School of Engineering

CS103 Unit 1c — Arrays and
Functions

Mark Redekopp

School of Engineering

ARRAY BASICS

. USC Viterbi@

Motivating Example

int main()

* Suppose | need to store the ;
grades for all students so | can int scorel, score2, score3;
L cin >> scorel >> score2 >> score3;
then compute statistics, sort
them, print them, etc.

// output scores in sorted order
if(scorel < score2 &&
scorel < score3)

| would need to store them in ¢ /* score 1 is smallest */ }
variables that | could access and 4 more +
use }
— This is easy if | have 3 or 4 students int main()
This is painful if | have many int scorel, score2, scores,
students score4, score5, score6,
score’/7, score8, score9,
* Enter arrays scoreld, scorell, scorel2,
. . scorel3, scorel4, scorel5,
— Collection of many variables Y
referenced by one name scorel49, scorel5e;
L cin >> scorel >> score2 >> score3
— Individual elements can be >> score4 >> score5 >> scoreé6

accessed with an integer index 0% oo %

-1 USCVitgrbi
Array Basics

: . . int mai
e An array is a fixed size, named 0 mein®)
collection of ordered variables of int scores[150];
// allocates 150 integers
the same type that are accessed // with garbage values
. . for(int i=0; i < 150; i++){
contiguously in memory cin 55 seores[il;
— Fixed size: Cannot grow or shrink } Jy oF Seeres|d] = @
— Named collection: One name to }
refer to all variables in the array
— Ordered / Accessed with an index: Addr: 520 524 528 1116
Index: [0] [1] [2] [149]

Individual element (variable) is
accessed with its position/index
(using [] brackets)

scores: 96 84 93 90

Computer Memory

— Same Type: Variables in one array
must all be the same type (one array
can't store doubles and ints)

- USCViteﬂ?i.,@
Index vs. Value

o Value/data
* The expression in the square 1

| 1
brackets is an index scores[2*1+1]
* Using arraylindex] yields the T
data/value in the array at that index
index
* Anindex can be ANY EXPRESSION,
even the value from an array or
the return value from a function int main()
 Foran array declared to be sizen, |{ . 20]
. int scores 5
only indices 0 to n-1 are legal % . fill in the data ... */
int 1 = 1;
Addr: 520 524 528 532 536 1nt X = scor‘es[Z*i i 1], // e
Index: [0] [[B8] [4] int y = scores[scores[1]]; // y=9
e o 0 - 3 6 int z = scores[max(4,2)]; // z=6
(values) return 0;
Computer Memory ¥

. USC Viterbi

/ tinelode <iostrenm .

#include <algorithm>
#include <cmath>
using namespace std;

int main() {
// What are the initial values of the array?
int datal[5];
cout << "Datal: ";
for(int i=0; i < 5; i++) { cout << datal[i] << " "; }
cout << endl;

// What size will be inferred for this array

int data2[] = {103, 104, 170, 201, 270};

cout << "Data2: ";

for(int i=0; i < 5; i++) { cout << data2[i] << " "; }
cout << endl;

// What happens if you try to initialize elements in the array
// but provide too few?

int data3[5] = {103, 104, 105};

cout << "Data3: ";

for(int i=0; i < 5; i++) { cout << data3[i] << " "; }
cout << endl;

//

return 0;

. USC Viterbi@

/ ireiude <iostrenm .

#include <algorithm>
#include <cmath>
using namespace std;

int main() {
/] ...
// Try to access out of bounds
cout << "Out of bounds (5th element) " << data2[5] << endl;
// Try to access out of bounds
cout << "Out of bounds (-2nd element) " << data2[-2] << endl;
// Try to access out of bounds
// cout << "Out of bounds (millionth index) " << data2[1000000] << endl;

// Try to uncomment and compile this.
/*

int n;

cin >> n;

int data4[n];

for(int i=0; i < n; i++){
cin >> data4[i];

}

cout << "Data4: ";
for(int i=@; i < n; i++) { cout << data4[i] << " "; }
cout << endl;

