School of Engineering

CS103 Unit 1d — Arguments
Pass-by-Value and Pass-by-
Reference

Mark Redekopp

School of Engineering

PASS-BY-VALUE, LOCAL VARIABLES,
AND SCOPE

Motivating Question

 What will this code print?

void dec(int);

int main()

{
int y = 3;
dec(y);
cout << y << endl;

return 0;

¥

void dec(int y)
{

¥

y--5

. USC Viterbi.

School of Engine

Argument Passing (Pass-by-Value)

e Passing an argument to a function makes a copy of e
the argument
— In fancy CS-lingo, we call this pass-by-value /
e Pass-by-value is like e-mailing an attached 74

\

document Arguments

— You still have the original on your PC

— The recipient has a copy which she can modify, but it will
not be reflected in your version

Retu rn
value

e Communication is essentially one-way

— Caller communicates arguments to callee, but these are
copies.

— Any processing the callee does is not visible to the caller

— The only communication back to the caller is via a return callee()
value.

. USC Viterbi

Pass by Value (1)

* Fact: Function arguments/parameters act like
local variables to that function

— They are only in scope (only live) in the function {...}
(curly braces) and then get deallocated.

void dec(int);

* When arguments are passed a copj of the actual int main()
argument value (e.g. 3) is given to the function's ¢ int y = 3;
input argument dec(y);

— So, the function is operating on a copy and that EZEEJ](J << endl;
copy will die when the function ends! } ’
void dec(int y)
{
V==
y > }
y
dec()

- 1] USC\{lFeErbl
Pass by Value (2)

void dec(int);
int main()

 Wait! But they have the same name, 'y’ b y = 3;

_ e S, dec(y);
What's in a name...Each function is a separate cout << y << endl;

entity and so two 'y' variables exist (one in main return o;

and one in decrement it) \},oid dec(int y)

— The only way to communicate back to mainisvia |1

y=-3
return }
— Try to change the code appropriately
* Main Point: Each function is a completely [deciint);
separate "sandbox" (i.e. is isolated from (o
other functions and their data) and copies YT s
of data are passed and returned between TS G< 7 66 Gl
u 5
them }
____dec(int y)
{
y--;

—————— (5 tcrbi
Formals and Actuals (1)

#include <iostream>
* Formal parameters, nl and n2 using namespace std;
— Placeholder names that will be used internally to the function

to refer to the values passed (Similar to how generic
placeholders/titles used in contracts like "CEQ" or "professor"

that will be assigned or replaced real value) Average
* Actual parameters, x and y ot |
— Actual values to be passed (i.e. the actual values to be n2: | |
substituted for the placeholders ("Jeff Bezos", "Mark")
— A copy is made and given to function
double z;

cout << "AVG is " << z << endl;

z = avg(x, 2);

XA\ A/A
y
Actuals — 6‘ ‘9

}
Formals — 1 A M n 7.5
Each type is a "different” shape (int = triangle,

return val double = square, char = circle). Only a value of
that type can "fit" as a parameter..

cout << "AVG is " << z << endl;

return 0;

avg()

USC Viterbi -+
Formals and Actuals (2)

* Formal parameters, nl and n2 Average
— Placeholder names used inside the function nl: |]
* Actual parameters #include <iostream> i In
using namespace std;

— Actual values, 6 and 9 passed to n1 and n2, on the first call

q . .
— Actual values, x and 2 passed to n1 and n2, on the second °
call
double nl + n2;

A copy is made and given to function

}
int main()
2

Actuals — 6
int xt6, y = 9; double z;

zZ = 5
Formals — n1A AnZ 30 cout < \"AVG &
‘Z = avg(x, 2);

‘ _ cout << "AVG is " << z << endl;

return val return 0;

n2)

Y << z << endl;

avg()

Each type is a "different” shape (int = triangle, char = square,
double = circle). Only a value of that type can "fit" as a parameter.

. USC V1terb1.

School of Engine

Pass-by-Value & Pass-by- Reference

 What are the pros and cons of emailing a
LARGE document by:
— Attaching it to the email

— Sending a link (URL) to the document on
some cloud service (etc. Google Docs)

* Pass-by-value is like emailing an
attachment
— A copy is made and sent

* Pass-by-reference means emailing a link
to the original

— No copy is made and any modifications by
the other party are seen by the originator

USC Vlterbl.

