise
— char *strcpy(char *dest, const char *src);

— char *strcat(char *dest, const char *src);
e Concatenates src to the end of dest
— char *strchr(const char *str, char c);

Finds first occurrence of character ‘c’ in str returning a pointer to that character or NULL if the
character is not found


https://cplusplus.com/reference/cstring/