*/

return 0;

. USC Viterbi

School of Engineering

Allocating and Accessing Arrays

int data[20];

* Arrays allow you to allocate a large number of variables data[0] = 103;
- 3

in a single step...but you can still only access one data[1] = -1;
element at a time data[2] = data[@]+1;
— Recall: Computers can see and work with 1 data value at a time Address Memory Data
« Step 1: Allocate the array for a SPECIFIC, FIXED size cooo [o]
— Specifies the type, a name for the collection, and how many 0
should be allocated >>04
— Values will be garbage, if not initialized 5508 10
* Step 2: Use the individual array elements as if they were 5512 | cdcdabab
normal variables but remember to use the square o o
bracket indexing syntax (e.g. data[0]) s576 [Toadiel -
— Loops provide a nice way to process all items one at a time!
5580 | 129328co

Just as a dormitory is known by

one name ("McCarthy") but has char word[3] = "hi";
many dorm rooms, each with a word[@] ='a"';
number to identify them O R =
("McCarthy 234")... Address Memory Data
[word | [0] J [1] ol [2]

...arrays have one name for the
whole collection of variables
and uses integer indexes to
specify a particular element.

@m 64 30 31 32 00

5510 | 64 907 81 88 21 00 00 00

. USC Viterbi

School of Engineering

Initializing Arrays With Constants

Index: [0] 11 [21 [31 [4] 7

int main()
{ data: 9 7 9 9 5

* Arrays can be initialized with int data[5] = {9, 7, 8, 9, 5};
constants when they are declared

double dec[4] = {0.25, 0.3};

e Todo so, use an initialization list
dec: | 0.25 | 0.3 0 0

which is a comma separated list of
char strl[3] = {'C', 'S', '\@'};

constants in {} // For char arrays easier to use
— Exception to the minimalist C/C++ char str2[3] = "CS";

rule: If fewer values are provided than // str2 initialization is same as stril

. . . } trl:
the size of the array, remaining o
elements will be filled with Os mdec O] [B Bl (0
e e e e : int main()
* If aninitialization list is provided you { data: | 9 | 7 | 9|9 |5

int data[] = {9, 7, 8, 9, 5};

need not specify the size in the square ,
// allocates array of size 5

brackets (i.e. just use empty []) as the
compiler can figure out what size the double dec[] = {0.25, 0.3, 0.18, 0.2};

. . ey // allocates array of size 4
array must be by counting the initial g

values char str2[] = "CS";
// allocates array of size 3

Specifying sizes is not necessary when using initial values list

. USC Viterbi

School of Engineering

When Do We Need Arrays?

int main()

* You may think an array is needed any time we {
need to process a sequence of many related data int scores[100];
. // Get the data
items of the same type for(int i=0; i < 100; i++){
. . cin >> scores[i];
* But a better question is when do we need to }
. . // A 11 1
store these related data items in an array? AN
. f int i=0; i < 100; i++
« Answer: When we need to revisit the data more e Ly A
than once)

cout << sum / 100.0 << endl;
— |If we just want to find the min/max or average we

could just get the data from the user and update }
the sum or min/max as we go and not need to

~ store each data item ?nt main()
{ Y 5 — Don't introduce arrays where they are not needed int val, sum = @;
@ = = .
// Get the data & average it
// at the same time
for(int i=0; i < 100; i++){
cin >> val;

val sum += val;
Addr: 520 524 528 1116 }

Index: [0] [1] [2] [149]

return 0;

cout << sum / 100.0 << endl;
scores: 96 84 93 90 sum return 0;

C/C++ ARRAY SIMILARITIES AND
DIFFERENCES WITH OTHER
LANGUAGES

School of Engineering

USC Viterbi(>
Coming From Other Languages*

* SIMILARITIES: Like Python and Java, C/C++ arrays
1. Use 0-based indexing (beginning element at index 0)

2. Pair nicely with loops that can iterate over all the elements of an array
* DIFFERENCES: Unlike Python and Java, C/C++ arrays
3. Are fixed size (size must be a constant) and then cannot grow easily after that