School of Engine

Arrays and Pass-by-Reference

caller() caller()

e Single (scalar) variables
are passed-by-value in @
C/C++ /

— Copies are passed

Scalar
(single)

— Like email attachments arqument

L5
* Arrays are passed-by- \ Rféﬁﬁg

Argument

g

— Like a link to a shared doc callee) callee()

reference

— Links (addresses) are
passed

. USC Viterbi

School of Engineering

Passing Arrays As Arguments

Syntax:

— Step 1: In the prototype and
function definition:

* Put empty square brackets []
after the formal parameter name
if it is an array
(e.g.int data[]) ..OR..

e Putan * between the type and
formal parameter name (e.g. int*
data)

 We'll prefer int data[] for now
but int* data is JUST AS VALID
and we'll learn more about it
when we cover pointers)
— Step 2: When you call the
function, just provide the name
of the array as the actual

parameter

// Prototype
int init(int data[], int max_size);

int main()
{
int vals[100];
int len = init(vals, 100);
// some code to process the input
// in the vals array
for(int i=0; i < len; i++) {
cout << vals[i] << endl;

}

return 0;

}

int init(int data[], int max_size)
{
int i=0, num;
cin >> num;
while(i < max_size && num != -1) {
data[i] = num;
i++;
cin >> num;

}

return i;

-] USCViterbi
Pass-by- Value / Reference

(,;1nc1ude <iostream>
#include <cmath>
using namespace std;

// Function prototypes

int initScalarInt();

void initArrayOfInts(int x[], int len);

void printVals(int x1, int x2[], int x2len);

int initScalarInt()
{

}

return 42;

// Set all array elements to 42
void initArrayOfInts(int x[], int len)
{
for(int i=0; i < len; i++){
x[1] = 42;
}

School of Engineering

{

}

{

\J

/// Function definitions \

int main()

void printvals(int x1,

int x1;
int x2[5];

// Print initial values
cout << "Before setting"
printVals(x1, x2, 5);

<< endl;

// Set values
x1 = initScalarlInt();
initArrayOfInts(x2, 5);

// Print values after they should have been set
cout << "After setting" << endl;
printVals(x1l, x2, 5);

return 0;

int x2[], int x2len)

cout << "X1: " << x1 << endl;
cout << "X2: ";
for(int i=0; i < x2len; i++) {

cout << x2[1i] <« ;

}

cout << endl;

School of Engineering

Passing arrays to other functions

ARRAYS AS ARGUMENTS AND
ACCESSING ELEMENTS IN MEMORY

. USC Viterbi

School of Engineering

But Why Are Arrays Pass-by-Reference?

// Function that t

ray

* If we used pass-by-value, then we'd have to it sl deeagly dnt slze)y
make a copy of a potentially HUGE amount int sum(int daTal], int size)
of data (what if the array had a million U s ol =

elements) for(int i=0; i < size; i++){
_) total += data[i];
* To avoid copying vast amounts of data, we }
. return total;

pass a link }
int main()
{

. int vals[100];
mam() /* some code to 74204iefize vals */

int mysum = sum(vars, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

A

sum
0 return val

. USC Viterbi

School of Engineering

So What Is Actually Passed?

// Function that t
int sum(int de*

ray
], int size)\

 The "link" that is passed is just the starting 7420
. . int sum(int data[], int size)
address of (pointer to) the array in memory {
int total = ©;
(e'g' 7420) for(int i=0; i < size; i++){
* Once the function has the start address , total += data[i];
and the type, it will produce its own index } return total;
values and be able to access the array in
the caller's memory ?“t main()

int vals[100];
/* some code to 742042fize vals */
int mysum = sum(vars, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

main()

7420 7516
[0] [99]

(2 [o][2]

vals

GO access an element in an array, we \

}
data
need 3 pieces of info:
A 1. Start address of the array
2.

Index/offset

3. Type of elements in the array
k (really the size of that type))

sum()

return val

. USC V1terb1.

School of Engine

Arrays And Pass-by-Reference

* Arrays are passed-by-reference

. void init(int data[], int size);
— Links (addresses) are passed nde 0] [2 . 9]
. int main() vals: 2l alalala
* These links are actually memory { S Sl el Ml Bl Mt
addresses where the array starts. int vals[10];
_ _ init(vals, 10);
* Using these addresses, any function cout << vals[2] << endl;
can go to those locations and modify 0 prImiE =
return 0;
the data (array) from another }
function
void init(int nums[], int size)
— ThUS, Changes to the array by a { // nums is really a link to vals
. L. for(int i=0; i < size; i++){
function are visible upon return to nums[i] = -1;
// changing vals[i]
the caller)
— In this example, nums and vals)

refer to the same array

- /] USCVitgrbi
Strange Question

e The first house on the on the block
of a street has address 7420.

e How many houses are on the block?

* Look at the memory to the right. An
array starts at address 7420. How
many elements are in that array?

