CS 103 Unit 1b —
C++ Program/Control Flow

Java and C++

* C++ uses the same control structures and syntax as
Java
— if,while, for, (switch)*
* We expect you know each of the above structures

AND when and how to employ them to implement
computational approaches

* You should also be familiar with:
— break, continue

— The operation of nested loops (the inner loop performs
ALL of its iterations for each one iteration of the outer

loop)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

School of Engineering

When Do | Use a While Loop (1)

® When you DON'T know #include <iostream>

using namespace std;
int main()

in advance how many {
times something should |~)
repeat? cin >> guess;

int guess;

while(guess != secretNum)
. {
- I_OW many gueSSES W|” cout << "Enter guess: " << endl;
cin >> guess;
the user need before)
they get it right? cout << "You got itl" << endl;
return 0;
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

School of Engineering

When Do | Use a While Loop (2)

) Whenever you See, hear’ #include <iostream>

using namespace std;
int main()

or use the word 'until'ina |

int guess;

descr|pt|on int secretNum = /* some code */
cin >> guess;
. . while(guess != secretNum)
* Important Tip: (
cout << "Enter guess: " << endl;
— "until x" = "while not x" \ G PP G
* Uﬂtll(X)¢>Whll€(IX) cout << "You got it!" << endl;

return 0;

— Ex: "Keep guessing until)
you are correct” is the
same as "keep guessing
while you are NOT correct”

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

School of Engineering

When Do | Use a For Loop (1)

° When you DO KNOW in // Program to output numbers
// 1 through n
advance (before the . |
#include <iostream>
using namespace std;
loop starts) how many | ust s
times to iterate o
int n;
— Usually, a constant or cin 3> n;
variable that has been ‘E°"(1“" 1=1; 1 < nj 1++)
calculated or input from cout << i << endl;
the user }
return 0;
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, IS Viterbi

School of Engineering
Turn 360
//;;nclude <iostream> ‘\\\

#include <iomanip>
using namespace std;

int main() {
// Write your code here!

- A

Counter- N
Clockwise

clockwise
' | RV

return 0;

¥

o /

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise

* Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]
a. X >= -1 && x <=5
b. -1 <= x <=5
c. !(x<-1]| x> 5)
d. x > -2 && x < 6

See solutions at end of slides

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Conditions and Del\/lorgan'sc

* DeMorgan's theorem says there are always
two ways to express a logic condition

e Write a condition that eats a sandwich if it has

neither tomato nor lettuce

— if (!tomato && !lettuce) { eat sandwich(); }
— if (!(tomato || lettuce)) { eat sandwich(); }

* DeMorgan's theorem:
- 1a & b & I(a || b)

e More detailsin EE 109 and CS 170

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCVitgﬂrﬁ .
Recall: Scope

#include <iostream>
using namespace std;

e Scope refers to the lifetime and

visibility of a variable ?nt main()
— Recall variables are just memory slots in int i;
the computer...eventually the program cin >> 15
will reclaim those slots and the variables if(i > 0){
will "die". int temp = 2%i;
cout << temp << endl;
— How long are those slots allocated and } // temp died here
r.ese.rved for your use (i.e. what is their ot < e <& cndfla A ERRGRL
lifetime)? £10);
— What parts of your program can access y ;itgpgizi e
the variables
. ' . void f1()
* |n C/C++, a variable's scope is the {
. e // is i visible here?
curly braces { } it is declared within SR

}

 Main Point: A variable dies at the
end of the {...} it was declared in

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

School of Engineering

Declaring the Inductive Variable

##tinclude <iostream>

* Theinitialization statement can be | |/ " 1 o070 cta;

used to declare a control/inductive int main()
variable, but its scope is ONLY the int n;

for loop (even though it is not 0 2> g

for(int i=0; i < n; i++){
technically declared in the {..} of cout << 3*i << endl;
} // i dies here
the for loop)
. . . . // won't compile
— Just realize that variable will die at cout << i << endl;
the end of the loop

// okay to reuse 1

* However, because it dies after the for(int i=0; i < n; i++){
] cout << 4*i << endl;
first loop you can use that same } // reincarnated i dies again

variable name in a subsequent loop | cturn o;
} // n dies here

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Nested Loops Example 1

* Keyidea: Perform all
iterations of the inner loop
before starting the next
iteration of the outer loop

— Said another way: The inner
loop executes completely for
each single iteration of the
outer loop

* Trace through the execution
of this code and show what

will be printed

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()

{

for(int i=0; i < 2; i++){
for(int j=0; j < 3; j++){

cout << i <<« " "

}
}
}

<< Jj << endl;

RRRR OO O

WINER O WNR® .