4. Do not remember their size (no len() or .length) nor bounds-check an access (so
accessing scores[1048726] will happily execute in C/C++ and likely cause a crash (aka

~ ' the dreaded "Segmentation Fault")
° 5. Are NOT objects (no .append() or .length) in C/C++, but degenerate to pointers

(more to come soon)

import java.util.Scanner; def main(): int main()
scores = [0]*150 {
class Scores { for(i in range(len(scores)): int scores[150];
public static void main(String[] args) scores[i] = int(input()) // allocates 150 integers
{ # Do something with scores // with garbage values

Scanner in = new Scanner(System.in);
Execution starts here (weird)

int[] scores = new int[150]; if __name__ == "main": for(int i=0; i < 150; i++){
for(int i=0; i < scores.length; i++){ main() cin >> scores[i];
scores[i] = in.nextInt(); }
} // Do something with scores
// Do something with scores
}

) Java Python C++

. USC Viterbi

School of Engineering

Fixed (Statically) Sized Arrays

int main()
* C/C++ needs to know the size of the |t~
array when the program is compiled int data[42]; // 42 known at
. N // compile time
(statically), not when it is run
: // BAD!!
(dynamically). iy
 This implies the size of the array .
must be ONE, FIXED (or constant) } /) conpils e
size everytime the program is run

OxFFFFFFFf = 4GB-1

* What could go wrong if we did allow
the variable-size array allocation?

— Why don't hotels let you wait and
specify how many rooms you want
once you arrive?

0xCc0000000

0x10000000
— Too large an allocation can cause "stack

overflow" and corrupt the program

Memory (RAM)
Layout of Program

0x00000000 = 0

. USC Viterbi

School of Engineering

Dealing With Variable Size Arrays

. int main()
 C/C++ needs to know the size of {
. int data[1@0]; // max needed
the array when the program is e o
compiled, not when it is run. Bm > S
 Two approaches if we cannot ‘{c"”(i”t 1=0; 1 < nj 1++)
know the necessary size at cin >> data[i]; // only use n
: . }
compile time: }
— Allocate a LARGE array of the
maximum size potentially needed LTS WD) This approach will be
: i { discussed in detail in
and then use only a portion of it as int n; a future unit.
the program runs cin >> n;
— (Preferred) Use dynamic memory int* data = new int[n];
(i.e. the new operator) to allocate a gof‘(lnt i=0; i < n; i++)
variable size array cin >> data[i]; // only use n
* Major topic of discussion in a future }
unit (don't worry about it for now) y delete [] data; // needed cleanup

School of Engineering

FUNCTIONS: A QUICK LOOK

Functions Overview

gl:r?/ice Validatelnputs()

* Functions (aka procedures, c
subroutines, or methods) are the RetrieveMap() ‘g
primary un.i’F of code | SotoveraDaal §
decomposition and abstraction S
IN C/C'H' Render() “E‘C;;

— Decomposition: Breaking programs T
into smaller units of code Publish()

— Abstraction: Generalizing an action
or concept without specifying how
the details are implemented

. USC Viterbi

School of Engineering

Function Signatures/Prototypes

* Also called procedures or methods Max
* We think of a function as a blackbox (don't know a | |
or care how it does the task internally) of code b | '

where we can provide inputs and get back a value

— Or think of it as a web-app (or form) where you supply
data to "named" inputs and get back a value

In C/C++, a function has: AA b
— A name A

— /ero or more input parameters max

Q

— 0 or 1 return (output) values

* We only specify the type
e 0 return values is indicated with void type int max(int a, int b);

* The signature (or prototype) of a function specifies Function Signature/Prototype
these aspects so others know how to "call" the
function

. USC Viterbi

User Defined Functions *

#tinclude <iostream>

* We can define our own functions | using namespace std;

in 3 steps int max(int a, int b); // prototype
 Step 1: "Declare" your function ;o

by placing the prototype AR

(signature) at the top of your 7 s Ger T

code
e Step 2: "Define" the function }

(actual code implementation) int max(int a, int b)

anywhere (above or below " it

return a; // immediately stops max
main()) by placing the code in { } else

return b; // immediately stops max

* Step 3: "Call" the function from i
main() or another function
passing in desired inputs and
using the return value (output)