This Photo by Unknown Author is licensed under CC BY-NC

 Having the start address doesn't Address Memory Data
allow us to know how big the array 7412 | al84beef 07818821
IS. (Garrav) 7420 | 5621930c e400cc33

7428 | al84beef 07818821

. 7436 | 5621930c e400cc33
 We must also track / pass the size!

https://ggwash.org/view/67904/why-dc-has-so-many-rowhouses-and-how-theyre-different-from-townhouses
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

. USC Viterbi

School of Engineering

Arrays in C/C++ vs. Other Languages

. . . // Function that takes an array
* Notice that if sum() only has the start address it int sum(int data[], int size);

would not know how big the array is int sum(int data[], int size)

* Unlike Java or other languages where you can {
call some function or access some property to i?,ﬁ(ﬁﬁiiz;ei < size; i++){
give the size of an array, C/C++ require you to total += data[i];
track the size yourself in a separate variable ietum total;
and pass it as a secondary argument }

int main()

{
int vals[100];

/* some code to initialize vals */
int mysum = sum(vals, 100);

7420 7516)0 cout << mysum << endl;
[0] [99] \\\\\\\\\\\ﬁ§ // prints sum of all numbers

! n(Q return 0;

vals

return val

main()

sum()

Understanding how functions utilize the stack area of computer memory

PASSING ARGUMENTS: A DEEPER
LOOK

Memory Organization

32-bit address range (0x@ to @xffffffff) Memory (RAM)

Layout of Program

— Note Ox indicates a hexadecimal number

OxXFFFFFFFf

Code usually sits at lower addresses

Mapped I/0

Global variables/data somewhere after code

Heap: Area of memory that can be allocated
and de-allocated during program execution (i.e.
dynamically at run-time) based on the needs of
the program

— More in a few lectures

0x10000000

Stack (our focus): Memory for all information
related to each running instance of a function
— Arguments to the function

0x00000000

— Local variables
— Return link (where in the code to return)

. USC Viterbi

Mapping of Info to Memory

fi;include <iostream>
#include <algorithm>
#include <cmath>

using namespace std;
int timesCalled =

cin >> n; =~

int res”= factorial(n);
cout << res << " "
return 90;

-

0;‘\// global variable

S
NS
int factorial(int n) D
{ NS
. . 1S
int -F - :!-) --------- \\
for(int i = 1;_1 <= n; 1++) (=
F k= i e ————
}
timesCalled++; -
- -
return f; - -
} -—""—‘ -
- -
. . - -
int main() { _-=" "
int n; =~ _-="

<< timesCalled << endl;

~

School of Engineering

Memory (RAM)
Layout of Program

_ OXFFFFFFFF

Oxc0000000

©x10000000

Mapped I/O

Stack
III!!III

Heap

Global
Data

©x00000000

Understanding the Stack and Pass-by- Valure

// Prototype
void dec(int);

Each program allocates an area of memory
known as the system stack where all data

related to the function is stored including: int main()

{
— Local variables inty = 3;
: dec(y);
— Arguments to the function couthe< y << endl;

— Return link (where to return) to the calling
code
* Each time a function is called, the computer
allocates memory for that function on the
top of the stack and creates a link for where
to return

* When a function returns/ends, that memory Stack Area of RAM

is deallocated (destroying all arguments and Oxbfo 2
local variables) and control is returned to the dec Y
function now on top

Oxbf4 | 00400ca0 | Retum

0xbf8 3 y

Oxbfc | oo400120 | Retum

USC Viterbie22
Understanding the Stack and Pass-by- Value

* Each program allocates an area of memory // Prototype
void dec(int);
known as the system stack where all data
related to the function is stored including: ?“t main()
— Local variables int y = 3;
=] d ;
— Arguments to the function Zout fi(i) < Emifls
— Return link (where to return) to the calling < return 0;
code }
e Each time a function is called, the computer ?{“t dSEE 1)
allocates memory for that function on the y--3
top of the stack and creates a link for where y return y;
to return
 When a function returns/ends that memory is
deallocated (destroying all arguments and Stack Area of RAM
local variables) and control is returned to the o0 2 [—_]
function now on top dec | y 5>
0xbf 004000can__R|‘,:;&
2
oxbfeN] o~ y
T 1 oxbfc | 00400120 Reiurm

USC ViterbiC*2
School of Engineering *

Another Example

Each program allocates an area of memory known as
the system stack where all data related to the
function is stored including:

— Local variables

— Arguments to the function

— Return link (where to return) to the calling code

Stack Area of RAM

— Oxbeo 6 n1
avg Oxbe4 9 n2
Oxbe8 15 sum

Oxbec | oo0400ca0 | "G LI

0xbf0 6 .

main OXtﬂﬂ- y
0xbf8 | 4 Bj 73 5

Oxbfc | oos00120 | Retum

#include <iostream>
using namespace std;

double avg(int n1, int n2); // Prototype

int main()

{
int x=6, y = 9; double z;
z = avg(x,y);
cout << "AVG 1is " << z << endl;
z = avg(x, 2);
cout << "AVG 1is " << z << endl;
return 0;
¥
double avg(int nl, int n2)
{
double sum = nl + n2;
return sum/2.0;
¥