Understand Your Bodies

* When you write loops
write a comment as to
what the body of each
loop means in an abstract
sense

— The body of the outer loop
represents 1 game (and we
repeat that over and over)

— The body of the inner loop
represents 1 turn (and we
repeat turn after turn)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

1 game

{

1 turn

}

int main()

int secret, guess;
char again = 'y';

while(again == 'y') {
// A single game

// Choose secret num. ©0-19

secret = rand() % 20;

guess = -1;

// inner loop

while(guess != secret) {
// A turn of the game
cout << "Enter guess: ";
cin >> guess;

}

cout << "Win!" << endl;
cout << "Play again (y/n): ";
cin >> again;

.

return 0;

e USCViterbi .
Computing e*
//;;nclude <iostream> ‘\\\

using namespace std;

2 3 4
e"=1+z+5+5+ 5+ -

int main()

{
// Starter code: modify the lines below
double x;
cin >> Xx;

double x to i = 1;

int i fact = 1;

double e x = 1;

for(int i=1; i < 10; i++){
x_to i *= x;
i fact *= i;
e X += x_to i / 1 _fact;

cout << e X << endl;
return 0;

_ /

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Comparison, Logical Operators, if statements, switch statements

MODULE 4: CONDITIONAL
STRUCTURES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Comparison Operators

* To perform comparison of variables,
constants, or expressions in C/C++ we can use
the basic 6 comparison operators

Operator(s) Meaning Example
e Equality if(x ==vy)
= Inequality if(x = 7)
< Less-than if(x < 9)
> Greater-than if(y > x)
<= Less-than OR equal to if(x <= -3)

>= Greater-than OR equal to if(y >= 2)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

If...Else If...Else

* Use to execute only

certain portions of code

* else 1f is optional

— Can have any number of

else if statements
* elseis optional

¢ {..

}indicate code

associated with the if,

else if, else block

optional

1
if else if

=

© 2022 by NN

else if

MSe

ﬁecﬁshamﬂor distributed.

if (conditionl)

{
// executed 1f conditionl 1is true

¥

else if (condition2)

{
// executed 1f condition2 1is true
// but conditionl was false

}

else if (condition3)

{
// executed 1f condition3 1is true
// but conditionl and conditionZ2
// were false

}

else

{

// executed 1f neither condition
// above 1is true

R,]S Viterbi

School of Engineering

Mutually Exclusive Conditions

* What will each implementation print if 'grade’ is 957

if (grade >= 90)

{

cout << "A range" <«
}
else if (grade >= 80)
{

cout << "B range" <«
}

else if (grade >= 70)
{

cout << "C range" <«

}
else if (grade >= 60)

{

cout << "D range" <«

}

else

{
}

cout << "Not gonna happen!" << endl;

endl;

endl;

endl;

endl;

if (grade
{

cout <«
}
if (grade
{

cout <«
}
if (grade
{

cout <«
}
if (grade
{

cout <«
}
else
{

cout <«
}

>= 90)
"A range"
>= 80)
"B range"
>= 70)
"C range"
>= 60)

"D range"

<<

<<

<<

<<

endl;

endl;

endl;

endl;

"Not gonna happen!" << endl;

i, IS Viterbi

If...Else If...Else

// BAD!
P 1 1 . if (X < 0) {
GUIdellne' cout << "negative" << endl;
: }
— If various blocks of code 1f (x >= 0) {
are mutually exclusive , cout << "positive” << endl;
then put them in an
. // GOOD!
if.. if (x < @) {
else 1.F cout << "negative" << endl;
[} [} }
else else {
cout << "positive" << endl;
structure and not many }
individual
if..
if..
if..

statements

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Logical Operators

* We can create compound conditions by using
the logical AND, OR, and NOT operator