. USC Viterbi

School of Engineering
Functions Intro
(’;include <iostream> ‘\ (’;nt factorial(int n) <\\
#include <cmath> {
using namespace std; if(n >= 0){
if(n == 0) { return 1; }
// Function prototypes int f = 1;
void printName(string name); for(int i = 1; i <= n; i++) {
int factorial(int n); f *= i,
}

// Function definitions return f;
int main() }
{ // Return some value that will mean "error"

printName("Tina"); return -1;

cout << factorial(4) << endl; }

return 0;
} // Cannot have 2 return values

// double, double getCirclePerimAndArea(

void printName(string name) // double radius)
{ /1 A

if(name == ""){ // return 2*M PI*radius, M_PI*radius*radius;

return; // }

}

cout << "Hello, " << name << endl;
}

- USCVitf?rbi
Calling a Function

#include <iostream>
using namespace std;

 We "call" or "invoke" the function by: int max(int a, int b); // prototype
— Using its name and place variables or e)
constants that the current function {

int x, y, mx;

has declared in the order that we S0 5 R 5S WE

want them to map to the

. /* Call the function */
parameter/argument |ISt

mx = max(xX, y);

— First variable listed (x) will map to the cout << mx << endl;
first paramgter (a) in the func.tlon S 5 Bl o
argument list, the second variable (y) mx = int max(x, y);
to the second parameter (b), etc. mx = max(int x, int y);
mx = max(a, b);
* Don't max(x, y);
— Relist the return type in the call)
— Relist the type of the arguments int max(int a, int b)
— Use variable names that don't exist in if(a > b)
. return a; // immediately stops max
the current function e
— Forget to save the returned value return b; // immediately stops max

. USC Viterbi

School of Engineering

Calling a Function (2)

Statements in a function are executed
sequentially by default

Defined once, called over and over

Functions can call other functions can
call other functions

Example: Compute max of two
integers
Each call causes the program to pause
the current function, go to the called
function and execute its code with the

given arguments then return to where
the calling function left off,

Return value is substituted in place of
the function call

)
X

#include <iostream>
using namespace std;

int max(int a, int b); // prototype

int main()
{
int x, y;
cin >> x >> vy; // deer types: -5 7
7
int mx = 1 + max(X;
— cout << mx << endl;

%)
cout << max(9, x

}\(
int max(int a, int b)

{

: // call max

< endl; // call max

if(a > b)

return a; fately stops max
else

return b; / immediately stops max

}

Program Output (if user types -5 7):

8
%)

. USC Viterbi

School of Engineering

Passing Arrays As Arguments

Syntax:

— Step 1: In the prototype and
function definition:

* Put empty square brackets []
after the formal parameter name
if it is an array
(e.g.int data[]) ..OR..

e Putan * between the type and
formal parameter name (e.g. int*
data)

 We'll prefer int data[] for now
but int* data is JUST AS VALID
and we'll learn more about it
when we cover pointers)
— Step 2: When you call the
function, just provide the name
of the array as the actual

parameter

// Prototype
int init(int data[], int max_size);

int main()
{
int vals[100];
int len = init(vals, 100);
// some code to process the input
// in the vals array
for(int i=0; i < len; i++) {
cout << vals[i] << endl;

}

return 0;

}

int init(int data[], int max_size)
{
int i=0, num;
cin >> num;
while(i < max_size && num != -1) {
data[i] = num;
i++;
cin >> num;

}

return i;

School of Engineering

MORE FUNCTION DETAILS

T USCVitf?ﬂ?i
Function Prototypes

int main()

 The compiler (g++/clang++) needs to {
. ' e e double areal,area2,area3;
see a function's prototype or definition D) & ReiElE FrEa(E s D)
before it allows a call to that function X |}
 The compiler will scan a file from top to double triangle_area(double b, double h)
bottom {

return 0.5 * b * h;