USC ViterbiC*22
School of Engineering *

Scope and Stack Example

The scope of local variables and arguments are only
for the lifetime of the function in which they live

One function cannot access the local variables of
another

Oxbe8
cout
Oxbec 00400e38 Rﬁﬂ?
Oxbe8 7.
printAv ° i,
Oxbec 00400d54 Rﬁﬁ?
0xbe0 6 n1
avg Oxbe4d 9 n2
Oxbe8 7.5 sum

Oxbec | 00400ca0 | Retum

0xbf0 6 x

main 0be4 y
0xbf8 | 4 Bj 73 2

Oxbfc | oo400120 | Retum

#include <iostream>
using namespace std;

double avg(int n1, int n2); // Prototype
void printAv(double x); // Prototype

int main()

{
int x=6, y = 9; double z;

z = avg(x,y);

z avg(x, 2);

return 0;

}

double avg(int nl, int n2)

{
double sum = (nl + n2)/2.0;

printAv(sum);
return sum;

}

void printAv(double av)

{
}

cout << "Average is " << av << endl;

. USC Viterbi

School of Engineering

A Quick Tangent: Array Element Addresses

Consider a train with many copies of the same car
— The "0O™" car starts at point A on the number line
— Each car is 5 meters long

* Write an arithmetic expression for where the i-th car is
located. (At what meter on the number line does it start?) \ J
* Suppose an array of integers starts at memory address A, (]
write an expression for where the i-th integer starts? .)
* Suppose an array of doubles starts at memory address A,)
write an expression for where the i-th double starts? L)

- O

Formula for address of i-th element:

oth car 1st car 2" car

\ _J : | | >

A A+5 A+10

. USC Viterbi

School of Engineering

Formula for Addressing Array Elements

Assume a 5-element int array

— int x[5] = {8,5,3,9,6};
Fun Fact 3 (after Unit 0's Fact 1 & 2): Using the
name of an array by itself (e.g. x) w/o square

brackets, evaluates to the starting address in
memory of the array (i.e. address of 0" entry).

When you access x[2], the CPU uses x (to know
the starting address) and adds the product of the
index, 2, times the size of the data type (i.e. int=4
bytes)

— x[2] =>int. @ address 7400 + 2*4 = 7408

— X[3] =>int. @ address 7400 + 3*4 = 7412

— Xx[1] @ start address of array +i * (size of int)

Recall: C/C++ does NOT perform bounds checking to
stop you from attempting to access an element
beyond the end of the array

— X[6] =>int. @ address 7400 + 6*4 = 7424 (Garbage!!)

Address Memory Data
= X[0] ey X[1] e
7400 8 5
—f X[2] e X[3] jee
7408 3 9
x[4]
7416 6

cdcdabab

7424 | al84beef | feedface

ﬁo access an element in an array, we need O

3 pieces of info:
1. Start address of the array
2. Index/offset

3. Type of elements in the array (really the
size of that type)

\Eormula: start_addr + i*data_size Z

®
/Fun Fact 3: If you use the name of an array __
(e.g. x) w/o square brackets it will evaluate to
the starting address in memory of the array
(i.e. address of Ot entry)
Fun Fact 3b: Fun Fact 3 usually appears as one

\of the first few questions on the midterm.)

. USC Vlterb1.

School of Engine

Array Elements vs. Array Names

* In C/C++ using an array name
without any index evaluates to
the starting address of the

array
 Example:
— vals[@] yields data
— vals yields an address

Index: [o] [1] [2]

(3]

[4]

vals @ 7 4 9
int main() (0x7420)

{
int vals[5] = {7,4,9,2,3};

cout << vals[@] << endl;
// prints 7
cout << vals << endl;
// prints
return 0;

}

. USC Viterbi

Recall: Passing Arrays

// Function that t
int sum(int de*

ray
], int size)\

 The "link" that is passed is just the starting 7420
. . int sum(int data[], int size)
address of (pointer to) the array in memory {
int total = ©;
(e'g' 7420) for(int i=0; i < size; i++){
* Once the function has the start address , total += data[i];
and the type, it will produce its own index } return total;
values and be able to access the array in
the caller's memory ?“t main()

int vals[100];
/* some code to 742042fize vals */
int mysum = sum(vars, 100);
cout << mysum << endl;

// prints sum of all numbers
return 0;

main()

7420 7816
[0] [99]

(2 [o][2]

vals

GO access an element in an array, we \

}
data
need 3 pieces of info:
A 1. Start address of the array
2.