Operator(s) Meaning Example
&& AND if((x==0) && (y==0))
| | OR if((x <0) [(y <o)
| NOT if(Ix)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

)

Logical AND, OR, NOT

* The following tables show how the logical operations
are evaluated under any set of values

* AND:

— All inputs must be true for resulting expression to be true
— If even one is false, the condition is fails (false)

* OR:

— If any input is true the condition evaluates to true

A | B AND A | B OR
False False False False False False False True
False True False False True True True False
True False False True False True | | |
- True True True _— True True True

Exercise

* Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]
a. X >= -1 && x <=5
b. -1 <= x <=5
c. !(x<-1]| x> 5)
d. x > -2 && x < 6

See solutions at end of slides

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Conditions and Del\/lorgan'sc

* DeMorgan's theorem says there are always
two ways to express a logic condition

e Write a condition that eats a sandwich if it has

neither tomato nor lettuce

— if (!tomato && !lettuce) { eat sandwich(); }
— if (!(tomato || lettuce)) { eat sandwich(); }

* DeMorgan's theorem:
- 1a & b & I(a || b)

e More detailsin EE 109 and CS 170

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Timeout: In-Class Exercises

°* nth

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCVitgﬂrﬁ .
Common Mistakes 1

. . int main()
e Using assignment operator (=) (
. int x, y;
rather than equality check Cin >3 X 5> y;
operator (==
// Wrong!
— |If you accidentally use '=', it will if(x =0) { /* some code */ }
: // Right!
convert the assigned value to a 1F(x == @) { /* some code */ }
Boolean
// Wrong!
— Recall: The computer uses if(x '=y) { x =5; }
if(x == = 7;
 0to mean false =y)
° - // Right
Non-zero to mean true Fx 1= y) { x = 5;)
* Using multiple if statements else ty=71}
return 0;
rather than if..else orif..else |} .
1f statements (When comparing with a constant, many companie\w—>
— Two 'if' statements imp|y both could and style guides recommend you flip the order to:
o L . if(@ == x) { /* some code */ }
be true while 'if..else |mp||es Only This, way the code won't compile if you accidentally
onhe write:

\‘if(@ =x) // won't compile! Y

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Common Mistakes 2

e All conditions must be
formulated as a
combination of
comparisons of two values
at a time

* Recall: The computer uses

— 0 to mean false
— Non-zero to mean true

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()
{
int x, y;
cin >> X >> y;

// Wrong!

if(@ <= x <= 9)
{ /* some code */ }

// Right!

if((0 <= x) && (x <= 9))
{ /* some code */ }

// Wrong!
if(x ==0 || 1)
{ /* some code */ }
// Right!
if((x ==0) [[(x ==1))
{ /* some code */ }
return 0;

Other Selection Structures

* C/C++ (and some other languages) provide
alternative structures to if..else

— switch (case) statement
— Ternary operator (cond ? x : vy)
 We will not require knowledge of these but

simply recommend you briefly look over this
material

— Slides covering these structures are available at
the end of the packet

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

while, do..while, and for Loops

MODULE 5: ITERATIVE STRUCTURES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Motivation for Loops

#include <iostream>
using namespace std;
int main()

* Take a simple task such

as outputting the first
1000 positive integers

— We could write 1000
cout statements

— Yikes! We could do it
but it would be painfu

e Or we could use aloo

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

0

{

cout << 1 << endl;
cout << 2 << endl;
cout << 3 << endl;

// hundreds more cout statements

cout << 999 << endl;
cout << 1000 << endl;

return 0;

#include <iostream>
using namespace std;
int main()

{

}

for(int i=1; i <= 1000;
{
cout << 1 << endl;
}
return 0;

i+=1)

S — 1)\ i
4 Necessary Parts of a Loop

* Loops involve writing a task to be repeated

* Regardless of that task, there must be Initialization
4 parts to a make a loop work (e.g.i=1)
e Initialization 1
— Initialization of the variable(s) that will Loop
control how many iterations (repetitions) Condition
the loop will executed — (e.g. i <= 1000) H
 Condition
— Condition to decide whether to repeat the 1 True
task or stop the loop Body
* Body (cout << i << endl;) &
©
— Code to repeat for each iteration ' L
Update Statement
* Update (e.g.i+=1)