* |fit encounters a call to a function }

before the actual function definition it Compiler encounters a call to triangle_area()
. . . before it has seen its definition (Error!)
will complain...[Compile error]

double triangle_area(double, double);
e ..Unless a prototype ("declaration") for int main()
the function is provided earlier { double areal,area?, area3;
* A prototype only needs to include data } 2REEE) 2 ERIENEIE ARE(Sa0yPaD)E
types for the parameters but not their
names (ends with a ‘;’) double triangle_area(double b, double h)
— Prototype is used to check that you are { return 8.5 * b * h;
calling it with the correct syntax (i.e. v |
parameter data types & return type) Compiler sees a prototype and can check the
(like a menu @ a restaurant) syntax of any following call and expects the

definition later.

. USC Viterbi

The Need For Prototypes

You might say:

— "l don't like prototypes. I'll define each function before | call it"

School of Engineering

How would you order the functions in the program on the left if you did

NOT want to use prototypes?
— You can't!

int f1(int x)

{
return f2(x-1);
}
int f2(int y)
{

if(y <= 0) return 1;
else return f1(y);
}

int main()

{
cout << f1(5) << endl;

}

int fi1(int x);
int f2(int y);

int main()

{
cout << f1(5) << endl;

}

int f1(int x)

{
return f2(x-1);

}

int f2(int y)

{
if(y <= 0) return 1;
else return f1(y);

}

. USC V1terb1.

School of Engine

Overloading: A Function's Slgnature

 What makes up a function signature unique:
— name
— number and type of arguments

 No two functions are allowed to have the same signature

 The following 6 functions are unique and allowed to have
different implementations...
— int f1(int), int f1(double), int f1(int, double)
— void fl(char), double f1(), int f1(int, char)
 Return type does not make a function unique

— int f1() and double f1() are notunique and thus not
allowable

* Two functions with the same name are said to be
"overloaded"
— int max(int, int); double max(double, double);

—————— ()5 terb{
Why Functions? Reuse (1)

Desired Program Output: GHELUER SaOBUREEN
using namespace std;
///
//
/ int main()
{
11177 // Print triangle of 3 rows
/177 for(int i=0; i < 3; i++){
/17 for(int k=0; k < 3-i; k++){
// cout << '/';
/ }
cout << endl;
}
* Functions are best used to perform 77 PRSI renalle of 5 rere
code that would otherwise have to be Rl e e B B
or(int k=0; k < 5-1i; k++){
duplicated cout << '/';
}
* By "factoring" common code into its } cout << endl;
own function and possibly
parameterizing it we can make . return 0;
flexible, reusable blocks of code

. USC Viterbi

Why Functions? Reuse (2)

Desired Program Output: SANEIIEE CICSETEEI
using namespace std;
///
// void printTri(int rows);
/ . .
77/]/ znt main()
/177 printTri(3);
/// printTri(5);
// return 0;
/ }
void printTri(int rows)
{

e Here we have factored the common e fes 8 < Fenss A
code into its own function f°zé$2t<':=?j.'f < rows-1; ke+){
parameterized based on how many }

. cout << endl;
rows are desired }
}

We could create 1 or 2 functions to do this
job

How could defining printRow allow for
reuse if chose to draw a different shape
(like a square)?

What else could we parameterize that

might make this code more reusable?
— Thefill character ('/")

But don't go too crazy

Program Output:

/17
//

/
/1117
/1717
/17
//

/

éﬁ

. USC Viterbi

School of Engineering

#include <iostream>
using namespace std;

void printRow(int n);
void printTri(int rows);

// prototype
// prototype

int main()

{

printTri(3);
printTri(5);
return 0;

void printTri(int rows)

{

for(int i=0; i < rows; i++){

///,,printRow(rows—i);
}

\iafa‘printRow(int n);