Index/offset

3. Type of elements in the array
k (really the size of that type))

sum()

return val

USCViterbi’@
School of Engineering *

Stack View of Passing Arrays

* The function receives the starting address of the array which it
can use along with the type (e.g. int) and index to access the
appropriate values from main's stack area of memory.

void init(int data[], int size);
int sum(int data[], int size);
2400 o1 99100 i ?nt main()
init 7404 7420 data int vals[100], mysum = ©O;
7407/ 100 size init(vals, 100);
) oo | i e el e
_‘ﬁ 0 mysum return 0;
7420 ?2? | S5 | vals[0] U
7424 22| 5 | vals[1] void init(int data[], int size)
ardl { for(int i=0; i < size; i++){
main | 7816 [22| 5 |vaisjoo] , e
7820 | 00400120 | "G }

USCViterbi’@
School of Engineering *

Stack View of Passing Arrays

* The function receives the starting address of the array which it
can use along with the type (e.g. int) and index to access the
appropriate values from main's stack area of memory.

void init(int data[], int size);
7396 oajl&s.mo i int sum(int data[], int size);
500
7400 0 total ~ int main()
sum | 7404 7420 data {
int vals[100], mysum = O;
740 100 size
741 Return init(vals, 100);
7420+4"] 00480294 link mysum = sum(vals, 100);
cout << mysum << endl;
741 0| 500 mysum Y
1 ;
74204 151 | vais[o) , e 9
7424 | 5 i vals[1] int sum(int data[], int size)
t {
: S : int total = ©;
. 7816 I H for(int i=0; i < size; i++){
main : B 1 vals[99] total += data[i];
7820 | 00400120 | "G }
return total;
}

. USC Viterbi

School of Engineering

Why Empty Brackets

Why don't we just supply the array size in the formal argument?

— Now we can only process arrays of size 100. We'd like our functions to be more

general and handle any size array

— C/C++ doesn't do bounds checking anyway, so what good would writing 100 be?

7396 [0.4,,99.100] |
7400 oL>% |total~

cum | 7404 7420 data
740 100 size
741 00480294 | "t
741€l\A 500 | | mysum
7420 5 vals[0]
7424 5 vals[1]

5

main | 7816 5 vals[99]

7820 | 00400120 | "ot

int sum{int data[1e@],| int size)

int sumI?nt data[l@@]} int size);
{

int total = 0;

for(int i=0; i < size; i++){
total += data[i];

}

return total;

}

int main()
{
int vals[100];
/* some code to initialize vals */
int mysum = sum(vals, 100);
cout << mysum << endl;
// prints sum of all numbers
return 0;

. USC Viterbi

School of Engineering

(Lack of) Array Bounds Checking&

e C++ does NOT bounds check the index used to access an element

It will simply treat all of memory as part of the array (i.e. larger positive indices go
past the end of the array while negative offsets are before the array start)

Thus, allowing you to read and write data you shouldn't (including variables from
your own function or another function since local variables live on the stack)

This issue is a common exploit by hackers (more in future courses like CS 356)

int f1()

{
int dat[4], x=0;

for(int i=0; i <= 4; i++){

cin >> dat[i]; // 9, 4, 3,
}
// using i=4 overwrites 'x'
cout << x << endl;

// 1000 would print, not 0.
cout << dat[x] << endl;

// likely segmentation fault
return 0;

7,

1000

1

prev

7416 | 0.1.2.3 4 i

7420 9 dat[0

7424 4 dat[1]

7428 3 dat[2]

7432 7 at[3lyat[1000
7436 | g% |

7440 | 00400120 | "ot

7444 2 var

7448 | 00c80a94 | "o

link $

Array Summary

* Arrays must be declared with a FIXED size (cannot use a variable
for its length)
— GOOD: int data[50];
— BAD: int data[n];

» After declaring an array, C/C++ only "remembers" the starting
address of the array and the type of data it holds (to know the
data size)

— Which is all it needs to know to access any element using the formula:
start_addr + i*data_size

e C/C++do NO bounds checking

— Will simply apply the formula above to WHATEVER index you provide or
calculate

— Most common source of a program crash (and also security vulnerabilities).
If your program crashes in CS 103, suspect a bad array access

Using arrays as a lookup table

LOOKUP TABLES

Motivation and Approachesc

Problem Statement: Given an input,
X, convert it to an output using some
function, f(x)

Possible approaches

— Use an arithmetic relationship, when the
relationship can be easily generalized

— Break it into cases with if statements
when there are a reasonable number of
cases

What if there is little pattern or many
cases?

Consider use of an array as a
"look-up table"

f(x):

f(x):

x — f(e) —f(x)

0

1

[

f(x)= , if]

f(x) = __, otherwise

X:

f(x):

0

4

. USC Viterbi

Arrays as Look-Up Tables

School of Engineering

* Look-up Table Idea: Store pre-computed results in an array and
then "look-up" the desired result using the input as the array index

e (Can extend this to process many inputs (an array of inputs)

— Suppose an instructor with 8 students gives a quiz worth 10 points and we
use the customary (>90% = A, 80% =B, 70% = C, 60% = D, <60% = F) and we
want to map the points to the letter grade. How would you do it?