— Modify the variable(s) related to the
condition Code after the loop +—

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Types of Loops

 There are 2 (and a half) kinds of loops
* while (do..while)loops and for loops

— Let's look at the syntax of each

int i = 1;

while (i <= 1000)

{
// repetitive task
cout << 1 << endl;
i++; // update

}

// following statements

T T F

4 parts:

Initialization
Condition
Body
Update

There is a variant of the while loop which is
the do. .while loop which we'll cover later.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

1 2 1518 417

for (int i = 1; i <= 1000; i++)

{
}

(3 X6
cout << 1 << endl;

©// following statements

R,]S Viterbi

Which Kind of Loop

° Use d Whlle |00p: #include <iostream>

i td;
— When you DON'T know how 22 S MGLISEREEE &

int main()

many times to iterate before {
the loop starts.

School of Engineering

int guess;

int secretNum = /* some code */

* How many guesses will the cin >> guess;
user need before they get it while(guess != secretNum)
right? { cout << "Enter guess: " << endl;
— When you use "until" (see , o puesss
next Sllde) cout << "You got it!" << endl;
* Use a for loop: T

— When you DO know the
number of times to iterate in
BEFORE you start the loop.

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

"Until" and "While not"

School of Engineering

° Whenever you see Oor use #include <iostream>

using namespace std;

the word 'until' in a int main()

description int guess;
int secretNum = /* some code */
cin >> guess;

* |mportant Tip:

while(guess != secretNum)
: . {
— "until x" = "while not x" cout << "Enter guess: " << endl;
. " . . cin >> guess;
— Saying "keep guessing until }
n
YOU are correct” Is the cout << "You got it!" << endl;
same as "keep guessing return ©;

while you are not correct”

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, IS Viterbi

School of Engineering

NESTED LOOPS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Nested Loop Sequencing

* Key ldea: The inner loop runs in its entirety for each
iteration of the outer loop

Condl: T T F
while (condl) { @ © ©®
Cond2: T T Ff // codel 2=
) while(cond2) { ®© O O® ®
Cond2: T F // code 2 OG @
}
// code3 O @
}
(16,

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

—

False

condl

| True
codel

L4 False
cond? —_—
I: § True
code?
*_l

code3 |e

Following

statements

Nested Loops Example 1

* When you write loops
consider what the body

of each loop means in
an abstract sense

— The body of the outer

loop represents 1 game

(and we repeat that
over and over)

— The body of the inner
loop represents 1 turn
(and we repeat turn
after turn)

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

1 game

int main()
{

int secret, guess;

char again = 'y';

// outer loop

while(again == "y"')

{ // Choose secret num. 0-19
secret = rand() % 20;
guess = -1;

// inner loop
while(guess != secret)

cout << "Enter guess: ";
cin >> guess;

}

cout << "Win!" << endl;

1 turn

cout << "Play again (y/n): "

cin >> again;

}

return 0;

}

Nested Loops Example 2

* Keyidea: Perform all
iterations of the inner loop
before starting the next
iteration of the outer loop

— Said another way: The inner
loop executes completely for
each single iteration of the
outer loop

* Trace through the execution
of this code and show what

will be printed

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

int main()

{

for(int i=0; i < 2; i++){
for(int j=0; j < 3; j++){

cout << i <<« " "

}
}
}

<< Jj << endl;

RRRR OO O

WINER O WNR® .

* Nested loops often help us represent and
process multi-dimensional data

— 2 loops allow us to process data that corresponds
to 2 dimension (i.e. rows/columns)

— 3 loops allow us to process data that corresponds
to 3 dimensions (i.e. rows/columns/planes)

2,3

w N = O

4

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

-] USCViteﬂ,.)i .
/O Manipulators

* Manipulators control HOW cout handles #include <iostream>
#include <iomanip>

certain output options and how cin using namespace std;
interprets the input data (but print , ,

) int main()
nothing themselves) {

— Must#include <iomanip> double pi = 3.14159;

* Common examples ;;uzri:tzl ;12:?;3

— setw(n): Separate consecutive outputs by
n spaces cout << setprecision(2) << fixed << pi << endl;