{

for(int i=0; i < n; i++){
cout << '/';
}

cout << endl;
}

. USC Viterbi

School of Engineering

Review: Program Decomposition

e Cisaprocedural language

— A function or procedure is the primary unit of

code organization, problem decomposition, and
abstraction

— Function is a unit of code that

* Can be called from other locations in the
program

* Can be passed variable inputs (a.k.a.
arguments or parameters)

e Can return a value to the code that called it
— Can be reused

 C++is considered an object-oriented language (adds
objected-oriented constructs to C) though still
supports a procedural approach

— Aclass or object is the primary unit of code
organization, problem decomposition, and
abstraction

— Can be reused

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/lego-png/download/52866
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

Exercise

* To decompose a program into functions, try
listing the verbs or tasks that are performed to
solve the problem

— Model a card game as a series of tasks/procedures...

— A database representing a social network

Nested Call Practice

* Find characters in a string then use that function
to find how many vowels are in a string

— Exercise: draw-square
— Exercise: vowels

School of Engineering

MORE FUNCTION EXAMPLES

. USC Viterbi

Example Functions 1

Function Signature/Prototype
double calcInterest(double amt, int yrs, double rate);

] 1
malin J #include <iostream>
#include <cmath>

using namespace std;
amount & P

® A0

// prototype
double calcInterest(double amt, int yrs, double rate);

int main()

double amount, r;
cin >> amount >> r;

double interest = calcInterest(amount, 30, r);
amt yrs rate cout << "Interest: " << interest << endl;
return 0;
_ }
calcinterest interest

double calcInterest(double amt, int yrs, double rate)
{

return amt * pow(rate/12, 12*yrs);
\ / |

USC ViterbiCe®>

School of Engineering

Example Functions 2

Function Signature/Prototype

bool checkLogin(string exp_pwd);

. b #include <iostream>
main J \ using namespace std;

// prototype

pPass bool checkLogin(string exp pwd);
int main()
{
string pass = "Openl23!"; // secret password
bool valid;
' cout << "Enter your password: " << endl;
exp de Yalld = checkLogin(pass);
— if(valid == true) { cout << "Success!" << endl; }
return 0;

- }
checkLogin valid

bool checkLogin(string exp_pwd)
{

string actual;
cin >> actual;

return actual == exp pwd;
_ P

USC ViterbiCe®

School of Engineering

Example Functions 3

Function Signature/Prototype

void validatelogin(string exp pwd);

. b #include <iostream>
main J \ using namespace std;
// prototype
pPass void validateLogin(string exp_pwd);

int main()

{

string pass = "Openl23!"; // secret password
bool valid;

' cout << "Enter your password: " << endl;
exp de validateLogin(pass);
— return 0;

}

checkLogin void validatelLogin(string exp_pwd)
{

string actual;

cin >> actual;
if(actual == exp pwd){ cout << "Success!" << endl; }

else { cout << "Incorrect!" << endl; }

_)

. USC Viterbi

Example Functions 4 *

Function Signature/Prototype
bool genCoinFlip();

. b #include <iostream>
main J #include <cstdlib>
using namespace std;
// prototype
bool genCoinFlip();

int main()

{

bool heads;

heads = genCoinFlip();

if(heads == true) { cout << "Heads!" << endl; }
else { cout << "Tails!" << endl; }
return 0;

¥
genCoinFlip heads

bool genCoinFlip()
{

int r = rand(); // Generate random integer
return r%2;

}

_ /

SOLUTIONS

—————— (5 tcrbi -
Pass by Value Solution

void dec(int);
int main()

 Wait! But they have the same name, 'y’ b y = 3;

_ e S, dec(y);
What's in a name...Each function is a separate cout << y << endl;

entity and so two 'y' variables exist (one in main return o;

and one in decrement it) \},oid dec(int y)

— The only way to communicate back to mainisvia |1
return }

y--;

— Try to change the code appropriately

* Main Point: Each function is a completely int dec(int);

separate "sandbox" (i.e. is isolated from (o
other functions and their data) and copies ;“Z ﬁe;;;-
of data are passed and returned between Cout << ¥ << endl;
u 5
them }
int dec(int y)
{
y--5
return y;

}