X: 0|12 |3 |4(5

int main() {
f(x): 4 1 0 2 5 3 int scores[8] = {9,7,10,9,8,4,6,8};
char grades[11] =

int main() {"F'S"F','"F',"F','F','F,'DY, "€, PBY, TAT, TAT)
{ for(int i=0; i < 8; i++){

int myf[] = {4, 1, 0, 2, 5, 3}; // output the letter grade for each score

int x; cout << "Score: " << scores[i] << " => "

cin >> x;

cout << myf[x] << endl; << "Grade: " <«

return 0; << endl;
} }

. . return 9;

Problem from Previous Slide } Grade Mapping Problem

School of Engineering

C-STRINGS, COUT, AND CIN

. USC Viterbi

School of Engineering

Character Arrays and Strings (1)

Recall that in C/C++ string constants (the
text in between " ") are just character
arrays

— Each character consumes 1 element in
the array

— Ends with the null character (e.g. O
decimal or '\0' ASClII)
This approach of using an array of
char's to store a string is referred to
as a C-String because there was no
string typein C (i.e. before C++)

Addr: 520 521 522 523 524 525 526
Index: [0] [1] (2] [3] (4] [5] [6]
str2: 'C' g 1 1 '0' 13 l\ol

Computer Memory

#include <string>
using namespace std;
int main()

{

}

char stri[3] = {'C', 'S"',
// For char arrays
char str2[7] = "CS
/* Initializes the

'\@"};
easier to use ""
103"

array to "CS 103"*/

// prints "CS"
// prints "CS 103"

cout << strl << endl;
cout << str2 << endl;

str2[5] = '4";

cout << str2 << endl; // prints "CS 104"

cin >> str2; // get a new string from
// the user (suppose user
// types "hello"

cout << str2;

Program Output:

CS ‘iII

CS 103
CS 104
hello

. USC Viterbi

School of Engineering

Character Arrays and Loops

How many things can a computer do at
a time?
To printout a string/character array,

we'd have to print one character at a
time!

But C/C++ treats character arrays
specially. cout has aloop inside its
code to print strings/character arrays.

Though not shown, cin also has a loop
inside to input a string.

We say cout and cin have a special
relationship with character arrays.

Addr: 520 521 522 523 524 525 526
Index: ~ [0] [1] [2] [3] (4] [5] [6]

strl: lcl Isl 1 l1l lol l3l I\ol

Computer Memory

#include <string>
using namespace std;
int main()
{
char strl[7] = "CS 103"
/* Initializes the array to "CS 102"*/

// Usually in C/C++ we must use a loop to do
// many operations
for(int i=0; str[i] != '"\@'; i++) {

cout << str[i];

}

cout << endl;

// but cout has its own loop so you don't
// have to write the loop above but just

// what you see below.

cout << strl << endl; // prints "CS 102"

Program Output:

CS 103 “

CS 103

I {5 Viterb{
cout's Special Relationship with Character-

Arrays

To print out all elements of any array

type OTHER than a character array (i.e.

int, double, bool, etc.) you must
write your OWN loop (i.e. because
computers can only do 1 thing at a

time)

But for character arrays, you can just
give cout the name of the array and it
will use its own INTERNAL loop to print
out all characters for you

— So, internally it is actually looping over the
characters so you don't have to

— It just assumes when you give it a character
array that you WANT it to print out all the
characters in the array

Thus, we say cout treats character
arrays specially

Index: [0] [1] [2]1 3]

[4] —

int main()

{

data: 9 7 9 9

5

int data[5] = {9, 7, 8, 9, 5};
char strl[] = "Many chars";

// right way to print int array contents

for(int i=0; i < 5; i++){

cout << data[i] <« ;

} Index: [0] [1] [9]

[10]

cout << endl;
strl: '™M' | 'a'" | .. S

\0

// doesn't work for an int, double
// or any other type of array
cout << data << endl;

// cout treats char. arrays specially
cout << strl << endl;

Program Output:

97895
Ox7fffcedo
Many chars

I T = T RS = USC ViterhiCe42
cln's Special Relationship with Character-

Arrays

* To get input for all elements of an
array type OTHER than character
arrays (i.e. int, double, etc.) you
must write your OWN loop

e But for character arrays, you can just
give cin the name of the array and
it will use its own INTERNAL loop to
receive all characters the user types
and store them sequentially in the
array

— So, internally it is actually looping over
the characters so you don't have to

— It just assumes when you give it a
character array that you WANT it to get a
full string (stopping at the next space)

e cintreats character arrays specially

int main()

{
int data[5]; //5 garbage values to start
char strl[8];//8 garbage values to start
int sum = 0;
// doesn't work for an int, double
// or any other type of array
cin >> data; // won't even compile