. . . // Prints: 3.14
— setprecision(n): Use n digits to

display doubles (both the integral + return 0;
decimal parts)

— fixed: Uses the precision for only the
digits after the decimal point

— boolalpha: Show Booleans as true and
false rather than 1 and O, respectively

http://en.cppreference.com/w/cpp/io/manip

* Separated by << or >> and used inline with

actual data See "iomanip" in-class exercise to

e Other than setw, manipulators continue explore various options
. to apéplpyé to other output until changjed
2022 by Mark Redekopp. n

This content is protected and may not be shared, uploatied, or distributed.

http://en.cppreference.com/w/cpp/io/manip

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII[EKjVﬁmkﬁQID

School of Engineering

break statement

e break

— Ends the current loop immediately and continues execution after its last

statement

— Only stops the INNER-MOST containing loop, not ALL nested loops.

* Consider two alternatives for stopping a loop if an invalid

(negative) guess is entered

bool done = false;
while (done == false) {
/f cout << "Enter guess
cin >> guess;
if(guess < 0)

/////done = true;
¥

< else {
\ // Process guess

"}

" << endl;

bool done = false;

while (done == false) {
cout << "Enter guess: "
cin >> guess;
if(guess < 0)

////'break;
}

// Process guess
// If guess < @ we would skip this

}

<< endl;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

continue statement
e continue

— Ends the current loop [not if statement] immediately and
continues execution after its last statement

* Consider two alternatives for repeating a loop to get a
new guess if an invalid (negative) guess is entered

— Often continue can be eliminated by changing the if

condition
bool done = false; bool done = false;
while(done == false) { while (done == false) {
/' cout << "Enter guess: " << endl; / cout << "Enter guess: " << endl;
< cin >> guess; cin >> guess;
\lf(guess < 0){ </if(guess >= 0) {
continue; <‘ // Process Guess
} }
// Process guess (only here if guess>=0) \}
}

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

ODDS AND ENDS REGARDING
C/C++ LOOPS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCVitgﬂrﬁ .
Recall: Scope

#include <iostream>
using namespace std;

e Scope refers to the lifetime and

visibility of a variable ?nt main()
— Recall variables are just memory slots in int i;
the computer...eventually the program cin >> 15
will reclaim those slots and the variables if(i > 0){
will "die". int temp = 2%i;
cout << temp << endl;
— How long are those slots allocated and } // temp died here
r.ese.rved for your use (i.e. what is their ot < e <& cndfla A ERRGRL
lifetime)? £10);
— What parts of your program can access y ;itgpgizi e
the variables
. ' . void f1()
* |n C/C++, a variable's scope is the {
. e // is i visible here?
curly braces { } it is declared within SR

}

 Main Point: A variable dies at the
end of the {...} it was declared in

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

School of Engineering

Declaring the Inductive Variable

##tinclude <iostream>

* Theinitialization statement can be | |/ " 1 o070 cta;

used to declare a control/inductive int main()
variable, but its scope is ONLY the int n;

for loop (even though it is not 0 2> g

for(int i=0; i < n; i++){
technically declared in the {..} of cout << 3*i << endl;
} // i dies here
the for loop)
. . . . // won't compile
— Just realize that variable will die at cout << i << endl;
the end of the loop

// okay to reuse 1

* However, because it dies after the for(int i=0; i < n; i++){
] cout << 4*i << endl;
first loop you can use that same } // reincarnated i dies again

variable name in a subsequent loop | cturn o;
} // n dies here

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

School of Engineering

The Loops That Keep On Giving

* There's a problem with the loops below

 We all write "infinite" loops at one time or another

* Infinite loops never quit

* When you do write such a program, just type "Ctrl-C" at the

terminal to halt the program

#include <iostream>
using namespace std;
int main()
{ int val;
bool again = true;
while(again = true)({
cout << "Enter an int or -1 to quit";
cin >> val;

if(val == -1) {
again = false;
}
}
return 0;

}

#include <iostream>
using namespace std;
int main()
{
int i=0;
while(i < 10) {
cout << 1 << endl;
i+ 1;
}

return 0;

}

©2022 by Mark Redekopp. This contentd B AdRlREGOdIngRh Qrrar copyrubber-duck-problem-solving/

http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/

R,]S Viterbi

School of Engineering

The Loops That Keep On Giving

* There's a problem with the loop below

 We all write "infinite" loops at one time or another

* Infinite loops never quit

* When you do write such a program, just type "Ctrl-C" at the

terminal to halt the program

#include <iostream>
using namespace std;
int main()
{ int val;
bool again = true;
while(again == true){
cout << "Enter an int or -1 to quit";
cin >> val;

if(val == -1) {
again = false;
}
}
return 0;

}

#include <iostream>
using namespace std;
int main()
{
int i=0;
while(i < 10) {
cout << 1 << endl;
i=1+1;
}

return 0;

}

©2022 by Mark Redekopp. This contentd B AdRlREGOdIngRh Qrrar copyrubber-duck-problem-solving/

http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/
http://blog.codinghorror.com/rubber-duck-problem-solving/

i, IS Viterbi

School of Engineering

SOLUTIONS

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

Exercise

* Which of the following is NOT a condition to check if
the integer x is in the range [-1 to 5]
a. X >= -1 && x <=5
b. -1 <= Xx <=5
c. !(x<-1]| x> 5)
d. x > -2 && x < 6

See solutions at end of slides

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, IS Viterbi

School of Engineering

OTHER SELECTION STRUCTURES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

Switch (Study on own)

 Again used to execute only

switch(expr) // expr must eval to an int

certain blocks of code ;
e Cases must be a constant case 0:
. // code executed when expr == 0
e Best used to select an action break
. case 1:
when an expression could be 1 77 el ceaed] e e == 1
of a set of constant values break;
. case 2:
 {..}around entire set of cases | case 3:
and not individual case Cajj 4: .
code executed when expr is
* Computer will execute code [/ 2 3 on 4
until a break statement is default:
encountered // code executed when no other
// case 1s executed
— Allows multiple cases to be break;
combined }
e Default statement is like an else
statement

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCViteﬂ,)i .
Switch (Study on own)

. . switch(expr) // expr must eval to an int
» What if a break is rtentexen) 7 e
forgotten? case o:
. // code executed when expr == 0
— All code underneath will be break;
executed until another case
// code executed when expr == 1
break is encountered // what if break was commented
// break;
case 2:
case 3:
case 4:

// code executed when expr is
// 3, 4 or 5
break;

default:
// code executed when no other
// case 1s executed
break;

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

* Asimple if..else statement can be expressed with the

? operator
—int x=(y >2z) ? 2 : 1;
— Same as:

if(y > z) x = 2;

else x = 1;
e Syntax: (condition) ? expr if true :expr if false;
* Meaning: the expression will result/return

expr_if true if condition evaluates to true or
expr_if false if condition evaluates to false

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

i, IS Viterbi

School of Engineering

LOOP STRUCTURES

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

Type 1: while Loops *

A while loop is essentially a repeating 'if' statement

initialization o Initializati
while (conditionl) @ © © nitia '_za on
{ T TF (e.g.i=0)
(3 6) 1
// Body: if conditionl 1s true
y:ir O @ Loop
} // go to top, eval condl again — Condition i
(9 (e.g. i< 1000)

// following statements
// only gets here when condl is false 1 True
int i=0; Loop task
while (i < 1000) (cout << i << endl;) B
{ 1 ©

cout << 1 << endl; -

144 Update Statement
} (e.g.i+=1)
// following statements

. v Code after the loop +—
While loop printing 0 to 999 P
© 2022 by Mark Redekopp. This content is protected and may hot bt shared, uploade, or distributed.

R,]S Viterbi

while vs. do..while Loops *

* while loops have two // While:

while(condition)

variations: while and do..while |«
// code to be repeated

e while // (should update condition)

}
— Cond is evaluated first

— Body only executed if condition is

true (maybe 0 times) // Do while:
do {
e do..while // code to be repeated
. // (should update condition)
— Body is executed at least once } while(condition);

— Cond is evaluated

— Body is repeated if cond is true

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

USC Viterbi @
Using Flow Charts to Find Loops

Draw out a flow chart of the
desired sequence and look
for the repetitive sequence

Here we check at the end
to see if we should
repeat...perfect for a
do..while loop

Do..While Loop

Accept Guess

do
{ accept_guess }

______ T while (! correct)

True

Accept Guess

>

| False

Post-Loop
Code

© 2022 by Mark Redekopp. brrosorrorreroprorcoroaorarrey NOt be shared, uploaded, or distributed.