// right way to get int array contents
for(int i=0; i < 5; i++){
cin >> data[i];

}

// cin treats char. arrays specially
cin >> stri;

}
520 521 522 523 524 525 526 527 528
[0] [2] [3] [4 [51 [6] [7] sum
str: | 21?2 |2 |?2[?2]|?2]|?2|7?
user types: | 5103

520 521 522 523 524 525 526 527 528
01 M1 (2] (3] [4 (51 [6] [7] sum

se: [C]S[1]0[3]w][?]2 N

. USC Viterbi

School of Engineering

A Problem with c1n and Character Arrays

What if the user types in TOO much
(more characters than our array has
room to store)?

cin will not stop! It will keep
storing the characters the user
types, overwriting whatever data
and variables came after the array

Warning: cin does not CHECK that
the string typed by the user will fit in
the array; instead it simply
overwrites memory leading to

undefined (bad) behavior!

C++ strings fix this issue, allocating
more space based on what is typed.

int main()

{

char stri[4];
int sum = 0;
// What if user types in "(CS102"
cin >> stri;

cout << sum << endl;

// won't see © because sum was modified
// when cin received the string that was
// too long!

string s2;
cin >> s2;
// works regardless of user input length

}
520 521 522 523 524
0] [M] [2] [3] sum
str1: | ?2 | ?2 | ? | ?
user types: | €5103

520 521 522 523 524
01 M1 [2] [3] sum

'c'l's' 1 |0|

str1:

Exercises

* Cipher: Using an array as a Look-Up Table

Let’s create a cipher code to encrypt text

abcdefghijklmnopgrstuvwxyz =>
ghijklmaefnzygbcdrstuopvwx

char orig_string[] = “helloworld”;
char new_string[11];
After encryption:

* new_string = "akzzbpbrzj"
Define another array

* char cipher[27] = "ghijklmaefnzyqbcdrstuopvwx";

* How could we use the original character to index (“look-up” a value in)
the cipher array

. USC Viterbi

Input Buffer Overflow
[Only if Time]

* Depending on user input, this program will likely

crash.

$./progl
abcdefgh©123456

J

Stack before execution of cin >> str.

Address

Stack Data

7308 |00 00 00 08

return link

00 00 40 00 01 8a ec 24

Stack after execution of cin >> str.

Stack Data

Address
(s) [flon R IaT R I2] Rl 31 R (41 HIS]
7300 (|61 m 63T64
main sSize
7308 (|36 31 32 33

65

34

return link

00 00 40 00 901 8a ec 24

School of Engineering

AN

Find location of first capital letter in text

#include <iostream>
#include <cctype>
using namespace std;
int main()

{

char str[8];
const int size = 8
int loc = ©;

// User types "abcdefgh©123456"
cin >> str;

// size may now be garbage (not 8)
for(int i=0; i < size; i++){

if(isupper(str[i]))

{ loc = i; break; }

}
// You'll be lucky to even get here
cout << loc << endl;
return 0;

NULL Terminated character arrays

C-STRINGS (CHARACTER ARRAYS)

School of Engineering

- /] USCVi“?ﬂ?i
C-Strings

¢ If] (:: int main()
: , {

— strings were not a first-class type char stri[] = "CS103 is ";
] . char str2[] = "fun";
(i.e. no string type) char str3[15];

— strings were simply character arrays cin >> str3; // user enters "CS103"
(char []) terminated by the null // What is this actually comparing?

if(str3 == str2)

CharaCter { cout << "Match" << endl; }
(0 dec. ="\0' ASClI) S

str3 += str2;

— These were known as C-Strings

cout << str3 << endl;

* No operations/operators other DT @
than typical array operations are
provided

— No comparison (== or =)

— No assignment/copy (=) 800 809
— No append/concatenate (+)

- USCVitf?fbi
Errors

int main()
{
char stril[] "CS1e3 is "; 300
char str2[] = "fun";
char‘ Str‘3[15]; str1 'C' |S| lll lel l3l 1 1 lil ISI L} L} l\el

cin >> str3; // user enters "CS103" 820

// What is this actually comparing? Frl'u'] 'n"|'\O'
if(str3 == str2)

{ cout << "Match" << endl; }

840
// Intuitively this makes sense but hlalr|d|\o
// will not compile in C/C++. Using your
// knowledge of types and other info,
// what is this actually attempting to do.
str3 = stri;
str3 += str2;
cout << str3 << endl;
return 0;
}
>—
fmain.cpp:15:13: warning: comparison between two arrays is deprecated; .