USC Viterbi ©=
Finding the ‘while” Structure |

Draw out a flow chart of the
desired sequence and look
for the repetitive sequence

Accept Guess

Accept Guess
Here we check at the end

to see if we should
repeat...perfect for a
do..while loop

do
{ accept_guess }
while (! correct) Accept Guess

True

While loop

while loop

But a while loop
checks at the
beginning of the
loop, so we must Post-Loop
accept one guess Code
before starting:

accept_guess
Post-Loop while(! correct)
Code accept guess }

© 2022 by Mark Redekopp. brrosorrorreroprotsoroaomarr=y NOt be shared, uploa{jed, or dist

Hand Tracing (1)

int main()

* For the first program,
trace through the code
and show all changes to i
for:

—n=2;

* For the second program,
trace through the code
and show the output for:

— t= PI/2,T=2%PI

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

{

int n;
cin >> n;
for(int 1 = -n; i <= n; i++)

cout << i << endl;

}

return 0;

int main()

{

double t, T;
cin >> t >> T;
for(double th = @ ; th < T; th += t)

{

cout << sin(th) << endl;

}

return 0;

Hand Tracing (2)

int main()

* For the first program,
trace through the code
and show all changes to i

and y for:
— x=10
_y=2

* For the second program,
trace through the code
and show all changes to i

and y for:
— x=4
—y=11

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

{

}

int x, y;
cin >> X >> y;
for(int i=1; i <= x; i=i+y)
{
cout << i << endl;
y++;
}

return 0;

int main()

{

int x, y;
cin >> X >> y;
for(; X < y; X++)

{

cout << x << " " << y << endl;

y--5
}

return 0;

bools, ints, and Conditions

* Loops & conditional statements require a condition to be
evaluated resulting in a true or false result.

 |n C/C++...

— O means false / Non-Zero means true

— bool type available in C++ => “true’ and ‘false’ keywords can be used

but internally

* true =non-zero (usually 1) and

e false=0

* Any place a condition would be used, a bool or int type can be

used and will be interpreted as bool

int x = 100;
while(x)
1 X--5 }

bool done = false;
while(! done)
{ cin >> done; }

int x=100, y=3, z=0;
if(Ix || (y && !z))
{ /* code */ }

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

R,]S Viterbi

Single Statement Bodies *

* The Rule: Place code for an if, if (X =; 5)
else if, or else construct in curly e1Ze+_ ’
braces{ ... } y -= 3;

+ The Exception: cout << "donel"” << endl;

— An if or else construct with a single

statement body does not require while (x != 9)
{..} X--;
— Another if counts as a single SEUE <& Teenaz” << el
statement for(int i=0; i < 10; i++)
 However, you should ALWAYS if(1%2==0)
prefer { ... } even in single cout << 1 << endl;

: . cout << "done3" << endl;
statement bodies so that editing

later does not introduce bugs

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCVitcﬂ,)i .
Solutions 1

int main() int main()
{ {
int n; double t, T;
cin >> n; cin >> t >> T;
for(int i = -n; i <= n; i++) for(double th = @ ; th < T; th += t)
{ {
cout << i << endl; cout << sin(th) << endl;
} }
return 0; return 0;
} }
Program Output for input of 2: Program Output for input 11 /2 and 21r:
-2 %)
-1 1
(%] (%]
1 -1
2

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

- USCVitcﬂ,)i .
Solutions 2

int main() int main()
{ -
int x, y; int x, y;
cin >> x >> y; cin >> X >> y;
for(int i=1; i <= x; i=i+y) for(5 x < y; x++)
{ {
cout << i << endl; cout << x << " " << y << endl;
y++; y--5
} }
return 0; return 0;
} }
Program Output for input of 10 2: Program Output for input 4 11:
1 4 11
4 5 10
8 6 9
7 8

© 2022 by Mark Redekopp. This content is protected and may not be shared, uploaded, or distributed.