\ —

if(str3 == str2) { cout << "Match" << endl; }
~ann A ssen main.cpp:15:13: warning: array comparison always evaluates to false

main.cpp:20:10: error: array type 'char[15]' is not assignable
str3 = str2;

AN

~A A

main.cpp:21:10: error: invalid operands to binary expression ('char[15]' and
"char[7]")
str3 += str2;

. USC Viterbi

School of Engineering

C (not C++) String Function/Library
(#include <cstring>)

 Alibrary of functions was provided to perform operations on
these character arrays representing strings (<cstring> in C++,
<string.h>in C)

— int strlen(char dest[]);

Returns the length of the string (not counting the null character)

— int strcmp(char stri[], char str2[]);

Return O if equal, >0 if strl is alphanumerically larger than str2, <0 if strl is less than str2
— char* strcpy(char dest[], char src[]);

* Copies the whole C-string from src to the dest array (overwriting what's in dest)
Ignore the return type for now (think of it as a void function)

— char* strcat(char dest[], char src[]);

e Concatenates src to the end of dest
Ilgnore the return type for now (think of it as a void function)

https://cplusplus.com/reference/cstring/

. USC Viterbi

Use of the C-String Library

#include <iostream>

#include <cstring> 800
USing namespace Std; Str1 ICI ISI lll lel 1 3! 1 1 T2 L} L} L} L} 1 el
int main() (char) i i \
{ 820

char strl[] = "CS103 is ";

char str2[] = "fun"; m f'l'u'|'n"|"\O'

char str3[15];

. 840 844
cin >> str3; // user enters "cool" m
clolo|1]|\e
// What is this actually comparing?

if(@ == strcmp(stri,str3))
{ cout << "Match" << endl; }

// Intuitively this makes sense but

// will not compile in C/C++. Using your
// knowledge of types and other info,

// what is this actually attempting to do.

840 844
ShEp2 = cfrd .
strcpy(str3, strl); m cls 1|e]|3 ils| [\e
tp3 4o ctpa.

strcat(str3, str2);

cout << str3 << endl;

return 0;

Sample Implementations

e Exercises
— strlen

— strcpy

School of Engineering

School of Engineering

(Self study and ask questions)

SOLUTIONS AND MORE FUNCTION
EXAMPLES

—————— (5 tcrbi
Pass by Value Solution

void dec(int);
int main()

 Wait! But they have the same name, 'y’ b y = 3;

_ e S, dec(y);
What's in a name...Each function is a separate cout << y << endl;

entity and so two 'y' variables exist (one in main return o;

and one in decrement it) \},oid dec(int y)

— The only way to communicate back to mainisvia |1
return }

y--;

— Try to change the code appropriately

* Main Point: Each function is a completely int dec(int);

separate "sandbox" (i.e. is isolated from (o
other functions and their data) and copies ;“Z ﬁe;;;-
of data are passed and returned between Cout << ¥ << endl;
u 5
them }
int dec(int y)
{
y--5
return y;

}

T USCVi“?@
Exercise Solution

* Consider a train with many copies of the same car
— The "0O™" car starts at point A on the number line
— Each car is 5 meters long

* Write an expression of where the i-th car is located (at A + 5%
what meter does it start?) \ J
* Suppose a set of integers start at memory address A, (A + 4%]
write an expression for where the i-th integer starts? .)
* Suppose a set of doubles start at memory address A, [N
: : : A + 8%
write an expression for where the i-th double starts? L)

0th car 1st car 2" car

. USC Viterbi

* Formal parameters,aand b #include <iostreams
— Type of data the parameter expects VA GENBSEEER Stk
maX(irK, int) Formals

— Names that will be used internal to the function to refer to
the values passed (e.g. generic placeholders/titles used in
contracts like "CEQ" or "professor" that will be assigned or
replaced real value)

* Actual parameters

— Actual values ("Jeff Bezos", "Mark") input to the function
by the caller

— A copy is made and given to function

X
Actuals —> 0
cout << "AVG 1s " << z << endl;

Formals — aAAb 6 z = avg(x, x, A Actuals
cout << "AVG 1is " << z << endl
A return 0;

return val }

Actuals

max()

Each type is a "different” shape (int = triangle, double = square,
char = circle). Only a value of that type can "fit" as a parameter.

- USCVitf?fbi
Scope Example

. #include <iostream> Address
 Globals live as Iong as using namespace std; 0

the program is running int x = 5;

int main()

 Variables declared in a :

block { ... } live as long as int a, x =8, y = 3;
cout << "x = " << x << endl;
the block has not for(int i=0; i < 10; i++){
int j = 1;
completed =2 s 1;
— {...}of a function a += J;
_ : }
{..}of aloop, if statement, 2 = doit(y);
etc. cout << "a=" << a ;
 When variables share the TEWE <L Y= <K Y < el
cout << "glob. X" << ::x << endl;
same name, the closest }
declaration will be used by
{
X--;
return Xx;
} fFfffffc

Memory (RAM)

